FREE VIBRATION OF A RECTANGULAR RIGID FRAME

by

TSUN LEE B.S., National Taiwan University, China, 1959

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Applied Mechanics

KANSAS STATE UNIVERSITY Manhattan, Kansas

1965

Approved by:

- luna Franc Major Professor

TABLE OF CONTENTS

LD 2668 R4 1965 L481 Copi2

\$C?

NOTATION	iii
INTRODUCTION	1
DERIVATION OF THE BASIC EQUATION OF MOTION	3
DERIVATION OF THE FREQUENCY EQUATION FOR NORMAL VIBRATION OF A RECTANGULAR RIGID FRAME	8
1. SYMMETRICAL MODES OF VIBRATION OF A RECTANGULAR RIGID FRAME	8
2. ANTI-SYMMETRICAL MODES OF VIBRATION OF A RECTANGULAR RIGID FRAME	13
NUMERICAL ILLUSTRATIVE EXAMPLE	20
USE RAYLEIGH'S METHOD TO SOLVE THE NATURAL FREQUENCY OF THE FIRST NORMAL MODE OF VIBRATION OF THE PREVIOUS FRAME	55
APPENDIX	64
ACKNOWLEDGEMENT	71
BIBLIOGRAPHY	72

ii

NOTATION

x,y		Rectangular coordinates, x in the longitudinal direction, y in the
		direction of deflection.
×1,	y _l ,	Rectangular coordinates, for the vertical member of the frame.
x ₂ ,	y ₂ ,	Rectangular coordinates, for the horizontal member of the frame.
s _l ,	s ₂ ,	Shear force in section 1 and 2.
M ₁ ,	^M 2'	Bending moment in section 1 and 2.
W		Lateral distributed load.
<u>A</u>		Cross section area.
p		Mass density.
Ε		Young's modulus.
I		Second moment of area of the cross section about the neutral axis
		through its centroid.
I ₁ ,	1 ₂ ,	I for the vertical and horizontal member of the frame respectively.
ω		Natural frequency of vibration of the frame.
X _{II}	ı	Deflection of the vertical member at $x_1 = L_1$.
k		A parameter equal to $\frac{4}{\sqrt{\frac{\omega^2 o_A}{EI}}}$
k _l		Corresponding to k for the vertical member, $k_1 = \frac{1}{\sqrt{\frac{\omega^2(oA)}{kl_1}}}$
k ₂		Corresponding to k for the horizontal member $k_2 = \frac{1}{\sqrt{\frac{n^2(0A)}{EI_2}}} 2$
ø		Equal to k L.
ø ₂		Equal to k L

INTRODUCTION

The problem of computing natural frequency of vibration of structures is of great practical importance in the analysis and design of structures. If the frequency of the disturbing force is sufficiently close to one of the natural frequencies of the structure, the structure will undergo vibrations which, in the absence of appreciable damping effects, may become prohibitively large.

The determination of the natural frequencies of the lateral vibrations of beams has been the subject of numerous papers and books. The method usually used in engineering applications is known as the energy method, or the methods of Rayleigh and Ritz. A method known as Transfer Matrices has grown out of the well-known method of Holzer and Myklestad. As applied to the determination of natural modes and frequencies, it is characterized by the setting up of a frequency determinant that follows as a consequence of satisfying boundary conditions. The computations, which are conveniently carried out in matrix operations, require the insertion of trial values of the frequency into the transfer matrices. Another powerful method of analysis has been applied to frames by Bishop. Described as a method of receptances, it deals with the forced vibrations of systems in terms of the receptances of its component parts. For determining natural modes and frequencies of the structure, those frequencies are sought for which the overall receptance vanishes. Veletsos and Newmark have devised a method described as an extension of Holzer's method for continuous beams; it is also applicable to frames without sideway. For natural frequency determination,

this method seeks those frequencies for which the exciting couple applied to the beam vanishes. This, as in the methods already mentioned, requires repeated trial computations.

In contrast with the above methods, the procedure described in this paper leads to the exact solution of the Bernoulli-Euler equation for the vibration of a rectangular fixed end frame. The frequency equation is obtained from direct expansion of the frequency determinant that follows as a consequence of satisfying boundary conditions. In solving for the eigenfrequency from the frequency equations, the 1620 digital computer is used. The computer program and results are shown in the Appendix of this report. It is known that for a structure of infinite degree of freedom, there is an infinite number of vibration modes. In this report, only the natural frequencies and mode shapes of the first ten modes of vibration of a simple rectangular fixed end frame are presented. However, with the same procedure, one can find as many modes as one desires. Rayleigh's energy method is also used to find the frequency of the first vibration mode. The result is compared with that of the exact solution, and the error is found to be 5.6%.

DERIVATION OF BASIC EQUATION OF MOTION

The method of analysis which is developed here is known as the Bernoulli-Euler theory and is based upon the assumption that plane crosssections of a beam remain plane during flexure and that the radius of curvature of a bent beam is large compared with the beam's depth. Axial change in length, shear deformation and the rotary inertia effect are neglected; only the transverse bending deflections will be considered.

Fig. 1 shows a short element of a beam. It is of length δx and is bounded by plane faces which are perpendicular to the axis; the faces are identified by the numbers 1 and 2. The forces and couples which act upon the element are also shown in the figure; they are the shear forces S_1 , S_2 , the bending moments M_1 , M_2 and the applied lateral load w δx . If the deflexion of the beam is small, as the theory presupposes, then the inclination of the beam element from the unstrained position is also small. Under these conditions, the equation of motion perpendicular to the axis 0x of the undeflected beam is

$$S_{1} - S_{2} + w \delta x = (\rho A \delta x) \frac{\partial^{2} y}{\partial t^{2}}$$
(1)

where A is the area of cross-section, ρ is the mass density and y is the deflexion. If the equation is divided by δx and if the length of the element is then made indefinitely short, the equation of motion is obtained in the form

$$\frac{\partial S}{\partial x} + w = \rho A \frac{\partial^2 y}{\partial t^2}$$
(2)

The equation for the rotational motion of the element about Section 1 may be written

$$\delta_2 \delta x + M_1 - M_2 + k w * \delta x^2 = 0$$
 (3)

where w* is the mean value of w distributed on δx and k is the distance from the center of the distributed load w to section 2. When the length of the element is made small, this equation gives

$$S = -\frac{\partial M}{\partial x} . \tag{4}$$

Now from the simple bending theory we have the relation

$$M = EI \frac{\partial^2 y}{\partial x^2}$$
(5)

where E is Young's modulus of the material and I is the second moment of area of the cross-section about the neutral axis through its centroid. If this is combined with equation (4) it gives

$$S = -EI \frac{\partial^3 y}{\partial x^3}$$
(6)

This expression for S may be substituted in equation (2) which then gives the differential equation of motion in the form

$$\frac{\lambda^2 y}{\lambda^2} + \frac{EI}{A\rho} \frac{\lambda^4 y}{\lambda^4} = \frac{w}{A\rho}$$
(7)

When the applied lateral load w is equal to zero, equation (7) becomes

$$\frac{\text{EI}}{\text{Ap}} \frac{\partial^{\text{L}}_{\text{y}}}{\partial_{\text{x}}^{\text{L}}} = -\frac{\partial^{2}_{\text{y}}}{\partial_{\text{t}}^{2}}$$
(8)

For the normal mode of vibration, it is reasonable to set

$$y(t_{a}x) = T(t)X(x)$$
(9)

and

$$\frac{\partial^2 y}{\partial t^2} = X(x) \frac{d^2}{dt^2} T(t)$$
(10)

$$\frac{\text{EI}}{A_{\rho}} \frac{\partial^{l_{y}}}{\partial_{x}^{l_{1}}} = T(t) \frac{\text{EI}}{A_{\rho}} \frac{d^{l_{1}}}{dx^{l_{1}}} X(x)$$
(11)

substitute equation (10) and equation (11) into equation (8) and rearrange

$$\frac{\frac{d^4}{L} X(x)}{\frac{dx}{L}} = -\frac{\frac{d^2}{dt} T(t)}{T(t)}$$
(12)

The separability of x and t in equation (12) proves the assumption of equation (9) is right. The left-hand member is a function of x alone and the right-

hand member is a function of t alone, the only way for them to be equal is both equal to a constant, say ω^2 . Therefore, equation (12) can be reduced to the solution of two equations. Namely

$$\frac{d^2}{dt^2} T(t) + \omega^2 T(t) = 0 .$$
 (13)

and

$$\frac{d^{4}}{dx^{4}} X(x) - \frac{\omega^{2} o^{A}}{EI} X(x) = 0 \qquad (14)$$

Let

$$\frac{\omega^2 \rho A}{EI} = k^{\frac{1}{4}}$$
(15)

and substitute equation (15) into equation (14) to get

$$\frac{d^{l_{1}}}{dx^{l_{1}}} X(x) - k^{l_{1}} X(x) = 0$$
(16)

Equation (13) and (16) are the differential equations for normal vibration of beams.

The solution for equation (13) is

 $T(t) = F_{1} \operatorname{sinut} + F_{2} \cos \omega t \tag{17}$

or

$$T(t) = F_{3} \sin (\omega t + \theta)$$
(18)

where F_1 , F_2 , F_3 and θ are constants to be determined from initial conditions.

The natural frequency is

$$f = \frac{\omega}{2\pi}$$
(19)

The solution for equation (16) is

$$X(x) = G_1 \sin kx + G_2 \cosh kx + G_3 \sinh kx + G_4 \cosh kx$$
(20)

where G_1 , G_2 , G_3 and G_4 are constants to be determined from boundary conditions.

Equations (17) or (18) and (19) are the basic equations for normal vibration of beams.

DERIVATION OF THE FREQUENCY EQUATION FOR NORMAL VIBRATION OF A RECTANGULAR RIGID FRAME

A rectangular rigid frame is simply three straight beams joined at right angles, therefore, the vibration characteristics of a beam, as has been shown in the preceding paragraphs, can also be applied in frames.

Fig. 2 Symmetrical Mode

Fig. 3 Anti-symmetrical Mode

Fig. 2 and Fig. 3 show the two different kinds of normal mode vibrations of a rectangular rigid frame, namely, the symmetrical mode and the antisymmetrical mode. This report will discuss these two systems separately. However, in both cases the method of superposition is freely used. Owing to the symmetry of the frame itself, only one of the two vertical members will be taken into consideration.

1. Symmetrical modes of vibration of a rectangular rigid frame

For normal modes of vibration of beams, the deflection curve is

$$y(t,x) = T(t) X(x)$$
(9)

9

where

$$T(t) = F_{3} \sin (\omega t + \theta)$$
 (18)

the deflexion curve for vertical bar a-b, can be written as

$$X_{1}(x) = A_{1} \operatorname{sink}_{1} x_{1} + A_{2} \operatorname{cosk}_{1} x_{1} + A_{3} \operatorname{sink}_{1} x_{1} + A_{4} \operatorname{cosk}_{1} x_{1} \qquad (1-1)$$

V	ertical	bar	vertical	bar
Fi	g. 4			

the deflexion curve for the horizontal bar b-c can be written as

$$X_2(x_2) = B_1 sink_2 x_2 + B_2 cosk_2 x_2 + B_3 sinhk_2 x_2 + B_4 coshk_2 x_2$$
 (1-2)

where x_1 , x_2 , y_1 , y_2 , are coordinates as shown in Fig. 4, k_1 , k_2 , are the corresponding to k for bar a-b, b-c, in equation (20). A_1 , A_2 , A_3 , A_4 and B_1 , B_2 , B_3 , B_1 are constants to be determined by boundary conditions.

Boundary Conditions

(1) For the vertical bar a-b.

- (a) $X_{1}(x_{1}) \Big|_{x_{1}} = 0$ $A_{2} = -A_{1}$ (1-3)
- (b) $X_{1}^{\dagger}(x_{1}) \Big|_{x_{1}} = 0$ $A_{1} = -A_{3}$ (1- i_{1})
- (c) $X_{1}(x_{1}) \Big|_{x_{1}} = L_{1}$ $A_{3} (\operatorname{sinhk}_{1}L_{1} - \operatorname{sink}_{1}L_{1}) + A_{l_{1}} (\operatorname{coshk}_{1}L_{1} - \operatorname{cosk}_{1}L_{1}) = 0$ $A_{3} = -\frac{\operatorname{coshk}_{1}L_{1} - \operatorname{cosk}_{1}L_{1}}{\operatorname{sinhk}_{1}L_{1} - \operatorname{sink}_{1}L_{1}} A_{l_{1}} \qquad (1-5)$

substitute equations (1-3), (1-4) and (1-5) into equation (1-1) and simplify

$$X_{1}(x_{1}) = A_{1}\left[\cosh k_{1}x - \cosh k_{1}x_{1} + \frac{\cosh k_{1}L_{1} - \cosh k_{1}L_{1}}{\sinh k_{1}L_{1} - \sinh k_{1}L_{1}} (\sinh k_{1}x_{1} - \sinh k_{1}x_{1})\right]$$
(1-6)

differentiate equation (1-6) and simplify

$$X_{l}^{*}(x_{l}) = k_{l}A_{l}\left[\sinh k_{l}x_{l} + \sinh k_{l}x_{l} + \frac{\cosh k_{l}L_{l} - \cosh k_{l}L_{l}}{\sinh k_{l}L_{l} - \sinh k_{l}L_{l}} \left(\cosh k_{l}x_{l} - \sinh k_{l}x_{l}\right)\right]$$
(1-7)

differentiate equation (1-7) and simplify

$$X_{l}^{"}(x_{l}) = k_{l}^{2} \left[\cosh k_{l} x_{l} + \cosh k_{l} x_{l} + \frac{\cosh k_{l} L_{l} - \cosh k_{l} L_{l}}{\sinh k_{l} L_{l} - \sinh k_{l} L_{l}} \left(-\sinh k_{l} x_{l} - \sinh k_{l} x_{l} \right) \right]$$

$$(1-8)$$

(2) For the horizontal bar b-c

(a)
$$\mathbb{X}_{2}(\mathbb{X}_{2})\Big|_{\mathbb{X}_{2}} = 0$$
 $\mathbb{B}_{2} = -\mathbb{B}_{1}$ (1-9)

(b)
$$X_2(x_2) \Big|_{x_2 = L_2} = 0$$

substitute equation (1-9) into equation (1-2)

$$\begin{array}{c|c} B_{1} \sin k_{2} L_{2} &- B_{1} \cos k_{2} L_{2} &+ B_{3} \sin h k_{2} L_{2} &+ B_{1} \cosh k_{2} L_{2} &= 0 \end{array} (1-10) \\ (c) & \left. X_{2}^{*}(x_{2}) \right|_{x_{2}} &= 0 & \left. X_{2}^{*}(x_{2}) \right|_{x_{2}} &= L_{2} \end{array}$$

Combine boundary condition (c) and equation (1-9)

$$-B_{1}sink_{2}L_{2} + B_{4}cosk_{2}L_{2} + B_{3}sinhk_{2}L_{2} + B_{4}coshk_{2}L_{2} = 2B_{4}$$
 (1-11)

solve equation (1-10) and equation (1-11) for B_1 and B_3 in terms of B_{μ} ,

$$B_{1} = \frac{\cos k_{2}L_{2} - 1}{\sin k_{2}L_{2}} B_{4}$$
(1-12)
$$B_{3} = \frac{1 - \cosh k_{2}L_{2}}{\sinh k_{2}L_{2}} B_{4}$$
(1-13)

substitute equation (1-9), (1-12) and (1-13) into equation (1-2)

$$X_{2}(x_{2}) = B_{L}\left(\frac{\cosh_{2}L_{2}-1}{\sinh_{2}L_{2}}\operatorname{sink}_{2}x_{2}-\cosh_{2}x_{2}+\frac{1-\cosh_{2}L_{2}}{\sinh_{2}L_{2}}\left(\operatorname{sinhk}_{2}x_{2}+\cosh_{2}x_{2}\right)\right)$$

$$(1-1)_{4}$$

Differentiate equation (1-11;) and simplify

$$X_{2}^{1}(x_{2}) = k_{2}B_{4} \left(\frac{\cosh_{2}L_{2}-1}{\sinh_{2}L_{2}} \cosh_{2}x_{2} + \sinh_{2}x_{2} + \frac{1-\cosh_{2}L_{2}}{\sinh_{2}L_{2}} \cosh_{2}x_{2} + \sinh_{2}x_{2} \right)$$
(1-15)

differentiate equation (1-15) and simplify

$$X_{2}^{"}(x_{2}) = k_{2}^{2}B_{4}(-\frac{\cos k_{2}L_{2}^{-1}}{\sin k_{2}L_{2}} \sin k_{2}x_{2} + \cos k_{2}x_{2} + \frac{1 - \cosh k_{2}L_{2}}{\sinh k_{2}L_{2}} \sinh k_{2}x_{2} + \cosh k_{2}x_{2})$$
(1-16)

Compatibility conditions,

$$(1) \cdot \mathbf{x}^{1}(\mathbf{x}^{1}) \Big|_{\mathbf{x}^{1}} = \mathbf{r}^{1} = \mathbf{x}^{2}(\mathbf{x}^{2}) \Big|_{\mathbf{x}^{2}} = 0$$

equating equation (1-7) and equation (1-15) and simplify

$$k_{1}A_{4} \frac{2(\cosh_{1}L_{1}\cosh_{1}L_{1} - 1)}{\sinh_{1}L_{1} - \sinh_{1}L_{1}} - k_{2}B_{4} \left(\frac{\cosh_{2}L_{2} - 1}{\sinh_{2}L_{2}} + \frac{1 - \cosh_{2}L_{2}}{\sinh_{2}L_{2}}\right) = 0$$
(1-17)
(2) $ET_{1}X_{1}(x_{1}) \Big|_{x_{1}} = L_{1} = EI_{2}X_{2}^{u}(x_{2}) \Big|_{x_{2}} = 0$

substituted from equation (1-8) and equation (1-16) and simplify

$$\frac{2(\operatorname{cosk}_{1}L_{1}\operatorname{sinhk}_{1}L_{1} - \operatorname{sink}_{1}L_{1}\operatorname{coshk}_{1}L_{1})}{\operatorname{sinhk}_{1}L_{1} - \operatorname{sink}_{1}L_{1}} k_{1}A_{1}I_{1} - k_{2}B_{1}I_{2} = 0$$
 (1-18)

solve $A_{\underline{1}}$, $B_{\underline{1}}$ from equations (1-17) and (1-18). Both equations (1-17) and (1-18) are homogeneous equations. In order to have a non-trivial solution, the determinant of these equations must equal to zero.

$$\Delta = \frac{2(\cos k_{1}L_{1}\cosh k_{1}L_{1} - 1)}{\sinh k_{1}L_{1} - \sinh k_{1}L_{1}} k_{1} - 2(\frac{\cos k_{2}L_{2} - 1}{\sinh k_{2}L_{2}} - \frac{1 - \cosh k_{2}L_{2}}{\sinh k_{2}L_{2}})$$

$$\Delta = \frac{2(\cosh_{1}L_{1}\sinh k_{1}L_{1} - \sinh k_{1}L_{1}\cosh k_{1}L_{1})}{\sinh k_{1}L_{1} - \sinh k_{1}L_{1}} k_{1}^{2} - 2k_{2}^{2}I_{2}$$

= 0

simplify and rearrange

$$\frac{\cosh_2 L_2 - 1}{\sinh_2 L_2} + \frac{1 - \cosh_2 L_2}{\sinh_2 L_2} = 2 \frac{k_2 I_2}{k_1 I_1} \frac{\cosh_1 L_1 \cosh_1 L_1 - 1}{\cosh_1 L_1 \sinh_1 L_1 - \sinh_1 L_1 \cosh_1 L_1}$$
(1-19)
Let $k_1 L_1 = \phi_1$ and $k_2 L_2 = \phi_2$, substitute into equation (1-19)

$$\frac{\cos \beta_2 - 1}{\sin \beta_2} + \frac{1 - \cosh \beta_2}{\sinh \beta_2} = 2 \frac{k_2 I_2}{k_1 I_1} \frac{\cos \beta_1 \cosh \beta_1 - 1}{\cos \beta_1 \sinh \beta_1 - \sin \beta_1 \cosh \beta_1}$$
(1-20)

equation (1-19) or equation (1-20) is the frequency equation for symmetrical modes of vibration of rectangular rigid frame.

2. Anti-symmetrical modes of vibration of a rectangular rigid frame For normal modes of vibration of beams, the deflection curve is y(t,x) = T(t) X(x) (9)

where

$$T(t) = F \sin(\omega t + 0)$$
 (18)

Fig. 5

The deflection shape for the vertical bar a-b can be written as

$$X_1(x_1) = C_1 \sin x_1 + C_2 \cos x_1 + C_3 \sinh x_1 + C_4 \cosh x_1$$
 (2-1)

The deflection shape for the horizontal bar b-c can be written as

$$\mathbb{X}_{2}(\mathbb{X}_{2}) = \mathbb{D}_{1}\operatorname{sink}_{2}\mathbb{X}_{2} + \mathbb{D}_{2}\operatorname{cosk}_{2}\mathbb{X}_{2} + \mathbb{D}_{3}\operatorname{sinhk}_{2}\mathbb{X}_{2} + \mathbb{D}_{4}\operatorname{coshk}_{2}\mathbb{X}_{2} \quad (2-2)$$

where X_1 , X_2 , y_1 , y_2 , are coordinates as shown in Fig. 5, k_1 , k_2 are the corresponding to k for bar a-b, b-c in equation (20). C_1 , C_2 , C_3 , C_4 , and D_1 , D_2 , D_3 , D_4 , are constants to be determined by boundary conditions.

Boundary conditions

(1) For the vertical bar a-b

(a)
$$x_{1}(x_{1}) \Big|_{x_{1}} = 0$$

(b) $x_{1}^{*}(x_{1}) \Big|_{x_{1}} = 0$
 $c_{2} = -c_{1}$ (2-3)
 $c_{1} = -c_{3}$ (2-4)

substitute equation (2-3) and equation (2-4) into equation (2-1) and simplify

$$X_{1}(x_{1}) = C_{3}(\sinh k_{1}x_{1} - \sinh k_{1}x_{1}) + C_{1}(\cosh k_{1}x_{1} - \cosh k_{1}x_{1})$$
 (2-5)

differentiate and simplify

$$X_{1}^{*}(x_{1}) = k_{1}C_{3}(\cosh k_{1}x_{1} - \cosh k_{1}x_{1}) + k_{1}C_{4}(\sinh k_{1}x_{1} + \sinh k_{1}x_{1})$$
(2-6)

differentiate equation (2-6) and simplify

$$K_{1}^{*}(x_{1}) = k_{1}^{2}C_{3}(\sinh k_{1}x_{1} + \sinh k_{1}x_{1}) + k_{1}^{2}C_{4}(\cosh k_{1}x_{1} + \cosh k_{1}x_{1})$$
(2-7)

differentiate equation (2-7) and simplify

$$X_{1}^{u}(x_{1}) = k_{1}^{3}C_{3}(\cosh k_{1}x_{1} + \cosh k_{1}x_{1}) + k_{1}^{3}C_{4}(\sinh k_{1}x_{1} - \sinh k_{1}x_{1})$$
(2-8)

(2) For the horizontal bar

(a)
$$\mathbb{X}_{2}(\mathbb{X}_{2}) \Big|_{\mathbb{X}_{2}} = 0$$

(b) $\mathbb{X}_{2}(\mathbb{X}_{2}) \Big|_{\mathbb{X}_{2}} = 0$
(c) $\mathbb{X}_{2}(\mathbb{X}_{2}) \Big|_{\mathbb{X}_{2}} = 0$
(c) $\mathbb{X}_{2}(\mathbb{X}_{2}) \Big|_{\mathbb{X}_{2}} = 0$

combine equation (2-9) and equation (2-2)

$$\begin{aligned} & = D_{1} \sin k_{2}L_{2} - D_{1} \cos k_{2}L_{2} + D_{3} \sinh k_{2}L_{2} + D_{1} \cosh k_{2}L_{2} = 0 \quad (2-10) \\ (c) & X_{2}^{"}(x_{2}) \Big|_{x_{2}} = 0 \quad = -X_{2}^{"}(x_{2}) \Big|_{x_{2}} = L_{2} \\ & = D_{1} \sinh k_{2}L_{2} + D_{1} \cosh k_{2}L_{2} + D_{3} \sinh k_{2}L_{2} + D_{1} \cosh k_{2}L_{2} = -2D_{1} \quad (2-11) \end{aligned}$$

solve equation (2-10) and equation (2-11) for D_1 , D_3 , in terms of D_{14}

$$D_{3} = -\frac{1 + \cosh k_{2} L_{2}}{\sinh k_{2} L_{2}} D_{1}$$
(2-12)

$$D_{1} = \frac{1 + \cos k_{2} L_{2}}{\sin k_{2} L_{2}} D_{l_{1}}$$
(2-13)

substituting equations (2-9), (2-12), (2-13) into equation (2-2) and simplify

$$X_{2}(x_{2}) = D_{\mu} \left[\left(\frac{1 + \cos k_{2}L_{2}}{\sinh k_{2}L_{2}} \right) \operatorname{sink}_{2}x_{2} - \cos k_{2}x_{2} - \left(\frac{1 + \cosh k_{2}L_{2}}{\sinh k_{2}L_{2}} \right) \operatorname{sinh}_{2}x_{2} + \cosh k_{2}x_{2} \right]$$

$$(2-1)_{4}$$

differentiate equation (2-14) and simplify

$$X_{2}^{I}(x_{2}) = k_{2}D_{l_{1}}\left[\left(\frac{1 + \cosh_{2}L_{2}}{\sinh_{2}L_{2}}\right) \cosh_{2}x_{2} + \sinh_{2}x_{2} - \left(\frac{1 + \cosh_{2}L_{2}}{\sinh_{2}L_{2}}\right) \cosh_{2}x_{2} + \sinh_{2}x_{2}\right]$$
(2-15)

differentiate equation (2-15) and simplify

$$X_{2}^{u}(x_{2}) = k_{2}D_{4}\left[-\frac{1 + \cos k_{2}L_{2}}{\sin k_{2}L_{2}}\right] \sin k_{2}x_{2} + \cos k_{2}x_{2}$$
$$-\frac{1 + \cosh k_{2}L_{2}}{(\sin k_{2}L_{2})} \sinh k_{2}x_{2} + \cosh k_{2}x_{2}\right] \qquad (2-16)$$

differentiate equation (2-16) and simplify

$$X_{2}^{\text{min}}(\mathbf{x}_{2}) = k_{2} D_{4} \left[- \left(\frac{1 + \cosh k_{2} L_{2}}{\sinh k_{2} L_{2}} \right) \cosh k_{2} x_{2} - \sinh k_{2} x_{2} \right] - \left(\frac{1 + \cosh k_{2} L_{2}}{\sinh k_{2} L_{2}} \right) \cosh k_{2} x_{2} + \sinh k_{2} x_{2} \right]$$
(2-17)

Compatibility equations

(1) To satisfy the continuity condition at joint b

$$\left| \begin{array}{c} \mathbf{x}^{T}_{i}(\mathbf{x}^{T}) \right| \mathbf{x}^{T} = \mathbf{r}^{T} \\ = \left| \begin{array}{c} \mathbf{x}^{T}_{i}(\mathbf{x}^{T}) \right| \mathbf{x}^{T} = \mathbf{0} \end{array} \right|$$

substituted from equations (2-6) and (2-5) and simplify

$$C_{3k_{1}}(\cosh k_{1}L_{1} - \cosh k_{1}L_{1}) + C_{1k_{1}}(\sinh k_{1}L_{1} + \sinh k_{1}L_{1})$$

- $k_{2}D_{1}(\frac{1 + \cosh k_{2}L_{2}}{\sinh k_{2}L_{2}} - \frac{1 + \cosh k_{2}L_{2}}{\sinh k_{2}L_{2}}) = 0$ (2-18)

(2) To satisfy the static equilibrium condition at joint b

$$\operatorname{EI}\left[X_{n}^{T}(x^{T}) \right] = \operatorname{EI}\left[X_{n}^{T}(x^{T})\right] = \operatorname{EI}\left[X_{n}^{T}(x^{T})\right]$$

substituted from equation (2-7) and (2-16) and simplify

$$C_{3}I_{1}k_{1}^{2}(\sinh k_{1}L_{1} + \sinh k_{1}L_{1}) + (\cosh k_{1}L_{1} + \cosh k_{1}L_{1}) C_{1}I_{1}k_{1}^{2} - 2D_{1}I_{2}k_{2}^{2} = 0$$

(2-19)

(3) To satisfy the dynamic equilibrium condition

The force to produce the horizontal motion of the horizontal bar is the shear force at the top ends of the vertical bars.

total shear force = mass of horizontal bar times acc. of horizontal bar.

$$2\mathrm{EI}_{1}\left[\frac{\lambda^{3}}{\partial x^{3}}y(t, x_{1}) x_{1} = \mathrm{L}_{1}\right] = -(\mathrm{Ap})_{2}\mathrm{L}_{2}\frac{\lambda^{2}}{\partial t^{2}}y(t, x_{1}) x_{1} = \mathrm{L}_{1}$$

from equation (9)

$$y(t,x_1) = T(t) X_1(x_1)$$
 (2-20)

$$\frac{2}{2} \frac{3}{3} y(t_{3}x_{1}) = T(t) X_{1}^{II}(x_{1})$$
(2-21)

$$\frac{d^2}{\partial t^2} y(t_0 x_1) = \frac{d^2}{dt^2} T(t) X_1(x_1)$$
(2-22)

since

 $T(t) = F_1 \sin \omega t + F_2 \cos \omega t$ (17)

$$\frac{d^2}{dt^2} T(t) = -\omega^2 T(t)$$
(2-23)

substitute equations (2-20), (2-21), 2-22) and (2-23) into the dynamic equilibrium equation and simplify

$$C_{3} \left[EI_{1}k_{1}^{3}(\cosh k_{1}L_{1} + \cos k_{1}L_{1}) + 1/2 (A\rho)_{2}L_{2}\omega^{2}(\sinh k_{1}L_{1} - \sinh k_{1}L_{1}) \right]$$

$$C_{1} \left[EI_{1}k_{1}^{3}(\sinh k_{1}L_{1} - \sinh k_{1}L_{1}) + 1/2 (A\rho)_{2}L_{2}\omega^{2}(\cosh k_{1}L_{1} - \cosh k_{1}L_{1}) \right] = 0$$

$$(2-2k)$$

solve C_3 , C_4 , D_4 from equations (2-18), (2-19) and (2-24). Both equations (2-18), (2-19), and (2-24) are homogeneous equations. In order to have a non-trivial solution, the determinant of these equations must equal zero.

$$A = \begin{bmatrix} k_{1}(\cosh k_{1}L_{1} - \cosh k_{1}L_{1}) & k_{1}(\sinh k_{1}L_{1} + \sinh k_{1}L_{1}) \\ k_{2}(\frac{1 \cos k_{2}L_{2}}{\sinh k_{2}L_{2}} - \frac{1 \cosh k_{2}L_{2}}{\sinh k_{2}L_{2}}) \\ I_{1}k_{1}^{2}(\sinh k_{1}L_{1} + \sinh k_{1}L_{1}) & I_{1}k_{1}(\cosh k_{1}L_{1} + \cosh k_{1}L_{1}) & 2I_{2}k_{2}^{2} \\ EI_{1}k_{1}^{3}(\cosh k_{1}L_{1} + \cosh k_{1}L_{1}) + \sum I_{1}k_{1}(\sinh k_{1}L_{1} - \sinh k_{1}L_{1}) + \sum I_{1}k_{1}(\sinh k_{1}L_{1} - \sinh k_{1}L_{1}) + \frac{(A_{0})_{2}}{2}L_{2}\omega^{2}(\sinh k_{1}L_{1} - \sinh k_{1}L_{1}) & 0 \end{bmatrix}$$

expanding the determinant and simplify

$$\Delta = \frac{1}{2} \left(\frac{1 + \cos k_2 L_2}{\sin k_2 L_2} - \frac{1 + \cosh k_2 L_2}{\sinh k_2 L_2} \right) I_1 k_1 \omega^2 (A_0)_2 L_2 (2 \sin k_1 L_1 \cosh k_1 L_1) - \sinh k_1 L_1 \cosh k_1 L_1 \\+ EI_1^2 k_1^4 \left(\frac{1 + \cos k_2 L_2}{\sin k_2 L_2} - \frac{1 + \cosh k_2 L_2}{\sinh k_2 L_2} \right) (-2 - 2 \cosh k_1 L_1 \cosh k_1 L_1) + 2 EI_2 k_2^2 I_1 k_1 (2 \cosh k_1 L_1 \sinh k_1 L_1 + 2 \cosh k_1 L_1 \sinh k_1 L_1) - I_2 k_2 (A_0)_2 L_2 \omega^2 (2 - \cosh k_1 L_1 \cosh k_1 L_1) = 0$$

rearrange and simplify, and let $\boldsymbol{\beta}_{l}$ = $\mathbf{k}_{l}\mathbf{L}_{l}$, $\boldsymbol{\beta}_{2}$ = $\mathbf{k}_{2}\mathbf{L}_{2}$

$$\frac{I_{1}k_{1}}{I_{2}k_{2}} = \frac{\frac{\cos \phi_{2} \sinh \phi_{2} - \sin \phi_{2} \cosh \phi_{2} + \sinh \phi_{2} - \sin \phi_{2}}{2\sin \phi_{2} \sinh \phi_{2}}}{\frac{(A_{0})_{2}L_{2}}{(A_{0})_{1}L_{1}} \phi_{1}(1 - \cosh \phi_{1} \cos \phi_{1}) - 2(\cosh \phi_{1} \sin \phi_{1} + \cos \phi_{1} \sinh \phi_{1})}{\frac{(A_{0})_{2}L_{2}}{(A_{0})_{1}L_{1}} \phi_{1}(\sin \phi_{1} \cosh \phi_{1} - \sinh \phi_{1} \cos \phi_{1}) - 2(1 + \cosh \phi_{1} \cos \phi_{1})}$$
(2-25)

equation (2-25) is the frequency equation for anti-symmetrical modes of vibration of a rectangular rigid frame.

NUMERICAL ILLUSTRATIVE EXAMPLE

For a rectangular rigid frame as shown in Fig. 6, find the natural frequencies and the shapes of vibration of the first eight normal modes.

Fig. 6

from the data given

$$\frac{I_1k_1}{I_2k_2} = \frac{I_1/2}{4} \qquad \text{and} \qquad \frac{(A\rho)_2I_2}{(A\rho)_1I_1} = 2.0$$

the frequency equation of anti-symmetrical modes, equation (2-25), takes the form

$$\frac{\frac{1}{\sqrt{2}}}{8} \frac{\cos \beta_2 \sinh \beta_2 - \sin \beta_2 \cosh \beta_2 + \sinh \beta_2 - \sin \beta_2}{2 \sin \beta_2 \sinh \beta_2}$$

$$\frac{\beta_1 (1 - \cosh \beta_1 \cos \beta_1) - (\cosh \beta_1 \sin \beta_1 + \cos \beta_1 \sinh \beta_1)}{\beta_1 (\sin \beta_1 \cosh \beta_1 - \sinh \beta_1 \cos \beta_1) - (1 + \cosh \beta_1 \cos \beta_1)} (3-1)$$

and the frequency equation of symmetrical modes, equation (1-20) takes the

form

$$\frac{\cos \phi_2 - 1}{\sin \phi_2} + \frac{1 - \cosh \phi_2}{\sinh \phi_2} = \frac{8}{\frac{1}{\sqrt{2}}} \frac{\cos \phi_1 \cosh \phi_1 - 1}{\cos \phi_1 \sinh \phi_1 - \sin \phi_1 \cosh \phi_1}$$
(3-2)

Now, the problem becomes one of finding the eigenvalue w to satisfy equation (3-1) or equation (3-2). It can be solved by trial-and-error method with the help of the digital computer.

In this problem, note that

and let

$$\mathbf{X}_{1} = \frac{\beta_{1}(1 - \cosh\beta_{1}\cos\beta_{1}) - (\cosh\beta_{1}\sin\beta_{1} + \cos\beta_{1}\sinh\beta_{1})}{\beta_{1}(\sin\beta_{1}\cosh\beta_{1} - \sinh\beta_{1}\cos\beta_{1}) - (1 + \cosh\beta_{1}\cos\beta_{1})}$$
(3-4)

$$\mathbf{x}_{2} = \frac{\frac{4\sqrt{2}}{8}}{8} \frac{\cos\phi_{2}\sinh\phi_{2} - \sin\phi_{2}\cosh\phi_{2} + \sinh\phi_{2} - \sin\phi_{2}}{2\sin\phi_{2}\sinh\phi_{2}}$$
(3-5)

$$\Pi = \frac{\frac{4\sqrt{2}}{2}}{8} \frac{\cos \theta_1 \cosh \theta_1 - 1}{\cos \theta_1 \sinh \theta_1 - \sin \theta_1 \cosh \theta_1}$$
(3-6)

$$\mathbf{I2} = \frac{\cos \phi_2 = 1}{\sin \phi_2} + \frac{1 - \cosh \phi_2}{\sinh \phi_2}$$
(3-7)

and then, set up Forego program to find the value of X1, X2, Y1 and Y2 for \emptyset_1 ranging from 0.0 to 12.0 with each 0.1 increment, the results are shown in Appendix 1. With this results, curves for X1, X2 against \emptyset_1 (Fig. 7) and for Y1, Y2 against \emptyset_1 (Fig. 8) can be plotted. So the \emptyset_1 values for which X1 = X2, and Y1 = Y2 can be located from the figures. It should be noted that the \emptyset_1 value thus found will be accurate only for the first decimal place. For example, the \emptyset_1 for the first anti-symmetric mode can be between 1.7 and

1.8. If two decimal place accuracy is desired, the same program can be used to find the value of X1, X2, Y1, Y2, but for ϕ_1 ranging from 1.71 to 1.80 with each 0.01 increment. Repeating this process, one can find as much accuracy as one wants. This report, however, has reached only four decimal place accuracy. From the relation $\phi_1 = k_1 L$ and

$$\frac{\omega^2(\rho A)_1}{EI_1} = k_1^{l_1}$$
(15)

solve for

$$w = \beta_{1}^{2} \left(\frac{EI_{1}}{L^{4}(\rho A)_{1}} \right)^{\frac{1}{2}}$$
(3-8)

Table 1 shows the ϕ_1 and ϕ_1^2 values for the first ten normal modes of vibration of a rectangular rigid frame as shown in Fig. 6. The value of ϕ_1^2 can determine the natural frequency ω , as expressed in equation (3-8).

Table 1. Values of β_1 and β_1 for the first ten normal model.
--

1	nodes	l	2	3 .	4	5	6	7	8	9	10
ø.	Anti- symm.	1.6775		4.7187		7.3196		8.2914		10.9617	
1	Symm.		3.8063		4.8888		7.7136	:	10.5998		11.7546
	ø21	2.814	14.488	22.255	23.900	53.576	59.500	68.747	112.356	120.159	138.171

Now the next step is to find out the deflection shape of the rectangular rigid frame corresponding to each normal mode of vibration. This is equivalent to solving the constants $A_1 --- A_{l_1}$, $B_1 --- B_{l_1}$ in equations (1-1), (1-2),

 $C_1 --- C_{l_1}, D_1 --- D_{l_1}$ in equations (2-1), (2-2).

For the constants $A_1 --- A_{l_1}$, $B_1 --- B_{l_1}$ in equations (1-1) and (1-2) first solve equation (1-18) for A_{l_1} in terms of B_{l_1}

$$A_{l_{1}} = \frac{2}{l_{1}/2} \frac{\sinh \beta_{1} - \sin \beta_{1}}{(\cos \beta_{1} \sinh \beta_{1} - \sin \beta_{1} \cosh \beta_{1})} B_{l_{1}}$$
(3-9)

by equation (1-5)

$$A_3 = -\frac{\cosh \beta_1 - \cos \beta_1}{\sinh \beta_1 - \sin \beta_1} A_1$$
(3-10)

by equation (1-3)

$$A_2 = -A_1 \tag{3-11}$$

by equation (1-4)

$$A_1 = -A_3$$
 (3-12)

by equation (1-9)

$$B_2 = -B_1$$
 (3-13)

by equation (1-12)

$$B_{3} = \frac{1 - \cosh \beta_{2}}{\sinh \beta_{2}} B_{14}$$
(3-14)

by equation (1-13)

$$B_{1} = \frac{\cos \beta_{2} - 1}{\sin \beta_{2}} B_{1}$$
(3-15)

Now let

$$B_{j_1} = 1$$
 (3-16)

from equation (3-9) to equation (3-16), the constants $A_1 - - A_{l_1}$, $B_1 - - B_{l_4}$

of equations (1-1) and (1-2) can be solved and the characteristic shapes of vibration of the rigid frame for symmetrical modes are known. These values are listed in Table 2.

Table 2. Constants for characteristic shapes of vibration of rectangular rigid frame for symmetrical modes.

Mode	Øl	A	^A 2	^A 3	A)	Bl	^B 2	^B 3	B ₄
2	3.8063	-10.2697	10.1848	10.2697	-10.1848	33.8247	-1	-0.9217	1
4	4.8888	1.4460	-1.4712	-1.4460	1.4712	1.8990	-1	-0.9677	1
6	7.7136	-1.9778	1.9763	1.9778	-1-9763	-0.1019	1	-0.9970	1
8	10.5998	3.1309	-3.1310	-3.1309	3.1310	-3.8249	-1	-0.99997	1
10	11.7546	1.1896	-1.1896	-1.1896	1.1896	4.2745	-1	-0.9999	1

For the constants $C_1 --- C_{l_1}$, $D_1 --- D_{l_1}$ in equations (2-1) and (2-2) first solve equation (2-18) and (2-19) for C_3 and C_{l_1} in terms of D_{l_1} .

$$c_{3} = \frac{\frac{1}{4\sqrt{2}} \left(\frac{1 + \cos \beta_{2}}{\sin \beta_{2}} - \frac{1 + \cosh \beta_{2}}{\sinh \beta_{2}}\right) (\cos \beta_{1} + \cosh \beta_{1}) - \frac{8}{\sqrt{2}} (\sinh \beta_{1} + \sin \beta_{1})}{(\cosh^{2} \beta_{1} - \cos^{2} \beta_{1}) - (\sinh \beta_{1} + \sin \beta_{1})^{2}}$$
(3-17)

$$C_{\mu} = \frac{\frac{8}{\sqrt{2}}(\cosh\beta_{1} - \cos\beta_{1}) - \frac{1}{4\sqrt{2}}(\sinh\beta_{1} + \sin\beta_{1}) \frac{1 + \cos\beta_{2}}{(\sinh\beta_{2} - \frac{1 + \cosh\beta_{2}}{\sinh\beta_{2}})}{(\cosh^{2}\beta_{1} - \cos^{2}\beta_{1}) - (\sinh\beta_{1} + \sin\beta_{1})^{2}}$$
(3-18)

by equation (2-3)

$$C_2 = -C_{l_1}$$
 (3-19)

27

by equation (2-4;)

$$C_{1} = -C_{3}$$
 (3-20)

By equation (2-9)

$$D_2 = -D_{l_1}$$
 (3-21)

by equation (2-12)

$$D_3 = -\frac{1 + \cosh \beta_2}{\sinh \beta_2} D_{l_1}$$
(3-22)

by equation (2-13)

$$D_{1} = \frac{1 + \cos \phi_{2}}{\sin \phi_{2}} D_{1}$$
(3-23)

and let

$$D_{j_t} = 1$$
 (3-24)

from equations (3-17) to (3-24), the constants $C_1 ---C_4$, $D_1 ---D_4$ of equations (2-1) and (2-2) can be solved and the characteristic shapes of vibration of the rectangular rigid frame for anti-symmetrical modes are known. These values are listed in Table 3.

Table 3. Constants for characteristic shapes of vibration of rectangular rigid frame for anti-symmetrical modes

Mode	øı	A	A2	^A 3	A1.	B	B_2	B3	B ₁₄
l	1.6775	-4.1451	3.4435	4.1451	-3.4435	1.1745	-1	-1.6455	1
3	3.3992	3.3992	-3.4385	-3.3992	3.4385	-0.4384	-1	-1.0386	1
5	7.3196	-11.3996	11.3974	11.3996	-11.3974	-15.5941	-1	-1.0043	l
7	8.2914	-2.2955	2.2942	2.2955	-2.2942	2.7869	-1	-1.0019	l
9	10.8917	3.2087	-3.2088	-3.2087	3.2088	0.1039	-1	-1.0002	l

with these constants known, the characteristic shapes of the vibrating frame can be computed from equations (1-1), (1-2) for symmetrical modes and from equations (2-1), (2-2) for anti-symmetrical modes as listed in the following tables.

For symmetrical modes, the characteristic shape equations are: the vertical bar

$$X_{1}(x_{1}) = A_{1} \operatorname{sink}_{1} x_{1} + A_{2} \operatorname{cosk}_{1} x_{1} + A_{3} \operatorname{sink}_{1} x_{1} + A_{4} \operatorname{coshk}_{1} x_{1}$$
(3-25)

the horizontal bar

$$X_2(x_2) = B_1 sink_2 x_2 + B_2 cosk_2 x_2 + B_3 sinhk_2 x_2 + A_1 coshk_2 x_2$$
 (3-26)

For anti-symmetrical modes, the characteristic shape equations are: the vertical bar

$$X_{1}(x_{1}) = C_{1} \operatorname{sink}_{1} x_{1} + C_{2} \operatorname{cosk}_{1} x_{1} + C_{3} \operatorname{sink}_{1} x_{1} + C_{4} \operatorname{cosk}_{1} x_{1}$$
(3-27)

the horizontal bar

$$X_2(x_2) = D_1 sink_2 x_2 + D_2 cosk_2 x_2 + D_3 sinhk_2 x_2 + D_4 coshk_2 x_2$$
 (3-28)

Table 4 to Table 13 contain the corresponding $X_1(x_1)$ and $X_2(x_2)$ values for equation (3-25) and equation (3-26) in tabular form for the first five symmetrical modes. While Fig. 9 to Fig. 13 are the corresponding character-, istic curves. Table 14 to Table 23 contain the corresponding $X_1(x_1)$ and $X_2(x_2)$ values for equation (3-27) and equation (3-28) in tabular form for the first five anti-symmetric modes. While Fig. 14 to Fig. 18 contain the corresponding characteristic curves.

First symmetrical mode --
$$p_1 = 3.8053$$
, $p_2 = 3.2007$

Table 4. Calculation for equation (3-25), $\emptyset_1 = 3.8053$

l	2	3	<u>)</u> +	• 5	6	?
k _l x _l	x/L	Alsinkixi	A2cosk1x1	A3sinhk1x1	Aucoshkixi	3+4+5+6
0.3806	0.100	-3.8152	9.4556	4.0042	-10.9313	-1.2867
0.7613	0,200	-7.0861	7.3728	8.5957	-13.2820	-4.3996
1.1419	0.300	-9.3393	4.2359	14.44.74	-17.5790	-8.2305
1.5225	0.400	-10.2574	0.4919	22.4767	-24.4527	-11.8015
1.9000	0.500	-9.7182	-3.2927	33.5634	-34.8086	-14.2561
2.3000	0.605	-7.6581	-6.7861	50.7015	-51.3029	-15.0456
2.7000	0.710	-4.3893	-9.2801	76.0605	-76.1161	-13.6530
3.0000	0.798	-1.4491	-10.0830	102.8808	-102.5375	-11.1888
3.4000	0.894	2.6239	-9.8467	153.6902	-152.7588	-6.2914
3.8063	1.000	6.3344	-8.0165	230.8700	-229.1880	-0.0001

Table 5. Calculation for equation (3-26), $\phi_2 = 3.2007$

1	2	3	4	5	6	7
^k 2 ^x 2	x/L	Blsink2x2	B2cosk2x2	B3sinhk2x2	B ₄ coshk2x2	3+4+5+6
0.3201	0.100	10.6446	-0.9492	-0.3001	1.0517	10.4470
0.6401	0.200	20.2035	-0.8020	-0.6311	1.2120	19.9824
0.9602	0.300	27.7126	-0.5734	-1.0274	1.4975	27.6093
1.2803	0.400	32.4074	-0.2864	-1.5299	1.9378	32.5288
1.6004	0.500	33.8112	0.0296	-2.1905	2.5784	34.2287
1.9204	0.600	331.7784	0.3425	-3.0772	3.4851	32.5287
2.2000	0.687	27.3473	0.5885	-4.1081	4.5679	28.3954
2.6000	0.813	17.4366	0.8569	-6.1705	6.7690	18.8920
2.9000	0.904	8.0909	0.9710	-8.3502	9.1146	9.8263
3.2007	1.000	-1.9991	0.9983	-11.2947	12.2952	0.0000

Second symmetrical mode -- $\phi_1 = 4.8888$, $\phi_2 = 4.1110$

Table 6. Calculation for equation (3-25), $\beta_{l} = 4.8888$

1	2	3	31	5	6	7
k1x1	x ₁ /L	Alsinkix	A2cosk1x1	A3sinhk1x1	Aucoshkuru	3+4+5+6
0.4889	0.100	0.6792	-1.2989	-0.7354	1.6505	0.2954
0.9778	0.200	1.1992	-0.8221	-1.6502	2.2324	0.9593
1.4667	0.300	1.4382	-0.1529	-2.9673	3.3585	1.6765
1.9556	0.100	1.3403	0.5523	-5.0099	5.3034	2.1861
2.4000	0.491	0.9768	1.0849	-7.9041	8.1753	2.3329
2.9000	0.593	0.3459	1.4285	-13.1002	13.4094	2.0836
3.4000	0.695	-0.3659	0.4224	-21.6400	22.0661	1.4790
4.5000	0.920	-1.4135	0.3101	-65.0743	66.2247	0.0470
4.7000	0.960	-1.4458	0.0182	-79.4852	80.8838	-0.0290
4.8888	1.000	-1.4236	-0.2611	-96.0047	97.6889	-0.0005

l	2	3	4	5	6	7
^k 2 ^x 2	x ₂ /L	B_sink_x_2	B ₂ cosk ₂ x ₂	B_sinhk_x2	B_{4} coshk ₂ x ₂	3+4+5+6
0.4111	0.100	0.7588	-0.9167	-0.4091	1.0857	0.5187
0.8222	0.200	1.3912	-0.6806	-0.8883	1.3575	1.1798
1.2333	0.300	1.7919	-0.3311	-1.5199	1.8619	1.8028
1.6444	0.400	1.8939	0.0735	-2.4119	2.6855	2.2410
2.1000	0.512	1.6202	0.5048	-3.8920	4.1443	2.3773
2.5000	0.608	1.1366	0.8011	-5.8548	6.1323	2.2152
2.9000	0.706	0.4542	0.9710	-8.7670	9.1146	1.7728
3.3000	0.803	-0.2995	0.9875	-13.1006	13.5748	1.1622
3.7000	0.901	-1.0061	0.8481	-19.5585	20.2360	0.5195
4.1110	1.000	-1.5660	0.5658	-29.5107	30.5120	0.0001

Table 7. Calculation for equation (3-26), $\beta_2 = 4.1110$

Third symmetrical mode -- $\phi_1 = 7.7136$, $\phi_2 = 6.4863$

Table 8. Calculation for equation (3-25), $p_1 = 7.7136$

1	2	3	24	5	6	7
k x	1/L	A_sink_x_1	A cosk x	A sinhk x 3 l l	A coshk x	3+4+5+6
0.7714	0.100	-1.3787	1.4168	1.6815	-2.5941	-0.8745
1.5427	0.200	-1.9770	0.0555	4.4139	-4.8330	-2.3405
2.3000	0.298	-1.4748	-1.3168	9.7644	-9.9550	-2,9822
3.1000	0.402	-0.0823	-1.9745	21.9075	-21.9794	-2.1291
3.9000	0.496	1.3603	-1.4346	48.8341	-48.8369	-0.0771
L.6000	0.596	1.9653	-0.2217	98.3700	-98.3154	1.7982
5.4000	0.700	1.5284	1.2544	218.9442	-218.7873	3.2097
6.2000	0.804	0.1642	1.9694	487.2775	-486.9119	2.4992
6.9000	0.895	-1.1440 .	1.6121	981.2596	-980.5173	1.2104
7.7136	1.000	-1.9584	0.2765	2213.7397	-2212.0588	-0.0010
1	2	3	$\underline{1}_{\underline{1}}$	5	6	- 7
-------------------------------	-------------------	-----------	---------------------------------	------------	-------------------------	---------
k ₁ x ₁	x _l /L	Blsink2x2	B2cosk2x2	B3sinhk2x2	$B_{4} coshk_{2} x_{2}$	3+4+5+6
0.6486	0.100	-0.0616	-0.7969	-0.6929	1.2178	-0.3336
1.2973	0.200	-0.0981	-0.2701	-1.6880	1.9663	-0.0899
1.9459	0.300	-0.0948	0.3664	-3.4182	3.5714	0.4302
2.6000	0.401	-0.0525	0.8569	-6.6746	6.7690	0.8988
3.2000	0.493	0.0060	0.9983	-12.2092	12.2866	1.0817
3.9000	0.601	0.0701	0.7259	-24.6170	24.7113	0.8903
4.5000	0.693	0.0996	0.2103	-44.8680	45.0141	0.4565
5.2000	0.801	0.0900	-0.4685	-90.3615	90.6389	-0.1011
5.8000	0.894	0.0473	-0.8855	-164.6529	165.1513	-0.3398
6.4863	1.000	-0.0206	-0.9794	-327.0508	328.0324	-0.0004

Table 9. Calculation for equation (3-26), $\phi_2 = 6.1863$

Fourth symmetrical mode -- $\phi_1 = 10.5998$, $\phi_2 = 8.9133$

Table 10. Calculation for equation (3-25), $\phi_1 = 10.5998$

l	2	3	4	5	6	7
kıxı	x1/L	Alsinkly	A2cosk1x1	A3sinhk1x1	Aucoshkixi	3+4+5+6
1.0600	0.100	2.7314	-1.5307	-3.9669	5.0609	2.2945
2.1000	0.198	2.7026	1.5805	-12.5921	12.9758	4.6664
3.2000	0.302	-0.1828	3.1257	-38.3407	38.4693	3.0715
4.2000	0.396	-2.7289	1.5351	-104.3707	104.4210	-1.1435
5.3000	0.499	-2.6058	-1.7358	-313.6094	313.6351	-4.3159
6.4000	0.603	0.3647	-3.1097	-942.1558	942.1909	-2.7099
7.4000	0.678	2.8137	-1.3729	-2561.0508	2561.1345	1.5245
8.5000	0.801	2.5000	1.8849	-7693.8245	7694.0709	4.6313
9.5000	0.896	-0.2354	3.1222	-20913.9843	20914.6526	3.5551
10.5998	1.000	-2.8889	1.2070	-62816.5304	62818.2167	0.0044

l	2	3	4	5	6	7
k2x2	x ₂ /L	Alsink2x2	A2cosk2x2	A3sinhk2x2	Aucoshk2x2	3+1+5+6
0.8913	0.100	-2.9754	-0.6284	-1.0138	1.4242	-3.1934
1.7827	0.200	-3.7392	0.2103	2.8880	3.0570	-3-3599
2.7000	0.303	-1.6348	0.9041	-7.4041	7.4735	-0.6613
3.6000	0.404	1.6925	0.8968	-18.2800	18.3128	2.6221
4.5000	0.505	3.7388	0.2108	-44.9895	45.0141	3.9742
5.4000	0.595	2.9559	-0.6347	-110.6677	110.7055	2.3590
6.2000	0.696	2.6128	-0.9965	-246.2996	246.3755	1.6922
7.1000	0.797	-2.7884	-0.6845	-605.8013	605.9839	-3.2905
8.0000	0.898	-3.7844	0.1455	-1490.0371	1490.4791	-3.1915
8.9133	1.000	-1.8723	0.8720	-3713.9995	3715.0001	0.0002

Table 11. Calculation for equation (3-26), $\phi_2 = 8.9133$

Fifth symmetrical mode -- ϕ_1 11.7546, $\phi_2 = 9.8844$

Table 12. Calculation for equation (3-25), $\emptyset_1 = 11.7546$

7	6	5	4	3	2	1
3+4+5+6	Aucoshklxl	A3sinhk1x1	A ₂ cosk ₁ x ₁	Alsink1x1	x _l /L	k ₁ x ₁
1.0124	2.1106	-1.7434	-0.4581	1.0979	0.100	1.1755
1.7887	6.6105	-6.5026	0.8772	0.8036	0.202	2.4000
0.5729	21.7849	-21.7524	1.0668	-0.5264	0.304	3.6000
-1.1639	65.4019	-65.3914	0.0148	-1.1895	0.397	4.7000
-1.5449	217.1259	-217.1227	-1.1034	-0.4447	0.497	5.9000
0.0537	720.8784	-720.8775	-0.8143	0.8671	0.598	7.1000
1.5861	2393.3994	-2393.3992	0.5132	1.0731	0.699	8.3000
1.0969	7946.3656	-7946.3655	1.1863	-0.0895	0.801	9.5000
-0.6390	23867.4325	-23867.4325	0.4586	-1.0976	0.892	10.6000
-0.0444	75740.6186	-75740.6186	-0.8187	-0.8631	1.000	11.7546

1	2	3	24	5	6	7
^k 2 ^x 2	x ₂ /L	B_sink_x2	B2cosk2x2	B_sinhk_x22	B ₄ coshk ₂ x ₂	3+4+5+6
0.9884	0.100	3.5696	-0.5500	-1.1572	1.5295	3.3920
1.9769	0.200	3.9270	0.3950	-3.5405	3.6794	4.4609
3.0000	0.303	0.6031	0.9900	-10.0169	10.0677	1.6439
4.0000	0.11011	-3.2349	0.6536	-27.2872	27.3082	-2.5603
5.0000	0.505	-4.0988	-0.2837	-74.1958	74.2099	-6.9227
5.9000	0.596	-1.5982	-0.9275	-182.4991	182.5201	-2.5047
6.9000	0.697	2.4724	-0.8157	-496.0873	496.1379	1.7073
7.9000	0.798	4.2698	0.0460	-7318.5061	1348.6413	4.4510
8.9000	0.899	2.1415	0.8654	-3666.6201	3665.9868	3.3736
9.8844	1.000	-1.8962	0.8962	-9809.9350	9810.9350	0.0000

Table 13. Calculation for equation (3-26), $\phi_2 = 9.8844$

First anti-symmetrical mode -- $\phi_1 = 1.6775$, $\phi_2 = 1.4106$

Table 14. Calculation for equation (3-27), $\beta_{\rm l}$ = 1.6775 .

1	2	3	4	5	6	7
k x ll	x_/L	C_sink_x_l	C_cosk_x_	C_sinhk_x_1	Cleoshk z	3+1+5+6
0.1678	0.100	-0.6922	3.3953	0.6989	-3.4921	-0.0901
0.3355	0.200	-1.3646	3.2514	1.4168	-3.6391	-0.3355
0.5033	0.300	-1.9992	3.01.62	2.1753	-3.8899	-0.6968
0.6710	0.400	-2.5774	2.6969	2.9948	-1:.2482	-1.1339
0.8388	0.500	-3.0831	2.3013	3.8993	-4.7276	-1.6101
1.0065	0.600	-3.5026	1.8416	4.9132	-5.3402	-2.0880
1.1733	0.700	-3.8218	1.3330	6.0585	-6.0984	-2.5287
1.3410	0.800	-4.0364	0.7844	7.3808	~7. 0323	-2.9032
1.5108	0.900	-4.1376	0.2056	8.9313	-8.1800	-3.1791
1.6775	1.000	-4.1215	0.3667	10.7055	-9.5368	-2.5861

5 6 L 1 2 3 7 x₂/L D_sink_2x_2 D_cosk_2x_2 D_sinhk_2x_2 D_coshk_2x_2 3+4+5+6 k2x2 -0.0480 1.0100 0.1651 -0.2330 0.1411 0.100 -0.9901 -0.0639 0.2821 0.200 0.3269 -0.9605 -0.4704 1.0401 -0.0558 0.4232 0.300 0.4824 -0.9118 -0.7131 1.0909 0.5642 0.400 0.6280 -0.8450 -0.9784 1.1634 -0.0320 0.500 0.7614 0.7053 -0.7614 -1.2591 1.2592 0.0001 0.8464 0.600 0.8796 -0.6627 -1.5650 1.3801 0.0320 0.9874 0.700 0.9802 -0.5509 -1.9020 1.5284 0.0557 1.1285 0.800 1.0615 -0.1280 -2.2769 1.7073 0.0639 1.2695 0.900 1.1216 -0.2928 -2.6971 1.9200 0.0517 1.4106 1.000 1.1595 -0.1597 -3.1712 2.1712 0.0000

Table 15. Calculation for equation (3-28), ϕ_{2} = 1.4106

Second anti-symmetrical mode --
$$p_1 = 4.7181$$
, $p_2 = 3.9680$

Table 16. Calculation for equation (3-27), $\phi_1 = 4.7181$

l	2	3	<u>}</u> _	5	6	2
k_xl	x ₁ /L	C _l sink _l x _l	C ₂ cosk_x1	C3sinhk1x1	Cycoshkixi	3+1+5+6
0.4179	0.100	1.5453	-3.0627	-1.6642	3.8284	0.6468
0.9437	0.200	2.7523	-2.0177	-3.7055	5.0866	2.1157
1.4156	0.300	3.3584	-0.5316	-6.5880	7.4990	3.7378
1.8875	0.400	3.2303	1.0707	-10.9848	11.6122	4.9484
2.4000	0.508	2.6962	2.5355	-18.5807	19.1074	5.7584
2.8000	0.593	1.1387	3.2398	-27.8459	28.3769	4.9095
3.3000	0.698	-0.5361	3.3955	-46.0180	46.6769	3.5183
3.8000	0.804	-2.0800	2.7199	-75.9361	76.8190	1.5948.
4.3000	0.910	-3.1143	1.3782	-125.2371	126.7318	-0.2414
4.7187	1.000	-3.3992	-0.0217	-190.3783	192.6100	-1.1892

Table 17, Calculation for equation (3-28), $\phi = 3.9680$

1	2	3	<u>L</u>	5	. 6	7
k2x2	x_2/L	Dlsink2x5	D2cosk2x2	D3sinhk2x2	$D_{j_1} coshk_2 x_2$	3+4+5+6
0.3968	0.100	-0.1694	-0.9223	-0.4203	1.0798	-0.4349
0.7936	0,200	-0.3125	-0.7013	-0.9136	1.3318	-0.5965
1.1904	0.300	-0.4071	-0.3713	-1.5479	1.7962	-0.5319
1.5872	0.400	-0.4384	0.0164	-2.4332	2.5473	-0.3079
1.9840	0.500	-0.4015	0.4015	-3.6996	3.7046	0.0050
2.4000	0.605	-0.2961	0.7374	-5.6772	5.5569	0.3210
2.8000	0.706	-0.1469	0.9422	-8.5081	8.2527	0.5399
3.2000	0.807	0.0256	0.9983	-12.7183	12.2866	0.5919
3.6000	0.908	0.1940	0.8968	-18.9912	18.3128	0.4124
3.9679	1.000	0.3224	0.6776	-27.14.73	26.4462	0.0011

Third anti-symmetrical mode ---
$$p_1 = 7.3169$$
, $p_2 = 6.1550$

l	2	3	24	5	6	7
k_x_	x _l /L	C_sink_x_1	C ₂ cosk ₁ x ₁	C_sinhk_x_ 3	C ₄ coshk ₁ x ₁	3+4+5+6
0.7320	0.100	-7.6195	8.4774	9.1094	-14:5898	-4.6225
1.4639	0.200	-11.3346	1.2164	23.3202	-25.9530	-12.7513
2.2000	0.301	-9.2166	-6.7074	50.8092	-52.0622	-17.1770
2.9000	0.396	-2.7268	-11.0669	103.2758	-103.8827	-14.4006
3.7000	0.506	6.0395	-9.6651	230.4007	-230.6378	-3.8637
4.4000	0.602	10.8479	-3.5024	464.1837	-464.2343	7.2947.
5.1000	0.696	10.5537	4.3082	934.8573	-934.7464	14.9728
5.9000	0.806	4.2623	10.5711	2080.6254	-2080.2546	15.2042
6.6000	0.902	-3.5510	10.8298	4189.8876	-4189.0950	8.0714
7.3196	1.000	-9.8105	5.8047	8604.4147	-8602.7609	-2.3520

Table 18. Calculation for equation (3-27), $\beta_1 = 7.3196$

Table 19. Calculation for equation (3-28), $\phi_2 = 6.1550$

l	2	3	1	5	6	7
k2x2	x ₂ /L	D_sink_x2	D ₂ cosk ₂ x ₂	D ₃ sinhk ₂ x ₂	D ₄ coshk ₂ x2	3+4+5+6
0.6155	0.100	-8.9983	-0.8165	-0.6579	1.1955	-9.2772
1.2310	0.200	-14.6927	-0.3333	-1.5730	1.8583	-14.7407
1.8465	0.300	-14.9950	0.2722	-3.1032	3.2477	-14.5783
2.5000	0.406	-9.3271	0.8011	-6.0762	6.1323	-8.4699
3.1000	0.504	-0.6483	0.9991	-11.12/1	11.1215	0.3482
3.7000	0.602	8.2565	0.3481	-20.2982	20.2360	9.0424
<u>1</u> .3000	0.698	14.2782	0.1:008	-37.0015	36.8567	14.5342
4.9000	0.796	15.3114	-0.1865	-57.4299	67,1486	14.8346
5.5000	0.894	10.9946	-0.7087	-122.8700	122.3408	9.7639
6.1550	1.000	1.9916	-0.9918	-236.5452	235.5445	0.0009

<u>}.</u>].

Fourth anti-symmetrical mode -- $\phi_1 = 8.2914$, $\phi_2 = 6.9722$

Table 20. Calculation for equation (3-27), $\beta_{l} = 8.2914$

1	2	3	24	5	6	`7
k x 11	x_/L	C sink x	C ₂ cosk _x	C_sinhk_x_ 3 ll	C ₄ coshk ₁ x ₁	3+4+5+6
0.8291	0.100	-1.6925	1.5479	2.1288	-3.1288	-1.1428
1.6583	0.200	-2.2868	-0.2005	5.8076	-6.2411	-2.9208
2.5000	0.301	-1.3739	-1.8379	13.8882	-14.0687	-3.3923
3.3000	0.398	0.3620	-2.2655	31.0762	-31.1433	-1.9706
4.2000	0.506	2.0008	-1.1248	76.5221	-76.5132	0.8849
5.0000	0.602	2.2012	0.6509	170.3334	-170.2524	2.9331
5.8000	0.698	1.0665	2.0315	379.0979	-378.8901	3.3058
6.7000	0.796	-0.9292	2.0978	932.4374	-931.9121	1.6936
7.5000	0.903	-2.1532	0.7952	2075.1800	-2074.0061	-0.1841
8.2914	1.000	-2.0788	-0.9718	4518.8522	-4576.2591	-0.4575

1 <u>L</u> 5 6 2 3 7 3+4+5+6 x_/L k2x2 D_sink_x2 D2cosk2x2 D3sinhk2x2 D, coshk2x2 0.6972 0.100 1.7895 -0.7666 -0.7565 1.2530 1.5194 1.3944 0.200 2.7437 -0.1755 -1.8959 2.1403 2.8126 0.301 2.4057 0.5048 -4.0295 4.1443 2.1000 3.0253 2.8000 0.402 0.9422 0.9336 -8.2075 8.2527 1.9210 0.502 3.5000 -0.9776 0.9365 -16.5740 16.5728 -0.0423 4.2000 0.602 -2.4291 0.4903 -1.9871 -33.3990 33.3507 4.9000 0.702 -2.7381 -0.1865 -67.2688 67.1486 -3.0448 5.6000 0.802 -1.7594 -0.7756 -135.4683 135.2151 12.7882 6.3000 0.903 0.0465 -0.9999 -272.8023 272.2869 -1.4685 6.9722 1.7719 1.000 -0.7719 -534.2861 533.2838 -0.0023

Table 21. Calculation for equation (3-28), $\phi_2 = 6.9722$

Fifth anti-symmetrical mode -- $\phi_1 = 10.9617$, $\phi_2 = 9.2177$

1	2	, 3	4	5	6	7
k1×1	x ₁ /L	Clsink1x1	C ₂ cosk1x1	C ₃ sinhk ₁ x ₁	C ₄ coshk1x1	3+4+5+6
1.0962	0.100	2.8541	-1.4664	-4.2653	5.3378	2.4602
2.2000	0.201	2.5942	1.888L	-14.3015	14.4649	4.6460.
3.3000	0.301	-0.5060	3.1687	-43.4391	43.5588	2.7804
4.4000	0.401	-3.0534	0.9861	-130.6560	130.6996	-2.0237
5.5000	0.501	-2.2637	-2.2741	-392.5649	392.5903	-4.5124
6.6000	0.601	0.9995	-3.0490	-1179.3890	1179.3890	-2.0082
7.7000	0.707	3.1708	-0.1922	-3542.9625	3543.0742	2.7903
8.8000	0.802	1.8768	2.6027	-1.0543.6490	10643.9814	4.8119
9.9000	0.902	-1.1680	2.8533	-31975.2898	31976.2863	2.3818
10.9617	1.000	-3.2068	1.0868	-9214:9.5778	92452.4590	0.7612

Table 22. Calculation for equation (3-27), $\beta_1 = 10.9617$

1	2	3	<u>L</u> j	5	6	7
^k 2 ^x 2	x ₂ /L	D_sink2x2	$\mathbf{D}_2 \mathbf{cosk}_2 \mathbf{x}_2$	D ₃ sinhk ₂ x ₂	D ₄ coshk ₂ x ₂	3+4+5+6
0.9218	0.100	0.0828	-0.60111	-1.0582	1.4558	-0.1240
1.8435	0.200	0.1001	0.2693	-3.0808	3.2384	0.5270
2.8000	0.304	0.0348	0.9422	-8.1935	8.2527	1.0363
3.7000	0.102	-0.0551	0.8481	-20.2153	20.2360	0.8137
4.6000	0.1:98	-0.1033	0.1122	-49.7470	49.7472	0.0092
5.5000	0.596	-0.0733	-0.7087	-122.3684	122.3480	-0.8024
6.5000	0.704	0.0224	-0.9766	-322.6366	322.5716	-1.0192
7.4000	0.804	0.0934	-0.4385	-818.1555	817.9925	-0.5081
8.3000	0.902	0.0937	0.4314	-2012.3385	2011.9363	0.1232
9.2177	1.000	0.0214	0.9786	-5037.9414	5036.9300	0.0034

Table 23. Calculation for equation (3-28), $p_2 = 9.2177$

50 -

USE RAYLEIGH'S METHOD TO SOLVE THE NATURAL FREQUENCY OF THE FIRST NORMAL MODE OF VIBRATION OF THE PREVIOUS FRAME

Derivation of formula

Fig. 17

The above discussion shows that the first normal mode of vibration is the first anti-symmetrical mode as shown in Fig. 17. Because of symmetry, the shear force V and the bending moment M at the end of the vertical bars are the same.

Determination of the deflection equation

For the vertical bar

by equation (5)

$$EI_{1} = \frac{\partial^{2} y}{\partial x_{1}^{2}} = EI_{1} \frac{d^{2}}{dx_{1}^{2}} I_{1}(x_{1}) = V(L_{1} - x_{1}) - M$$
 (4-1)

integrate equation (4-1)

$$EI_{1} \frac{d}{dx_{1}} X_{1}(x_{1}) = V(L_{1}x_{1} - \frac{1}{2}x_{1}^{2}) - Mx_{1} + m_{1}$$
(4-2)

integrate equation (4-2)

$$EI_{1}\left[X_{1}(x_{1})\right] = V\left(\frac{I_{1}x_{1}^{2}}{2} - \frac{x_{1}^{3}}{6}\right) - \frac{Mx_{1}^{2}}{2} + n_{1}x_{1} + n_{2} \qquad (4-3)$$

boundary condition

- $\begin{array}{c} (1) \quad X_{1}^{\dagger}(X_{1}) &= 0 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$
- (2) $X_1(x_1) = 0$ $n_2 = 0$ $x_1 = 0$

and equation (4-2) takes the form

$$EI_{X_{1}}(x_{1}) = V(L_{X_{1}} - \frac{x_{1}^{2}}{2}) - hx_{1}$$
(4-4)

equation (1-3) takes the form

$$EI_{1}X_{1}(x_{1}) = V\left(\frac{L_{1}x_{1}^{2}}{2} - \frac{x_{1}^{3}}{6}\right) - \frac{M_{1}^{2}}{2}$$
(4-5)

For the horizontal bar

by equation (5)

 $EI_{2}X_{2}^{u}(x_{2}) = -M + 2M \frac{x_{2}}{\overline{D}_{2}}$ (L-6)

1

integrate equation (4-6)

$$EI_{2}X_{2}^{*}(x_{2}) = -Nx_{2} + M\frac{x_{2}^{2}}{L} + n_{3}$$
 (4-7)

integrate equation (4-7)

$$EI_{2}X_{2}(x_{2}) = -\frac{Mx_{2}^{2}}{2} + \frac{Mx_{2}^{3}}{3L_{2}} + n_{3}x_{2} + n_{2}$$
(4-8)

 n_3 , n_4 , are integrating constants to be determined by boundary conditions

Boundary condition

(1) $X_2(x_2) \Big|_{x_2 = 0} = 0$ $n_1 = 0$ (2) $X_2(x_2) \Big|_{x_2 = L/2} = 0$ $n_3 = \frac{LL_2}{6}$

with $n_3^{},\ n_4^{},$ thus found, equations (4-7) and (4-8) takes the form

$$EI_{2}X_{2}^{*}(x_{2}) = -Mx_{2} + M\frac{x_{2}}{L_{2}} + \frac{ML_{2}}{6}$$
(4-9)

$$EI_{2}X_{2}(x_{2}) = -\frac{Mx_{2}^{2}}{2} + \frac{Mx_{2}^{3}}{3L_{2}} + \frac{ML_{2}}{6} x_{2}$$
(4-10)

compatability equation: the joint at b is rigid

$$\left| \begin{array}{c} \mathbb{X}_{1}^{*}(\mathbb{X}_{1}) \right| \\ \mathbb{X}_{1} = \mathbb{L}_{1} \\ \mathbb{X}_{2} = 0 \end{array} \right|$$

$$\frac{1}{\mathrm{EI}_{1}} \left(\frac{\mathrm{VL}_{1}^{2}}{2} - \mathrm{ML}_{1} \right) = \frac{1}{\mathrm{EI}_{2}} \left(\frac{\mathrm{ML}_{2}}{6} \right)$$

simplify and rearrange

$$M = \frac{1}{(2 + \frac{1}{3} \frac{L_2 L_1}{L_1 L_2})} VL_1 = PVL_1$$
(4-11)

where

$$\frac{1}{P} = 2 + \frac{1}{3} \frac{L_2 I_1}{L_1 I_2}$$
(4-12)

Deflection equation for vertical bar

Substitute equation (4-12) into equation (4-5) and rearrange

$$X_{1}(x_{1}) = \frac{V}{EI_{1}} \left[(1 - P) \frac{L_{1}x_{1}^{2}}{2} - \frac{x_{1}^{3}}{6} \right]$$
(4-13)

Let X_{111} be the value of $X_1(x_1)$ at $x_1 = L_1$

$$X_{1L1} = \frac{VL^{2}}{EI_{1}} \frac{2-3P}{6}$$

rearrange

$$\frac{V}{EI_{1}} = \frac{X_{1II}}{L_{1}^{3}} \frac{6}{2-3P}$$
(4-14)

substitute equation (4-14) into equation (4-13) and simplify

$$X_{1}(x_{1}) = \frac{X_{111}}{2-3P} \left[3(1-P)(\frac{X_{1}}{L_{1}})^{2} - (\frac{X_{1}}{L_{1}})^{3} \right]$$
(4-15)

equation (4-15) is the deflection equation for vertical bar differentiate equation (4-15) twice and simplify

$$X_{1}^{"}(x_{1}) = \frac{X_{111}}{L_{1}^{2}} \frac{6}{2-3P} \left[(1-P) - \frac{X_{1}}{L_{1}} \right]$$
(4-16)

Deflection equation for horizontal bar

Substitute equation (4-12) into equation (4-10) and rearrange

$$X_{2}(x_{2}) = X_{1L1} \left(\frac{L_{2}}{L_{1}}\right)^{2} \left(\frac{P}{2-3P}\right) \left[\frac{x_{2}}{L_{2}}\right] - \frac{1}{2} \left(\frac{x_{2}}{L_{2}}\right)^{2} + \frac{1}{3} \left(\frac{x_{2}}{L_{2}}\right)^{3} \left(\frac{1}{L_{2}}\right) \right] (4-17)$$

differentiate equation (4-17) twice and simplify

$$X_{2}^{u}(x_{2}) = \frac{X_{1L1}}{L_{2}^{2}} \frac{L_{2}^{2}I_{1}}{L_{2}^{2}I_{1}} \frac{6P}{2-3P} \left(2 \frac{x_{2}}{L_{2}} - 1\right)$$
(4-18)

Determination of the frequency equation

(1) The kinetic energy (K.E.) and the potential energy (P.E.) of the vertical bar

$$X_{1}(x_{1}) = \frac{X_{111}}{2-3P} \left[3(1-P)(\frac{x_{1}}{L_{1}})^{2} - (\frac{x_{1}}{L_{1}})^{3} \right]$$
(4-15)

$$X_{1}^{2}(x_{1}) = \frac{X_{1L1}^{2}}{(2-3P)^{2}} \frac{1}{L_{1}^{6}} \left[9(1-P)^{2} L_{1}^{2} X_{1}^{b} - 6(1-P) L_{1} X_{1}^{5} + X_{1}^{6} \right]$$
(4-16)

$$K_{*}E_{*} = \frac{1}{2} (A_{0})_{1} w^{2} \int_{0}^{L_{1}} x_{1}^{2}(x_{1}) dx_{1}$$
(4-17)

substitute equation (4-16) to equation (4-17) and simplify

K.E. =
$$\frac{1}{2} (Ap)_1 \omega^2 \chi_{1L1}^2 \frac{L_1}{(2-3P)^2} (\frac{33}{15} - \frac{13}{5}P_+ \frac{9}{5}P^2)$$
 (4-18)

square equation (4-16)

$$\left[X_{1}^{n}(x_{1}) \right]^{2} = \frac{X_{1L1}^{2}}{L_{1}^{6}} \left(\frac{6}{2-3P} \right)^{2} \left[L_{1}^{2} (1-P)^{2} - 2L_{1} (1-P)x_{1} + x_{1}^{2} \right]$$
(4-20)

$$P \cdot E_{\bullet} = \frac{EI}{2} \int_{0}^{L} \left[X_{1}^{"}(x_{1}) \right]^{2} dx_{1} \qquad (L-21)$$

substitute equation (4-20) into equation (4-21) and simplify

$$P_{\bullet}E_{\bullet} = \frac{E_{\perp}}{2} \frac{\chi_{\perp}^2}{L_{\perp}^6} \frac{36}{(2-3P)^2} (\frac{1}{3} - P + P^2)$$
(4-22)

(2) The kinetic energy (K.E.) and the potential energy (P.E.) of the horizontal bar

$$K.E_{-1} = \frac{1}{2} (A_{0})_{2} w^{2} \int_{0}^{L_{2}} X_{2}(x_{2}) dx_{2}$$
 (4-23)

substitute equation (4-17) into equation (4-23) and simplify. Note here K_*E_{*1} is due to the transverse vibration of the horizontal bar

$$K \cdot E_{-1} = \frac{1}{2} (Ap)_{2} \omega^{2} x_{1L1}^{2} L_{2} \frac{L_{2}^{L} I_{1}^{2}}{L_{1}^{L} I_{2}^{2}} \frac{P^{2}}{(2-3P)^{2}} (\frac{1}{210})$$
(4-24)

$$K_{\bullet}E_{\bullet 2} = \frac{1}{2} (A^{\circ})_{2}L_{2}^{\omega^{2}}X_{1L1}^{2} \qquad (1-25)$$

$$K_{\bullet}E_{\bullet} = K_{\bullet}E_{\bullet 1} + K_{\bullet}E_{\bullet 2}$$

$$= \frac{1}{2} (A^{\circ})_{2}L_{2}^{\omega^{2}}X_{1L1}^{2} \left[1 + \frac{L_{2}^{l_{1}}L_{1}^{2}}{L_{1}^{l_{1}}L_{2}^{2}} + \frac{P^{2}}{(2-3P)^{2}} + \frac{1}{210}\right] \qquad (1-25)$$

where $\mathbb{X}_{\cdot, \mathbb{Z}_{\cdot, 2}}$ is due to the longitudinal vibration of the horizontal bar

$$P_{\bullet}E_{\bullet} = \frac{1}{2} EI_{2} \int_{0}^{L_{2}} \left[X_{2}^{u}(x_{2}) \right]^{2} dx_{2}$$
(4-26)

substitute equation (4-18) into equa ion (4-26) and simplify

$$P.E. = \frac{1}{2} EI_2 \frac{X_{1L1}^2 L_2}{L_1^4} \frac{36P^2}{(2-3P)^2} \frac{1}{3}$$
(4-27)

Total K.E. = equation (4-18) + equation (4-25)

$$= \frac{1}{2} \omega^{2} \chi_{1LL}^{2} L_{1} \left[\frac{2(A\rho)_{1}}{(2-3P)^{2}} \left(\frac{33}{35} - \frac{13}{5} P + \frac{9}{5} P^{2} \right) + \frac{L}{2} \frac{1}{L_{1}} \left(A\rho \right)_{2} \left(1 + \frac{L^{\frac{1}{4}}}{\frac{1}{2}} \frac{1^{2}}{\frac{1}{2}} \frac{P^{2}}{(2-3P)^{2}} \frac{1}{210} \right) \right] \qquad (h-28)^{\frac{1}{2}}$$

Total $P_{\bullet}E_{\bullet} = equation (4-22) + equation (4-27)$

$$= \frac{\Xi I_{1}}{2} \frac{\chi_{1L1}^{2}}{\Sigma_{1}^{3}} \frac{36}{(2-3P)^{2}} \left[\frac{2}{3} - 2P + (2 + \frac{1}{3}\frac{L_{2}}{L_{1}}\frac{I_{1}}{I_{2}})P^{2}\right]$$
(4-29)

Rayleigh's equation Total K.E. = Total P.E.

Equating equation (4-28) and equation (4-29) and simplify

$$\omega^{2} = \frac{EI_{1}}{(A_{p})_{1}L_{1}^{\frac{1}{2}}} \frac{36}{(2-3P)^{2}} \frac{\frac{2}{3} - 2P + (2 + \frac{1}{3}\frac{L_{2}L_{1}}{L_{1}L_{1}})P^{2}}{\frac{2}{(2-3P)^{2}} (\frac{33}{35} - \frac{13}{5}P + \frac{9}{5}P^{2}) + \frac{L_{2}L_{1}}{L_{1}L_{2}} (1 + \frac{L_{2}^{4}L_{1}^{2}}{L_{1}L_{2}}\frac{P^{2}}{210(2-3P)^{2}})$$

$$(l_{2}-30)$$

Numerical illustrative example

This is the same problem as that on page 16. With

$$\frac{1}{L_2} = 0.25$$
, $\frac{1}{L_2} = 1$, and $\frac{(A \circ)}{(A \circ)_2} = 0.5$

substitute into equation (l_1-l_2) to find P

$$P = 0.18$$

With these values, substitute into equation (l_1-30), to find w^2 ,

$$ω^{2} = 8.8312 \frac{EI_{1}}{(A_{2})_{1}L_{1}^{l_{1}}}$$

 $ω = 2.9717 \sqrt{\frac{EI_{1}}{(A_{2})_{1}L_{1}^{l_{1}}}}$

From Table 1, for the exact solution, we have

$$\omega = 2.8140 \sqrt{\frac{\Xi I_1}{(A\rho)_1 L_1^2}}$$

Hence, the Rayleigh's method is within an error of 5.6%. For most practical cases, this error is insignificant on account of the safety factor usually used in any structural design and Rayleigh's method is a good approximation.

APPENDIX

C C -RUGRAM TSUP 1. READ 12, PAIL, T.P. ME 12 FORMAT (2F20.8, 110) DO 21 I=1, NP PHIB=(U.JX*U.25)*PHIA CA=COSF(PHIA) SA=SINF(PHI4) CB=COSE(PHI-) SP=SINF(PHIP) HAA=EXPE(P-I^) NRA=FXDF(----HAT=FXP(')] HE: = FXPP(-(1+A=(1+1/- + 1+1). (- A = (- SH0=(HA)-- 1...5 02=(PhIA4(SALCHI-, MACA))-(*.U+C+1+CA) X1=D1/02 X2=(2.J*KJ., 7.) (1.JKEHR-S1*CHR+SHH-S5)/(8.C*SH*SHB) Y2=(CE-1.)/* -(1. -ChH)/SHP PINCH 2 , 1-17 . PHIB, Y1, Y2, X1, X2 20 FORMAT (3F21.5/3F20.8) 21 PHIA=PHIA+CLLP STOP END

ROGRAM LEF +	ISUN	
el unico.	· ?u4u8964	.16851227
084(9009	.1 (00299	00416959
.20000000	.16817927	.33652948
16818684	.20009605	00833373
•300000000	.25226891	•50455608
25227776	.3 (73141	01250000
AUGULEU	JR1635854	.67277297
	· · · · 311+36	01666676
5 .CC.	. =? 4. 7.	.84102836
- 42155757	· > > > > 2727	02083358
.6	. 5 401782	1.00939000
5/21059	. 52404243	02500065
.7.JCC.JOA	· 58862745	1.17793150
58921702	.7.595032	02916805
.3000000	.67271709	1.34675050
67386756	.9182413U	03333605
.90000000	.75686672	1.51598520
75880268	1.14271.00	03750491
1.000000000	.84085636	1.68581510
84441808	1.5110:070	04167494
1.10000000	· 2490500	1.85646100
93:67150	2.01771741	04584666
1.20000 01	1.0 0756.	2.02820090
-1.0178878	5.7405287.	05002059
1.30000000	alo0316530	2.20137460
-1.10636781	-4.14294130	05419740
1.4000000	1.17725490	2.37639040
-1.19647730	-1.39374900	C5837786
1.50,000,00	1.26134400	2.55373980
-1.28865980	58602738	06256288
1.60000000	1.34543420	2.73401340
-1.38345070	2377510.	06675354
1.700000000	1.42952380	2.91791500
-1.48149700	03063772	07095103
1.80000010	1.53263540	3.10628770
-1.58358411	.1121 657	07515672
1.9000010	• 7.31	3.30014470
-1.69.6696.	.23963JUL+	07937220
2 - 0 - 6 - 6 -	1.00179270	3.50070800

ССР

-1.85392991 2.14 0000 -1.9248240 2.2000000 -2.5518615 -2.1973463: 2.40.00000 -2.3543226 2.50100000 -2.53119141 2.60106 66 -2.731.1101 2.7' 000000 -2.9614857 2.0.000000 -3.2350574. 2.999000000 -3.506.829 3. -3.97514 41 3.10000 00 -4.5126479 3.21001001 -5.2348982 3.3000000 -6.2763942. 3.41 00000 -7.9229336. 3.5 000000 -11.5446140. 3.611.011.1. -18.3762740 2.721 001 11 -66.96837601 3.011.11 26.22503501 3.90000000 13.5524990 4.00000000

.3 880.059 1.76588240 .38439947 1.84997200 .45200662 1.93406160 .51463865 2.01815130 .57445705 2.11224090 .63316145 2.18633050 .69222939 2.2704202 .75306732 2.35450901 .3172:007 2.43059941 .3 652575 1.52268910 .96313775 2.6:577870 1.05012840 .6908684 1.15182550 2.774948CU 1.27483371 2.85904760 1.42973870 2.94313730 1.63504045 3.02722690 1.9262603. 3.11131650 2.28169310 3.1944062. 3.21495660 3.27949586 .29097940 3.36358540

-.08359921 3.70946270 -.08783972 3.92822970 -.09209589 4.15926430 -.09637017 4.40539570 -.10066525 4.67022580 -.10498408 4.95841340 -.10932995 5.27610670 -.11370649 5.63159740 -.11811764 6.03636280 -.12256775 6.50675090 -.12706164 7.06709300 -.13160456 7.75480630 -.13620235 8.63128090 -.14086132 9.80436530 -.14558846 11.48287300 -.15039153 14.13114700 -.15527878 19.03285900 -.16026024 31.52678100 -. 16534579 137.22377000 -.17054726 -44.82276100

	2 .5'40350	17587747
4.1 10 11-	~.4476751	-16.77752400
5.5447659	-: 45781754	15135080
4.2:,00000	3.53176470	-9.17288190
4.11759250	-3.10517670	18698328
4.30400000	5.6158543U	-5.58.+26240
3.19111870	71208445	19279306
4.40000000	3.69994400	-3.46488500
2.5365848.	-1.0553192:	19880056
4.50 6000	2.75403360	-2-04425330
2.4976120	- 2.72037	20502873
4.6 111 11	2	-1.00922840
1.6715810		21150381
4.7	2 22129	- 20829774
1.3661808	74 875617	21825570
4.00. 61 100	4.1-13125,	.44101086
1.185272	11199920	22531868
4.5 01 6	+.12039220	.98765804
.,094777.	.0.738566	23273224
5	.2744510	1.46278959
.73.5 56	.11278693	24054220
5.11 cones	4.25357140	1.28737820
.5752986	.13714114	24880197
5.21 00000	4.37256115	2.27540720
.4389719	.26152228	25757427
5.31.1017	4.4557507.	2.64111980
.3178800	.32948537	26693317
5.4100000	4.54084030	2.99049810
.20925250	.3.30764.4	27696698
5.5. JOLACI	4.62493000	3.33220490
.1109376.	.4539.175	28778170
5.6100:000	4.7.301960	3.67328070
2124134	.51333308	29950588
5.7 0000	4.7931093)	4.02073100
6119264	.57262549	31229686
5.01100001	4.87719894	4.38210830
13746032	.6230747	32634044
5.91 01000	4.9612885.	4.76619740
20846384	.69602556	34190776
6.10 0000	5.04537620	5.18394250

- 274949 8
000000
- 3375/207
5-2000 000
6.3.000000
- 45319266
6.40000000
5:689358
6.5000000
- 55851558
6.671.000
60825787
6.70100.0
65638576
8.850001000
7.311762
6.901_0000
74872935
7
75335815
7.1
8372.746
7.201000
7 4 (110)
- 94575321
7.51000000
-1-0-1813250
7.61 0000
-1.5 5183
7.71:10.
-1.693:7490
7.8500600C
-1.13595350
7.91000011
-1.1793134
8.00000000

			7	6	3	1	С	2		8
	,		1	2	9	4	6	7	З	0
			5	3	6	3	3	6	7	5
	5		2	1	3	5	5	7	4	ġ.
			9	1	8	4	5	5	5	3
	5		2	9	7	6	4	7	1	5
	1		Ċ	٦	3	3	3	4	9	J
		Ĩ	ò	8	1	7	3	6	7	
	1		7	2	6	8	2	3	5	
		Ĭ	ż		£	3	2	6	à	
		9	~	4	. 02	3	7	5	Ŕ	ć.
					~	0	-		2	
	1	0			,	2	-	4	2	
		Ģ		200	7	1	4	0	6	
	5	0	5	5	4			2	1	
		0	-,		5	4	51.0	-	4	
	1	0	ć	1	9	Ó	9	2	4	2
	1	0	+	2	0	6	E	1	1	Ú.
	5	0	8	0	2	1	8	4	9	0
	2	9	8	0	L,	6		4	2	L.,
				ŝ	6	2	7	4	5	2
		9	6	5	4	7	r	5	2	6
		0	C;	7	r	3	6	4	2	
]	6	0		8	8	4]	8	Ũ	-
	4		$\hat{}$	5	ζ,	4	5	2	8	
_	7		ŋ	6	6	7	١,	8	Ċ	
	í÷.,	•	7	3	8	5	L,	3	4	
_	2	0	ŝ	2	Ş	2	9	0	9	0
	5			2		ó	3	3	1	0
_	Ţ	0	5	4	2	2	6	2]	J
	ó		3		4	7	2	2	7	0
	_		Q	4	3	2	8	3	3	5
	6		3	9	0	8	1	2	3	J
			6	Ċ	r	8	7	2	8	7
	é		4	7	4	.9	0	2	0	5
	_		-	1.	9	0	, C	1	5	7
		0	5	5		9	ģ	, i	6	ì
	1		2	-	'n	5	ģ	5	7	3
	6	Ĵ	6	L	3	n	18	1	2	õ.
	_		n	-,	C.	2	1	8	3	7
	6		7	2	7	1	-7	0	9	
	Ų		1	4	1	-	. 1	U		\sim

		_		3	5	9	2	8	2	1	ŀ.
		5		6	4	9	8	3	7	3	0
			•	3	7	ő	8	7	3	1	1
		6		1	8	4	1	9	ö	4	0
		-		4	0	1	2	0	6	8	3
		6		8	1	7	1	4	6	3	0
		-	0	4	2	6	9	8	8	7	4
		7	a	5	9	6	0	9	8	5	0
		-	•	4	5	7	1	3	7	2]
		2	•	6	0	1	1	3	0	2	0
				4	9 	3	1	6	8	7	9
		9		2	7	9	9	5	5]	0
	_			5	3	6	9	2	5	3	7
	1	2	0	0	3	9	8]	2	0	0
		_		2	9	1	4	8	4	9	5
	+	5	0	2	4	4	2	8	0	0	0
		-	0	0	6	10	0	0	20	0	1
	4	-		0	0	9	2	0 7	6	U 1	0 c
		,	0	0	2	2 7	0	;	2	1	0
	9		÷	6	(. 0	4	4	4	0	U Z	-7
1	0	-	19	С 7	0 1	0	20	ン 1	0	0	0
- 1	0	1		+	- C.	2	2	2	0	2	0
_	2	2	9	0	Ś	0	1:	Å	Z	2	0
	£	7	Ĵ	L	4	2	4	6	2	6	0
_	1	0	ĺ.	8	5	2	7	5	1	0	2
	_	2	ļ	2	ĉ	1	1	4	2	3	C
		5		3	9	3	3	2	3	7	0
		5		0	5	7	5	8	4	3	0
		3		9	3	0	6	2	5	2	0
	1	2		4	3	1	2	6	0	0	0
	_	?		3	4	9	1	L;	0	0	0
		2		6	1	0	5	1	7	4	0
]		2	2.	8	6	6	7	2	0
]		2,	0	6	8	7	2	2	0
		_		3	7	3	4	2	3	6	5
				9	2	2	С	2	2]	Q
				3	Ó	0	9	2	7	8]
			0	6	6	8	1	0	2.	5	7
				8	6	6	4	6	7	1	3

-1.223.2.00	3:27061	
8.190.0 000	6.81126(50	1.35355330
-1.26914940	.12427655	.40036833
8.2/10//00	5.89535020	1.78551020
-1.31399 6:	.21159371	.32144209
8.30000.01	5,9794398.	2.17861560
-1.361 477.	.27077731	• 26068290
8.40100000	7.06352940	2.54487310
-1.40954600	.33421737	.21255029
8.0000000	7.14761910	2.89366510
-1.45973-60	. 29374268	.17335362
8.6 100000	1.2317087,	3.23281300
-1.5118934.	.45181520	.14071044
8.7.00(10)	7,91.7183.	3.56932510
-1.56633880	. 165:17	.11301375
8.30106.00	7. 11 78880r	3.90999290
-1.62343941	. 125097	.08913995
8.91	7.4359776.	4.26194920
-1.6835952	615.44:42	.06827974
9.000000	5550672	4.63328620
-1.7473120.	67873635	.04983499
9.1000000	65215690	5.03385520
-1.01515800	. 14: 64425	.05335399
9.23.66666	73-24650	5.47642680
-1.587316.00	. 21061739	01848910
9.3 ()()	7.3213361	5.97852720
-1.9661.55	0 5 7 4 9 4 2 3	100496810
9-406-00006	1.C (425%	6.56557050
-2. 511 227		
9.50 0000	7.00/61541	7,27657520
-2.1427913.	1.0210415	
9.6.0111	1.07060F1.	• 0100000 8-17546130
-2.24593420	2110100	- 02040450
9.7.11.00	14-55-47	a. 27558420
-2.3503726.	. 2/67300	- 050/2071
	- 0/.c78/3.	11 140124071
-2.4:656871	61216/0	
	- 3028776-	13 9507/50/0
-2 62 72251	1 02627931	10.00724000
	1 * 100696 J.	
	(. fr (70 30 D	エヤ・エクイクロロ
-2.70619060 11.11 16. 410 -2.0885654 1...201.00000 -3.2161357 11.3 00 10 -3.49:50160 11.400000000 -3.82908990 10.500000000 -4.25916590 10.6000000 -4.0259222 16.71 6.00% -5.61.1296. 16.8000000 -6.77172801 11.94.0710 -8.6783556. 11.0.000000 -12.40457500 11.100000000 -23.042510. 11.2.7000/1 -297.79185.00 11.31 24.84341911 11.41 200 000 11.361677 11.51.702.10 7.1048.13 11.60001000 5...1267570 11.70000000 3.76526860 11.0000000 2.9344724 11.9-011645 2.23963681 12.000000000

2.57943 ... 4920532 8.57714296 10.11524700 9.6612325 -12.1295650 3.74532210 -2.20238580 ...2441300 -1. 0.40-400 ×. 0125 14. -1. 11. 17 54 -. 63511425 . AR16407 -.3\$446484 0.1657703 -.2154:464 1.24986100 -.00170087 -. 33394960 .02105400 -. 41365920 .11136783 7.5 21289. .19987858 . 44/2185 .24770873 0.8713.81. .32066619 9.75439760 .37936541 . 83848740 .43532066 7. 2257760 .48996633 10.11666700 . 54422429 10.1967560U

-.06597595 33.77269900 -.07397437 333.92355000 -.08164167 -33.98570500 -.08902354 -14.14413100 -.09616042 -7.91617610 -.10308840 -4.82395900 -.10984001 -2.94562610 -.11644500 -1.55229060 -.12293071 -.71356925 -.12932276 .n29415n6 -.13564536 .63798240 -.14192162 1.15503500 -.14917367 1.60817260 -.15442492 2.01623640 -.16069644 2.39272820 -.16701094 2.74804610 -.17339136 3.09055100 -.17986197 3.42752190 -.18644802 3.76572050 -.19317650 4.11225440 70

ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation and thanks to Dr. Chi-lung Huang for suggesting this problem and for his valuable guidance throughout the course of this work.

The author also wishes to express his gratitude to Dr. E. E. Haft and Professor McCormick for their valuable suggestions and criticism of the manuscript.

BIBLICGRAPHY

- Bellin, A.I., "Determination of the Natural Frequencies of the Bending Vibrations of Beans," Journal of Applied Mechanics, ASME, Vol. 14, No.
 pp. A-1 to A-6, March, 1947.
- Bennon, S., "Natural Modes of Vibration of Simple Frames," Journal, Franklin Inst., Vol. 243, 1947, pp. 13-19.
- Bishop, R.E.D., "The Vibration of Frames," Proceedings, Inst. of Mech. Engrs., Vol. 170, 1956, p. 955.
- 4. Bishop, R.E.D., "The Analysis and Southesis of Vibrating Systems," Journal of the Royal Aeronautical Society, Vol. 58, Oct. 1954.
- 5. Bishop, R.E.D., "The Analysis of Vibrating Systems Which Embody Beams in Florure," Proceedings, Inst. of Moch. Engr., Vol. 169, 1955, p. 1031.
- 6. Holzer H., "Die Berechnung der Drehschwingungen," Springer-Verlag, Berlin. 1921.
- Hurty, Walter C., "Vibrations of Suructural Systems by Component Mode Synthesis," Transactions, ASCE, Vol. 126, 1961, pp. 157-175.
- Masur, E. F., "On the Fundamental Frequencies of Vibration of Rigid Frames," Proceedings, First Midwestern Conference on Solid Mechanics, Urbana, Ill., 1953, pp. 89-94.
- Rogers, Grover L., "Dynamics of Framed Structures," John Wiley & Sons, Inc., New York, N.Y. 1959.
- 10. Thomson, W.T., "Matrix Solution for the Vibration of Nonuniform Beams," Transactions, ASME, Vol. 17, No. 3, Sept. 1950, pp. 227-242.
- 11. . .oshenko, S., "Vibration Problems in Engineering," D. Van Nostrand

Co., Inc., New York, N.Y. 3 Ed., 1955, pp. 342-345.

12. Veletsos A.S. and Mewmark, N.M. "Natural Frequencies of Continuous Flexural Members," Transactions ASCE, Vol. 122, 1957.

FREE VIBRATION OF A RECTANGULAR RIGID FRAME

by

TSUN LEE

B.S., National Taiwan University, China, 1959

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Applied Mechanics

KANSAS STATE UNIVERSITY Manhattan, Kansas

1965

ABSTRACT

By applying the Bernoulli-Euler equation, the equation of motion for a vibration elastic beam is derived in the beginning of this report. Since a rectangular rigid frame can be considered as three elastic beams joined rigidly at right angles, the frequency equation can be obtained from direct expansion of the frequency determinant that follows as a consequence of satisfying boundary conditions of the equations of motion for the vibrating elastic beams. In order to show how to use these frequency equations, a numerical example is presented and the natural frequencies and mode shapes of the first ten modes of vibration of a simple rectangular fixed end frame are obtained by the aid of a 1620 digital computer.

Rayleigh's method is also used to find the natural frequency of the first vibration mode for the same numerical example and the error compared to the exact solution is found to be 5.6%.