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1. Introduction

Let the random variables Y.(i » 1, 2, . . . , n) be independent and

have the same continuous distribution function F(x) . Let the ordered sample

be represented by X- <_ X„ £ , . . £ X . From the assumption that F(x) is

continuous and that the random variables are Independent, it follows that

the probability of any two X, 's being equal is zero.

We define the empirical distribution function F (x) as:
n

f
for X < X.

P«(^> ' < i for X. < X < X.^, , i - 1, . . . , n-1n \ ^ "" 1+1 .

V 1 for X < X .
n —

It is known that the probability that the sequence F (x) converges to

F(x) as n -^ «, uniformly in x (- «» < x < + ») , equals one (see Fis^, 1963,

p. 391).

Let

D^ - sup [F(x) - F (x)] .

-«o<X<+<»

The distribution of D^ was given by A. Wald and J. Wolfowitz (1939)

and by Z. W. Bimbaum and F. H. Tingey (1951). The asymptotic expression

for the distribution of D was given by N . Smirnov (1939)

.

In the present report, the distribution of D is studied in section 2.n

In section 3 the power of the test based on D is discussed. Discussions
n

in section 2 and section 3 are mainly based on Bimbaum and Tingey (1951) and

Bimbaum (1953). In section A the greatest lower bound for the power of the

test is obtained under a slight modification of Bimbaum* s assumption given



in section 3. In section 5 numerical tables are obtained in order to make

a comparison of the power of the test with that of a parametric test under

the assumption of normality.

2. The Distribution of D .
n

Let F (x) be the empirical distribution function determined by a random

sa'aple (ordered) of size n from the continuous distribution function F(x)

.

It is known that the probability

(1) P(D^ < e)

.

where e is a constant, is independent of F(x) (Wald and Wolfowitz, 1939).

Hence we assume that F(x) is the rectangular distribution in the interval

[0, 1], namely,

/ for X <

F(x) -/x forO<_x<l

[ 1 for 1 <, X

Figure 1 will show that (1) is equal to the probability that the ordered

sample:

0<Xt<X_<..,<X <1— 1—2— — n —

satisfies the condition:

i-1
X. < min (•

1 — n
+ e, 1) for i - 1, 2,

i-1

F(x) - X

Ox
Figure 1.



We know that the probability element of (X , X , . . , , X ) is

nldx,dx_. . . dx for the region (x. < x_ < , . . < x ) and
J. ^ n i. Z n

O.dx.dx-, . . dx elsewhere. Therefore we conclude12 n

(2) PCD^"^ < c)

re z'n"^^ An"^^^-"- /^

"^JaL '"J / •••y *^a---^\+2^^k+r--'^'^2*^l»
"^°

'^l ^^ ^\+l ^Vl

wliere k is the greatest integer j such that •^ + e < 1 .

The following theorem is from Bimbaum and Tingey (1951) . This proof is

ail expanded version of their proof,

THEOREM , For < e <_ 1,

P(dJ < e) - 1 - e I
(J)

(1 - e - 1) (e + -^)

Before proving the theorem, let us give the following two formulae;

nfjnely, for any integer k, 1 <^ k <^ n.

(S) / I ... I <ix_ ... dit,^,dx. ii=±-

- +e - +e

^1 ^k

The formula (3) is easy to show by induction. As for (4), let us assume that

it is valid for k, and put
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^2 - x^ + ^1

X3 - x^ + y^

aad

1 J.— +e - Xt e ' .
n 1

Then we have, for k+1.

1 ^ 2 ^ k+1 ^— +e , — +e , +E

f(e,k+l,n) "
/ / / .../ dyL^^^,,,d.7i^dyi^Ax.^

*1 ^^2 'Sc+l

e' / n
i+e- i^+e-

'y^ Jj^

By the assumption of induction.

dyj^^l-.-dy^dy^ V dx^

f(e,k+l,n) -
I

—S^ (£.
+k±l)

,

Jq (k+1) I

"" 1

/

(^•^^-^1')
u+2

^—2 i—
. (

i^ + e - X.) dx. .

(k+l)l
" ^ ^



Cue can easily verify that the last integral yields (4) with k+l instead

cf k, namely.

e , ^ k+2.
k+l

(k+2) I

Therefore (4) is valid for any integer k, 1 <. k £ n .

Proof of the theorem: From (2) and (3) we have

P(V - ^^ ' *^^^' ^' ^^*

where J(e, k, n) - nl

- — +c ,— +tc /n f n

J

n-k-1

(^-"k+l>

(n-k-1)

1

^k+1 ••• ^2^^1

Then,

J(£, k, n) = nl

e rn

J

k-1
n

^k-1

+e
(1-x,)

n-k

\ (n-k)

!

> dx, ...dx-dx,
(n-k) I j ^ 2 1

n!

e /n

^x.

k-1
n

'k-1

+E

(n-k)

I

n-k

dx . . ,dx-dx^

nl

(n-k)

I

n-k n

(1 - r -On

k-1
n

Vi

+e

dXj^,.,dx2dx



With this and from (4) , we obtain

, n-k k-1
J - (e.k.n) = J(e.k-l,n) -

e(JJ)
(1 - ^ - e) (e+ p

A;)plying this procedure successively will give us

6

k . 4 .

J(e,k,n) - J(e,0,n) - e I (^) (1 - J- - e)"-J (e + J-)

1-1 J '^
.

^

J-1

F;Lnally noting that

J(e,0,n) - n!

n-1

f <^--l>

(n-1)

1

dxj^ - 1 - (1-e) ,

we have

P(D^^ <.£) = J(e.k,n)

- 1 - e I (")(1 - c-^)""^ (e +^^'^ .

j-0 J " n

Thus the proof is complete.

If we let

n
sup [F (x) - F(x)] ,

—«i><X<+»

then it can be shown, by the symmetry of D
"*"

and D ~. that
n n

P(D " < e) - P(D
*

< e)n — n — •

By making use of the theorem, we can compute, for given values of a



aid n, value of e for which

(5) P(V i O - 1 - ot.

where < o < 1.

Values of e for several values of n and a are given in Table 1,

taken from Bimbaum and Tingey (1951).

Table 1. The values of e for (5).

o/n .10 .05 .01 .001

5

8

10

20

*0

50

.4470 .5094 .6271 .7480

.3583 .4096 .5065 .6130

.3226 .3687 .4566 .5550

.2316 .2647 .3285 .4018

.1655 .1891 .2350 .2877

.1484 .1696 .2107 .2581

(.1517) (.1731) (.2146) (.2628)

In practice, when n is greater than 50, one can use an approximation

based on the asymptotic distribution function of D due to Smimov (1939)

,

namely.

-2ne
(6) P(D^ <. e) - 1 - e

Numbers in parentheses of Table 1 are due to (6) for n - 50, and one

can see that these are fairly accurate when n - 50.



3. The Power of the Test based on D .
n

Let F(x) , the distribution function of the random variable X, be

continuous. We want to test the null hypothesis

H^: F(x) = H(x)

£ gainst the alternative hypothesis

H^: F(x) - G(x) .

Ve use D^ for the test statistic. For a test of size a (significance

level) we draw a sample of size n from the population considered, and

compute from the sample the empirical distribution function F (x) , We will
a

reject H at a level if the inequality

d"*" > e
n

is satisfied, where e is the value determined in such a way that,

provided H is true, we have
o

P(D^"^£ e
1
H(x)) - 1 - o .

The value of e is given in Table 1. For n > 50, we use the asymptotic

+distribution function of D given by (6).a

The power of this test is given by

Q - 1 - P(D^"^£ e
I
G(x))

Oae can easily verify that the inequality

D
"*"

< e
n —

i:3 satisfied if and only if



H(X.) < -^ + £ for i = 1, 2 n
i — n ' ' '

is true (refer to Fig. 1), Hence

P(V- ^ I

^^""^^

- P(H(X^) 1-^+ e, i » 1, 2 n
|
G(x))

(7) - P(X^ <.ir^ (^+ e), i = 1,2 n
I

G(x))

= P(G(X^) <.G[ir^ (^+ e)], i = 1,2 n),

where H is the inverse function of H.

We recall that since G(x) is continuous, the new random variable

Z = G(X) has the uniform distribution in the interval [0, 1]. Hence the

Z. = G(x.) are independent order statistics drawn from a population with

the uniform distribution in the interval [0, 1], So we obtain

(8) 1 - Q = P(Z^^G[H~^ i^+ £)], i = 1 n |U(Z)),

where U (2) is the uniform distribution function in the interval [0, 1],

By the fact that the probability element of (Z,, Z- Z ) is

nl dz •dz„...dz for z, < z- < .,, < z
X z n 12 a

and

0»dzTdz-...dz elsewhere,
1 z n '
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ve conclude

R(e) r R(J+e)

Q « Power = 1 - nl

R(^^c)

n-1

dZ . . .dZ^dZ.

.

n 2 1

where

lim GEh'-'-Cv)]

( 0<v+0

(9) R(v) «=
^

G[h"^(v)]

,-1.
v. lim G[H "(v)]

1>V>1

for V <

for < v< 1

for V > 1

Bimbavnn (1953) found the greatest- lower bound for the power of this

test under the assimption that

(10) sup [H(x) - G(x)] » 6 >

-«><x<-H»

aiid

CD H(Xq) - G(Xq) - 6

He established that

(12) Power > I (^) U^ (1 - u )''"^
,

i=0

wrere U - G(x ) , j = [n(v- - e) ] and v_ = H (xJ

.

He also gave the least upper bound for the power, namely.
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Power < 1 for e < 6

cind

k . n-i i-1
(13) power < (e-6) I (") (l-e+6 - -) (e-(S+ -) for e >^ 6,

i-0 ^ ^

where k = [n(l-e+6)] .

In fact, the right-hand side of (12) is the power when G(x) is such that

H(Xq) - 6

G(x) =• G (x)

for X _< x^

for X > X,

and the right-hand side of (13) is the power when G(x) is such that

**
G(x) = G (x) = max [H(x) -6,0]

*
G (x)

Figure 2 .

In practice, there exists neither G (x) nor G (x) as a distribution

function. However we can construct a G(x) arbitrarily close to G (x) or

**
G (x) .
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'. Lower Bound for the Power under Certain Assumptions,

In this section we make a slight modification of the assumptions of (10)

end (11), and we will find the greatest lower bound for the test. Occasionally

it is plausible to make this modified assumption, and in such cases the lower

bound given by (12) may sometimes be sharpened.

Let us assume that

(14) H(x) >. G(x) for all x

£nd

(15) H(Xq) - G(x^^) = d ,

Under this assumption we can find the greatest lower bound for the power of

the foreraentioned test. To see this let

6(x) - H(x) - G(x) .

Then it can be seen that d = <S(x ) and

G[ii-l(izl + e)j „ izi + e _ 6[H"^(i^ + e)], (see Fig, 3)

H(x)_

6[H"\~^+e)]

[H-l(ili+e)]

1 H -^(i^
n

+£)

Figure 3 .
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From (7) and (8) we have

(L6) P(D
*

< £
I

G(x))
n

- P(Z. < ^+ e - 6[H~^(-i^+ £)], i - 1...., n
| (J (Z)) .

The probability (16) will give its maximum value when G(x) is such that

tiie values of 6 [H ( + e)] are small as possible for all i under

consideration. This would occur when 6(x) is very close to 6^(x) defined

by

H(x) - G(Xq)
-1

for H (G(Xq)) < X _< Xq

fi^Cx)

elsewhere.

In fact, for any G(x) under the given assumption we have

where

?(J)^^ 1 e
I
G(x))

i-1
< P(Z^ <— + e - c^, i - 1.2..,..n

[
U(Z))^

(17) c. = <
1 ^ + e - G(Xq)

for i < k

for k < i £ ji

for £ < i ^ n,

k - [n(G(xQ) - e) + 1], and i " [n(H(xQ) - e) + 1], (see Fig. A)
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Hence v;e have

Figure 4,

P(D "^

1 e
I

G(x) )n

- +e
n

(]8) < n I

'0 ''z.

k-1
n

^k-1

+e r h b ,'- +e
n

'^i-1 ' h

m-l
n

"m-l

+z r 1

m n-1

'^^n- • -^^m+l^^m- * '^^i+l^H ' * •^^k+l'^^* * '^22^21.

where b = G(x„) and m = [n(l-e) + 1] ,

Since the power of the test is the complementary probability of

^(°n i. £
I
GCx) )» we obtain:

THEOREM. Under the assumption of H(x) _> G(x) , for all x, with

H(x ) - G(Xq) - d, the greatest lower bound for the power of the D

test is

(19) ^-V
where P^ is given in the right-hand side of (18) , and also by (20)

.
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One can see that, when d in (15) equals 6 in (10), the greatest

].ower bound given by (19) is greater than or equal to that of Bimbaum

^iven by (12) , because G (x) in Fig. 2 is greater than or equal to the

corresponding curve, Min (G (x) , H(x)), as indicated in Fig, 4. This fact

is not contrary to our intuition because the assumption of G(x) given

by (14) is more restrictive than the assvimption of G(x) given by Bimbaum,

The Integration of P is tedious, but straightforward, and one may

verify the following results, step by step.

^1-

n-m

vx

, ,
v.n-m) 1

m n-1

"£ Vl

(1-z^) (-+e-zpm-l n-j j-£-l
n

^ [(H^jd^..^) (1+e-z) ],

(n-Ji)l (n-i)! j=£ ^-j n n /

Now let ?„, and P-_ be the first and second term of the right-hand side

of the last expression respectively, then we get

z'
b - b ,T .n-k

P-, " I ••• / P„,dz. ..,dz, ,T
=

'' J, i '' ' ^-"^ (n-k)l

^ Y"' (":^) (i-b)^-^-J (b-z,)^
(n-k)I i-0

^ ^
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and

1 rt(l-f-er^b>z,)^-^
(n-k)I 'n-l'^" n "' " k'

|i!-k-i

i=l (n-k)! ""*'" j=£+l
,'f±:!^L_,-^,t [Oa-i-.)-^

*^+e-b)-^ (e-b + —-) J
<n

m-l

(n-k)! ^i^^^ Vj^^"- n 'n k^ ^ k n

Again letting P-,,
^^ and P32 be the kth term of the right-hand sides of

P, and P„„ respectively, we can express P as:

P =ni fV"" '
[

"^ \v ^^K? ^^K? <^^+p ^^K? ^^hP^ = n! / .../ (P3^ +^33^ +1'32 +^-32 +^32 ^

Jo Jz^ Jz^_^

dz^ . . .dz^dz. .

k 2 1

By performing integrations term by term, we obtain the final result
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k-1 . j-1 n-j

(::0) P = 1 - e ^ (^(e +^) (1 -^- e)

m-1
-e I (")(l-:^-e)-^(^+e) J-1

j-i+l

k ,_L- . 4 1 • £-k+i , . k-l-i

- = I <.-!>O) (^ - ^ ->" <^-=- ¥> <= ^ ^>
i=l

n
- 0(l-^-e)"-^b

Ji-k-1
- Z (.l)(l-b)

n-k-j , j+k

3=0
j+k'

i=0 j=0 1 ^+3 -L »

k 4-k m-1 (i-k-i+r
V r T r / n \ /H-k+rs ,, k-r ., - - "•

'

k-r^
- e III [(j^_^) (^_^^.) (b-e-—

)

(e +—

)

r=l x=l j=jl+l

k-l-r

• K(i. j)]

£-k m+1
n s v^-i .

1=1 3=^+1
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where K(i,j) - Cl[f)a - ^ - e)^"^ (1 + e - b) (e - b + ^) .

If k = X , c. = in (17), and we have a simple form for P^, resulting

in

p„ - 1 - e T (^) (1 -
' - y^ c= * i)^"' .

in agreement with the theorem in section 2.

5. Some Numerical Results for the Power.

For the purpose of making a comparison between the power of the test

ba£:ed on D and that of a parametric test, let us consider the following
n

hypotheses

:

H : G(x) « N „(x) ,

where u =u+K. K>0, and N (x) denotes the normal distribution function
1 ' li,a

with mean y, and standard deviation a.

We draw a sample of size n from the population considered. Let X^,

X , ..., X be the ordered sample and F (x) be the empirical distribution

function determined by the sample. For a test of size a, choose a

corresponding value of e from Table 1.

From (8) , we have

(21) l-Q = P(Zi <N^+K,at\.a"'" ^^ ^ ^^ ^
'

^ = ^ ^
' ^ ^=^> >•

Let

\,o "'^y^ = -0 •
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Tiien we can write

n(t;y,a2) dt

n(t; 0, 1) dt,

wiere n(t, y, o^) is the normal density function with mean y, variance a'

Hance we have

-1 ""o"^

wiich is written as

(22) N^^;\y) = aNQ
J\y)

+ y.

.x^En
From (22) and with the fact that N ^(x) = N^ -^i—^)*

we have

<22> VK.a^,a'(y>^ = VK,at°No,l'(y> "^ ^^

From (21) and (23) , we can write

1-Q-P(Z. <NQ^^[NQj\i^+e)
-f]. i = l n

| U (z) ),
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where N " (r^ + e) is similarly defined as (9)

.

Tlierefore we have the power function

(:!4) Q =• 1 - n! ... I dz^...dz2dz^,

where N^ = N^ ^[N^ "^ (r^ + e) - -] , i = 1, 2 n .

We notice that under the given hypotheses, the power fxinction is

independent of actual values of u and a, but it depends on the value of

K ^r^

To illustrate the use of (24) , let

K
n = 5, a = ,10 and — = 1 ,

From Table 1 e = .4470, and then we obtain

-1,
N
1 " ^0 i^^o 1

('^^^"^ - ^^ = ^'o.i^"^*^^^^ ° '^^^^

-1
^2 " ^0 l^^'o 1

^'^^^^^ - 1^ = ^0,1^"-^^^^ " '^^^^

-1
N3 = Nq ^[Nq ^•'(.8470) - 13 = Nq^j, [.024] = .5096

\ =• ^o.it^o.i'^^-°^^°^ - ^^ ^0,1^+ "^ = ^

^ = ^'o,it^o.l'(^-2^^°> - ^^ " ^o,it+ "^ " ^-

By replacing these values for N.'s in (24), and after a little calculation,

W2 have the power

Q = .7495.

Table 2 is the result of several such calculations, and gives the values

of power for a « .10, .05 and .01 when n = 5, with — •* .5, 1.0, 1.5 and 2.0 .
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Table 2. Values of the power using D

K/a a = .10 a = .05 a = .01

.5 31.65% 25.09% 8.56%

1.0 74.95 61.57 33.16

1.5 94.93 89.50 68.19

2.0 99.50 97.89 . 90.53

The most powerful parametric test under the same hypotheses would be

the following.

By noting that

(25) a - P(X^ > c
I
N(x; y. a^))

P(Z > -^^^
I

N(z; 0, D) ,

we have, for the power,

(26) Q = P(X^ > c
I

N(x; y + K, o^))

= P(z > -^^^i^
I

N(z; 0, D) .

a//a

If we let a = .10, n = 5 and ^ = 1, then from (25) and (26) we have

-^^ - 1.282
i//^

^"^"^
= 1.282 - /5 = - .954,

a//n
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cind therefore

Q •= .8299 .

The following Table 3 is the values of the power of the parametric

test with the same sizes of a, n and — as are in Table 2.

Table 3. Values of the power using the most powerful test.

- a = .10 a = .05 a = .01
o

.5 43.48% 29.91% 11.35%

1.0 82.99 72.27 46.41

1.5 98.09 95.58 84.80

2.0 99.93 99.77 98.40

By comparing Table 2 with Table 3, we see that the one-sided D test

turns out to be, under the hypotheses of normal distributions with equal

variances, less powerful than the one-sided classical test. A similar result

vas obtained by Van Der Wearden (1953), when H(x) is normal with mean 0,

variance 1, and G(x) is normal with mean y > 0, variemce 1, for n = 2,3,5

and for a = .01 .

However it should be noted that the comparison is not quite fair. The

Kolmogorov-Smimov test may be used when the actual functional form of the

distribution is not known, whereas the classical parametric test is used

when the functional form is known and only a parameter is unknown. As van

der Wearden noted, if, for instance, the true distribution is normal with

mean and variance much smaller than 1, Kolmogorov-Smimov test may enable
4

us to reject the hypothesis that variance equals 1, whereas the classical

test used in this section is quite useless for this purpose.
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Vhen the functional forms of H(x) and G(x) are known one can construct

£ more powerful test of two simple hypotheses than that based on D . If

the hypotheses are composite it may not be the case. The usefulness of the

+
test based on D is that, with a small loss of power, we have our test for

all continuous distributions. The test is distribution free.
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ABSTRACT

The power of the one-sided and one-sample Kolmogorov-Smirnov test is

studied in this report.

Let F (x) be the empirical distribution function determined by an ordered

sample of size n dra\ra from a population with a continuous distribution

function F(x) which is unknown. Then, for an alternative G(x) , the power

is defined as

Pr[D^ <. e (a,n)l G(x)],

where d"^ = sup [F(x) - F (x)], and e(a,n) is some constant which depends
^ _<»<x<-H»

OE a (level of significance) and n .

The main difficulty of studies on the power for the test (in general,

fcr all non-parametric test^ is how to select the alternative hypothesis

from among all possible alternative hypotheses.

Bimbaum (1953) gave the greatest lower bound and the least upper bound

fcr the test under the assumption that

I

i sup [F(x) - G(x)] = 6

—<»<x<«>

and

F(x^) - G(x^) = 5 .

Under a slight modified assumption of the above, the greatest lower

bound for the test is found.

The power for the test is compared with the power for a parametric test

under the assumption of normal distributions with equal variances for

a = .10, .05, and .01 when n - 5. The result of the comparison is that the

Kolmogorov-Smirnov test is less powerful than the parametric test .considered.

Needless to say, a non-parametric test is a tool which may be used when the

functional form of the hypothesis tested is not known.


