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Abstract We report Q-space analysis of light scattering phase function data for irregularly shaped dust
particles and of theoretical model output to describe them. This analysis involves plotting the scattered
intensity versus the magnitude of the scattering wave vector q= (4π/λ)sin(θ/2), where λ is the optical
wavelength and θ is the scattering angle, on a double-logarithmic plot. In q-space all the particle shapes
studied display a scattering pattern which includes a q-independent forward scattering regime; a crossover,
Guinier regime when q is near the inverse size; a power law regime; and an enhanced backscattering regime.
Power law exponents show a quasi-universal functionality with the internal coupling parameter ρ′. The
absolute value of the exponents start from 4 when ρ′< 1, the diffraction limit, and decreases as ρ′ increases
until a constant 1.75 ± 0.25 when ρ′≳ 10. The diffraction limit exponent implies that despite their irregular
structures, all the particles studied have mass and surface scaling dimensions of Dm=3 and Ds= 2,
respectively. This is different from fractal aggregates that have a power law equal to the fractal dimension Df

because Df=Dm=Ds< 3. Spheres have Dm= 3 and Ds= 2 but do not show a single power law nor the same
functionality with ρ′. The results presented here imply that Q-space analysis can differentiate between
spheres and these two types of irregularly shaped particles. Furthermore, they are applicable to analysis of
the contribution of aerosol radiative forcing to climate change and of aerosol remote sensing data.

1. Introduction

Scattered light from spherical particles has been studied for more than 100 years and is well understood
[van de Hulst, 1981; Bohren and Huffman, 1998]. However, a coherent description and understanding of light
scattering by irregularly shaped particles has not been achieved. Most aerosol mass in the atmosphere,
including that of entrained mineral dust, volcanic ash, and soot consists of particles with irregular shapes.
The manner in which they scatter and absorb light has implications for the radiative forcing component of
climate models [Ghan and Schwartz, 2007] and for aerosol optical remote sensing, especially satellite remote
sensing [Hoff and Christopher, 2009]. More specifically, satellite aerosol observations use a specific angular
geometry between incident solar radiation and sensor field of view; therefore, the aerosol phase function
is needed to determine scattering into other directions. Similarly, calculations of aerosol radiative forcing rely
on the phase function to represent the energy that is scattered toward and away from the Earth’s surface.
Current assumptions for aerosol phase functions range from the single-parameter Henyey-Greenstein
equation [Henyey and Greenstein, 1941] and calculations for spherical [Mie, 1908] or spheroidal [Dubovik et al.,
2006] particles to approximations for irregularly shaped particles using composition-size-shape distributions
[Kalashnikova and Sokolik, 2004]. Multiangle Imaging Spectroradiometer which provides independent constraints
on aerosol properties has been used to study aerosols [Kalashnikova et al., 2004; Kahn and Gaitley, 2015]. To deal
with large ensembles of irregularly shaped particles in the atmosphere, a universal description of phase functions
is needed that will hopefully lead toward more realistic and practical phase functions for remote sensing and
radiative forcing applications.

In this paper, we apply Q-space analysis [Sorensen and Fischbach, 2000; Berg et al., 2005; Sorensen, 2013b] to
the angular distribution of scattered light for a wide range of irregularly shaped particles using both experi-
mental and theoretical data produced by our group and by others. “Q-space analysis” refers to the use of q,
representing the magnitude of the scattering wave vector:

q ¼ 2k sin θ=2ð Þ (1)

where k=2π/λwith λ thewavelength and θ is the scattering angle. Equation (1) is well known; for a derivation see,
e.g., Sorensen [2001]. The experimental data include 43 aerosol data sets from the Amsterdam-Granada group
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[Munoz et al., 2000, 2001, 2002, 2004,
2006, 2007, 2012; Volten et al., 2001,
2006; Laan et al., 2009]. The
Amsterdam-Granada group mea-
sured scattering matrix elements
(S11, S12/S11, S22/S11, S33/S11, S34/
S11, S44/S11) as a function of angle
for all the aerosols they studied.
We only picked up S11 versus θ,
the phase function. The experimen-
tal data also include our recent
work on Ultrafine, Fine, and
Medium Arizona Road Dust (AZRD)
samples [Wang et al., 2015] and
the data on Ultrafine AZRD from
Curtis et al. [2008]. The theoretical
data include Gaussian random
spheres and thickened percola-
tion clusters from our group, and

irregular spheres from a collaboration between our group and Zubko [Sorensen et al., 2014]. Power laws
with quantifiable exponents are revealed under Q-space analysis for all particles presented; thus achieving
a universal description. Moreover, the exponents of the power laws are a function of the internal coupling
parameter ρ′ [Heinson et al., 2015] that incorporates information on the particle size and composition via
the refractive index:

ρ’ ¼ 2kR
m2 � 1
m2 þ 2

����

����; (2)

where R is the effective radius, e.g., volume equivalent radius of the particle, and m=n+ iκ is the particle’s
refractive index. We find an undeniable trend in the absolute value of the exponents with ρ′; the absolute value
of the exponents is 4 when ρ′< 1, decreases with increasing ρ′, and then reach a plateau of approximately 1.75
± 0.25 at large ρ′.

2. Q-Space Analysis

Conventionally, observational data for the scattered intensity is plotted versus the scattering angle θ.
However, we apply Q-space analysis [Sorensen and Fischbach, 2000; Berg et al., 2005; Sorensen, 2013b] wherein
the scattered intensity is plotted versus the magnitude of the scattering wave vector q or the dimensionless
qR on a log-log scale (equivalent results; however, the latter variable eliminates the particle size dependence).
Unlike plotting versus linear θ which yields no definable pattern, Q-space analysis reveals a series of regimes
as a function of q common to all particle shapes. In particular, power law functionalities of the scattered
intensity versus q with quantifiable exponents are uncovered. Thus, an amorphous description gives way
to a quantified and specific one that can be used to describe similarities and differences between scatterings
by different types of particles.

Previous work applying Q-space analysis to spheres has shown two [Sorensen and Fischbach, 2000; Berg et al.,
2005] and, when the sphere is large, three power law regimes [Heinson et al., 2014] between the Guinier and
enhanced backscattering regimes (see below). Soot fractal aggregates [Sorensen, 2001] and recent work on
limited samples of dusts [Sorensen, 2013a; Wang et al., 2015] show a single power law, distinctively different
than spheres. Figure 1 shows a simple, generalized schematic of the results of Q-space analysis for irregularly
shaped particles as we know it so far. A constant forward scattering lobe at small q is followed by, at larger
q, a crossover, Guinier regime near q≃ R� 1, where R is a radial dimension, a power law regime; and finally,
an enhanced backscattering regime, the Glory, is sometimes observed at the largest values of q near 2 k.
This description applies to spheres as well, except that the power law regime has more than a single power
law as described above. These simple patterns give a unified description for all particle shapes.

Figure 1. A generalized schematic of Q-space analysis for nonspherical
particles. Scattered intensity I with arbitrary units (a.u.) is plotted versus q
(cm�1) on a log-log scale.
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3. The Internal Coupling Parameter ρ′
In recent work [Heinson et al., 2015] we show that patterns revealed by Q-space analysis are better parame-
terized by the internal coupling parameter ρ′ given in equation (2) above than by the more widely known
phase shift parameter ρ= 2kR(m� 1), that was used in our previous work [Sorensen and Fischbach, 2000;
Berg et al., 2005; Sorensen, 2013b]. The phase shift parameter ρ describes the phase difference between a
beam of light traveling through the diameter of the sphere and another that travels the same distance out-
side the sphere. In contrast ρ′ is related to the Lorentz-Lorenz factor which is directly involved in the radiative
coupling between the subvolumes that comprise the particle. When the coupling is strong, the field within
the particle is no longer equal to the incident field; hence, the scattering is no longer in the Rayleigh-
Debye-Gans (RDG) limit which occurs at small ρ′ (and ρ). When in the RDG limit, the scattering is simple
diffraction from the volume of the particle, and as such, the scattered intensity is the Fourier transform of
the shape of the particle, squared. This new parameter was first realized by the need for spherical particle
scattering to cross over from the small particle RDG limit to large particle Fraunhofer diffraction which is
described by a two-dimensional circular obstacle. Spheres that are small compared to the wavelength of light
have scattered intensities given by the Rayleigh differential cross section [Kerker, 1969; van de Hulst, 1981;
Bohren and Huffman, 1998]

dCsca; Ray

dΩ
¼ k4R6

m2 � 1
m2 þ 2

����

����
2

(3)

As spheres become very large, the scattering is described by Fraunhofer diffraction by a two-dimensional
circular obstacle with forward scattering given as

dCsca

dΩ
0ð Þ ¼ k2R4=4 (4)

which is well established, see, e.g., Hecht [2002]. The ρ′ parameter is derived as the square root of the ratio
between equations (3) and (4). Note that both ρ′ and ρ assume a homogeneous particle with regard to the
refractive index m, although we expect that, if inhomogeneous, a Maxwell-Garnet average m would make
a good approximation. All the particles studied here were homogeneous or to a very good approximation.

4. Q-Space Analysis of Scattering by Aerosol Particles
4.1. Analysis of Prior Published Data Sets

The Amsterdam-Granada group has measured light scattering from various kinds of irregularly shaped
aerosol particles such as feldspar, red clay, quartz, volcanic ash, and many others at wavelengths 441.6 nm
and 632.8 nm [Munoz et al., 2000, 2001, 2002, 2004, 2006, 2007, 2012; Volten et al., 2001, 2006; Laan et al.,
2009]. Their volcanic ash was collected from different locations, years, and time after possible eruptions.
The phase functions could not be normalized due to the lack of the exact forward and backward direction
measurements. The Amsterdam-Granada group normalized all their intensities at 30°. We applied Q-space
analysis to all 43 aerosol data sets available on their website as shown in Figures 2a–2i, where the scattered
intensity with arbitrary units is plotted versus q (cm�1). A different, arbitrary multiplication factor is applied to
the intensity for each aerosol simply for clarity in the figure. Q-space analysis with its double logarithmic axes
reveals that the data have a linear relationship in this space, with the fitted power law exponent values
labeled on the right side of each curve. It is important to stress that in contrast to the behavior in Q-space,
plotting the data with a linear abscissa representing the scattering angle θ yields nondescript, indistinguishable
curves. Figure 3 [Sorensen, 2013b] is an example of this comparison between conventional analysis and Q-space
analysis on desert dust.

The data are limited in that they do not show a constant forward scattering lobe and only some of them show
a portion of a Guinier regime. This limitation is due to minimum scattering angles larger than either 3° or 5°.
Consequently, neither the true forward scattering regime nor the Guinier regime is captured in the scattering
data for sizes greater than R≈ λ/2θ (derived from the Guinier regime q≃ R� 1, see Figure 1, and Fraunhofer
diffraction, see, e.g., Hecht [2002]) which is ~5 microns for 3°.

The exponents for the power law regime are obtained by fitting the data after the Guinier regime, when
present, and before the Glory. For example, scattering by volcanic ash from the Pinatubo volcano measured
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Figure 2. Scattered intensities (a.u.) (intensities have been scaled for clarity) expressed as functions of the parameter q
(cm�1), for studies of the indicated particle types, as reported by the Amsterdam-Granada group [Munoz et al., 2000, 2001,
2002, 2004, 2006, 2007, 2012; Volten et al., 2001, 2006; Laan et al., 2009]. Lines are the power law fits proposed in this work, and
the numbers to the right of the plots are the exponents of the power law. (a) Volcanic ash (Pinatubo, Lokon) measured at
λ = 441.6 nm. (b) Volcanic ash (Pinatubo, Lokon, El Chichol, and Mount St. Helens) measured at λ = 632.8 nm. (c) Olivine S,
Olivine M, Olivine L, and Olivine XL measured at λ = 441.6 nm. (d) Olivine S, Olivine M, Olivine L, and Olivine XL measured at
λ = 632.8 nm. (e) Feldspar, Redy clay, Quartz, Loess, Sahara, Allende, Green clay, and Fly ash measured at λ = 441.6 nm.
(f) Feldspar, Redy clay, Quartz, Loess, Sahara, Allende, Green clay, and Fly ash measure at λ = 632.8 nm. (g) Volcanic ash
(Redoubt A, Redoubt B, Spurr Ashton, Spurr Anchorage, Spurr Gunsight, and Spurr Stop 33) measured at λ = 632.8 nm.
(h) Hematite, Rutile, Martian analog (palagonite), and Sahara sand (Libya) measured at λ = 632.8 nm. (i) Forsterie initial,
Forsterie small, and Forsterie washed measured at λ = 632.8 nm.
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at λ= 441.6 nm obeys the power law with the exponent of �1.87 found from a fit to the data, excluding the
first few points and the Glory points. The Amsterdam-Granada group provided the effective radius and the
refractive index for each kind of aerosol particle, which allows us to calculate the internal coupling parameter
ρ′. We noticed that the exponents evolve with increasing ρ′. The supporting information file shows ρ′ and the
corresponding exponent for each particle presented.

4.2. Arizona Road Dust (AZRD)

In our previous work we conducted measurements on three AZRD samples. The experimental method, the
images, the Q-space analysis of AZRD, and other details are presented inWang et al. [2015]. Q-space analysis
on AZRD showed power laws with quantifiable exponents of �2.23, �2.17, and �2.12 for the Ultrafine, Fine,
and Medium (as named by the provider, Powder Technology, Inc.) dust samples, respectively; all with uncer-
tainties of ±0.05 [Wang et al., 2015]. The sizes of the three AZRD samples were measured via a Guinier analysis
of the light scattering data, and the sizes were 2.7μm, 5.5μm, and 9.7μm for the Ultrafine, Fine, and Medium
dust samples, respectively [Wang et al., 2015]. These sizes along with the refractive index of 1.54 [Gorner et al.,
1995; Wang et al., 2009] were used to calculate ρ′ with equation (2). Hence, ρ ’ increases from Ultrafine to
Medium AZRD, which indicates that the exponents decrease with increasing ρ′s. Curtis et al. [2008] con-
ducted experiments on one AZRD sample [Curtis et al., 2008]. They used an experimental method which

produced much smaller Ultrafine
AZRD particles with the projected
surface area weighted effective
radius 0.318 μm [Curtis et al., 2008].
This radius implies a Guinier regime
near q≈ 3 × 104cm� 1. We extrapo-
lated their experimental data and
did Q-space analysis for q values
larger than this Guinier value to find
a power law with the exponent of
�2.60 as shown in Figure 4.

4.3. Gaussian Random
Spheres (GRSs)

Gaussian random spheres (GRSs)
have been used to model many
different objects from asteroids to
dust and ice particles [Muinonen,
1998; Muinonen and Lagerros, 1998;

Figure 3. Comparison between conventional analysis and Q-space analysis on desert dust [Sorensen, 2013b]. The same
data are plotted on each side of the figure. Plotting the data versus linear θ (left) yields a nondescript curve; plotting
versus logarithmic q (right) yields an obvious straight line regime indicating a power law.

Figure 4. Q-space analysis on extrapolated AZRDdata from Curtis et al. [2008].
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Munoz et al., 2007; Nousiainen et al.,
2011a, 2011b]. Figure 5 shows a GRS
model compared to Saharan dust
(Libya) particles from Munoz et al.
[2007]. GRSs are described by three
parameters: (1) a, the mean radius,
which sets the overall size of the
particle; (2) σ, the relative standard
deviation in the radial direction
which is used as a measure of the
size of fluctuations in radial direc-
tions away from the mean radius a.
The standard deviation would be
calculated by taking the square root
of the sum of the square of the dif-
ference of the actual radii from the
mean radius. The relative standard
deviation is the standard deviation

normalized by the mean radius; and (3) ν, the power law exponent that controls the angular range of fluc-
tuations in a tangential direction. For general descriptions of GRSs the reader is directed to Veihelmann
et al. [2006], Muinonen et al. [2007], and Nousiainen et al. [2011b] and for a more in-depth mathematical
treatment to Lamberg et al. [2001].

In ourwork recently accepted for publication [Maughan et al., 2015] GRSswith σ =0.2 and ν =3were systematically
studied theoretically with size parameters ranging from ka=10 to 30, with a relative index of refraction,m, ranging
from 1.01 to 1.5. The scattered intensity was calculated for many different orientations and then averaged using a
Discrete Dipole Approximation (DDA) [Purcell and Pennypacker, 1973; Draine and Flatau, 1994; Kalashnikova and
Sokolik, 2004]. The results show power law descriptions of the scattering in Q-space between the Guinier regime
and the Glory. One example is shown in Figure 6 where ka=30. The exponent for each ρ ’ is labeled by each plot.
We noticed that exponents evolve with increasing ρ′, again similar to the conclusion in section 4.1.

4.4. Thickened Percolation Clusters

We wanted an irregularly shaped particle that was not a perturbation of a sphere to mimic certain irregular
aerosol found in nature [Popovicheva et al., 2012]. Our recent work simulates three-dimensional dust

agglomerate particles by using clus-
ters made under the classical site
percolation theory as a backbone.
Percolation clusters are made on a
square lattice that has sites randomly
filled. When filled sites are neighbors,
they are considered joined into a
cluster. As more sites are filled,
clusters become larger until one
reaches the desired size and is set
aside to be used as the backbone
for the dust particle. Percolation clus-
ters are described by their fractal
dimension of Df≃ 2.5; therefore, to
make the fractal dimension match
the spatial dimension of three, the
backbone cluster is then thickened
by filling the neighboring sites.
Figure 7 shows an example of a thick-
ened percolation cluster.

Figure 5. GRSmodel compared to Saharan dust particles fromMunoz et al. [2007].

Figure 6. Q-space analysis on GRSs with ka = 30, σ = 0.2, and ν = 3. Lines
are the power law fits and the numbers to the right of the plots are the
exponents of the power law. A different multiplication factor is applied to the
intensity for each plot to separate one from the other.
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The rotationally averaged scattered intensity was calculated using DDA [Purcell and Pennypacker, 1973; Draine
and Flatau, 1994; Kalashnikova and Sokolik, 2004]. Then with the application of Q-space analysis as shown in
Figure 8, power law regimes after the Guinier regime become apparent. As before, the exponents evolve with
increasing ρ′.

4.5. Irregular Spheres

Zubko and colleagues [Zubko et al., 2006, 2008, 2009] used DDA [Draine and Flatau, 1994] to calculate light
scattering by four different types of irregularly shaped spheres: strongly damaged spheres, rough surface
spheres, pocked spheres, and agglomerated debris particles. In collaboration with Zubko our group applied
Q-space analysis and reported the results including power law exponents in Sorensen et al. [2014].

5. The Exponent of Q-Space Analysis as a Function ρ′
Figure 9 is a plot of the power law exponents uncovered by Q-space analysis versus the internal coupling
parameter ρ′ for all the irregularly shaped particles studied above. Figure 9 clearly shows an undeniable trend
that as ρ′ increases, the absolute value of the exponents from the power law regimes decrease, and that all
the particles fall on the same trend regardless of the detail of their structure. The exponents start from 4 when
ρ′ is small. As ρ′ increases, the exponents decrease until the trend levels off at ρ′≳ 10 where the exponents
reach a constant 1.75 ± 0.25. The supporting information file shows the ρ′ values and the corresponding
exponent absolute values for all the data presented in Figure 9.

In the ρ′→ 0 diffraction RDG limit, the power law regime, in general, obeys [Oh and Sorensen, 1999]

I qð Þ e q� 2Dm�Dsð Þ (5)

In (5) Dm is the particle mass scaling dimension and Ds is the particle surface scaling dimension. For example,
spheres have Dm= 3 and Ds= 2 to yield via (5) the Porod exponent 4 [Porod, 1951] when ρ′< 1. Although not

Figure 7. Thickened percolation cluster (a) side view, (b) three quarters view, and (c) top view.

Figure 8. Q-space analysis on thickened percolation clusters. Lines are the power law fits and the numbers to the right of
the plots are the exponents of the power law. A different multiplication factor is applied to the intensity for each plot
for clarity.
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all the shapes in Figure 9 have
small ρ′ values, the similar trend
implies that all shapes would have
a power law exponent of 4 when
ρ′< 1. If true, then all the irregular
shapes studied here and displayed
in Figure 9 have Dm= 3 and Ds= 2;
the same as spheres, and hence
do not have the fractal morphol-
ogy. A corollary to this is that
“regularly shaped” spherical parti-
cles with ρ′< 1 fall on the trend
of Figure 9.

It is important to note that another
type of irregularly shaped particle,
the fractal aggregate, does not
fall on the trend in Figure 9.
Reference [Sorensen, 2001] shows

that the phase shift parameter ρ→ 0 as the aggregate size increases when Dm< 2. The same argument
can be applied to ρ′. Furthermore, due to their fractal hence ramified nature, the internal coupling is usually
weak even when Dm is larger than two. Fractal aggregates have Dm=Ds, to yield the well-known light

scattering result that I e q�Dm. Thus, a fractal aggregate can have ρ′< 1, but with a power law exponent much
less than 4, a result not on the trend in Figure 9. We conclude that the particle types studied in this work
cannot be represented by fractal morphology.

At this time, we can offer neither an explanation for the power laws found empirically above nor their
behavior as a function of ρ′. However, this latter behavior is consistent with the fact that the interior field
of any particle shape darkens and develops phase differences relative to the incident field due to internal
coupling with increasing ρ′ once ρ′> 1. The consequence of this is that the forward scattering lobe intensity
decreases relative to Rayleigh scattering. On the other hand, the Rayleigh normalized scattering at the largest
value of qR= 2kR remains approximately constant as ρ′ increases. This implies that the intensity difference
between the forward and backward scattered light is less for larger ρ′. This conclusion is consistent with an
exponent decreasing with increasing ρ′.

6. Conclusions

Q-space analysis reveals power laws with quantifiable exponents for all irregularly shaped particles, both real
and simulated, studied in this survey. Furthermore, all the particles studied here display a scattering pattern
consistent with Figure 1. We suggest that Figure 1 very likely represents a fundamental paradigm for
scattering regimes obeyed by these particles. This rather surprising result means that the apparent complexity
in shapes that these various samples represent has only a minor influence of the details of their angular
scattering patterns.

The power law exponents show a universal functionality with respect to the internal coupling parameter ρ′
regardless of their specific structure. The exponents start from 4, consistent with the RDG, diffraction limit,
and then beginning near ρ′≃ 1, decrease with increasing ρ′ until the exponents reach a constant
1.75 ± 0.25 when ρ′≳ 10. The diffraction limit exponent when ρ′< 1 implies that despite their irregular struc-
tures, all the particles studied here have a mass scaling dimension of Dm= 3 and a surface scaling dimension
of Ds= 2. This is different from fractal aggregates that have a single power law equal to the fractal dimension
Df but with different scaling dimensions Df=Dm=Ds< 3. Spheres (a “regular” shape), on the other hand, have
Dm= 3 and Ds=2 but do not show a single power law nor the same functionality with ρ′. Thus, it appears that
Q-space analysis can differentiate between spheres and these two types of irregularly shaped particles.
Furthermore, these observations suggest that the ill-defined terms “regular” and “irregular”might gain some
resolution with these and future observations.

Figure 9. The exponents of the power laws versus the internal coupling
parameter ρ′.
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The ratio of forward to backscattered intensities is of critical importance to atmospheric radiative transfer cal-
culations, as it changes the computed heating or cooling properties of layers of dust aerosols. Figures 2–4
demonstrate that laboratory data frequently do not measure at small enough q values (i.e., small enough
scattering angles) to accurately determine the Guinier regime and the scattered intensity in the forward
direction. This problem must be addressed in future measurements. However, until that time, Figure 1
combined with a known effective size and refractive index with which one can calculate ρ′, the power law
exponent determined empirically with Figure 9, and finally the position of the Guinier regime from the
effective size, would allow this ratio to be calculated.
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