CONTROL COMPUTER LOCAL DRIVER ROUTINES
IN A FUNCTIONALLY DISTRIBUTED
DATA BASE MANAGEMENT SYSTEM
by

EUGENE KENNETH GOODELL

B,S., United States Military Academy, 1961

A MASTER'S REPORT
submitted in partizl fulfillment of the

requirements for the degree
MASTER OF SCIENCE

Department of Computer Science

\.

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1977

Approved by:

A (Mo

or Professor

e

LD
2607

R4
1977

GGG

c.>
DocumenT

ACKNOWLEDGEMENT

This project discusses hardware devices and
techniques which are currently being researched and
developed by the Department of Computer Science, "
Kansas State University. Consequently, there are few
available references in published form. The majority
of my information, therefore, was obtained through
personal conversation with and access to the notes of
Dr. Myron A. Calhoun of the Department of Computer
Science. His patience and time in providing guidance
and support to me during the preparation of this
report is gratefully acknowledged.

i1

TABLE OF CONTENTS
Acknowledgement . . o + o o o o o o o o 5 s s « o »

PART
I, Dopkpround « o @ 9 % .8 » % 8 8 & & ¢ ® ¥ & & %

II. Software Requirements of the System .,

III., The Data Transfer Sequence « « « « « o o+ ..

IV, Driver ROULInNes v ¢ o« v o o o o o o o o o o o

V. Conclus ion . L] - L] L4 » L] . L] L L L L] L] * -] L]

APPENDICES:
A DATA TRANSFER FLOWCHARTS

B DRIVER ROUTINE FLOWCHARTS
C ROUTINE CODES AND SOFTWARE INTERFACE
D KSUBUS ORGANIZATION

BIBLICGRAPEY o+ & » « w w » % » @ = s » 4 « § & o »

- 111

o i1

. 18

JE-1

FIGURE
;B

ILLUSTRATIONS

Overview of A Functionally Distributed Data
Base System * & & 8 B 8 e B & 8 e 8 & ® & © »®

Local Data Movement in the Cluster . . « « « o

Control Communication and Data Flow for Long
. Hange Request L] * . » a . . L]] -] L] [] * L] . °

Typical KSUBUS Arrangement .+ o o o o o o o o &

Situation 1: Host A Obtaining a Data Block From

Host B []]] L] - . L L] L] . o . - [] L] L . L]]

Situation 2: Relay of Data Through a Third
Machine . [] [] L] L] L] L] L] [] L] L * L4 L L L] - . L

Universal Logic Interface (ULI) « o« v ¢ o « o o

iv

12

15

20

PART I: Background

1, Physical Design of the Network

Figure 1 revresents an overview of the Functionally
Distributed Data Base System. Each cluster may have any
number of main computers and each of the main computers may
or may not contain a data base of the network. The oniy impact
of a maln computer having a data base is the temporary loss
of that data base to the system in the event of that bomputer's
breakdown., Backup has been bullt into the network to allow for
minor failures and the initiation of appropriaté messages to
the remainder of the system to permit continued operation
without the disabled data base. One cluster communicates with
anocther via one of the control computers allied with each main
computer., These are discussed below

2. The Cluster

The cluster is basically a miniature of the network except
that data movement within the cluster is over high speed data
lines, Each node of the cluster contains a host or main computer,
a control computer, and a number of autonomous functional units
(AFU's) which perform the physical movement of data within the
cluster. The purpcse of using contrel computers is to relieve
the main computer of the relatively menial task of moving data
from one user to another and permit it to concentrate solely on
its primary function of processing. In this light, a micro
computer, due to its low cost, is consldered to be the best type
of computer for the control role, Within the cluster, host
computers may ccmmunicate with each other and control computers
may communicate with other control computers over hardwired
links, Data movement is conducted under the command of the
control computers and over a separate set of lines! the KSUBUS,

3, Main Computer/Control Computer Relationship

Each main computer is related to its associated control
computer and allied AFU's via 1) the KSUBUS for data movement
and some control commands and 2) control lines for the relay of
commands., The KSUBUS is g multi-wire bus which provides a
hardwired, high speed path for the transfer of data in and out of

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

Any Given

Number of
Computers
Location A

Any - Given

Number of

Long Distance

Any Given

Number of

Computers
Location B

Lines

Figure 1

Overview of a Functionally
Data Base System

Computers
Location C

Distributed

the host and, if the data is destined for long distance
transmission to a remote receiver, to control memory. Access

to the memory of either the host or control computer is by a
Direct Memory Access (DiA) device which permits access to the
computerts memory without interrupting any main process which

may be running. DMA's are passive devices, as far as control
language is concerned, and simply respond to commands-from an
AFU, Host and control computers communicate via a direct
communication line and the control computer communicates through
a Universal Logic Interface (ULI) to the appropriate AFU by
hardwired means., Transmitter and receiver AFU's are hardwired

by a multi-conductor cable (on the order of 50 lines) to matching
AFUt's in other nodes of the cluster. Figure 2 best summarizes
this relationship. The transmitter/receiver AFU's connect to the
KSUBUS only for the purpose of DMA to DMA movement and transmission
to multiple receivers.

PART II: Software Requirements of the System

1. The purpoée of the Functionally Distributed Data Base System
is to expand the data base available to one main computer by
enabling it to access the data base of other computers and, in
turn, share its data base with them,

2. When the host computer operates using the data base contained
within its own memory, the normal operating system interface
maintains the data flow required by the local user. When the
user desires to access a data base not in the memory of the

host computer, however, a sequence of events specified by the
Functionally Distributed Data Base System is invoked which will
transfer the requested data base into the user memory space on
the host computer, While this sequence may be transparent to the
user when performed at the local level, loading time and the
system load could cause a noticable delay when accessing the
data base on a remote machine,

3. In the case of a host computer's data base being accessed by
another machine, the reading of the data base by the Direct
Memory Access deviée should be totally transparent to the local
user, AFU's will read the requested data directly through the

3

Ho=Y Computer
Computeg Set
Control
Host
Computer]
Memory X/H,j___s
“Ig
— S
Vi "
' B
ra Control = U
,_//'r\.__.___...._..i X et S
DMA DMA Memory
4 ——
| ! X/R ==
‘ﬁ ULI
———1 R —=
. X ==
U
B I N
UFMH— X f‘
o Computer
=.—'.:!';‘ X/R B i Set
==t 5 & 1
P C TSP Y <G
K
N S
= s = %
_ B
U
X -
X/R?‘,:::
h) —
b lfl‘ > R v
X <:
Figure 2

Local Data Movement in the Cluster

4

DMA without interfering with the operating system controlling
local memory or, if the local machine is currently using the
data, the AFU will either "steal" the data on alternate cycles
with the host machine or be locked out by the host machine's

sof tware until the desired data base is free. Two situations
will arise, then: 10 a host machine requires a data base it

does not have or 2) an outside machine requires a data base that
the host has, Either situation triggers action by the control
computers associated with both the requesting and data owning
computers,

L, The control computer exchanges significant information about
the subject data base with its host, Either the host requests the
control computer to find a needed data base, if it needs data,
or the control computer requests the memory address of a data
base within the host's memory if data is requested by another
.machine, If requested by a machine within the cluster, the
request could have been made between control computers, between
host computers or via a host l-control l-control 2-host 2 path.
Regardless of how the request is made known in the system, the
control computer of the host machine possessing the data base
and the control computer of the machine wanting the data base
must coordinate the transfer of data.

5. Should a requirement for a data base come from outside the
cluster, (external demand) it will be made through one of the
control computers as host computers can communicate with one
another only within the same cluster., If necessary, the request
will be routed about the cluster to the control computer
associated with the host computer maintaining the requested
data base, Transfer of this externally required data will be
made through the transmitter/receiver AFU which accesses the
host memory and sends the data to the control computer which,
in turn, transmits the data to the requesting remote site. The
reverse of this procedure is used when receiving data into the
cluster from a remote site. Figure 3 summarizes this case,

6. This project considers the case of a data base transfer
within the same cluster, This involves a requesting set of

Synchronous

GO Control — Communications
Computer Computer Adaptor
Host _ Control
Memory [——|DHA [|DnA |Memory
—1
KSUBUS NX/R
Figure 3a
Data Flow for Long Range Request
Host Control Synchronous
| Communications
Computer Computer Adaptor
Host Control
Memory DMA DMA Memory
ULI
X/R
KSUBUS
Figure 3b

Control Communications for Long Range Request

computers, one host and one control computer per set, directing
their receiving AFU and a sending set of computers directing their
transmitting AFU, As the two AFU's are hardwired together, the
problem narrows to formulating appropriately coded commands to

be issued from the control computers to the AFU's,

PART III: The Data Transfer Sequence

1. This project considers 6 cases which will arise within a
cluster to create interaction between the control computer and
a particular AFU or set of AFU's, Before detailing the actual
handling of the different type tasks by the AFU's, however, a
description of the KSUBUS and some aspects of the internal
design of the AFU's 1s in order.

2. The KSUBUS

a. An AFU's position on its KSUBUS is based on a priority
scheme where the AFU, in obtaining or storing a halfword cof |
data, must share the DATABUS section of the KSUBUS., Only one
AFU may use the KSUBUS at any one time, It is this delay on
the KSUBUS which necessitates control signals to be passed over
an AFU connection (described below) to control the passage of data.
It should be recognized, however, that this multiple use of the
KSUBUS is one of the keys to a functionally distributed data base
system, -

b. The KSUBUS is a hardwired data and control message path
{series of buses) which permits the accomplishment of a sequence
of actions based on the control computer instructions for moving
the subject block of data.

¢, Each device, AFU or DMA, has access to the 4 control buses
and 2 data moving buses on the KSUBUS, Any one device, however,
only connects to the buses it needs to function. By setting an
assigned bit on the REQUESTBUS, a device indicates its need to use
the DATABUS, A READYBUS bit indicates the availability of a device
as a receptor for data. A set TOBUS bit indicates the device
destination of the current contents of the DATABUS, A bit is set on
the FROMBUS by a transmitter or transmitter/receiver device. When
read by a DMA, a set bit on the FROMBUS tells the DMA to return
data and the absence of a set bit tells the DMA to store data (a
receiver is sending the data) A more detailed description of the

7

TYPICAL KSUBUS ARRANGEMENT

BIT
NUMBER | © i 2|1 3 4 5 6 7
_mn-*-
READY |DMXR | DMXR | DMXC |DMxc HOST |cONTROL
BUS |No 7 | No 6| No 5 |No & DMA | DiA
REQUEST |DMXR | DMXR | DMXc |Dixc DMRC | DMRC
BUS No 7 lio 6 | No 5 |No & Nol |No O
 |pmxe | omxr | pixc |pmxe HOST [ONTROL
TOBUS 1yo 7 | wo 6 | No 5 |50 & DMA | DHA
FRON DMXR | DMXR | DMXC |DMXC
BUS No 7 No 6 { No 5 |No &

DATABUS 16 bits
ADDRESS —
BUS

SUMMARY: 1) All devices sense the pertinent bits of the six buses.
2) The transmitters and transmitter/receivers have a bit
asSigned to them on each of the four control buses.

3) Receivers never receive data from the KSUBUS, but
only send incoming data to one of the other devices.
They therefore need only a bit on the REQUESTBUS.

L) DMA's must return data to the requesting transmitter
- 8o they have a TOBUS bit as well as a READYBUS bit,
They are passive devices, acting only on request
from another AFU so they use the REQUESTBUS bit of

that AFU.

Figure 4

8

KSUBUS and its organizatio 1s at Appendix D,

d. Once an AFU has its instructions from the control computer,
it sets a bit on the REQUESTBUS to indicate that it needs to use
the DATABUS, A receiver AFU would want to move incoming data to
memory storage and a transmitter would want to move data out of
a memory to be transmitted over one of the direct AFU connections.

3. The AFU Registers

Each AFU has three 16 bit registers which are used to monitor
data movement. A Memory Data Register (MDR) holds each halfword
until it can be moved to its designated destination by the AFU,
A Current Counter Register (CCR) decrements the value of the
initial count of halfwords in the data block being moved and
serves as an indicator of completion. The Current Address Register
(CAR) maintains the value of the memory address where data is
coming from or going to, as the case may be.

4. Situation 0 .
a, The first of the six cases to be discussed is the situation

where data 1s to be moved from the memory of one computer of a set
(either the host or the control computer) to the memory of the other,
b. This example might be termed an "internal" transfer. It
is performed by the paths used in the remote transfer portrayed
in figufe 3 except that, once moved, the data does not get
transmitted beyond the receiving memory.
c. Initialization of AFU!s

1) In this case, the transmitter/receiver AFU is called
upon to perform the data movement., The X/R AFU is no more than
a transmitter AFU and a receiver AFU put together in one unit.
Through this arrangement, the KSUBUS only needs to be used when
data goes from one memory to the transmitter side of the AFU and
when data goes from the receiver side of the X/R to the receiving
memory.

2) The control computer instructs the X/R AFU to move a
given size block of data from the DMA servicing the originating
memory to the DMA servicing the memory which is to receive the
data. The transmitter side of the AFU will then address the

sending memory and the receiver side will address the receiving
memory over the KSUBUS through each respective DIA,

3) The transmitter side of the AFU needs its own CAR to
keep track of the sending memory and the receiver similarly has
a CAR to monitor the addresses in the receiving memory. One
Current dounter'Register suffices for both sides of the AFU as
does one Memory Data Register,

4) The control computer must issue the following
instructions:

a) Move a specific block size of data (in halfwords).

b) Get the data through a specified DMA.

c) Start getting the data at a specified address.

.d) Store the data through a specified DMA.

e) Store the data starting at a specified memory address.

5) On transmission of the 5th instruction, the AFU is so
designed that it commences the hardware controlled transfer of
data,

d. Transfer of data (Flowchart, page A-1)

1) The transmitter/receiver first gains access to the DMA
which serves the memory where the data is stored. Once this
device is available, the AFU requests use of the DATABUS by
setting a bit on the REQUEST BUS, If the DATABUS is in use by
another AFU, the TOBUS is checked by the X/R AFU to determine
- if the DMA just checked and found ready will be used by the

current DATABUS user. If this is the case, the X/R AFU must wait
for this DMA to again be available before making another request
for the DATABUS. If the DMA is not being currently addressed and
is still ready, the AFU continues in a request DATABUS - chack
TOBUS -~ check DMA/request DATABUS mode until the DATABUS is
given to this AFU,

2) One halfword of data is then moved into the MDR of ‘the
X/R AFU and the DATABUS is released for the next priority
requesting AFU, if any.

3) The AFU now checks the DMA serving the memory which is
to receive the data and, when that device is ready, requests the
DATABUS, The same sequence of checking and requesting described
above is again followed.

L) When the DATABUS is again given to this AFU, the halfword

10

of data is moved out of the MDR of the AFU and into the current
address in memory as indicated by the value in the CAR of the
receiver side of the AFU,

5) After each cycle, the AFU decrements its CCR, and
increments the CAR's of both the transmitter and receiver side
of the AFU., If the value of the CCR is zero, the AFU sends its
identity code to the control computer, through the Universal
Logic Interface., If the value is non-zero, the AFU processes
the next halfword of data.

5. Situation 1

a. One host computer (A) needs data from a memory other than
its own or that of its control computer. This situation actually
presents two cases as it examines both the receiver and
transmitter AFU conditions and forms the basis for the discussions
of the following situations,.

b. The initial communication between host and control
computers is outside the scope of this particular project.
Through a series of messages, the location and other particulars
(such as size, etc) are established such that control computer A
requests control computer B to send the data from computer set B
to computer set A,

¢, Initialization of AFU's (Figure 5)

1) Control computer A instructs, through a Universal Logic
Interface (ULI), its receiver AFU (which is connected to the
transmitter at computer set B) to:

a) be ready for receipt of a specific size of data
(number of halfwords),

b) store the data in either control memory or host memory
(DMA identification), and

c) start the storage at a specific address.

2) At the same time, control computer B, through a ULI,
instructs its transmitter AFU (which is connected to computer A's
receiver) to:

a) get a block of data of a specified size (the same
size as that given to receiver A by control computer
A},

b) get the data from host or control memory . (DMNA
jdentification), and

11

g 9SOH WoJdJ ¥20Tq B3EP ®B
JUTUTLe3qo ¥ 3SOH :1 UOT38N3IS

12

¢ eandtyg
spdg £sgEaay SN §SIUAQY
SNE vIva o wvo ona vIvd
0D F:00T0)
SN HOuA ~— MOTJ °3BSS8N — o |, Shd WOHJ
HaH gOUTT TOI3U0DH gan
SNE0L SNEO0L
e IsEntay wotg ®aeq (97) SSUIT BiEQ Snd ISANBEE
end xavay Ve-0YHa Ye—-0HNd sng Xavad
5 NJY . SyNaIvV Y
g 39S J0y4 1eg 404
sngnsd S nJAY endansy
JI9U30
WL
w3y 10430
[OJJUCH 10 09
O...w d«.EQ
yHd
o
w7 _ .
180Q4 YViHd
k!
VA q . . L
ae3nduon YATNIHOD reqnduion
mm”BDﬂHEOU HO.HD..C”OU
TOI3uoy LSOH LSOH

¢) start getting this data at a specific memory address,

3) On each end of the AFU connection, at the issuance of
the third command, the AFU's are free (and directed) to commence
the actual transmission of the data.

d. Transfer of Data (Flowchart, pages A-3 and A-5)

1) Once the transfers of instructions and information
are complete to the AFU's, hardwired logic circuits within the
DMA's and AFU's accomplish the physical relocation of the
requested block of data.

2) Each AFU, the transmitter for data from computer set B
to computer set A (DMXC-BA) and the receiver for data from
computer set B to computer set A (DMRC-BA), must "look" two
ways: toward its own KSUBUS that interfaces between the AFU
and its parent control and host memories, and toward the
physical wires connecting it to its associated AFU in the
other computer set (here called the AFU connection).

' 3) AFU connection '

a) Data.is transferred one halfword (16 bits) at a time.
The interconnection between the AFU's has 16 wires for this data
‘transfer, so that one bit may move over each wire simultaneously.
This provides the high speed characteristic of the system.

b) Also included in this connection are several control
wires which coordinate the passage of the data between AFU's so
that another halfword is not sent by DMXC-BA until the previous
halfword has been stored by DMRC-BA. This communication actually
consists of a series of flags or bit conditions set on a
specific control wire to indicate an AFU's status. For example:

. Line 1 might be used to set a condition of the
sending AFU which, .in effect, asks the receiver if it is ready
for data.

2. Line 2 could then be sensed by the sending AFU
for the presence of an electrical condition (bit) indicating
that the receiver is ready to receive the data.

3. The sender then sends a condition message over
a third control line to indicate that the halfword is being sent.

4. The receiver responds with an acknowledgement -
of = receipt condition.

c) Other yes and no information can be passed over

13

additional control lines.
e. In summary, the sequence of action for Situation 1 is:

1) Transmitting AFU (B) gains access to its KSUBUS, fetches
one halfword of data from the proper memory via the attached
DMA into its MDR, sends this halfword to the receiving AFU (A)
and, once AFU (A) acknowledges receipt, gets the next halfword
of data.

2) After obtaining the first halfword of data in its VDR,
receiverl(A) moves over its KSUBUS via the proper DMA to store
the halfword in its assigned memory address and then sets its
ready flag on the proper control line in the AFU connection.

3) After the entire block of data has been transferréd,
each AFU notifies its respective control computer, (through the
ULI) that the transfer is complete. These messages are triggered
by the CCR reaching a zero value. Software in the control
computer can then verify the transfer by comparison of the
transmitter and receiver CCR's or by exception, where no
message is sent unless one control computer or the other notes
a non-zero condition in the CCR of an AFU which has indicated
condition,

6, Situation 2 (Figure 6)

a. One machine set in the cluster (assume set A) is either
not connected or has lost contact with another (assume set C)
so that data must be relayed through set B, This situatio might
exist when no original link between set A and set C was provided
because there was very little data transfer expected between
them or several other reasons.

b. This case differs from the previous case in that once a
halfword of data is received by the receiver at set B (DMRC=-CB)
from the transmitter at set C (DMXC-CB) it is not relayed to
either memory in the set but, rather, to the transmitter which
connects set B to set A (DMXC-BA).

¢. This task 1s established in the cluster by coordination
between the three concerned control computers which convey the
request that set C has a particular size of data which must go
via set B to set A. ' |

d. AFU Initialization

1) The same three categories of information are sent by

14

Control
Computer

C

ULI

Control A 3
Computer .
A DIMXC-AB
1
(——=> pmac-Ba [~
DMXC=AC =
7 DMRC=CA [
- { TR
— DMRC-AB G
K
S
U — DMXC-BA |=
B h —-—"‘_I"'-’—-
| Never connected
Us = pme-cB (&7 or broken down
B -
= DMXC-BC e
T
ULI /"""_l
B
4 DMXC-CA o
Control
Computer J 1
B == DMRC-AC
———{ DiXc-cB [
Figure 6 > DNRC-BC [
Situation 2: Relay of

data through a third machine

15

each control computer to its applicable AFU's as was sent in
Situation 1. Control computer B, however, must be alerted to
arrange a relay task as opposed to simply coordinating a receive
and transmit job. This will invoke a different program in the
control computer which will address two AFU's with appropriate
instructions. _

2) Control computers C and A will establish their sending
and receiving AFU's, respectively, much the same as in the
direct transfer of data except that different AFU's will be
utilized (those connecting to set B instead of to each other).

3) Control computer B will initialize DFRC-CB to the size
of the incoming data and instruct that device to foward the
data to transmitter DMXC-BA (Flowchart, page A-7)., DMXC-BA will
be advised of the size of data and told to wait passively until
loaded from the KSUBUS, The Current Address Begisters of DMRC=~CB
and DMXC-BA are not used in this case,

‘ L) One impact of a relay situation is the delays in each
of the three KSUBUS's involved. If any AFU is bottom priority
(highest order bit) on its REQUEST BUS and a particularly busy
period is realized by that set during the relay mission, a
bottleneck, although not a deadlock, would occur.

e. On completion of this task, each AFU will notify its
control computer of completion and verification or exception
messages can be exchanged between control units,

7. Situation 3

a. A receiving computer set desires to retain a copy of data
that it is fowarding from one computer to another.

b. This situation is an extension of Situation 2 and Figure 6
still applies., Rather than the relay receiving AFU simply
fowarding the data received to a transmitting AFU, it must also
send the data to a memory address in its own computer set., This
is accomplished by instructions to the relay receiver AFU to |
send each halfword to both the relay transmitter and a designated
DMA, The receiver cannot send the halfword until both the DA and
the transmitter are ready.

c. Initialization of AFU's

1) Sets A and C initialize their AFU's in the same manner

r

16

as in the previous situations. Set B, however, must instruct

its receiver to address two destinations over the TOBUS as each
word is placed on the KSUBUS, The set B transmitter is set to be
ready for data from the receiver, DMRC-CB, so there is no
starting- address for it to look for.

2) The receiver in set B must now watch for two flags to

be set on the READY BUS: the DINA and the transmitter to set A.
The receiver's MDR, CCR, and CAR are set in the normal manner.
A command is also given, however, to watch for the appropriate
bits on the READY BUS which designate the selected DMA and the
transmitter. Hardware logic will then accomplish the data J
movement., '

3) The transmitter of set B is simply a relay mechanism,
It need only be instructed as to the size of the data as in
Situation 2, and that this is a fowarding tas. The transmitter
has no concern or appreciation that the data is being copied =
only that it is fowarding data.

L) The key to fowarding data with copy, therefore, is
that the middle AFU, at set B, is instructed to insure that both
the selected DMA and the transmitter are ready before sending
the halfword of data (Flowchart, page A-9).

5) After the last halfword is sent, all CCR's in the chain
of data movement should be at zero value and each AFU used in
this task will independently signal its control computer that
it is finished.

8. Situation 4

a, It is desired to send a given block of data to multiple
receivers, |

b. This offers the extreme situation in moving data within
a cluster, It can combine all the previously cited cases into
one task and, while this would be an exceptional case, it
illustrates how the hardware interfaces can efficiently move a
block of data by minimizing the number of actual data transfers,

¢, To illustrate this case, the basic mode, that of using the
transmitter/receiver AFU, will be described. To move the data
to sets not directly connected to the sending set, however, an
expansion of the foward or foward with copy cases described in

17

Situations 2 and 3 could be done to extend the data to all
computer sets in the cluster in 2 or 3 actual moves (Flowchart,
page A-11),

d. Initialization of the X/R AFU (Flowchart, page A-11)

1) The same basic instructions are sent to the X/R AFU
as are sent to perform a DMA to DMA transfer. The receiver side
of the AFU, however, is instructed to place the halfword of data
on the DATABUS only after the transmitters which are specified
to foward the data are ready. Conceivably, in a case where a new
data base is being distributed onto the system, the X/R AFU
might be required to send the data to all the transmitters on the
KSUBUS, _

2) The following instructions are typical of the type
which would be sent to the X/R AFU for this task:

a) Send a block of data of a specific size (load the CCR)

b) Get the data from a specific DMA

¢) Send the data to transmitter 1

d) Send the data to transmitter 2

e) Start getting the data at a specified address (load
the CAR of the receiver side -(the CAR on the transmitter side is
left indeterminate). '

3) The X/R AFU, on receipt of the starting memory address,
commences the transfer of data out of memory (via the DHMA) to
the designated transmitters. Once a transmitter AFU is ready for
the X/R AFU to send the data, however, it will not be used by
another device so once all transmitters are ready, the X/R AFU
only needs to request and get the DATABUS.

4) The matching receivers for each transmitter are
initialized in the same manner as in situations 1, 2, or 3
(Flowchart, page A-=5).

e. As in the previous cases, when the CCR's of all AFU's go
to zero, each AFU signals its control computer that the task
is completed.

PART IV: Driver Routines

1. In each situation, before issuing instructions to any
Autonomous Funetional Unit, the control computer must, through

18

a higher level software program, determine the size of the

data block and where it is in memory, if the task is to send it,
or where it is to go in memory, if the task is to receive it., The
type task to be performed must normally be known to the control
computer, In a relay task, for instance, the initial sender set
and terminal receiver set of computers ast much as they do in a
simple transfer and will be initialzed as though that were the
task, The middle, or relay set, however, must know that the data
1s not to be copied but, rather, sent to the appropriate
transmitter on the KSUBUS, The transmitter will not be requesting
data as it usually does in a simple transfer, but accepting it

as it is "automatically" sent. This state of "knowing" the task
is conveyed by appropriate control computer driver routines.

2. Any set of computers in the Functionally Distributed Data

Base System must be able to perform any of the tasks depicted

in the six cases discussed in Part III, When invoking any of the
routines, the control computer will communicate with the required -
AFUt's to initialize them with the appropriate data. In the event
that numerous AFU's need to be initialized, (such as in the case
of multiple fowarding) no special sequence is necessary as no

AFU can start moving data until all of its counterparts are ready.

3. To communicate with its AFU's, a control computer uses a
Universal Logic Interface (ULI). This is a master-to-slave
relationship in that the control computer can always interrupt
the AFU but the AFU can only request, through the ULI, to
interrupt the control computer. This arrangement enables the
control computer to complete a communication to other AFU's,

the host computer, or any of the other control computers without
interruption. It can perform processing, if desired, and manage
AFU's at the same time.

4, The ULI

a. A ULI provides a set number of communication channels
by acting as a relay between the control computer and the AFU,
In this sense, the ULI can be viewed as a buffer for the control
computer,

b. (Figure 7) The ULI has two registers and two sets of gates

19

Data ut
Register

Data In
Gate

Status In
Gate

Command Out
Register

Type
commands:

{Interrupt
and mode
bits are
constant
as shown)

Source:

UNIVERSAL LOGIC INTERFACE (ULI)

Type address bits: | 1 1 1
» 1 0
Interdata User's 1 0 1
Manual and notes
of Dr., M.A. 1 0 0
Calhoun
0 0 1
0 0 0
0 1 1
0 1 0
Figure 7

20

Select an AFU

Stop AFU

Set Read

Spare

XRCC No,
XRCC No,
DMXC No,
DMXC No,
DMRC No.
DMRC No,
not used

not used

CCR of AFU

which are used to relay information to and from the registers

of the AFU's. The DATA OUT register can pass up to 16 bits of
data from the control computer to the AFU., The DATA IN gates
vass up to 16 bits of data from the AFU to the control computer,
The STATUS Iil zate is used to pass an AFU's identification code
when the AFU requests to contact the control computer (principally
on completion of the AFU's task). The COMMAND OUT register is
used to relay a type command, identified by 2 control bits,

to a particular AFU, identified by 3 control bits. The 4
combinations of 2 bits can then provide 4 type commands to the
AFU's addressed through a combination of 3 identification bits.

Control bits Command
00 Select AFU AAA (alert the AFU)
01 Stop AFU AAA (accept a "done" report)
10 Read CCR of AFU AAA
1.1 not used

AAA is a combination of bits which uniquely identifies one of
the AFU's serviced by this ULI. '

¢c. In addition to the 5 user bits, described above, there are
3 control hits, 2 of which set the interrupt code for the control
computer and 1 bit which declares the mode, halfword or byte,
for the system. As the halfword mode is habitually used, the mode
bit will always be the same and, while the ability to disable or
disarm the interrupts will remain, it is a separate discussion
to review the impact of interrupt disabling so these 2 bits will
always be in the enable mode for the purpose of this report.

d. The ULI is hardwired. The above commands are produced by
the applicable driver program in the control computer software
and relgyed through the gates and registers.

5. Driver Routine Coding

a. The following driver routines are called as sub routines of
an initializing program which obtains the critical data such as
data size, location, etc.

b. If it is desired to move the data from the present memory
locetion to the control computer's memory (Situation 0), the
following routine will be called in the control computer:

21

ROUTINE_INTERNAL (A, B, C, X, E)
Load the CCR with A
Get the data through DMA B
Set the CAR(in) to address C
Send the data to DiMA X
Set the CAR(out) to address E
END ROUTINE_INTERNAL

The act of calling this particular routine will alert one of
the X/R AFU's on the KSUBUS, The value of A will equal the size
of the data in halfwords, B will equal the device identification
code of the sending DMA, and C will equal the starting memory
address in the sending memory. The instruction of where to send
the data will come to the routine as a compacted instruction
whose bit wvalues will depict which devices on the KSUBUS will be
recipients of the data. This instruction will be calculated by
hashing all input parameters representing device identification
codes (one for each eligible device) and assigning the resulant
value to X. In this first case, only the receiving DiA will be
contacted. The next case will use a different instruction.

¢. Another routine using the X/R AFU is one to move data to _
multiple receivers (Situation 4). In this case, the above routine
is again called but, this time, with a different compacted value
for the fourth parameter.

ROUTINE_INTERNAL (A, B, C, Y, F)
Load the CCR with A
Get the data through DMA B
Set the CAR(in) to address C
Send the data to devices Y
Set the CAR(out) to address F
END ROUTINE_INTERNAL

A, B, and C have the same values as before., Y represents the
compacted value of the transmitters which are to receive this
data and the value of F is ignored (data is coming from a
receiver, not a memory).

d. Data movement in situations 1, 2, and 3 is accomodated by
one other routine. this same routine is called for..each type
task but the AFU which is called and the calling parameters will

22

be passed by the main routine so that the effect of the routine
will vary as the values of the parameters vary.

1) In a simple set to set transfer (Situation 1), the
routine for the transmitting set will have the form:

ROUTINE_SEND (A, X, C)
Load the CCR with value A
Get the data from DMA X
- Set the CAR to address C
END RQUTINE_SEND

In this case, the routine is addressing a transmitting
AFU which is hardwired to a receiver and can send the data
nowhere else so there is no requirement to tell it where to
send the data.

The receiver set form will be:

ROUTINE_SEND (A, Y, D)
Load CCR with value A
Send -the data to device X
Set the CAR to address D
The receiver could send the data to any other eligible
device on its DMA so the value of Y could be a DMA identification
or a compacted value of several transmitters. In the case of
just a DMA, the value of D is the starting address in memory. The
compacted case is discussed next.
2) Situation 2, relaying data for a third set, and Situation
3, copying the data as it is relayed, will also use the above
routines., In Situation 2, the original and terminal sets will
initialize their AFU's exactly as above. The middle set AFU's
will be initialized with two calls of the routine: one for the
appropriate receiver in the form:

ROUTINE_SEND (A, U, C)
Load the CCR with A
Send data to device U
Load the CAR with value C

and one for the appropriate transmitter in the form:

ROUTINE_SEND (A, V, C)
Load the CCR with the value A

23

Get the data from device V
Set the CAR with address C

U and V will be the compaction of bit values which will
tell each AFU whxt devices to transfer data to or from. In
Situation 2, the device for each AFU to exchange data with will
be the other AFU and the CAR value (C) will be ignored by both
AFU's, In Situation 3, U will represent both the designated DIMA
and the designated transmitter. The CAR value will be taken by
the receiver as the starting memory address but will be ignored
by the transmitter.

e. The above routines will be called by a higher program
which will have determined which AFU is to be called and who
that AFU will send data to. Such calls will effectively say:

Call D er uti
"Send data to set B" /* Invoke ROUTINE_SEND to the

transmitter AFU which is
connected to the receiver in
set B, | |
"Recieve data from set C" /* Invoke ROUTINE_SEND to the
' receiver AFU which is
connected to the transmitter
AFU at set C.
"Relay data from set B /* Invoke ROQUTINE_SEND to the
to set C" receiver AFU connected to the
transmitter AFU at set B.
Invoke ROUTINE_SERD to the
transmitter AFU connected to
the receiver AFU at set C.
"Send data to computer /# Invoke ROUTINE_INTERNAL to
sets D, E, and PF" an available X/R AFU, A
compacted value will be passed
to direct it to the appropriate
transmitter AFU's,

/* Invoke ROUTINE_SEND to the
transmitter AFU connected to
set D, again to the transmitter
AFU comnected to set E, and
again to the AFU connected to
set F,

24

PART V: Conclusion

1. This report has addressed one of the lowest software levels
in the Functionally Distributed Data Base Management System. The
local driver routines are the last software commodities before
the logic’ gates -and electronic circuits of the Autonomous
Functional Units take over. For this reason, the report has
dwelt on the hardware/software interaction.,

2, From a simple movement of one block of data between a host's
memory and its control compuber's memory, to the extensive
activity in multiple fowarding of data, two basic driver routines
suffice, The control computer, when given the task of arranging
the movement of data, is effectively told which AFU to initialize.
By its design, the AFU is going to react with a predictable
sequence of events which will be dictated by the parameters of

the calling program,

3. Additional programs which will return error conditions and
diagnoses of hardware failures will be'necessary to the control
software package for dealing with AFU's. While these are not
treated in this report, their importance has been recognized
throughout the development of the project.

L, As of the writing of this paper, a working prototype of the

- computer set cluster has not yet been completed. For this reason,
the application of the final form of the routines was not
possible, In lieu of that, however, simulated routines have been
prepared and assembled on the Interdata 7/16 computer and are

enclosed at Appendix C.

5., While the successful application of the data moving apparatus
is still in the future, this report is an important, if small,
part of that structure. The basic drivers presented here should
serve as part of the initial software package in control computers
of the Functionally Distributed Data Base lManagement System.

25

APPENDIX A

" DATA TRANSFER FLOWCHARTS

Transmitter/Beceiver AFU During an "internal" transfer, Situation 0

Begin

Request
DATABUS

Does will
AFU have urrent Use
DATABUS? use DMA?

Get
Halfword of
Data

L2

Yes

-

Request
DATABUS

Does Will

AFU have

DATABUS? use DMA?

Current User

/% Check to see if the
"sending" DMA is ready.

/¥ If DATABUS is in use,
see if the current
user is accessing the
desired DMA (check the
TOBUS)}. If so, the DMA

must be requested again,

Receive halfword of
data into MDR from
sending memory.

/*

/¥ Check to see if
"receiving" DMA is

ready.

Check DATABUS in the
same manner as above.

/*

/* Send the halfword

Send
Halfword of of data to the
%Z;gr;o receiving memory.

f /* Counting registers
Decrement CCH are set to the next
Increment halfword of data to

both CAR's : be moved.
/* If the value of the
Does Yes Send AFU CCR is zero, notify
CCR = 03 | 1D to ULI the ULI that the
task is finished
No (send AFU ID) and,
after acknowledgement,
Begi go to idle. Otherwise

return for the next
halfword,

Transmitter for Situation 1 or initial transmitter in

Situations 2 and 3.

Begin

=<

Is
DMA ‘
ead

Yes

)

. r r

Request
DATABUS

No
Yes

111

current usew
use DMA?

Ask DMA to
send halfword
of data to
this A¥FU

Recéive
data into
MDR

/*

/*

/*

/-)(-

/-li-

/*

Check READYBUS bit of
desired DMA. Loop until
it is ready.

Set this transmitter's

bit on the REQUEST BUS,

If any bits ahead of the
one of this AFU are set on
the REQUEST BUS, it must be
requested again., If the
using AFU will use the ready
DMA, the DMA must be
requested again.

This command sets the AFU's
bit on the FROMBUS so the
DMA can return data to this
AFU, It also resets the DMA
bit on the READYBUS,

Check the TOBUS., The bit of
this transmitter will be set
when data is coming,

The DMA is through for this
cycle so its READYBUS bit

is set again for any waiting
AFU,

Send

Acknowledge
receipt
signal

\

Decrement CCR
Increment CAR

L

Transmit
AFU ID %o
ULI

i
ULI
acknowledge?

Idle

/*

/*

/-ﬂ-

/'ﬁ-

/-x-

A=l

Query the appropriate control

line for a condition code equal

to ready. An affirmative answer
equates to a "send it" instruction.
Otherwise, loop.

The halfword of data is sent over
the 16 data wires connecting to
the receiver,

Transmitter is looking for a
condition code on a control line,
A "yes" will be indicated by a
prescribed condition. The
transmitter can acknowledge the
acknowledgement, although not
required to do so.

The AFU counts down the halfword
count and increments the address
register 16 bits to the next
memory address.

If there is more data remaining,
return for another cycle, If the
CCR count is zero, the AFU signals
the ULI that it is done by sending
its identification code to the ULI,
This signal is looped until
acknowledged and then the AFU is
placed in an idle mode.

Regeiver for Situation 1 or any terminal addressee in

Situations 2, 3, and 4

RBeceive data
in MDR

-l
-

Y

Set "received"
condition for

transmitter to
read

Set "confirmed"
condition on
control line
for transmitter

Request
DATABUS

Doe
this AFU
have

DATABUS?

Yes

/¥

/-)t-

/*

/*

/*

/ﬂ-

Ready flag on AFU
connection is set.

16 bits of data are sent
by the associated
transmitter,

Set a bit on the
appropriate control line
for the associated
transmitter to sense
that the halfword was
received.

Transmitter will respond
by setting a bit on a
control line., Receiver
will confirm the
exchange,

Check READYBUS for
appropriate DMA

Set bit on the REQUESTBUS
and check the bits ahead
of the one for this AFU,
If there is a user, check
the TOBUS to see if the
desired DMA is being used.
If so, the DMA must be

-rechecked again until it

is ready. Then the
DATABUS must be
rerequested,

Send data
to DMA

Decrement CCR
Increment CAR

Set ready
Is flag on AFU

CCR = 0? ~“To | connection

Yes

y
1 Begin
Send AFU ID

to ULI

acknowledge?

Yes

Idle

/*

Send the halfword to the

- memory address in the CAR

/-Bt-

through the DMA,

The standard "¢lean-up"
sequence of events to
either return for the next
halfword or go into an
idle mode is run,

Middle Receiver in foward mode, Situation 2

Receivé /% Get data from transmitter at
halfword of set C.
data in MDR

¥

Set "peceived" /¥ Acknowledge receipt of halfword

condition for f .)
transmitter 'C! o nats
to read.

/* If there is no response to the
acknowledgement of receipt
message, set the bit again.

1C!' acknowledgs

Set "confirmed" /¥ If there was a response, confirm
s this communication with another
: set bit on a control line,

/% Loop until transmitter to set A
is ready. Once it 1s ready, set
the request bit for the DATABUS.

Request
DATABUS
oes /¥ Once the B to A transmitter
his : ;
PEREVED EET j is ready, it will only be used
DATABU by this receiver so all that

is needed is the DATABUS,

Send. data to
transmitter BA

Y

Decrement CCR
Increment CAR

Set ready
flag on AFU
connection

Send AFU ID
to ULI

acknowledge?

Idle

egin

/%

/*

The transmitter
monitors the TOBUS

and will pick off data
when its bit is set on
the TOBUS.

The AFU then does the
normal "clean up"
functions after
completing the cycle,

Middle Receiver in a copy and foward mode, Situation 3

egin

/* Get data from transmitter
at set C.

Receive halfword
of data in MDR

—

"

Set "peceived" /* Acknowledge receipt of

condition for halfword of data by
il to
rammnl v '8 setting a bit on the

control line,.

/¥* If no response from
transmitter, set acknowledge
bit again.

acknowledge?

Set "confirmed" /* If there is a response, set
ggi%igiogigg a bit on the control line to
confirm this communication.

'

Is _‘ /¥ Once the transmitter to A
tr:i;%?%t:% is ready, it will stay ready
(BA) rea until the receiver sends a

halfword of data.

A-9

Request
DATABUS

Send data
to DMA

[

Decrement CCR
Increment CAR

No

Is
current

ser using
DMA?

Set ready
| flag on AFU
connection

to ULI !

Begin

A-10

»

/*

/*

If DATABUS is in use,
the requested DMA
must be checked (by
looking at that
DMA's bit on the
TOBUS) to see if it
is in use., If so,

the DMA must be
rechecked until it
is free.

The data is sent

to the designated
DMA. The transmitter,
having been
instructed, copies
and sends the data.

AFU then does the
normal "clean up"
sequence for this
cycle,

Middle Transmitter in a foward, foward with copy, and multiple
foward mode; Situations 2, 3, and 4

Begi
Set READYBUY /* Once initialized, this AFU indicates
bit it is ready by setting its bit on

the READYBUS,

-
|

Is
. data
coming?

/* Watech TOBUS for this information.
This AFU's bit will be set when
data 1s coming.

Receive data /* Get data from receiver and reset
from receiver(B) the bit on the READYBUS,

A

all?ed /* Check over the control lines,
recelver No

Send data to
receiver (A)

/* Look for a bit being set on the
control wire to indicate reception.

get data?

Send an : /* Let the receiver know that this AFU

acknowledgement s
to receiver (A) is aware of the successful transmission.

A-11

T

Decrement CCR
Increment CAR

/* Do the normal AFU
"clean up" for
this cycle,

Does Set READYBUS
CCR = 07 No bit
Y
Send AFU egin
ID to ULI

Idlie

A=12

APPENDIX B

DRIVER ROUTINE FLOWCHARTS

Flowchart and code for Case 0, memory to memory transfer

data size Al
DMaA ID B /* ROUTINE_INTERNAL (A,B,C,D,E)
Mem Add C
DHaA 1D D
Mem Add E

r

Put Data /% Load CCR with A
size in CCRH

Y -
Set device /* Get data from DMA B

ID for Xmtr
Set CAR for /% Load CAR with C
transmitter
[Set device *
D for Bovr /* Store data thrqugh DMA D
Y
Set CAR for /% Load CAR with E
receiver
VA Retufn
/¥ End

B-1

Flowchart and codes for Case 1, set to set transfer

Transmitter (at sending set)

Data size 1‘1
DMA ID B
Mem Add C

Y

Set CCR to
Data size

Set device
ID

Set CAR

/* ROUTINE_SEND(A,B,C)

/* ROUTINE_SEND(A,D,E) .

/*

/* Load CCR

/*

1 /* Get data

/%

/* Load CAR

/-lt-
/-ﬁ-

/* Return
/* End

Load CCR with A

with A

Store data through
DMA D

from DMA B

Load CAR with E

with C .

Return

End

Receiver (at receiving

Datg sizeA
DMA ID D

Mem Add E

¥

Set CCR to
Data size

N

Set device
ID

Set CAR

Stop

set)

Flowchart and codes for Case 2, fowarding data from one set to another

The originating transmitter and the terminal receiver are coded as
for Case 1,

AFU's of Middle Set
Receliver

. /* ROUTINE_SEND(A,B,C)
Data size A Duts gizel
Trans ID B Revr ID D
C=20 /* BOUTINE_SEND(A,D,C)
/% Load CCR with A Set CCR
.
Set CCR /* Load CCR with A

\
Set device

/¥ Get data from D ID
]
Set Device
ID /* Send data to B
\
/* Load CAR with C Mem add
is null
3
Mem Add is
Null /* Load CAR with C
y
/¥ Return Stop
/* End
/* Return

/¥ End

B3

Flowchart and code for Case 3, foward data with a copy retained.
The only difference from Case 2 is in the
code for the middle receiver,

/* ROUTINE_SEND(A,BC,D)

Set CCR to
data size /¥ Load CCR with A
\
REl penloe /* Send data to devices B and C
Set Mem /% Load CAR with D
Add

/% Return

/* End

Data size A
DMA ID B
Mem Add C
Xmtr ID's
D.E &R

G'=0

y

Set CCR to
data size

|

Set device
ID for Xmtr

y

Set CAR for
transmitter

L

Set device
ID's for rcv

\‘f

Set CAR to
null

/*

/*

/*

/*

/*

/*

/-h’-

Flowchart and code for Case 4, sending to multiple receivers

ROUTINE_INTERNAL (A,B,C,DEF,G)

Load CCR with A

Get data from DMA B

Load CAR with C

Send the data to DEF

Load CAR with G

Return

End

APPENDIX C

ROUTINE CODES
and
SOFTWARE INTERFACE

ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE

AMNMTLONOY SIHL LIX3

A SSJYAAY Y Ydwd oNIUOLS IL¥VLS
530TIAA0 O4 wdiwd (NAS

Qe OO TIVD

S40d3Z HLIM UILSIDAEH DedWOD Aw01
¥ HLIM OO AYO0T

HILAWYEYd L3oded ¥dinRa
SHALANVYYd dD2TAZA HALNE
SydLdHYdYd YiaYd ¥3LKA

SH3LSIOHY LNA¥¥Nd 3404LS

JNTILONOY SIHIL LIXA

O S8dMddY Iv YiVd ONILLAD LUYLS
g JDIAIC HaNOMHL YiYd NIVLLO

¥ HLIM ¥OZ dvOa

SYILANTHYd YVILIVAd HALNA

SHdLSIDNAE LMIYUND JYOLS

IdMILNOd SIHL LIX3E

A SSJMUAY LY eLvd 2MIMOLS LHV4LS
SADTAACQ OL ©YLVd anas

QY dNHOD TTYD

S30YJIZ HLIN ¥aLS5Iw3d OvdHOD dvwO1l
O SSIYddVY ILv dHAASHYEL Yivd Luv.LS
g ¥Hd HONOHHL VLVU MIV.L4O

v HLIX 4o0 dwO1

HALAWYYYd LADUY.LE HIALNT
SuALANIYIYd JADIAZCA ¥HALNA
SHALANedYyd YWiIvYd HaLNd

9L/TT/TT EVP:9TRT

(sT)0 q
AAYSH Y Q 12054
R ARt Hi
9’'T MHM
O%dN0oD ‘5T Tw
0'y IHT
(z)o’1 HM
EID¥YL 'Y IHT
LADIARA‘E IHT
Yovd ‘g THT
AAYSH ‘0 HLS qaNas
>
(¢T) o 3
dAYSH ‘D ol
(z)g'1 HM
(ZYv'1 HHM
(z)o0'T M
YL¥a’z IHT
dARSYH ‘O WLS IaNas
¥
(sT) o a
JAYSH ‘0 111
(v)o'T HM
9T MM
OYdHOD ‘u T Tud
0’9 IHT
(z)v’1 HM
(z)z'1 HH
(z)o“‘t HM
LAVUYGL ‘Y IHT
dA0IA3A‘E IHT
viva‘e IHT
dAYSY ‘0 His IVNHILNTI
.
HAJISNEHL WYHH0Hd .

dOvV g

Y
ue
Ve
£t
Tt
TE
Ot
XA
87
LC
92
5
4
£ec

LT el o« i & N e L
NN N

QN s
L I B B o B

N e,

9040
HO%OD
RCRERE

gL 00
co0cC
0000

UYv¥o o

UZY00

2600

HOVOD

a030
HOV0D
8000
POCO
o000
30600
Mo%ui)

0000
Ho%wlo
0000

Hegrdd
0000
R AROR
zJ00
0000

¥ev00

HZw00

0600

¥Ov%00

¢0=-00 9T/9%YD A9 dAIIHASSY

10l ubrLOOD
00TAd MOLOD
0T8U MI900
YT dwy0dD
i1y HYyoo
Qus8> ¥HZYO0OD
2igd MHi3w00
Chso H¥es0
DEED AUY400
0282 HZL0C
gooea ¥aroo
ey dUYy0D
a0TA HypQ
¢T2ad MZPOO
218d ¥aL03
27180 UYL 00
0280 MueQ
o0 ¥MZEQD
I0eh HMAZOD
Q0Td H¥%ZOO
PT2d dMyZH2
yIine UVZOC
Cilby ¥OZCO
GYHD 1090
ctgd dUeTOO
ZT3a dPTIOO
ZTgG HOTOO
OPeD MOL0O0
DERD HLDOD
0280 HbOOO
gooa M000Q
#ANOs

C-1

ILLEGIBLE

THE FOLLOWING
DOCUMENT (S) IS
ILLEGIBLE DUE
TO THE
PRINTING ON
THE ORIGINAL
BEING CUT OFF

ILLEGIBLE

*SHALSIONAY HHOLS O&L 40WdS
dddY DNILHMYLS 3HL 404 GYOMATIVH dANO

YL/TT/ZT ETLEPT Z dov d

S30TIA3A P ¥04 MOTIY
SANTYA JIYHL 404 MOTIW

| e diOD 3ANILNOY LIXA

Movd HONVud
‘Z7T NI AN7IvA Y TUILS ST AHAHL 4T
UALNNOD LNAWIUDAU
ANYUYd LXAN OL AJUHL dALSIHAY FAOK
ANTIYA AMEUNIE LXAN O4L ¥ LMAVANMDNT
T Od M ddv¥ ASIMYAHLO

HALAWYHwd LXAN

204 Ou ‘0ddZ S517vN0Aa HALAWVMYd JI

O¥dz SIVvNO3d HALAWYHYd AHL 4TI aads

T HALSIOAY NI OMaZ Lnd

ANO O& Tenda M Las

o¥az oL Tvnda 1 ias

¥ OL H3ALMNNOD L3S

g
Y

(sT) O
d00T

0’21
1781
PE
ET'ET
eET’y

AMOMN
(e)o w1
0‘'v1
TET
D‘9

[AEANt

ana
Hsd
sd

sd
s

d
aNd

INTIO
SIS
ST%
HHY
HHY

44
HTO
ST
811
SI71
SIT

dAvSH

LIDUY J,

A0IAAA

Yivwd

*

ANOM

d0071

oY dHOD

La
Y9

~

&4

Ps

"tg

C4

0s
ob
gh
Ly
9
ub
Py
£y
v
v
ov
6E
ge
LE

¢000
40800

0000

uv¥s09
0000

40¢ b
oeZd

COsD
ToLC
v
aavo
ayv o

geeb
cdalb
gave
Tare
cov
Fove

MD30 0
45v0 0
HYv0 D

06 A
uZW0 6 8

4O (0

2600
boQ O

Honlo
43g00
40200
qwg00.
Usg00

upge0
Mes00
H3AL00
2,00
VL0
UL 0D

0 ASvYi 40 dna

vl { LADUNL
HZEDD &UNAS
Havro o - aangs
dovl 0 JdAYSH
H%200 anon
H0eg0 o d001T

1000 cavnl
000 TYNMALNI
d0200 dO.LdNT
HZ%0 D ADTAFA
HI60D wivd
Hg8L00 oY dHon

Zooo oav

6000 dOLSHY

00-00 9T/I%0
S¥0Y¥Y¥a OM

9L/TT/2T STEEPRT € duvd

€-3

Software Interface

1. To employ the driver routines, an interface routine between
the control computer and each of the driver routines is needed.
This enables the software of the control computer to call o
routine which will arrange the transfer of data and report back
to the control computer either when the task is completed or
when an error condition arises.

2. The following calling formats are used to call the interface
routines: :
a, CALL XMITDATA (XMIT DEVICE_NO, SIZE, SQURCE_MODE, SOURCE_
DEVICE_ID, STARTING_ADDRESS, RETURN_CODE)
Where:
XMIT_DEVICE_NO is the identification code of the
transmitter called; either 4 or 5
STIZE is the size of the data to be transferred,
expressed in number of bytes. Values from 1 to
. 64K 16-bit words can be handled.

SOURCE_MODE is a binary condition indicating foward
or transmit.

0 = foward (source is one of the receivers)

1 = transmit (source is a DMA)
SOURCE_DEVICE_ID is the unique (8 bit) identification
of the device from which the data will come.

If SOURCE_MODE = 0

DEVICE_ID = 0 (transmitter will await data)

If SOURCE_MODE = 1

DEVICE_ID = 1 or 2 (transmitter will
actively get data from DMA)
/* These ID numbers can be expanded to
255 if needed.
STARTING_ADDRESS is the address of the first unit
of data expreséed in whatever address scheme the
host machine uses.
If SOURCE_MODE = 0
STARTING_ADDRESS is irrelevant

C=4

If SOURCE_MODE = 1
STARTING_ADDRESS must have a value,
including 0.
/* Warning: MAX_ADD - DATA_SIZE should
be less or equal to the STARTING_ADDRESS
to prevent fold over in memory.
RETUBN_CODE is passed as zero and returned on
completion of the transfer.
If execution of transfer is successful

R=20
If a time out occurs
R=1 '

b. CALL RCVDATA (RCV_DEVICE_NO, SIZE, TARGET_MODE, TARGET_
DEVICE_ID, STARTING_ADDRESS, RETURN_CODE)
Where:
RCV_DEVICE_NO is the identification code of the
receiver called; either 0 or 1
SIZE is the number of bytes to be transferred.
Values from 1 to 64K 16 bit words can be handled,
TARGET_MODE is the binary condition indicating
foward or store,
0 = foward (target is a transmitter)
1 = store (target is a DMA)
TARGET DEVICE_ID is the unique (8 bit) identification
of the device to which the data is to be sent.
If TARGET_MODE = 0
TARGET_DEVICE_ID
If TARGET MODE = 1
TARGET_DEVICE_ID = 1 or 2 (DMA)
STARTING_ADDRESS is the first address in memory to
start storing the data.
If TARGET MODE = 0
STARTING_ADDRESS is irrelevant
If TARGET MODE = 1
STARTING_ADDRESS must have a value,
including O,
/* Warning: MAX_ADD - DATA_SIZE should be
less or equal to STABTING_ADDRESS to

1

32 or 16 (transmitter)

C=5

prevent fold over in memory.
RETURN_CODE is passed as zero and returned on
completion of the transfer.
If execution is successful

R=0
If a time out occurs
R =1

c¢. CALL XRDATA (XR_DEVICE_ID, SIZE, MODE, SOURCE_DEVICE_ID,
SOURCE_START_ADDRESS, TARGET DEVICE_ID,
TARGET_START_ADDRESS, RETURN_CODE)
Where:
XR_DEVICE_ID is the identification code of the
X/R AFU; either 6 or 7
SIZE is the size of the data to be transferred,
expressed in number of bytes. Values from 1 to
64K 16 bit words can be handled,
MODE is a binary condition indicating an internal
mode (DMA to DMA) or external mode (DMA to
transmitter). Only the internal mode is being
considered for this software interface.)
SOURCE_DEVICE_ID is the unique (8 bit) identification
of the device from which the data will come. This
must be a 1 or a 2 (DMA),
SOURCE_START_ADDRESS is the address of the first
unit of data in whatever address scheme the host
machine uses,
/* Warning: MAX_ADD - DATA_SIZE should be less than
or equal to START_ADDRESS to prevent fold over
in memory. '
TARGET _DEVICE_ID is the unique (8 bit) identification
of the device to which the data will go. This should
be 1 or 2.
TARGET_START_ADDRESS is the memory address where
storage of the data will start,
/* Warning: MAX_ADD - DATA_SIZE should be less than
or equal to TARGET_START_ADDRESS to prevent fold
over in memory.

C-6

RETURN_CODE is passed as zero and returned on
completion of the transfer.
If execution is successful

R=20
If a time out occurs
R=1

3. Calling convention for AFU drivers
a. The interface routine determines the availability of the
desired AFU by inspecting its CCR or status of its return code
or the like.
b, Alert the AFU and set its identification code in the output
device address register. (Rl in the program code on page C-1).
¢c. Call the appropriate initialization routine with parameters
as indicated:
1) Parameter A - SIZE of the data expressed in 16 bit units,
2) Parameter B - the SOURCE_DEVICE_ID "AND!'d" with MODE,
3) Parameter C - the STARTING_ADDRESS for the data source.
L) A parameter indicating the desired destination for the
data.

a) The coded routine (page C-1) allows for multiple
target devices which are compacted into one target
instruction., This case is not being considered by the
software interface at this time.

b) Parameter X is the DMA to receive the data or a
transmitter AFU to foward the data.

5) Parameter Y - the STARTING_ADDRESS for storage in the
target DMA.

6) Parameter R -~ the value to return on completion of the
data transfer,

4, Monitoring the transfer routine

a. After initializing the driver routines, the CCR initial
value, Parameter A, is put into a reference location in a table
which holds these value for all AFU!'s. The interface routine
then goes to a sleep or wait state.

b. The routine is awoken either by an interrupt from the AFU
when it completes the task or by the internal clock system.

c~7

¢c. The clock interrupt requires a routine to be periodically
run which checks on the progress or status of all AFU's, This
-check is conducted by requesting the AFU to send the value in its
current counter register. If this value is less than that in the
reference location in the table, the CCR value replaces the
reference value and the routine returns to the wait state. If
the CCR value is the same as the reference value (indicating no
movement of data), an error code is returned to the control
computer and the program stops.

d. On completion of the task, the AFU sends its AFU ID to the
routine via an interrupt. On receipt of this interrupt, the
routine returns a completion code to the control computer and stops.

C-8

~

XRDATA
(XR_DEVICE_ID,
SIZE,

MODE,
SOURCE_DEVICE_ID,
SOURCE_START_ADDRESY,
TARGET DEVICE_ID,

/" XNMITDATA 1\
(XMIT_DEVICE_NO,
SIZE,

SOURCE_NMODE,
SOURCE_DEVICE_ID,
STARTING_ADDRESS,
RETURN_CODE)

~N

/" RCVDATA
(RCV_DEVICE_NO,
SIZE,
TARGET_MODE,
TARGET_DEVICE_ID,
STARTING_ADDRESS

RETURN_CODE)

TARGET_START ADDRESS
RETURN_CODE) AN —/) _/
l_ - 7
Alert Alert Alert
_X/R AFU XMIT AFU " RCVR AFU
{
ROUTINE ROUTINE HOUTINE
INTERNAL SENDT SENDH
(A,B,C,X,Y,R) (A,B,C,R) (A,X,Y,R)
] |
QTAB = AFU No _ QTAB
QTAB.Q = A AFU Q R
QTAB.R = 0 No
O--—-
0
0
SLEEP 0
L 0
P \\ 0
//
Awaken on \\
internal N
clock = 2 se %
Completion
- interrupt
_ QTAB.Q = CCR from AFU
Call routin

for status
report on al
AFU's

QTAB.Q?

A TAB.R=1
R=QTAB.R

Return R to
control
computer

Sof tware Interface

C-9

APPENDIX D

KSUBUS ORGANIZATION

READYBUS
REQUESTBUS
TOBUS
FROMBUS

Legend: R

2. In the typical
devices are represented, Their hardwired connections with respect
to each bus and bit are shown in the following matrices; one for
each device, Bits 4 and 5 are not used by any device in this
example and are spares.

KSUBUS ORGANIZATION

X/R
R/
R/W
R/
W

AMIT RCVR
R/W R
R/W R/W
R/W R/W

W

bit condition.
The device must be able to set the
bit condition,

Write.

1. The general capabilities needed by each type device, AFU
or DMA, on the KSUBUS is as follows:

DMA
W
R/W
R/W
R

Read. The device must be able to sense the

KSUBUS arrangement shown in figure 4, eight

a. AFU No 7 (X/R):

0 2 y 5 6 7
READY
oo wlr |z |=& R | ®
REQUEST |
BUS
TOBUS R [w |w |w N\ ryw | BYW
FROM
BUS W

Comments: 1) AFU No 7 is the top priority AFU as it sets
its request on the most significant bit (0).

It also sets bits on the READYBUS and the

FROMBUS which are assigned to it.

2) It only needs to read the ready status of

DMA's and transmitters.

D-1

It sends data to

no one else. It sets the TOBUS bits of these
devices when it sends data to them,
3) It reads the TOBUS condition of the DMA's
to see if the DMA will be used by another
device. It also reads its own TOBUS bit to
determine when data is coming.
b. AFU No 6 (X/R)

0 1 2 4 5 6
READY
et R | w /| R | R R | B
REQUEST
BUS R | W
roBUS | W | R | w i w R/W | B/W
FROM
BUS W

Comments: 1) AFU No 6 is second priority on the REQUEST
BUS (bit 1). It sets its assigned bits on
the READYBUS, REQUESTBUS, and FROMEUS.

2) It reads the ready condition of potential
data receptors (the DMA's and other
transmitters) and its own TOBUS bit.

3) It sets the TOBUS bit of a device to which
it sends data.

L) It must read the REQUESTBUS bit of AFU No 7
as it cannot run until that device is through
with the KSUBUS.

5) It reads the TOBUS bit for a DMA to find out
if it is being used by another device.

Continued on next page

¢, AFU No 5 (XMITR)

READY ’ R | a
REQEST g | g |

TOBUS R R/W | B/W
TR Es v

Comments: 1) On the KSUBUS, a transmitter actively
deals with only a DMA. It need only set
its bit on its READYBUS, REQUESTBUS, and
FROMBUS.

2) It reads the ready condition of the two
DMA's and the TOBUS bits of those devices.,
'3) It must read the REQUESTBUS bits of the
two devices ahead of it.
d., AFU No 4 (XMITR)

0 1 2 3 b 5 6 7

READY
4y W R | R
REQUEST
L R | |&r |w
TOBUS R R/W| BR/W
FROM |
BUS W

Comments: 1) Like AFU No 5, this transmitter only
sends to DMA's over the KSUBUS, It
needs only to read the DMA READYBUS
bits and the TOBUS bits of the DMAls
and itself.

2) It sets its bits (3) on the READYBUS,
REQUESTBUS, and FROMBUS and sets the

D-3

TOBUS bits of the DMA's,
3) It must read the REQUESTBUS bits of the
three devices ahead of its REQUESTBUS bit.

e, DMA No 1
0 1 2 3 4 5 6 7
READY o
BUS
REQUEST | B/W| R/W | B/W | R/W
BUS
TOBUS W W W W R
FROM
BUS R R R R

Comments: 1) DMA's are passive devices, with some
exceptions. DMA No 1 sets its READYBUS
bit and reads its TOBUS bit.

2) It reads the FROMBUS bits to determine
whether to return or store data. If
returning data, (FROMBUS bit set) it
copies the FROMBUS bit onto the corresponding
REQUESTBUS bit for use of the DATABUS on
return of the data. It thus has a "floating®
read/write action depending on to which
transmitting device it is to return data.

3) It sets the TOBUS bit of any device (trans-
mitter) to which it sends data.

L) Once a transmitter requests data from a DHA,
the transmitter remains ready so there is no
need for the DMA to check the READYBUS.:

Continued on next page

Dl

f. DMA No 2

READY W
BUS

REQUEST
BUs | B/W | B/W |B/W | R/M

TOBUS W W W W R

FROM
BUS R R R R

Comments: This DMA is identical to the first except
that its assigned bit is bit 7. It reads
and writes to the bits of the same
transmitter devices as DMA No 1.

g. AFU No 1 (RCVR)

0 1 2 b 5 6 7
BEAX | 2| R |2 |R R | R
HERUEST | B | B | B | B W
TOBUS wlw | w | w R/W | R/W
FROK
BUS

Comments: 1) A receiver only puts data onto the KSUBUS.
It is never a target so it never needs to
set a BEADYBUS bit nor have a TOBUS bit.
It needs only to set a REQUESTBUS bit and read
the higher priority bits.

2) It reads the ready bits of all potential
receptors (all transmitters and DMA's) and
sets the TOBUS bits of these devices.

3) It must read the TOBUS bits of the DMA's to
keep track of their availability.

Dos

h. AFU No 0 (RCVR)

0 i 2 4 5 6 7

AEDL . | B | B R | R R | R

Bl |m 3 R | R - R | w

TOBUS W | W Wl oW R/W | B/W
FRON
BUS

Comment: AFU No 0 is identical to AFU No 1 except
that it is one bit lower in priority and
must, therefore, read the REQUESTBUS bit
of AFU No 1.

3. To summarize the generic forms of a device!s use of the
control buses, the following "rules of thumb" can be stated:
a. BEADYBUS

1) An AFU or DMA sets its own bit (except a receiver AFU -
it is never sent to, $0 needs no ready bit).

2) An AFU reads the bits of all eligible target devices.

3) A DMA does not need to read as its target (a transmitter)
requested the data and is ready by default.

b. REQUESTBUS

Co,

1) An AFU sets its own bit and reads those bits above its
own in priority.

2) A DMA sets the bit of the device which requested its
data and reads the higher priority bits. The actual
bits set and read depend on the AFU in point. Hence, a
floating "own" bit for a DNA.

TOBUS ‘

1) APUts and DMA's read their own bits (except a receiver
AFU is never sent to so it has no TOBUS bit).

2) AFU's and DMA's set the bits of targets to which data
is sent.

d. FROMBUS

1) Bits on the FROMBUS are assigned only to X/R and

D=6

transmitter AFU's and are set by them.

2) The bits are read by DMA's to indicate whether to return
or store data and, if return, to whom (sets the
appropriate bit on the REQUESTBUS).

D-7

BIBLIOGRAPHY

Calhoun, Dr, Myron A. Department of Computer Science, Kansas
State University, Manhattan, Kansas, Conversations and
notes, August through December 1976.

Interdata, Inc. User's Manual. Publication Number 29-261R02.
Oceanport, New Jersey, March 1974,

Kansas State University, Department of Computer Science.

Progregss Revort on Functionallv Distributed Computerp
Systems Develovpment: Software and Svstem Structure.

Manhattan, Kansas, 20 May 1976.

E-1

CONTROL COMPUTER LOCAL DRIVER ROUTINES
IN A FUNCTIONALLY DISTRIBUTED

DATA BASE MANAGEMENT SYSTEM

by

EUGENE KENNETH GOODELL

B.S., United States Military Academy, 1961

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1977

ABSTRACT

The Functionally Distributed Data Base Management System
links comnuters in one geographic location together into a
cluster and then forms a network with remote (distant) clusters,
providing a syétem where each machine in the network operates
in a sp=cific computer area and each data base in the system
is managed by one specific machine., To control this network,

a second, smaller computer (ultimately a micro-computer) is
allied with each main or host computer in the system. This
control computer receives and issues instructions from and to
'the host computer or other control computers to arrange the
movement of data from the memory of one computer to the memory
of any other computer in the network.

This project describes local driver routines which direct
the hardwired logic of local data moving mechanisms., Included
are detailed descriptions of the actions required by each
request and an explanation of the software-hardware relationship.

