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Abstract 

Fouling of electrodialysis membranes by anionic organic substances is a widely 

recognized problem.  We report a method to characterize fouling of anion-exchange 

membranes by dissolved anionic organic macromolecules (sulfonated lignin).  The 

change of the frequency-dependent electrical capacitance of commercial ion exchange 

membranes is used to track the fouling process in real time.  The measurements are 

performed in an aqueous solution containing both the organic foulant, and a 

representative mixture of inorganic materials.  This simulates an application of 

electrodialysis to purge inorganics from the closed water cycle of a paper machine. 
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Introduction 

Fouling of ion exchange membranes has been recognized as an important issue
1
.  

Organic anions that foul anion exchange membranes are present in many streams of 

interest for the application of electrodialysis (grape must 
2
, groundwater 

3
, milk whey 

4
, 

paper machine water circuits 
5
). The water that circulates in the paper machine system is 

termed ‘white water’.  We use a model inorganic white water composition representing 

average white water inorganic levels. 

Some work on membrane fouling characterization has been reported
6,7,8.  

Introductions and in-depth discussions of electrical impedance methods can be found in 

the literature
9,10

.  Most membrane related publications deal with characterizing 

membranes and membrane properties
11,12

. 

The results from electrical impedance measurements are often complex and 

difficult to interpret.  We have focused here on the capacitance of the electrical double 

layer between the solution and the anion exchange membrane. Capacitance spectroscopy 

(CS) has been used to characterize inorganic fouling
13 

and to characterize adsorption on 

other surfaces
14

.  The term electrical double layer used here is as defined elsewhere
15

. 

Our concept is that changes in the membrane/solution electrical double layer should 

be detectable as changes of the electrical capacitance of the system.  Fouling of a 

membrane with macromolecules could then be identified and tracked by capacitance 

readings.   
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The capacitance as a tool to track fouling holds distinct advantages over measuring 

the DC resistance.  Capacitance is rather insensitive to changes in the bulk solutions 

contacting the membrane.  Addition of the organic foulant to the inorganic background 

solution or dilution of the background solution changed the DC resistance in our 

experiments by as much as 14% while the capacitance remained unchanged within the 

accuracy of the measurement.  The capacitance has only a weak dependence on 

temperature and does therefore not require temperature correction within several degrees 

Celsius.  This is very useful both in the laboratory, and for potential application of 

capacitance spectroscopy to monitor membrane performance in industrial applications. 

Theory 

Figure 1 shows a schematic of the system under investigation.  No mass transfer 

(no DC electrical current) across the membrane is assumed to be present.  The solution 

contacting the membrane is stagnant, and the system is equilibrated, isothermal, and 

symmetric.  As displayed in Figure 2, this gives rise to four dielectric constants, , 

corresponding to the distinct phases between the electrodes (the two electrode/solution 

electrical double layers = 1, the bulk solution on each side of the membrane = 2, the 

two membrane/solution electrical double layers = 3, and the membrane itself = 4). It is 

important to note that no net mass transfer is assumed to be ongoing, so that even when 

hydraulic boundary layers exist (hydraulic flow through the test cell), no non-equilibrium 

concentration gradients in the boundary layers are present that would convolute 

capacitance changes.  No net mass transfer across the membrane is assumed because the 
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solutions on both sides of the membrane come from the same reservoir and there is no 

DC voltage gradient applied. 

The capacitance developed between the two electrodes will depend upon the 

dielectric constant of each phase.  The total capacitance C of the system can be calculated 

at any particular frequency as 

C = o A [ 1 2 3 4/( 2 3 4d1 + 1 3 4d2 + 1 2 4d3 + 1 2 3d4)] (1) 

with o the permittivity of free space and A the cross sectional area of the electrodes.  

When an organic foulant is added and it adsorbs onto the membrane (Figure 1), the 

membrane/solution electrical double layer dielectric constant, 3, will be changed
16

.  

Details on adsorption of our model foulant can be found elsewhere
17

. Changes in the 

membrane/solution electrical double layer such as the thickness, charge density, 

distribution of charges, and eventually the hindrance to mass transfer are the target of our 

frequency-dependent capacitance testing (Capacitance Spectroscopy, CS).  In this paper 

we concentrate on the situation when net mass transfer is absent.  A prerequisite to use 

this technique is that addition of the foulant does not significantly change the capacitance 

of the other five phases besides the two membrane/solution electrical double layers.  This 

is shown below. 

Experimental 

The anionic organic foulant used was calcium lignosulfonate (65,000 weight 

average molecular weight).  Nanopure water (18 M -cm) was used to make all solutions.  
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The composition of the model inorganic background white water was 124 ppm Ca++, 208 

ppm Na+, 699 ppm SO4
=, and 24 ppm Cl-.  Chemicals were of A.C.S. Reagent grade. 

The test cell had a total volume of 200 ml, 100 ml on each side of the membrane 

(FuMaTech, St. Ingbert, Germany). The membranes were Tokuyama Corporation’s 

Neosepta ACS anion exchange and CMS cation exchange membranes (Table 1).  The 

total membrane area exposed to solution was 98 cm2 (twice the active cross sectional 

membrane area of 3.5cm x 14cm).  The membranes were conditioned by equilibrating 

them for 24 hours with seven successive batches of 0.3 liters of the model inorganic 

white water.  The capacitance monitoring was performed with wire mesh titanium 

electrodes (see Figure 1).  The anode was platinized 

The capacitance measurements were performed using a computer controlled 

Quadtech 1689M LCR meter (Quadtech Inc., Marlborough, MA) that measured 

capacitances from 0.00001 pF to 99999 F.   

Experiments were performed by applying frequency sweeps to conditioned (see 

above) membranes that were either exposed to the inorganic background solution only, or 

to the background solution with added organic foulant.  For equilibrium readings of 

fouled membranes, the membranes were equilibrated with the solution containing the 

foulant for 212 hours before frequency scans were performed.  For each capacitance 

datapoint reported in Figure 3 below, three readings with the solutions or the solutions 

and membrane from three independent scans were averaged.  The reproducibility was 

very good, so that the reproduced datapoints were virtually identical. The variation in the 

capacitance, except for the fouling case, was +0.2 percent.  As discussed below, the 
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fouling is time dependent and the variation due to fouling is discussed separately.  The 

time to complete one frequency sweep (from high to low frequency) is 20 minutes. 

The foulant was introduced by removing the inorganic background solution from 

the test cell and then adding background solution containing the foulant.  The frequency 

range was from 10 Hz to 100 kHz (sinusoidal, amplitude 0.01 Volt).  The organic foulant 

(lignosulfonate) concentration change in solution from the initial 1000 ppm due to 

adsorption onto the membrane was below 1%.  This was predicted from adsorption 

measurements of lignosulfonate on anion exchange resin beads.  Equilibrium coverage of 

the membrane with the foulant can therefore be assumed when the adsorption process is 

complete. 

Results 

Figure 3 shows the capacitance as a function of frequency for the inorganic solution 

(no membrane, therefore only 1, 2), the inorganic solution containing the foulant (no 

membrane, 1
*, 2

*), the anion exchange membrane with inorganic solution ( 1, 2 3, 4), 

and for the anion exchange membrane with the inorganic solution containing the foulant 

( 1
*, 2

*
3

*, 4
*).  The capacitances are assigned to the different phases as shown in Figure 

2. The superscript * denotes that the foulant has been introduced into the solution.  The 

capacitance of the electrode/solution double layers or the bulk solution did not change 

measurably with the addition of the foulant to the bulk solution ( 1= 1
*

2= 2
*).  Thus 

possible adsorption of the foulant onto the electrodes was not detectable by this method.  

Introduction of the membrane increased the capacitance especially in the high frequency 

range.  This is expected because of the introduction of the membrane/solution electrical 
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double layer and the polarizable ion exchange groups of the membrane.  Fouling the 

membrane again increased capacitance ( 3 3
*), likely because charge was added to the 

membrane solution electrical double layer.   

Thus, the capacitance increase in Figure 3 from the inorganic solution/membrane 

curve to the inorganic solution/foulant/membrane curve was due to fouling of the 

membrane.  The capacitance increase was by as much as 24% whereas the variation in 

the capacitance for adding the not fouled membrane was only 0.2%.  The capacitance not 

only increases overall when fouling occurs, but the change depends on the frequency.  

This shows the opportunity to not only detect fouling, but that the possibility might exist 

to identify the type of foulant from the subtle frequency dependency of the capacitance.  

Molecular compounds have been shown to have distinct dielectric constant versus 

frequency behavior
18

. 

The change in 3
* was found to be a function of time.  The 65,000 molecular weight 

foulant was likely too large for the molecules to enter the membrane and change the 

membrane dielectric constant due to information from the manufacturer concerning how 

tightly crosslinked the membranes are. The membrane dielectric constant could 

conceivably change significantly for a highly porous membrane, where a significant 

number of the interior ion exchange groups are accessible to a large foulant molecule. 

This is not the case here. We therefore can assume that the membrane phase is unaltered 

during fouling ( 4= 4
*).  The dielectric constants 1, 2, 3, and 4 did not vary from 

static values with the introduction of flow.  The rate of change of 3
* was dependent on 

the flow conditions but maintained the same immediate value with cessation of flow. 
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In Figure 4 the capacitance change, at 4kHz, due to fouling of the anion exchange 

membrane is shown as a function of time (both with and without flow through the test 

cell).  Time zero capacitance values are for the membrane in the inorganic only solution, 

which showed no time dependence.  The average zero value for the anion exchange 

membrane was (5.8+0.7)x10-9 F. 

No fouling of cation exchange membranes was found.  The capacitance of the 

system with a cation exchange membrane remained at (1.69+0.02)x10-8 F, at 4 kHz, 

whether the foulant was present or not.  The measurements were performed until 100 

hours had elapsed.  Two separate experiments on two different cation exchange 

membranes were performed. 

Comparing the fouling rate for the predominantly 0.19 gallons per hour (gph) flow 

rate with the 8 gph flow rate indicates that the time to foul the membrane to the same 

capacitance value increased by a factor of approximately 2.5.  Steady-state one-

dimensional mass transport by diffusion through a stagnant hydraulic boundary layer 

would result in a linear dependence of the fouling rate on the hydraulic boundary layer 

thickness 
19

.  In a flow situation, the hydraulic boundary layer is the stagnant portion of 

the solution near the membrane surface.  The steady-state one-dimensional conditions 

require the surface to act as a sink, giving a foulant concentration of zero near the surface.  

These conditions would prevail until significant surface coverage is achieved.  Thus, with 

a constant bulk concentration of foulant, we arrive at a linear concentration gradient 

across the hydraulic boundary layer.  Experimental results showed no foulant desorption 

thus supporting the sink assumption.   The hydraulic boundary layer is typically several 

orders of magnitude thicker than the electrical double layer.  For turbulent flow we 
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estimate that the lower flow rate (0.19 gph) would give a hydraulic boundary layer about 

1.7 times thicker than the fast (8 gph) flow rate 
20

.  For laminar flow the lower flow rate 

would give a hydraulic boundary layer 6.5 times thicker.  The dependence of the 

experimentally observed fouling rate on the flow rate is in the expected range for 

diffusion limited mass transport of the foulant across a hydraulic boundary layer
17

.  

However, this conclusion requires that the adsorption versus time response be linear, 

which it is not.  Thus, some other factor, such as surface availability restrictions, may 

also be constraining the adsorption rate.  Insufficient data is available at this time to 

determine the limitation to the adsorption rate.  From the comparison of the time 

dependence of the capacitance readings with the timescale of diffusion limited adsorption 

one can therefore conclude that the capacitance readings monitor the actual foulant 

adsorption process. 

Concluding Remarks 

Capacitance measurements of anion exchange membranes give information on the 

fouling of the membranes by organic macromolecules, both in no-flow and under flow 

conditions.  The fouling can be tracked in real time.  The membrane/solution electrical 

double layer governs the results of capacitance measurements. 

Further work with other organic foulant molecules is under way.  The goal is to 

conclude from capacitance measurements to the behavior and type of membrane fouling.  

Also, a detailed physical model of the adsorption process at the membrane surface is 

being developed. 
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Figure 1  Capacitance spectroscopy symmetric test cell with membrane in place. 
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Figure 2 The seven distinct test cell phases and the four associated dielectric constants. 
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Figure 3 Capacitance versus frequency for the inorganic background solution, and with 

an anion exchange membrane, and foulant added. 
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Figure 4 Fouling of anion exchange membranes expressed as capacitance at 4 kHz vs. 

time (gph: gallons per hour). 
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Cation exchange membrane Anion exchange membrane 

tradename Neosepta  CMS Neosepta  ACS 

type strongly acidic 

monovalent selective 

strongly basic 

monovalent selective 

resistance 

cm2] 

1.5 - 2.5 2.0 - 2.5 

thickness  

[mm] 

0.14 - 0.17 0.15 - 0.20 

exchange 

capacity 

[mequiv.g-1 

dry resin] 

2.0 - 2.5 1.4 - 2.0 

          

Table 1 
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