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Abstract 

One of precision agriculture researches currently focuses on the relationship between 

plant phenotype, genotype, and ambient environment, including critical investigations of a multi-

sensor-integrated phenotyping platform and data mining technology for big data. This study 

examined the designs of two phenotyping platforms and developed machine vision (MV) 

technology to estimate wheat growth status and count wheat head.  

The GreenSeeker, an infrared thermometer (IRT), a web camera, and a global positioning 

system (GPS) receiver were integrated into one handheld phenotyping platform, named as 

Phenocorn. The Phenocorn allowed simultaneous collection of the normalized difference 

vegetative index (NDVI) and canopy temperature (CT) with precise assignment of all 

measurements to plot location by GPS data points. The Phenocorn was tested using a field trial 

of 10 historical and current elite wheat (Triticum aestivium) breeding lines at the International 

Maize and Wheat Improvement Center (CIMMYT) in Ciudad Obregon, Mexico, during the 2013 

and 2014 growing seasons. Results showed that the NDVI data, PVC (percent vegetation 

coverage) data, and temperature data obtained by the handheld phenocorn could availably reflect 

the wheat growing status in the field, and the handheld phenocorn could be used as an instrument 

to do plant phenotyping information collection.   

This study also used the modular design method to design the mechanical structures of a 

robot-based phenotyping platform, named as Phenorobot. Its control system was based on a 

Controller Area Network (CAN bus). The basic function performances such as steering function, 

lifter load, and movement features were tested in the laboratory. Proposed design indicators were 

achieved, demonstrating its potential utilization for field experiments. 



 

 

Image acquisition is one of the main data collection methods for plant phenotyping 

research. The method for extracting plant phenotyping traits based on MV was explored in this 

research. Experiments for detecting the wheat development based on the images taken in the 

field were designed and carried out from March to June 2015, and a method based on color 

analysis to estimate percent vegetation coverage (PVC) of wheat was developed. A wheat growth 

model based on the PVC was used for the wheat growth status analysis. In addition, a wheat 

head counting method was developed and divided into three steps: wheat head image 

segmentation, leaf debris elimination, and wheat head counting. This paper proposes the first 

wheat head counting model (WCM) based on the pixels group measurement of wheat  heads. 

Compared to the Joint Points Counting (JPC) method (Liu et al., 2014) and the Wheatear Shape 

Index (WSI) method (Frédéric et al., 2012), the WCM more accurately counted wheat heads 

from images taken in the experiments. 
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Abstract 

One of precision agriculture researches currently focuses on the relationship between 

plant phenotype, genotype, and ambient environment, including critical investigations of a multi-

sensor-integrated phenotyping platform and data mining technology for big data. This study 

examined the designs of two phenotyping platforms and developed machine vision (MV) 

technology to estimate wheat growth status and count wheat heads.  

The GreenSeeker, an infrared thermometer (IRT), and a global positioning system (GPS) 

receiver were integrated into one handheld phenotyping platform, named as Phenocorn. The 

Phenocorn allowed simultaneous collection of the normalized difference vegetative index (NDVI) 

and canopy temperature (CT) with precise assignment of all measurements to plot location by 

GPS data points. The Phenocorn was tested using a field trial of 10 historical and current elite 

wheat (Triticum aestivium) breeding lines at the International Maize and Wheat Improvement 

Center (CIMMYT) in Ciudad Obregon, Mexico, during the 2013 and 2014 growing cycles. 

Results showed that the NDVI data, PVC (percent vegetation coverage) data, and temperature 

data obtained by the handheld phenocorn could availably reflect the wheat growing status in the 

field, and the handheld phenocorn could be used as an instrument to do plant phenotyping 

information collection.     

This study also used the modular design method to design the mechanical structures of a 

robot-based phenotyping platform, named as robotic phenotyper. Its control system was based on 

a Controller Area Network (CAN bus). The basic function performances such as steering 

function, lifter load, and movement features were tested in the laboratory. Proposed design 

indicators were achieved, demonstrating its potential utilization for field experiments. 



 

 

Image acquisition is one of the main data collection methods for plant phenotyping 

research. The method for extracting plant phenotyping traits based on MV was explored in this 

research. Experiments for detecting the wheat development based on the images taken in the 

field were designed and carried out from March to June 2015, and a method based on color 

analysis to estimate percent vegetation coverage (PVC) of wheat was developed. A wheat growth 

model based on the PVC was used for the wheat growth status analysis. In addition, a wheat 

head counting method was developed and divided into three steps: wheat head image 

segmentation, leaf debris elimination, and wheat head counting. This paper proposes the first 

wheat head counting model (WCM) based on the pixels group measurement of wheat heads. 

Compared to the Joint Points Counting (JPC) method (Liu et al., 2014) and the Wheatear Shape 

Index (WSI) method (Frédéric et al., 2012), the WCM more accurately counted wheat heads 

from images taken in the experiments.
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Chapter 1 -  

Global demand for crop production is rapidly increasing with the growth of population, 

diet shifts, and biofuel consumption. It is estimated that global crop production will have to 

achieve a 100-110% increase to meet the projected needs by 2050 (Tilman et al., 2011). That is, 

global crop production should keep growing at a rate of 2.4% per year, which is a tremendous 

challenge. According to statistical data, the fields of top four crops - maize, rice, wheat, and 

soybean - are increasing at a rate of 1.6%, 1.0%, 0.9%, and 1.3% per year, respectively, all of 

which are lower than the required production growth rate of 2.4%. Moreover, the increasing rate 

of total global crop production was only 28% between 1985 and 2005, among which 20% 

increase was due to the rise of crop yields per hectare (Ray et al., 2012). To meet the global food 

demands by 2050 while reducing the environmental impacts of agricultural expansion, the 

preferred solution is to boost crop yields rather than using more land (Ray et al., 2012; Tilman et 

al., 2011). The most effective solution to boost crop yields is to improve the breeding efficiency 

(Araus et al., 2014). 

Phenomics is an area of biology that measures the physical and biochemical traits of 

organisms. It is a discipline to study the genotype-phenotype mapping, identify the genetic basis 

of complex traits, and explain the causation at the phenotypic level (Houle et al., 2010; Furbank 

and Tester, 2011). Phenotype and genotype are two fundamental concepts related to phenomics. 

phenotype is all of its observable traits, which are influenced by its genotype and the 

environment. Phenotyping is represented by a set of tools and methodologies of studying 

phenomics (Fiorani and Schurr, 2013).  
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Accurately assessing and recording phenotypic data are essential for plant breeders, 

agronomists, plant physiologists, and geneticists.  With the rapid advances in high-throughput 

genotyping technology, scientists have a tremendous opportunity to generate high-density 

genomic data for crop improvement (Morrell et al., 2011).  Successfully understanding genotypic 

data requires large amounts of phenotypic data to explore the genotype-phenotypic relationship 

(Campos et al., 2004; Cobb et al., 2013). However, phenotyping has been lagging behind 

genomic capabilities due to the lack of high-throughput technologies to access integrated 

phenotypes (Houle et al., 2010; Araus and Cairns, 2014). Therefore, phenotyping is often 

described as the current bottleneck in research (Houle et al., 2010; White et al., 2012; Cobb et al., 

2013, Myles et al., 2009, White et al., 2012).  Development of accurate, high-throughput 

phenotyping technology would provide tremendous potentials for discovering the complex 

interactions among genotype, phenotype, and environment (Breccia and Nestares, 2014).  

There are two ways of characterizing phenotypes - extensive phenotyping and intensive 

phenotyping. Extensive phenotyping is defined as sampling a wide variety of phenotypes, and 

intensive phenotyping is defined as repeatedly sampling one phenotype through time. Both 

methods are important for phenomics (Houle et al., 2010).  Multi-sensor, integrated phenotyping 

platforms and big data mining technologies are crucial research issues related to both extensive 

and intensive phenotyping.  

1.1 Handheld phenotypers 

Phenotyping platforms can be ground-based or aerial-based. Ground-based phenotypers 

can be stationary, vehicle-based, or handheld. One advantage of any phenotyping platform, field 

or greenhouse, is the reliability of automated data collection.  Recording data directly from 

sensors removes human errors from the system by reducing the number of times that data is 
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manually entered or transcribed from data collection to completed analysis.  In addition, each 

step may be performed by different individuals, further increasing the possibilities that errors or 

 

In recent years, many high-throughput phenotyping (HTP) platforms have been 

developed. These included tractor-mounted platforms, platforms operated on cranes, towers 

similar to sports stadium cameras, and aerial vehicles.  While all these platforms have a potential 

for use, there are also limitations associated with each of them.  Tractor-mounted vehicles 

require an experienced operator and could be limited by maneuverability in the field.  Cranes and 

cable robots are limited by the amount of area that they can cover.  Aerial vehicles are usually 

weight limited.  In addition to these physical limitations, the cost for these platforms is often 

significant.  Costs estimated by White et al. (2012) range from $100,000 USD for a tractor 

mounted phenotyping platform to over $1,000 USD for a one-hour drone flight. 

While each phenotyping platform has its advantages, there is a current need for a highly 

mobile, field-based phenotyping platform that could be deployed in locations throughout the 

world at an affordable cost.  The affordable cost will enable those working in developing 

countries or remote field locations to capitalize on the development in field-based HTP (Tester 

and Langridge, 2010).  To address this type of phenotyping, a mobile platform that integrates 

georeferenced, simple and basic sensors to measure canopy characteristics becomes necessary. 

To reduce the cost and improve the maneuverability for flexible field scouting, the platform may 

be manually driven - carried on shouder or pushed on wheels.   

1.2 Robotic phenotypers 

Breeding is a number game in essence: the more crosses and environments used for 

selection, the greater the probability of identifying superior variation (Araus and Cairns, 2013). 
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However, characterizing large mapping populations and diversity panels of thousands of 

recombinant inbred lines multiple times throughout their whole growth cycle by HTPP (High 

Throughput Phenotyping Platform) is a hard, repetitive, and time-consuming task, especially for 

the operators of the HTPP. In the same time, hundreds of times of testing for a tractor-mounted 

phenotyping platform on the filed results in the environment impact of soil compaction.  

Therefore, developing autonomous, light-weighted, driverless phenotyping robot is necessary for 

plant phenotyping research. Robotic phenotypers have the advantages of lighter weight, lower 

labor costs, fewer energy consumption, less environmental impacts, and higher measurement 

efficiency (Luis et al., 2014). With the help of a GPS-based auto-navigation system, a robotic 

phenotyper can automatically work at the field-scale, reducing unintended human error by the 

operator (white et al., 2012). Another advantage of robotoic phenotypers is their ability to work 

during night, which would double the productivity and allow plant traits that become more 

significant when there is no light to be detected. Although no commercial solution has become 

available for robotic phenotyping (Deery et al., 2014), many prototypes have been developed and 

will be operative in the future (Rubens et al., 2011). 

1.3 Objectives 

From 2012 to 2013, in the Instrumentation and Control Laboratory of the Biological and 

Agricultural Engineering Department at Kansas State University, we developed a tractor 

mounted, field-based, high-throughput phenotyping platform for rapid, simultaneous 

measurement of plant characteristics in three crop rows (Jared et al., 2016). The phenotyper has 

been successfully running in field for the past four seasons. Based on this experience and the 

research needs for handheld and robotic phenotypers, we chose the following specific objectives 

for this study: 
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1. Developing a low-cost, handheld phenotyping platform to measure basic crop traits - 

leaf greenness and canopy temperature, and record crop images at various growth 

stages.  The platform will be equipped with a computer-based data acquisition system 

that is capable of handling multiple sensors and a GPS device that allows 

georeferencing of sensor data, which would provide much higher throughput than 

manual phenotyping. The affortable cost would allow the phenotyper to be used in 

less developed countries for urgently needed phenotyping to enhance their crop 

breeding and production.   

2. Developing a robotic phenotyping platform to allow multiple sensors for fast, 

autonomous, high-throughput phenotyping. The robotic platform will allow 

autonomous or semi-atinomous phenotyping in crop fields. The adjustable width, 

height, and shielding of the platform will allow the platform to be used for various 

types of crops during their entire growth season. The light weight of the platform will 

reduce soil compaction, thus allowing multiple phenotyping passes. The robotic 

nature of the platform will allow night operations to observe certain crop traits that 

can be observed only during night and it would also double the productivity in 

phenotyping. These features cannot be found in vehicle-driven phenotypers. Very few 

research on robotic phenotypers can be found in existing literature and the ones found 

in literature do not possess all these features. Experiences and lessens learned during 

the design and testing of the proposed robotic phenotyper would greatly enhance the 

literature in this area. The developed robotic phenotyper can be directly used to assist 

research in phenotyping and precision agriculture for various crops in Kansas, 

including wheat, corn, soybean, sorghum, and forage crops.  
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3. Studying methods to extract useful phenotypic information from the sensor data. 

Specifically for this study, two traits that relate to wheat growth will be studied as 

examples ------ the wheat growth trend and the total number of heads formed at 

maturity. A digital camera will be used as the sensor and image processing techniques 

will used to extract the information from the images.  

Handheld, vechicle-driven, and robotic phenotypers are the basic platform types for 

ground-based phenotyping of field crops. A vehicle-based phenotyper has been previously 

developed in the BAE Instrumentation and Control Laboratory. Completions of the hand-held 

and robotic phenotypers will alow comparison among the three types of phenotypers. Like the 

vehicle-based phenotyper, the developed hand-held and robotic phenotypers will become useful 

tools for researchers at KSU and other institutions on field phenotyping for various field crops 

and under various conditions. The research on wheat traits will provide an example to other 

researchers on the use of the phenotypers with a typical sensor  a digital camera. Once 

developed, the hand-held and robotic phenotypers will allow many types of sensors, including 

the digital camera, to conduct various phenotyping works.       
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Chapter 2 -  

2.1 Phenotypic prediction model 

Phenotypic prediction according to the genetic composition of lines is a fundamental step 

forward for plant science and crop improvement in the 21st century (Lorenz et al., 2011; White et 

al., 2012; Araus and Cairns, 2014). The ability of accurately predicting a phenotype  could lead 

to better understanding of the genetic basis of complex traits such as yield (Cabrera Bosquet et 

al., 2012). Progress in breeding high-yielding crop plants for meeting the future food and fuel 

needs by 2050 would significantly accelerate if the prediction of phenotypic consequences of 

genetic makeup of an organism becomes available (Hammer et al., 2006; Furbank and Tester, 

2011). Phenotypic data are considered high-dimension, s , which 

can be addressed with many potential models, such as partial least-squares regression, random 

decision forest, and support vector machines, although most genotype-phenotype mapping is 

inherently nonlinear (Houle et al., 2010). Rajasingh et al. (2008) proposed the concept of 

causally cohesive genotype-phenotype mo , which has the quality of forcing components in a 

genotype-phenotype relation to cohere in a logically consistent and ordered way. However, in the 

standard population genetic models phenotypic data are assigned directly to genotype without 

involving intermediate process (Rajasingh et al., 2008; Houle et al., 2010). 

2.2 Field-based phenotyping (FBP) platform 

Field-based phenotyping (FBP) is an approach to deliver the requisite throughput for 

numbers of plants or populations, as well as an accurate description of trait expression in real-

world cropping systems (White et al., 2012). The FBP platform is composed of multiple sets of 

proximal sensors, data acquisition, and a storage system. It provides the ability to assess plants in 
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real-world conditions and with population sizes consistent with those needed for breeding 

programs and quantitative genetic studies (Yu et al., 2008; White et al., 2012). 

Several high-throughput phenotyping (HTP) platforms, capable of generating large 

quantities of data quickly, have been reported at both the controlled (greenhouse and growth 

chamber) and field-based levels (Nagel et al., 2012; Tisné et al., 2013; Montes et al., 2011; 

Busemeyer et al., 2013; Andrade-Sanchez et al., 2014; Haberland et al., 2010; White and 

Bostelman, 2010;Albus et al., 1993; White and Bostelman, 2010; Zarco-Tejada et al., 2009; 

Merz and Chapman, 2011).   

A tractor mounted platform developed by Monte et al. (2011) used light curtains and 

spectral reflectance sensors for nondestructive, high throughput phenotyping. Prashar et al. (2013) 

developed a mobile, in-field phenotyping platform to investigate the relationship between canopy 

temperature of potato and its final tuber yield. The platform included a ThermaCAM P25 

infrared camera (FLIR systems with the spectral range of 7.5 13 mm, USA) and a 

microbolometer detector with a spatial resolution of 320X240 pixels. Sankaran et al. (2015) 

developed an unmanned aerial phenotyping platform to evaluate the emergence rate and spring 

stand (an estimate of winter survival) of three winter wheat market classes. Allah et al. (2015) 

used an UAP (Unmanned Aerial Platform) equipped with a multispectral camera to assess the 

spatial field variability and detect low-nitrogen (low-N) stress tolerance of maize.   

White et al. (2012) reviewed many of the field based systems, including tractor-mounted 

platforms, platforms operated on cranes, towers similar to sports stadium cameras, and aerial 

vehicles.  Based on the application environment and features of the phenotyping platforms, 

Deery et al. (2014) classified the platforms into three types: 1) fixed systems, 2) mobile in-field 

systems, 3) airborne systems.  
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2.3 Robotic vehicles for agricultural applications 

Automation of agricultural machines and development of agricultural robots (smart 

machines) are essential for lowering production costs, increasing production efficiency, 

enhancing the quality of fresh produce, and reducing the drudgery of manual labour  in current 

and future field operations (Bakker et al., 2010; Choi et al., 2015).  

Robots are of great complexity because they are comprised of several different sub-

systems which are connected and correctly synchronized to execute tasks as a whole (Bechar and 

Vigneault, 2016). Most robots for industrial applications perform relatively simple, repetitive, 

well-defined, and pre-determined tasks in stable environment (Bechar and Vigneault, 2016). 

However, robots for agricultural applications need to have the abilities to deal with complex and 

highly variable environment and produce (Hiremath et al., 2014). The robotics systems used in 

agriculture are more sophisticated than those used in industry because they usually work with 

unstructured objects under unstructured environments (Bechar and Vigneault, 2016). Under such 

environment, autonomous robots can easily fail because of unexpected events. Thus, robotic 

systems used in agriculture need to be more sophisticated, making development of agricultural 

robots more difficult and expensive (Steinfeld, 2004).  

Significant amounts of agricultural robot research worldwide have emerged in the past 

thirty years. Specialized sensors (Global Positioning Systems, laser-based sensors, and machine 

vision), actuators (hydraulic cylinder, linear or rotation electronic motor), and electronic 

equipment (PLC, industrial PC, and embedded computers) have been integrated in varous 

agricultural robots with the aim of configuring autonomous systems to shift operator activities in 

agricultural tasks (Emmi et al., 2014). In the past three decades, there have been 255 published 

articles about transplanting and seeding robots research, 326 articles about plant protecting 
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robots, and 302 articles about (selective) harvesting robots (Bechar and Vigneault, 2016). Most 

of the agricultural robots have not yet been commercialized for field operation because of their 

production inefficiencies (Zhao et al., 2016). There are also some agricultural robots being put in 

practice with good performance for dedicated tasks. Examples include milking robots, 

transplanting robots used in controlled environment, grafting robots, and autonomous combines 

and tractors (Yasushi et al., 2001; Thuilot et al., 2002; Kolbach et al., 2013).  

Robotic agriculture, or utilization of robots equipped with proper agricultural tools to 

accomplish specific field tasks, is the developing trend of future farming (Blackmore et al., 2005; 

Luis et al., 2014). The development of agricultural robots has experienced an increasing interest, 

and many experts have been exploring the possibilities of developing more rational and 

adaptable vehicles based on a behavioural approach (Pedersen et al.,2008). According to the crop 

production cycle, agricultural robots can be divided into three types - seedling robot, plant 

protecting robot, and (selective) harvesting robot (Blackmore et al., 2005). For orchards and 

horticultural crops, there have been several prototypes developed, such as oranges harvesting 

robot, strawberries harvesting robot, tomatoes selective harvesting robot, apple harvesting robot, 

asparagus selective harvesting robot, weeding robot, and grafting robot (Hannan and Burks,2004; 

Chi & Ling, 2004; Cembali et al., 2005; Kondo et al., 2005; Zhao et al., 2011).  

Crop scouting robots had the same function of collecting crop data as phenotyping robots, 

which have mainly assisted in weed and disease controll. For instance, Bak and Jacobsen (2004) 

developed an API (Accurate Positioning Interface) platform for patch spraying (Bak and 

Jacobsen, 2004). The third API platform, further developed by Aalborg University in Denmark, 

has four-wheel drive, four-wheel steering with two motors per wheel, and its height clearance 

and track width are 60cm and 1m, respectively (Bisgaard et al., 2004). By now, only a limited 
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number of research has investigated robotic phenotyping platforms (Montes et al., 2011; Nagel et 

al., 2012; Tisné et al., 2013; Sankaran et al., 2015; Allah et al., 2015). Rubens et al. (2011) 

developed a phenotyping robot, and its height clearance could be manually adjusted. 

 Biber et al. (2012) developed an autonomous robot to perform repeated phenotyping 

tasks for plant breeders. Its chassis height and width are adjustable. However, because the 

adjustment range of the chassis height is from 0.4 to 0.8 meters, this phenotyper can only 

perform data collection at the early stage of crop growth. Thus, designing a flexible chassis to 

allow phenotyping of crops within their entire growth season is necessary. 

2.4 Potential technologies for measuring the plant leaf traits 

 Digital-based system and sensor technologies have been used in various plant 

phenotypers to allow a broad range of evaluation of complex traits, such as yield, growing period, 

resistance to diseases, plant architecture, and other fundamental quantitative parameters (Kumar 

et al., 2015). Digital RGB imaging, spectroscopy, thermography, fluorescence imaging, 3D 

stereo imaging and LIDAR (Light Detection and Ranging), and tomography have been tested for 

plant phenotyping (Großkinskyet al., 2015).  

2.4.1 3D reconstructions by lasers, stereo cameras, and time of flight cameras 

3D imaging systems are used to estimate biomass, canopy structures, and plant height in 

field experiments. In controlled environment, 3D imaging systems have been implemented to 

conduct detailed studies of plant morphology, such as leaf angles and surface, and overall growth 

rates (Großkinsky et al., 2015). Biskup et al. (2007) presented an area-based, binocular stereo 

system composed of commercially available components that allowed three-dimensional 

reconstruction of small- to medium-sized canopies on the level of single leaves under field 

conditions. Spatial orientations of individual leaves were calculated with the 3D matching and 
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segmentation techniques (Biskup et al., 2007). Pengelly et al. (2010) used a 3D nondestructive 

imaging technique to measure the relative growth rate (RGR) of plants. Chaivivatrakul et al. 

(2014) proposed and demonstrated the efficacy of an automatic corn plant phenotyping system. 

They acquired 3D image data from a 3D time-of-flight camera integrated with a plant rotating 

table to form a screening station. By an experimental study with five corn plants at their early 

growth stage (V3), they obtained promising results with accurate 3D holographic reconstruction 

(Chaivivatrakul et al., 2014). Kempthorne et al. (2015) reconstructed the wheat leaf surface from 

three-dimensional scanned data using a parameter isolation technique.  

2.4.2 Light curtain arrays 

Light curtain (LC) is a recently introduced phenotyping technology. The setup consists of 

a pair of parallel bars, one radiating and the other receiving the emitted light. The receiving bar 

detects whether an object interruptes the light beams. By scanning the crop, LC arrays produce a 

successfully used to assess canopy height in the field (Montes et al., 2011; Busemeyer et al. 

2013). Fanourakis et al. (2014) explored the method of measuring the leaf area by LC scanning 

and evaluated the accuracy and applicability of LC in estimating the maximum height (from the 

base to the highest leaf tip) and leaf area on a phenotyping platform under controlled 

environment. 

2.4.3 RGB imaging 

RGB imaging is a useful tool for morphological studies of plants. Usually, RGB imaging 

is used to detect projected structures, surfaces, and colors of diverse plant organs such as shoot, 

root, seeds, and leaf spots. With these images, plant traits such as growth dynamics, disease, 

pigmentation, and senescence are evaluated by image processing technology (Hartmann et al., 
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2011; Großkinsky et al., 2015; Kloth et al., 2015). Bojacá et al. (2011) used a DX4530 digital 

camera to take field potato images to estimate canopy coverage by quantifying the percentage of 

pixels representing the plants within the total number of pixels in the image (Bojacá et al., 2011). 

Based on the RGB images, Ramfos et al. (2012) proposed a straightforward and inexpensive 

digital image analysis method to measure leaf area and the length of strapped-shaped seagrass 

leaves.  

Image analysis algorithms are digital image processing techniques used to extract 

meaningful information from images. One website dedicated to plant biology describes 139 

image analysis software tools that are manually operated, automated, or semi-automated (Plant 

Image Analysis, 2016). Image segmentation classifies or clusters an image into several disjointed 

parts by grouping the pixels to form regions of homogeneity based on pixel characteristics such 

as gray level, color, texture, intensity, and other features. Knowledge-based approaches such as 

intensity-based methods, discontinuity-based methods, similarity-based methods, clustering 

methods, graph-based methods, pixon-based methods, and hybrid methods can be utilized to 

segment an image (Khan and Ravi, 2013). 

Intensity-based segmentation, or the threshold-based approach, is one of the simplest 

methods for segmenting an image. Images are classified based on the postulate that pixels 

belonging to a certain range of intensity values represent one class, and the rest of the pixels in 

the picture represent another class. Thresholding can be globally or locally implemented (Khan 

and Ravi, 2013). Wang et al. (2013) used OTSU (named after Nobuyuki Otsu) and CANNY 

(developed by John F. Canny in 1986) operators to segment an area of a target leaf by choosing 

thresholds with the mapping function, the shape identification algorithm, and pattern recognition. 

The optimization process of the algorithm, which included mapping function, shape 
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identification algorithm, morphological methods, and logical operations, was designed to obtain 

the entire leaf edge precisely. Experiments showed that this algorithm feasibly and effectively 

segmented jujube leaf images from real-time video systems. Wang et al. (2013) proposed a 

thresholding method when they explored the relationship between rice image feature parameters 

and three plant indices (i.e., aboveground biomass, N content, and leaf area index). The threshold 

was set based on the magnitude and distribution of the green channel minus red channel values. 

A geometric-optical (GO) model classified objects within an image scene into four 

categories: sunlit foliage, sunlit background, shaded foliage and shaded background (Fan et al., 

2013). Zeng et al. (2015) proposed a new leaf area index (LAI) extraction method using sunlit 

foliage from downward-looking digital photography under clear-sky conditions. Using this 

method, an automated image classification algorithm called LAB2 extracted the sunlit foliage. A 

path length distribution-based method estimated the clumping index. Leveled digital images 

were used to quantify the leaf angle distribution (LAD) and G (leaf projection) function, and the 

LAI was eventually obtained by introducing a GO model that quantified the sunlit foliage 

proportion (Zeng et al., 2015). Macfarlane and Ogden (2012) proposed the LAB2 method, which 

utilized a* and b* values of each pixel to classify green vegetation by a minimum-distance-to-

means classifier, where a* and b* are parameters used in the CIE L*a*b* color space. (L* is the 

luminance component, a* represents color on the green-magenta axis, and b* represents color on 

the blue-yellow axis.). 
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Chapter 3 -  

3.1 Introduction 

In this chapter, we describe a handheld phenotyping platform developed in the 

Instrumenatation and Control Laboratory of the BAE Department at KSU. The phenotyper is 

Phenocorn integrates spectral reflectance (Normalized Difference Vegetative Index, NDVI), 

canopy temperature (CT), plant video, and geo-referenced data collection.  The Phenocorn was 

evaluated across three years of replicated trails consisting of 10 elite breeding lines of wheat 

(Triticum aestivum) in two countries  Mexico and Bagladesh, and demonstrated the utility of 

this platform for rapid assessment of accurate plant phenotypes (Crain et al., 2016).  

3.2 Material and Methods 

3.2.1 Phenocorn design 

The Phenocorn integrates several pieces of hardware into one functional unit (Figure 3.1).  

At a basic level, the Phenocorn is comprised of an infrared thermometer (IRT) sensor to measure 

canopy temperature (CT), an NDVI sensor for spectral reflectance measurements, and a high-

precision GPS unit to geo-reference all data.  NDVI and CT were chosen as parameters to 

measure because of their documented relationship to yield (Amani, 1996; Babar and Reynolds, 

2006; Gutierrez et al., 2010).  Geo-referencing gives each sensor measurement a precise location 

and prevents assigning data to the wrong plot and entry.  In 2014, we made an additional 

modification by adding a web camera to record color images that were likewise geo-referenced.  

The sensors are all connected to a laptop computer serving as the main control unit for the 
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system.  The model, technical specifications, and approximate cost for all components are listed 

in Appendix A.   

Figure 3.1 Integrated hardware components of Phenocorn.

 

The system was operated through a custom-designed National Instruments LabView 

program.  Within the program, data collection is initiated by pressing the GreenSeeker trigger 

and data is logged as long as the trigger is held.  The software written in LabView 2012 

(National Instruments, Austin, TX) had two main functions. The first function was to establish a 

connection with the sensors and the GPS unit and to collect the data from these devices.  A 

separate module was built in LabView for each sensor because the connection parameters and 

output data for each device differ.  Second, the GPS and sensors readings were processed and 

recorded into a useable file format.  Each new set of data was written to a new line in a text file 

at a rate of 10 Hz, with each line having a unique index number along with sensor observation 

data.  A block diagram of the Phenocorn software system is provided in Figure 3.2 (Crain et al., 

2016). 
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Figure 3.2 Block diagram of the Phenocorn software system (A) and its Labview control 
platform (B) (Crain et al., 2016). 

 

3.2.2 Phenocorn data acquisition 

In the field each instrument (GPS, IRT, and camera) was mounted to the handheld 

GreenSeeker, using a custom fabricated mounting bracket.  The bracket enclosed the head of the 

GreenSeeker sensor without blocking either the light source or the collector (Figure 3.3).  All 

sensors were mounted so that they had a nadir field of view, and the GreenSeeker (base of the 

Phenocorn) was held approximately 80 cm above the crop canopy.  Data were collected at a 

walking speed of approximately 1-2 m s-1 and were recorded  from the entire experiment area, 

including plot borders and alleys. The Phenocorn records NDVI, CT, and GPS location at 10 Hz, 

and color photos were saved at 3 Hz (Crain et al., 2016). 

Figure 3.3 A and B.  Custom mounting bracket to hold individual sensors.  C.  Using the 
Phenocorn as a handheld platform in the field, Ciudad Obregon, Mexico (Crain et al., 
2016). 
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3.2.3 Summary of raw data and derived parameters 

As mentioned above, the handheld phenocorn was used to collect the indexes and 

information related to wheat in the field, which included NDVI, CT, and wheat images. The raw 

data and their applications are shown in Table 3.1. Crain et al. (2016) studied the relationships of 

NDVI vs. wheat yield and CT vs. wheat yield respectively in 2014.  The results will be 

demonstrated in section 3.3.3. 

Table 3.1 Raw data and their applications (White et al., 2012). 

Index  Instrument Target trait Applications or relevant traits Yield  

NDVI GreenSeeker 

Nitrogen 

Leaf area index 

Plant biomass 

Plant nitrogen status especially 
under stress;overall growth related 

CT Thermometer Transpiration  
Instantaneous transpiration and 
hence crop water status 

related 

Image Camera 
Maturity 

Multiple stages 

Plant development; Leaf 
orientation and size; Tracking leaf 
senescence;Seedling 
emergence,onset of grain-
filling,senescence;Flower number;  
wheatheads number 

related 

3.3 Results and Discussion 

3.3.1 Phenotyping platform test 

To test the Phenocorn, an existing field trial was utilized at the International Maize and 

Wheat Improvement Center (CIMMYT), Ciudad Obregon, Mexico.  The trial consisted of 10 

genotypes selected from historical and current elite breeding lines.  The plots were 10 meters 

long by 2.4 meters wide.  Wheat was planted on raised beds with two rows per bed.  The trial 

was planted on February 27, 2013 and November 22, 2013 for each year (2013 and 2014, 

respectively) and irrigation and nutrient levels were maintained at optimal levels with pesticides 

applied as needed.  The experiment of the phenotyping platform test was done on 21 Feb. 2014 
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by Dr. Jared Crain. Nineteen plots were measured using the handheld phenocorn, and the data 

files, including one text format file for storing the measured data and 19 corresponding videos, 

were saved in the specified folder. All values of the parameters were saved in one text file, 

including number of the plot, number of the set of data points, UTC-Time, longitude, latitude, 

NDVI, canopy temperature, and the path of video.  

The data and video of the Plot1 were not used because they were only collected for 

testing the handheld phenocorn at the beginning of the experiment. The data and videos of the 

sampling frequency is almost 9.8Hz, and the frame ratio of the videos is 1.6 frames per second, 

as shown in Table 3.2. For the plot2, the length of the plot was 44.7m calculated by the GPS 

coordinates. The total frames number was 59 (Table 3.2). If the condition was that the video 

could cover the whole plot by frames without overlap between the two neighboring frames, the 

mean width of each frame should be 0.75m during measuring with constant speed. In fact, the 

width of each frame was between 0.35m and 0.45m. So, the videos taken in the experiments 

The conclusion 

through experimentation was that the laptop performance, especially the graphics performance, 

was limiting the frame rates.  

Table 3.2 Data for calculating sampling frequency and frame ratio. 

Plots 
Starting 
Time* 

End 
Time* 

Time (s) 
Data 

Points 
Frames 

Sampling 
Frequency 

F/s 

plot2 172522.4 172558.8 36.4 323 59 8.9 1.6 

plot3 172602.4 172639 36.6 346 58 9.5 1.6 

plot4 172642 172720.2 38.2 370 61 9.7 1.6 

plot5 172724 172801 37 367 59 9.9 1.6 

plot6 172803.8 172842.8 39 391 64 10.0 1.6 

plot7 172846.2 172925 38.8 388 64 10.0 1.6 
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plot8 172927.4 173007.8 40.4 405 66 10.0 1.6 

plot9 173011.8 173051.2 39.4 394 63 10.0 1.6 

plot10 173054.2 173133.8 39.6 398 65 10.1 1.6 

plot11 173137.6 173216 39.4 386 62 9.8 1.6 

plot12 173229 173307 38 374 63 9.8 1.7 

plot13 173311 173349.6 38.6 371 61 9.6 1.6 

plot14 173353.2 173432.2 39 387 63 9.9 1.6 

plot15 173435.8 173514.6 38.8 390 63 10.1 1.6 

plot16 173517.4 173556.8 39.4 392 65 9.9 1.6 

plot17 173600.8 173637.8 37 371 60 10.0 1.6 

plot18 173640.6 173717.8 37.2 372 61 10.0 1.6 

plot19 173721.6 173756.8 35.2 353 58 10.0 1.6 

Mean 9.8 1.6 
* UTC-Time, format: HHMMSS.S. 

 
One developed Matlab program was used to process these data. The program functions 

included: doing image processing and estimating the percent vegetation coverage (PVC) at the 

corresponding GPS coordinates for 18 videos, normalizing the NDVI data, PVC data, and 

temperature data separately, and drawing the NDVI , PVC, and temperature distribution plots in 

the geographic space, as shown in Figures 3.4, 3.5, and 3.6. From Figures 3.4 and 3.5, we found 

that the surfaces of the 3D plots represented the wheat growing status, different status at different 

position, and especially the boundaries between two blocks were clearly showed in Figure 3.4. 

Similarly, the peaks in Figure 3.5 also represented the positions where boundaries between two 

blocks existed. In one word, the NDVI, PVC, and temperature data obtained by the handheld 

phenocorn could have reflected wheat growing status in the field, and the handheld phenocorn 

could be used as an instrument to do plant phenotyping information collection. 
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Figure 3.4 Normalized NDVI distribution in the geographical space. 

 

Figure 3.5 Normalized PVC distribution in the geographical space. 

 

Figure 3.6 Normalized temperature distribution in the geographical space. 
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3.3.2 Phenocorn CT (Canopy Temperature) test 

Crain et al. (2016) finished a series of experments to validate the readings of the 

Phenocorn CT to current instruments in 2013.  They collected concurrent canopy temperatures 

with both the Phenocorn and a handgun IRT across five time points throughout the vegetative 

and grain fill growth period.  As shown in Table 3.3, there was a high correlation (p<0.01) on 

four of the five days between instruments.  The results indicated that the Phenocorn could 

provide reliable temperature data that was similar to current methods (Crain et al., 2016). 

Table 3.3 Correlation coefficient between Phenocorn CT vs. handgun IRT (Crain et al., 
2016). 

Date Growth Stage Phenocorn CT vs. Handgun CT 

3/29/13 Vegetative -0.08 

4/1/13 Vegetative 0.84*** 

4/4/13 Vegetative 0.52** 

5/1/13 Grain Fill 0.67*** 

5/14/13 Grain Fill 0.74*** 
1)* Model significant at the 0.05 level of probability. 
2)** Model significant at the 0.01 level of probability.  
3)*** Model significant at the <0.001 level of probability.  

 

The correlation between canopy temperature and grain yield was evaluated by Crain et al. 

(2016) in 2013 as shown in Table 3.4. The results showed that there were significant negative 

correlations between canopy temperature and grain yield during grain fill, and non-significant 

negative correlations during the vegetative growth stages. By comparing to the results of the 

previous studies (Keener and Kircher, 1983; Balota et al., 2007), Crain et al. (2016) concluded 

that the Phenocorn IRT was performing as well as current canopy temperature measurement 

techniques. 
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Table 3.4 Correlation coefficient between Phenocorn CT and grain yield for vegetative and 
grain filling growth stages in wheat (Crain et al., 2016). 

Date Growth Stage Phenocorn CT vs. Yield 

3/29/13 Vegetative -0.02 

4/1/13 Vegetative -0.34 

4/4/13 Vegetative -0.22 

5/1/13 Grain Fill -0.55** 

5/14/13 Grain Fill -0.40* 
1)* Model significant at the 0.05 level of probability.  
2)** Model significant at the 0.01 level of probability.  
3)*** Model significant at the <0.001 level of probability.  

3.3.3 NDVI vs. grain yield 

Crain et al. (2016) also studied the relationship between NDVI and grain yield. They 

collected NDVI simultaneously with canopy temperature for each date of data observations.  The 

results were shown in Table 3.5. NDVI was significantly correlated to grain yield (p<0.001) 

during the grain fill stages. They came to the same conclusion as other research (Babar and 

Reynolds, 2006) that the correlation of NDVI and grain yield increased throughout the growing 

season.  That is, t

yield will allow researchers to make more informed selection decisions (Crain et al., 2016).  

Table 3.5  Correlation coefficient between Phenocorn NDVI and grain yield for vegetative 
and grain filling growth stages in wheat (Crain et al., 2016). 

Date Growth Stage NDVI vs. Yield 

3/29/13 Vegetative 0.09 

4/1/13 Vegetative 0.24 

4/4/13 Vegetative 0.46* 

5/10/13 Grain Fill 0.65*** 

5/14/13 Grain Fill 0.65*** 
1)* Model significant at the 0.05 level of probability.  
2)** Model significant at the 0.01 level of probability.  
3)*** Model significant at the <0.001 level of probability.  
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3.3.4 Advantages and disadvantages of phenocorn  

Phenocorn was designed to provide dense phenotypic data for genetic analysis and plant 

breeding.  Some of the unique advantages in the Phenocorn are that it simultaneously collects 

multiple measurements including NDVI, CT, and images, but also data is geo-referenced.  Geo-

referencing will lead to less error in data transcription, and thus higher data integrity.  The 

addition of image collection to the Phenocorn opens an entirely new avenue for high-throughput 

data collection that could add value to breeding programs.  This also highlights the flexibility of 

the underlying software platform of the Phenocorn, which allows for modification and addition 

of new sensors (Crain et al., 2016).  In addition, phenocorn still have the other advantages such 

as good for monitoring and resolution, flexible deployment, and low cost. However, because it is 

a kind of handheld instrument, it also has some disadvantages such as time consuming, limited 

with payload, and hard operation for large experiments.  

3.3.5 Discussion about the total cost of phenocorn 

The phenocorn was considerably less expensive than other phenotyping systems (Crain et 

al., 2016). The components integrated in the Phenocorn are listed in Table 3.6. The total cost of 

one Phenocorn is US$13,680 while high-clearance vehicle phenotyping platforms have been 

estimated at more than US$100,000 (White et al., 2012). A large propotion of the expense is 

from the SXBlue -L (US$8400), which is a high-precision differential correction GNSS with 

centimeter-level resolution. If the user does need high level of precision, less accurate and less 

expensive GNSS will be used and the total cost of the phenocorn will be reduced. In the same 

manner, the total cost can be reduced by selecting other more affordable sensors (Crain et al., 

2016). 
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Table 3.6 Phenocorn components and their prices. 

3.4 Conclusions 

The Phenocorn integrates two proximal sensors currently used in plant phenotyping as 

well as geo-referencing, which allows for a faster data collection in the field and streamlined data 

processing.  The test results about the handheld phenocorn showed that the handheld phenocorn 

could be used as an instrument to do plant phenotyping information collection. 

To further evaluate the Phenocorn, Crain et al. (2016) did a serial of field trials at the 

International Maize and Wheat Improvement Center (CIMMYT), Ciudad Obregon, Mexico.  

Validation of the Phenocorn shows that it performs as well as current methods for canopy 

temperature; additionally, NDVI and CT data from the Phenocorn were significantly correlated 

to grain yield.  The Phenocorn is a robust, affordable platform that can be modified to fit  

needs and should help close the gap between genomics and phenomics.   

3.5 Future work 

As a first-generation system, the phenocorn has been able to simultaneously collect 

NDVI (Normoalized Differnece Vegetative Index), CT (Canopy Temperature), and plant images  

Instrument Company Specifications Price 

Aspire 4830
  

Acer Inc., San Jose, CA Windows 7, 2.4 Ghz process, 8 
GB RAM, 64 bit 

$750 

GreenSeeker Trimble, CA RS-232 to USB converter used $4,000 

SXBlue -L Geneq, Montreal, 
Canada 

Omnistar HP for 95% accuracy 
<= 10cm 

$8,400 

CT Serial 
Thermometer 

MicroEpsilon, NC Analog to Digital (AD) converter, 
Temperature resolution 0.1 °C, 
System accuracy: ±1 °C 

$430 

C920  
Camera 

Logitech HD 1080p 
$100 

Total cost $13,680 
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with precise assignment of all measurements to plot location by georeferenced data points (Crain 

et al., 2016). However, the improved design to reduce the total cost and instrument weight 

according to the requirements of practice research will be the work in the future, which will 

promote rapid dissemination and utilization of the phenocorn in the plant breeding field. 
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Chapter 4 -  

4.1 Introduction 

The robotic phenotyper is designed for varous types of field crops, including wheat and 

other small grains, soybean, corn, grain sorghum, cotton, and forage crops. The average height of 

corn is about 2.4m. The average height of grain sorghum, soybean, wheat, cotton, and other 

small grain or forage crops is 1.0  1.4m. The robotic phenotyper is designed for most of the 

field crops. Thus, a proper chassis height needs to be determined. The height of the chassis 

should be the crop height plus a space for the sensors to perform properly. An example is the 

focal length of a digital camera. Excessive chassis height would require a large base of the 

phenotyper to maintain the stability, which may not be desirable. Therefore, the selected chassis 

height should allow field phenotyping for most interested crops except corn, for which the 

phenotyper can only be used during the vegetative growth stage. The minimum chassis height is 

limited by the drive mechanism of the robot. 

In Kansas, the row spacing for most field crops is either 25.4 or 76.2 cm. To achieve high 

throughtput phenotyping, multiple crop rows need to be covered simultaneously. Design of the 

chassis width should allow simultaneous phenotyping of five rows for crops planted at 25.4 cm 

spacing, and two rows for those planted at 76.2 cm. Exessive chassis width not only will increase 

the weight of the phenotyper, thus causing soil compaction, it will also reduce the 

maneuverability of the robot.  

The chassis height and width need to be adjustable to allow the robotic phenotyper to 

work on different crops and under different conditions.    
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An advantage of a ground-based phenotyper over an aerial-based phenotyper is the much 

larger payload capability. Many sensors prohibited for aerial applications can be used on ground-

based phenotypers. However, there is still a limit on the payload on a ground-based phenotyper. 

Excessive weight mounted on the chassis of the robotic phenotyper may slow down, even stall 

the robot. Many sensors have been used in phenotyping and many more will be attempted in the 

future. These sensors have different weights. Many sensors are light in weight (below 10 kg), but 

some heavier sensors such as a light detection and ranging (LiDAR) sensor or a electromagnetic 

induction (EMI) sensor may weigh up to 20 kg. In addition, some sensors may need special 

mounting brackets which would further increase the weight. To provide the flexibility for sensor 

selection, a reasonably high payload capability that allows up to 10 sensors to be mounted is 

desirable. 

The ground speed of the phenotyper direcly determines its throughput. Ideally, a fast 

ground speed is preferred. However, because each sensor has its response time, the robot should 

move at a speed that would allow all the sensors mounted on the robot to yield reliable 

measurements at a proper sampling frequency. From the experience we obtained in developing 

the vehicle-based phenotyper, we learned that most sensors used on that phenotyper were able to 

collect stable measurement data at a sampling frequency of 10 Hz, while the GPS unit used to 

georefernce the measurement data could reliably update the location data at a sampling 

frequency of 5 Hz (Barker et al., 2016). At a ground speed of 3.2 km/h and a sampling frequency 

of 10 Hz, the robot would move 0.89m each second and the spatial distance between adjacent 

sampling points would be 8.9cm, For a 0.9x1.8m block in a breeding field, about 20 data points 

can be taken when the robot travels through a block in the longitudinal direction, which is 

sufficient for most measurements. For image sensors, with a frame rate of 25 frames per second, 
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the spatial distance between adjacent image frames would be 3.56cm, which is also sufficnet for 

most image processing schemes, such as leave size measurement. A higher ground speed of the 

robot may result in insufficient measurement resolution and accuracy. 

Optical sensors, including most image sensors, are sensitive to ambient light. Thus, it is 

desirable for the phenotyper to have a flexible shading mechanism. Depending on the location of 

the sun and the time of the day, the shading area should be adjustable, from partial shading to 

complete sahding so that consistent measurements can be made for most sensors. 

To allow the robot to follow complicated routing in field, including headland turns, the 

robot must have a four-wheel drive, with each wheel controlled individually. Because the robot 

is completely powered by batteries, power consumption for each electric and electronic 

component needs to be minimized, and the period for continuous operation of the robot needs to 

be sufficiently long. Finally, the robotic phenotyper must have a manual shutoff function so that 

when danger is present, the robot can be immediately stopped.  

Based on these considerations, the following design specifications were determined:          

 Adjustable chassis height: from 0.9 to 1.7m;  

 Manually adjustable chassis width: from 0.5 to 1.5m. 

 Load capacity:80kg; 

 Traveling speed in field: 3.2 km/h; 

 Adjustable shades; 

 Four-wheel drive and four-wheel steering with two motors per wheel system; 

 Continuous operating period for the four hubmotors, four steering motors, other DC 

motors, the control system, data acquisition system, and all sensors:  6 hours; 

 Emergency stop function: equipped. 



30

The main design tasks include designing the mechanical structures using a modular 

design approach, developing a communication and control system among multiple 

microcontrollers based on CAN bus, and testing basic function performances - steering, load 

lifting, and movement. These functions are evaluated through tests. 

4.2 Material and Methods 

The robotic phenotyper used a modular design approach. The modular design method 

typically decomposes a large system into smaller subsystems, or modules, with specific functions 

(You and Smith, 2016). In addition to cost reduction and design flexibility, modular design 

offers benefits such as flexible augmentation and exclusion. The subdivision of modules is based 

on the minimum interaction between modules but the maximum interaction between components 

Figure 4.1 Robotic phenotyper block diagram. 
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within the modules (You and Smith, 2016). Modules in the robotic phenotyper are shown in 

Figure 4.1.  

 The robotic phenotyper is designed to possess crop-sensing capacities and autonomous 

operations in order to achieve high-throughput data collection of crop phenotypes with 

continuous operation in the field. The system consisted of five principal components: a light 

chassis with adjustable clearance and width, a four-wheel-drive system, a shade system, a control 

system, and a phenotyping sensor station.   

4.2.1 Chassis 

Usually, there are two basic robot chassises used in agriculture as shown in Figure 4.2. 

One kind of robot chassis is designed for robot easily running between two crop rows as the 

Rowbot system in Figure 4.2 (a), and another one for robot easily moving over the crop in the 

field (Figure 4.2 (b)).  The designed chassis for phenotyping robot is similar to the BoniRob2, 

but its mechanical structure should be more flexible and its clearance height and width should be 

adjustable in order to meet the measuring need of covering the crop whole growth cycle. 

Figure 4.2 Two kinds of robot chassis (M. Berducat, 2015). 

(a) Rowbot system                                          (b) BoniRob2 
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As shown in Figure 4.3, the designed chassis consisted of brackets, telescopic bars, lifters, 

and beams. The brackets on both sides supported the robotic phenotyper, and the wheel systems, 

lifters, control systems, and batteries were attached to the brackets. The beams connected and 

secured the two sides of the chassis. The width and height of the chassis were designed to be 

adjustable, and the telescope bars attached to the bracket and beam stabilized the robotic 

phenotyper after the lifter adjusted the beam height. As the yellow arrows show in Figure 4.2, the 

left side of the chassis was able to move along the beams after the beam-fastening screws were 

removed, and the lifter systems adjusted the height of the robotic phenotyper. The height of the 

robotic phenotyper was adjustable from 0.9 m to 1.7 m. Two scissors units were built into each 

side of the lifter; the adjustable height of each unit was 0.4 m. The number of scissors units in the 

lifters could be changed based on the final crop heights. The width of the chassis ranged from 0.9 

m to 1.6 m.  

          Figure 4.3 Chassis of robotic phenotyper. 
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4.2.1.1 Lifter design 

 There are two kinds of adjustable robot chassis reported in the literatures (Rubens et al., 

2011; Biber et al., 2012). One clearance height of robot chassis is manually adjustable (Figure 

4.4 (a)), and that of another one is automatically adjustable (Figure 4.4 (b)).  The designed lifter 

with scissor-type mechanical structure in the chassis is used to adjust the clearance height with 

electrical linear actuator. There isn t any one literature reported about this design idea by now.  

Figure 4.5 Scissor-type lifter in chassis. 

 

Figure 4.4 Two types of adjustable robot chassis for phenotyping (Rubens et al., 2011; 
Biber et al., 2012). 

(a)                                                            (b) 
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The technical details were shown in Figure 4.5. The chassis contained a symmetrical lifter on 

each side of the robot. Each lifter included a linear actuator, actuator seat, linking bars, pushing 

bars, v-type bars, lower horizontal bars, v-groove wheels, vertical rails, sliding block, upper-

horizontal rails, and beam (Figure 4.5). The two outer points at the upper and lower corners of 

the scissors-type parts were fixed on outer corners of the upper horizontal rail and bracket, 

respectively. The linear actuator drove the two inner points of the scissors-type parts moving 

along the upper horizontal rails and lower horizontal rails. The beam connected the two sides of 

the lifter in order to maintain simultaneous movement of the two sides. The red arrows in Figure 

4.5 indicate movement directions of corresponding components during lifting.   

Figure 4.6 Key component dimensions in the lifter. 
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4.2.1.2 T&W-type bar design 

A T&W mechanism was used for the lifter design. The T&W-type michanism connected 

a T-type pressing part connected to the linear actuator and screwed a W-type pushing bars to the 

T-type part. As shown in Figure 4.5, the T&W-type driving structure is comprised of a T-type 

sliding block, pushing bar, and linking bar. Based on bracket dimensions and design objectives, 

dimensions of key components are determined and labeled in Figure 4.6. The design of this 

driving structure attempted to ensure that the lifting range exceeded 0.35 m per scissors unit and 

that the maximum lift load exceeded 40 kg per side of the robotic phenotyper. The bracket length 

was 1.8 m, as shown in Figure 4.6. The stroke of the 24V linear actuator was 250 millimeters, of 

which 200 mm was used; its maximum thrust was 2500N. 

Figure 4.7 (a) shows a design sketch of the lifter, and Figure 4.7 (b) and (c) show a two-

phase lifting process in which the T-type bar causes the pressing phase and the pushing bar 

causes the pushing phase, respectively. Because a smooth transition from the pressing phase to 

the pushing phase during lifting is essential, the design aimed to determine the moving length Dx 

(Figure 4.8 (a)) of the end of the V-type bar that was connected to the T-type bar so that the 

pushing bar was in the working position before the end of the v-type bar arrived at the end of the 

T-type bar, as shown in Figure 4.7 (b). 

 

 

 

 

 

 



36 

Figure 4.7 Lifting process: (a) initial position, (b) change of critical driving position from 
pressing to pushing, and (c) final position.  
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Figure 4.8 (a) Partial sketch, (b) movement locus of the V-type end during lifting. 

           The movement locus of the end of the V-type bar was initially calculated. As shown in 

Figure 4.8 (a), the initial slope angle of the right scissors bar 

initial angle of the v- V-type 

.  

(a) 

 

(b) 
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Two component motions, x and y, were present on the end of the V-type bar that was 

connected to the T-type bar. The x values were calculated using Equation 4.1 and 4.2 where -

150  y  0 mm, in which the minus sign represents downward motion. The y was a vector 

with a numerical value equal to the vertical downward displacement of the T-type bar. The 

motion locus of the end of the V-type bar was based on calculated results and plotted in Figure 

4.6 (b). 

                                                                          (4.1) 

               

The slope angle of the linking bar was then calculated based on obtained x and y results. 

A partial sketch for calculating the critical point is shown in Figure 4.9

linking bar and the distance between point P1 and point P3 were calculated using Equations 4.3 

and 4.4, respectively. 

              

            

According to Figure 4.6, r0 was 101.6 mm. Coordinate values of point P3 are listed in 

Table 4.1; calculation was done by Matlab software. The calculation objective was to find a Dp 

result nearly equal to 203.2 mm; seven sets of results are listed in Table 4.2. Based on data in the 

brown-shaded column, the critical point occurred when the T-type bar moved downward 129 

mm, resulting in a minimum Dx value of 100 mm. Main dimensions of the T-type bar are shown 

in Figure 4.10. In order to meet design requirements, the design lifting height per scissors unit 

was 405 mm. 
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Table 4.1 Initial center position of the four hinges in the coordinate system.  

 

Table 4.2 Movement parameters value related to the key components during lifting. 

y(mm) -124 -125 -126 -127 -128 -129 -130 

x(mm) -91.6 -93.2 -94.9 -96.6 -98.3 -100 -101.7 

(Degree) 31.5 31.8 32 32.3 32.5 32.8 33 

 112 112.3 112.7 113.1 113.5 113.9 114.3 

Dp(mm) 209.1 208 206.7 205.6 204.4 203.2 202 

Figure 4.9 Partial sketch for calculating the critical point. 
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phases utilize either the pressing method or the pushing method. Therefore, this study 

investigated lifting characteristics related to the two phases. As shown in Figure 4.11, only one 

half of the lifter was analyzed due to its symmetrical structure. The load was assumed to be G, 

where the unit was N (Newton) and the pulling force applied by the linear actuator was F. The 

Figure 4.10 Main dimensions of the T-type bar. 

 

Figure 4.11 Partial sketch for calculating lifting characteristics in the pressing phase. 
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force diagram of the V-type bar shown in Figure 4.11 was derived from the symmetrical 

structure of the T- otion. In addition, the lifting velocity 

was assumed to be constant, resulting in the torque equilibrium Equation (4.5):   

 

 in the equation is replaced by the equation (4.1), then we can get the following lifting 

characteristics equation, where -129  y  0. 

                  (4.6) 

The curve of the equation (4.6) is shown in Figure 4.12. 

Lifting characteristics in the pushing phase were then calculated; forces on the bars and 

corresponding component forces are shown in Figure 4.13, in which rotation angles of all related 

bars are represented by Latin letters. In the pushing phase, component force dp1x (green in 

Figure 4.13) had to be at least equal to component force f1x (red in Figure 4.13) in order for the 

lifter to work: 

 

Figure 4.12 Lifting characteristics curve of the function f1(y). 
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Figure 4.13 Partial sketch of the lifter for calculating the lifting characteristics in pushing 
phase. 

 

and, 

                                                          

Using equation (4.7) and (4.8), the lifting characteristics function was obtained: 

 

Where, =101.6mm;   =292.6mm. The functions of y, , , , , and , 

were resolved using the law of cosines. 

        (4.10) 

                                                      (4.11) 
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Figure 4.14 Lifting characteristics curve of the function f2(y). 

 

As shown in Figure 4.13, P3X and P4Y were constant parameters with values 58.4 and -

294.6, respectively.  Similarly, the values of r1, r2, and r3 were 101.6, 292.6, and 203.3, 

respectively. The range of y was greater than -200 and less than -129. The lifting characteristics 

curve in the pushing phase (Figure 4.14) was obtained using Matlab software to calculate the 

equations (4.9) to (4.15). Therefore, the lifting characteristics function was written as 

                          (4.16) 
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The entire lifting characteristics curve is shown in Figure 4.15, where the minimum value of 

 is equal to 0.39 where y is equal to -130. So, the Maximum Load (ML) was obtained by 

the Equation (4.17) where the maximum driving force of the linear actuator is 2500N. The result 

shows that the design meets the design requirement that the maximum load more than 80kg. 

          (4.17) 

Figure 4.15 Lifting characteristics curve of the function f(y). 

 

4.2.2 Wheel system 

As shown in Figure 4.16, the robotic platform in this study included four-wheel drive and 

steering (i.e., four sets of wheel systems and traction and steering are its main functions). As 

shown in Figure 4.17, each set of the wheel system included a wheel with hub motor, a wheel 

fork, a thrust ball bearing, a base board, a radial ball bearing, a steering gear, a driving pinion, an 

encoder system, and a steering motor.  The hub motor of 36V and 500W in the wheel was used 

to move the robotic platform. The wheel fork was mounted on the base board via a radial ball 

bearing, and a thrust ball bearing was located on the shaft of the wheel fork under the base board 

to limit the upward vertical movement of the wheel fork and ensure that the wheel fork rotated 
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smoothly around the axis of the shaft. The steering motor of 12V and 60W steered the wheel 

using the gear pair with a reduction of 2:1. The photoelectric encoder system with 1.5º resolution 

was fixed on the shaft of the steering motor to passively or actively detect the rotating angle of 

the wheel fork. 

Figure 4.16 Robotic platform with four wheel drive and steering. 

 

Figure 4.17 Wheel system. 

 

4.2.3 Shade system 

act on sensors that detect crop traits. 

This study used four sets of shade system, each of which contained a 24V DC motor, hub, and 

scroll, as shown in Figure 4.18. Black cloth affixed to the scroll could be moved up or down by 

the DC motor. 
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Figure 4.18 Shade system on the Robotic platform. 

 

4.2.4 Robotic control system  

A block diagram of a robotic control system is shown in Figure 4.19. Four control 

subsystems for the four wheel systems, respectively, connected via CAN bus. The power-

supplying system, which was powered by batteries, included 5V/9V/12V/24V power modules, 

36V power modules, and 24V-36V power control modules, as shown in Figure 4.19. Each 

control subsystem was composed of a microcontroller module--- Arduino MEGA2560, a CAN 

bus module, a wheel control module, a wheel steering module, a shade motor control module, 

and a linear actuator module. The robotic control system was connected to a control system and 

data acquisition unit installed at a laptop through a USB-to-CAN converter. A schematic of the 

control system and its wiring diagram are provided in Appendix C and D, and the control system 

panel is presented in Appendix E. 
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Figure 4.19 Robotic control system. 

 

4.2.4.1 Emergency control for power supply module 

         The power supply module provided voltages to individual components, 36V for hub motors, 

24V for linear actuators and DC motors in the shade system, 12V for the steering motor and 

cooling fans in the driver modules of the hub motors, and 5V for MEGA2560 and other circuits. 

Two functions were available for the 24V-36V power control module: ON/OFF function and 

emergency stop function. Four buttons were used in both the right side and left sides of the 

robotic phenotyper: ON button, OFF button, front emergency button, and back emergency button. 

The emergency stop function allowed the robotic phenotyper to stop whenever the front 

emergency button or back emergency button was pressed in order to avoid colliding with 
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something or people on the robot forward path. The emergency stop function was applied using 

the interlock circuits shown in Figure 4.20.  

Figure 4.20 Interlock circuits for 24V and 36V power control. 

 

           Each side of the robotic phenotyper contained one interlock circuit, and the main 

component used in the circuit was Quad Comparator LM339. Every comparison circuit had a 

self-lock function that relied on the resistor and capacitor (RC) circuit. Four comparison circuits 

were incorporated into one interlock circuit, and all comparison circuits were connected by 

reverse input pins. As long as one of the four buttons was pressed, the corresponding output of 

the comparison circuit was high and the others were low. The buttons are titled according to their 

functions and fixed positions. For example, the FRE (front right emergency) button was fixed on 

the end of the front right side of a bracket, and it allowed the emergency stop function. Similarly, 

the BRE button represented the back right emergency button, and the R-OFF and R-ON buttons 

represented the OFF and ON buttons, respectively, on the right side of the robotic phenotyper. 

Outputs of the comparison circuit with ON buttons in both interlock circuits were inputs of the 2-

input AND gates, as shown in Figure 4.20. However, if both ON buttons were pushed, then 
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outputs of the 2-input AND gates were HIGH and the 24V and 36V power sources were on. If 

anyone of the other six buttons is pushed, the outputs of the 2-input AND gates changed to LOW, 

and the 24V and 36V power source were off.  

        A portion of interlock circuit that included two comparison circuits is shown in Figure 4.21. 

When any button is pushed in an interlock circuit, the output of the comparison circuit with the 

pushed button changes to HIGH and maintains this state, while the other outputs change to LOW 

or maintain a low state. In the 2-way interlock circuit in this study, for example, when the ON 

button was pushed, the input voltage at IN2+ was 5V and the R0C circuit was charged to 5V. The 

ON signal was High because VIN2+ > VIN2-. In order to maintain the HIGH state after releasing 

the ON button, VIN2+ had to exceed VIN2- in the feedback circuit with diode D4. Similarly, when 

the OFF button was pushed, the OFF signal changed to HIGH. In order to ensure that the ON 

signal could change to LOW, VIN2- had to exceed VIN2+ in the interlock circuit.  

Figure 4.21 2-way interlock circuit. 

 

           Therefore, in order to meet the above requirements, the values of resistors R0 and R4 and 

capacitor C in the interlock circuit had to be determined while values of R1, R2, and R3 were 

known. The voltage dividing circuit comprised of resistors R1 and R2 provided initial input 

voltage to LM339 and ensured that the comparison circuit had LOW output at any time. Diode 
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D1 guaranteed unidirectional output of the voltage dividing circuit. The average drop voltage of 

diodes used in the circuit was Vd  = 0.5V, which was obtained using a testing circuit. In the initial 

state when the power was ON, the input voltage V0 on the pin IN1-  generated by the voltage 

dividing circuit was higher than zero, and the output of the comparison circuit was LOW. V0 was 

obtained via Equation (4.18): 

 

In order to maintain a HIGH status after releasing the ON button, VIN2+ had to exceed 

VIN2- in the feedback circuit with diode D4 (i.e., diodes D2 and D were inoperable) and at least 

 

Where, VCC=5V, R3 Vd =0.5V. Then 

                                          

Figure 4.22 Simplified circuit for calculating Vin2+. 

 

Similarly, in order to ensure that the ON signal change to LOW while the OFF button 

was pushed, VIN2- had to exceed VIN2+ in the interlock circuit. Immediately before the OFF button 

was pushed, the VIN2+ was obtained using Equation (4.21):  

                                   

At the moment while the OFF button was pushed, VIN2- was, 

                                                             (4.22) 

Therefore, based on the inequality , 
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           (4.23) 

Based on the inequalities (4.21) and (4.23), the relationship between R0 and R4 was represented 

with the inequality (4.24), and the value interval is shown in Figure 4.23. 

       (4.24) 

 determined by the inequality (4.24). 

  

The R0C circuit was essential to the comparison circuit, and its time constant  determined the 

anti-interference ability and response speed of the system. Based on inequality (4.25) and 

experiments, C = 4.7µF, R0   equals 0.282s. 

Figure 4.23 Value interval of R0 and R4. 

 

4.2.4.2 Wheel control module 

A functional block diagram of the wheel control module is shown in Figure 4.24. The 

module in the figure includes a hub motor with tire, a hub motor controller, and a 12-bit digital-

to-analog converter. The hub motor of 36V and 500W in the wheel caused the robotic platform 

to move. Eight wires, including three thick wires and five thin wires, were connected to the hub 
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motor to power the motor and Hall sensors inside the motor and to transfer Hall sensor signals to 

the hub motor controller. Wire specifications are listed in Table 4.3. 

Figure 4.24 Wheel control module. 

 

Table 4.3 Wires specification in the hub motor. 

Thick wires Functions Thin wires Functions 

Yellow wire 36V phase U Yellow wire Hall signal U 

Green wire 36V phase W Green wire Hall signal W 

Blue wire 36V phase V Blue wire Hall signal V 

  Red wire 5V for Hall sensors 

  Black wire GND 

Figure 4.25 Wheel with hub motor. 

 

The hub motor controller provided 36V power to the three phases of U, W, and V 

according to the order determined by the feedback signals from corresponding Hall sensors. As 

shown in Figure 4.26, the hub motor controller was a Hall-balanced car driver board with a 

maximum drive capacity of 500W and working voltage ranging from 12V to 36V. The EL pin, 
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known as the enable control terminal, was connected to a digital pin of the MEGA2560. The 

motor ran when the digital pin was HIGH, otherwise the motor would stop. The Z/F pin was the 

reversing control terminal, and VR was the analog input pin used to control wheel speed ranging 

from 0 to 5V. The signal pin was a pulse output for detecting wheel rotation speed, which was 

used to achieve constant speed control. Because the resolution of the 8-bit PWM (Pulse Width 

Modulation) of the MEGA2560 was too low to smoothly adjust the wheel speed, a 12-bit digital-

to-analog converter (MCP4725) controlled by an I2C interface was used, as shown in Figure 

4.27. 

Figure 4.26 Hall balanced car driver board.

 

Figure 4.27 MCP4725. 

 

4.2.4.3 Steering control module 

As shown in Figure 4.28, the steering control module included a steering motor of 12V 

and 60W, DC motor drive board, and photoelectric encoder. Module VNH5019, which operated 

from 5.5 to 24V and delivered a continuous 12A, was used to drive the steering motor. Pin PWM 
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was the speed control terminal, and pins INA and INB were the direction control ends. A 

photoelectric encoder was designed to achieve precise control of the steering. As shown in 

Figure 4.29, three sensors, one encoder disk, and one senor bracket were included in the 

photoelectric encoder. Sixty narrow gaps were equably distributed along the disk circumference, 

and two infrared transmission photo sensors (A and B) were fixed on the sensor bracket with 90º 

phase difference. A window comparator circuit was designed to amplify the output of sensor A 

or B and reshape its output signal to square wave (Figure 4.30). A reflectance sensor C was used 

to detect the initial point of the encoder disk. Therefore, the steering control module and MEGA 

2560 formed a closed-loop control system, as shown in Figure 4.31. 

 Figure 4.28 Steering control module. 

 

Figure 4.29 Photoelectric encoder fixed on the DC motor. 
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Figure 4.30 Window comparator circuit for sensor A/B. 

 

Figure 4.31 Close-loop control of steering system. 

 

4.2.4.4 Linear actuator module and shade motor module 

          As shown in Figure 4.32, linear actuator or shade motor module is a simple module, which 

includes a DC motor drive board----MC33926 and a 24V linear actuotor /a 24V shade motor. 

MC33926 has an operating range of 5-28V and can deliver almost 3A continuously to the linear 

actuator or shade motor.  

Figure 4.32 Linear actuator/ shade motor module. 

 

4.2.4.5 CAN bus module 

As shown in Figure 4.33, the CAN bus module adopted a CAN bus shield for Arduino, 

using the CAN bus controller of MCP2515, SPI (Serial Peripheral Interface) interface, and 

MCP2551 transciever. The CAN transfer rate was as high as 1Mb/s. 
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Figure 4.33 CAN-BUS shield for Arduino. 

 

4.2.5 Control system software design 

        As shown in Figure 4.19, the four control subsystems had identical structures, so they used 

the same software. The only difference among the systems was their addresses, which were 

given based on the physical position of the corresponding wheel. For example, address FR 

indicates that the subsystem operated the wheel and corresponding steering system at the front 

right corner of the robotic chassis. Subsystem addresses are illustrated in Figure 4.34. The 

microcontroller board used in the subsystem was Arduino MEGA2560. 

According to the block diagram of the robotic control system in Figure 4.19, the software 

had the following functionos: 

 Control the wheel to run at a specified speed; 

 Control the wheel fork to turn according to the previously defined angle; 

 Detect the deflection angle of the wheel fork while the robot moves to a specific path; 

 Manully operate the linear actuator to move the upper part of the chassis upward or 

downward; 

 Manually operate the shade cloth on the scroll to move upward or downward; 

 Work according to commands received from CAN bus. 
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Figure 4.34 Address definitions according to the wheel position in the chassis. 

 

The control program was developed using the platform of Arduino 1.6.5 and then 

downloaded to a MEGA2560 board to work based on the flowchart shown in Figure 4.35. All 

actuators in the robot were automatically controlled by CAN bus commands or manually 

operated by push buttons in the control system. Communication protocols used in the control 

system are listed in Appendix D. The previously defined registers corresponded to each actuator 

in the control program. When the CAN bus command was received, the control parameter was 

initially stored in the corresponding register after address verification. The parameter was then 

read and executed through the read register and setting parameter modules. Figure 4.36 shows 

the functions of the parameter setting module: it established parameters of the HUB motors in 

the wheels and the steering system and then sent the speed and deviation angles of the steering 

system to the control unit. One changing-function switch was available for the entire control 

system, and four rounded buttons and three double-position unlocked switches were used for 

each side of the control subsystem, as shown in Appendix C. When the changing-function switch 

was off, one of the three double-position unlocked switches determined whether the robot moved 
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forward or backward; the other two switches operated two of the four shade motors. When the 

changing-function switch was on, one of the three double-position unlocked switches adjusted 

the lifter height, and the other two operated the steering system. The green round push button 

was used to turn the 24V and 36V power sources on, and the other three red buttons were used to 

as in the case when the robot needed to be stopped 

immediately.  

Figure 4.35 Flowchart of the control program. 
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Figure 4.36 Flowchart of set parameter. 

 

As mentioned, a photoelectric encoder (Figure 4.29) was designed to achieve precise 

control of the steering system. The outputs A and B from the encoder were modulated into the 

rectangle waves using a window comparator circuit. One of the two rectangle waves was 

connected to PIN 3 of MEGA 2560, and interrupt 1 was used to count the pulse number in order 

to accurately and timely obtain the turning angle of the steering system. Figure 4.37 shows a 

flowchart for the encoder counter.   

Figure 4.37 Flowchart for the encoder counter. 
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4.3 Results 

Based on the design, the platform of the robotic phenotyper was constructed as shown in 

Figure 4.38. Basic functions test showed that the structure and control system met the design 

requirements. 

Figure 4.38 Platform of robotic phenotyper during testing stage. 

 

4.3.1 Scissors-type lifter test 

As mentioned, the lifter design requirement demanded that the height of the robotic 

phenotyper be adjustable betweent 0.9 m and 1.7 m, with two scissors units built into one side of 

the lifter. In order to elevate the scissors-type lifter to the maximum height, a T&W mechanical 

structure was designed, manufactured, and assembled with the linear actuator. As described in 

Section 3.2, a pressing stage (the area within the purple circle in Figure 4.39 (a)) and a pushing 

stage (the area within the purple circle in Figure 4.39 (b)) were evident during lifting. Because 

Dx exceeded 100 mm according to Equation (4.4) for the dimensions of the T-type bar, a smooth 

transition from pressing stage to pushing stage occurred during testing; the final height of the 

chassis was 1.73 m. The final position of the lifter is shown in Figure 4.39 (c). 
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Figure 4.39 Scissor-type lifter in the testing stage: (a) pressing stage, (b) pushing stage, (c) 
final position.  
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4.3.2 Steering system test 

The encoder with two grooved infrared transmission photo sensors and one QTR sensor 

was crucial in the closed-loop control steering system. The QTR reflectance sensor was used to 

return the wheel fork to zero position and reset the angle register; the other two infrared photo 

sensors mounted on the bracket with 90º phase difference were used to determine the turning 

direction and turning angle of the wheel fork. Based on the feedback signal of the encoder, the 

steering system accurately obtained the specified angle, as shown in Figure 4.40. 

Figure 4.40 Steering system in the testing stage. 

 

4.3.3 Maintaining constant speed 

Constant speed must be maintained during robotic phenotyper operation. As mentioned, 

wheel rotation speed was controlled by an analog input signal that ranged from 0 to 5 volts. In 

order to smoothly increase or decrease speed and then maintain a constant speed, a 12-bit digital-

to-analog convertor MCP4725 was used in the control system. An experiment for testing the 

sustaining a constant speed was conducted under a no-load condition. The initial number input to 

MCP4725 was determined by a proportional equation based on desired speed . If present speed 

 exceeded desired speed , the input value of MCP4725 subtracted eight within a time 

interval of 3 seconds. The graded number 8 was obtained by test, which was the minimum 

graded value to get the speed response of the hub motor. If present speed  was less than desired 
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speed ,, the input number of MCP4725 continuously added 8 with a time interval of 3 seconds. 

Constant speed characteristics ( ) of the four wheels were calculated based on the test data. 

As shown in Figure 4.41, the speed became nearly stable after 63 seconds. The maximum 

deviation error, which was 5.5%, occurred at the wheel at the back left corner of the robot; the 

other wheels showed deviations of less than 3.3%. 

Figure 4.41 Constant speed trait without load. 

 

4.4 Discussion 

Up to the time this dissertation is written, the mechanical structure of the robotic 

phenotyper was completed, but the networking and control parts are not yet completed. Thus, 

only limited tests were conducted to exam the performance of the phenotyper against the design 

specifications. This included 1) chassis adjustment, 2) individual and simultaneous control of the 

drive wheels, 3) control of the shade, and 4) emergemncy stop. Tests on the chassis showed that 

the mechanical structure of the chassis is flexible and the height and width are adjustable within 

the specified ranges of 0.9-1.7m and 0.5-1.5m, respectively. However, the process of adjusting 
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the chassis height was semi-automatic, which required an experienced technical staff to 

accomplish.   

The four drive wheels have been tested individually and simultaneously. When four drive 

wheels were powered simultaneously, the robot moved as expected. However, no extensive tests 

have been done to observe the robot motions. A potential shortcoming of the design is that the 

diameter of the drive wheels may be too small, which may cause stall of the robot in field, 

especially on uneven or wet surfaces.  

The total cost of the mechanical parts, metal materials, and electronical components is 

about $11,000 (Table 4.4). 

Table 4.4 Total components cost. 

Components Cost 

Wheel systems $4,214 

Brackets $1,800 

Lifters $2,600 

Shading sytems $1,300 

Control systems $1,100 

Total $11,014 

 

4.5 Conclusion 

 In general, the platform of the robotic phenotyper was designed and manufactured using 

a modular design approach, and the results of functional tests showed that the structure and 

control system met originally proposed specifications. The chassis with a scissors-type lifter was 

the innovative feature of the design, and the state-of-the-art T&W-type lifter design effectively 

lifted the robot height from 0.9m to 1.7m. The design procedure for the lifting mechanism 

established in this study can be used for systems with different dimensions and loads. The 
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telescope-type bars used in the chassis stabilized the chassis while the robot was in operation. 

Design of an automatic telescope-type system would ideally allow the chassis height of the robot 

to be adjusted automatically. 

4.6 Future work 

The design and manufacture of the robotic phenotyper and its control systems were 

complted, and some basic function performances such as steering, load lifting, and movement 

features were tested in the paper. For the applictions in practice, there still are many research 

tasks to do in the future, which are: 

1) Navigation system design based on GPS and machine vision technology; 

2) Remote control station design (remote distance >1 Mile); 

3) Multi-sensor system integration and data acquisition system design; 

4) Soil box design for testing robot movement; 

5) Design of the algorithm of robot moving control and test; 

6) Comprehensive test including navigation system, data acquisition system, and remote 

control station; 

7) Robotic phenotyper test in the field. 
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Chapter 5 - 

 

5.1 Introduction 

Wheat (Triticum aestivium) originated in the Levant region in the eastern Mediterranean 

but is currently cultivated worldwide, as shown in Figure 5.1. World production of wheat was 

734.24 million tons in 2015, making it the second-most produced cereal after corn (966.37 

million tons) (USDA, 2016). Because it has a higher protein content than other major cereals, 

corn, or rice, wheat has become the dominating source of vegetable protein in human food. Two 

types of wheat are grown throughout the world: winter and spring wheat. The primary difference 

between the wheat types is that winter wheat requires a period of cold temperature to begin 

reproduction, but spring wheat does not. Development from germination to maturity takes 280-

359 days for winter wheat and 120-145 days for spring wheat. The seeding rate ranges from 20 

plants/ft2 to 30 plants/ft2 (AGRI-FACTS, 2007).  

 Figure 5.1 Top ten wheat-producing countries (from http://www.mapsofworld.com). 
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The wheat life cycle consists of five stages: the seedling and tillering stage, the jointing 

stage, the booting stage, the heading and flowering stage, and the maturity stage. The seedling 

stage spans the germination of the seed in the soil to the appearance of the first leaf; tillering 

occurs before the winter beginning. The jointing stage begins when the stalk grows the second 

node, and the wheat shows maximum green. The booting stage starts with the appearance of the 

wheat head and ends with the emergence of awns. The heading and flowering stage includes the 

start of flowering, followed by pollination and fertilization. The green color of the wheat begins 

to decrease in the maturity stage, demonstrating two substages: the milk stage and the ripening 

stage. A very moist kernel with 30% water forms during the milk stage, and then the kernel loses 

all moisture and changes to a yellow color during the ripening stage (Kakran et al., 2012). 

Figure 5    (Jackson 
and Williams, 2006). 

 

Numerical scales such as Zadoks, Feekes, and Haun scales have been developed to 

describe the growth stages of wheat, as shown in Figure 5.2 (Jackson and Williams, 2006). 

Based on wheat growth stages, farmers can optimize yield using fertilizer, irrigation, herbicide, 

insecticide, or fungicide, and breeders can compare wheat strains and estimate wheat 

performances to select the optimal strain. Wheat growth stages traditionally have been measured 

manually and determined by people experiences. Muhammad et al. (2005) used emergence rate 



68 

as one of the four top parameters to assess the growth of eight wheat cultivars under saline 

conditions. With the help of a meter quadrate, they randomly threw the meter quadrate into the 

net plot area and then manually counted the number of plants enclosed by the quadrate 

(Muhammad et al., 2005). 

5.1.1 Wheat traits detection using image processing 

The development of sensor technology and computer science has revealed the potential of 

digital image processing for automatic detection of wheat development. Wheat parameters such 

as green coverage, leaves, stems, flowers, and wheat heads are all research objects in image 

processing (Lukina et al., 1999; Cointault et al., 2008; Kakran and Mahajan, 2012; Jiang et al., 

2012). The green pigment of a wheat crop is closely related to its age: Maximum green pigment 

is evident during early development stages and minimum green pigment occurs in a mature 

wheat crop. Kakran and Mahajan proposed that the wheat crop age could be determined by 

measuring the green color in the wheat images (Kakran and Mahajan, 2012). Cointault et al. 

(2008) proposed a color-texture analysis method based on RGB images taken in the field in order 

to count wheat heads and predict wheat yield. A total of 20 images were tested, and wheat heads 

were counted using image segmentation, classification, and morphological analysis, resulting in 

recognition rates between 73% and 85% (Cointault et al., 2008). Both the method for 

determining wheat age and the algorithm for counting the wheat heads have certain limitations. 

Kakran and Mahajan (2012) developed a method to estimate wheat age based on image 

processing on three sets of images taken during the early and late stages without considering the 

entire growth season. The algorithm of counting wheat heads developed by Cointault et al. (2008) 

was built on wheat imges of only one variety taken under specified light conditions. The 

influence of weather condition was not considered.   
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5.1.2 Image analysis algorithms for plant phenotyping 

A color space is a method to specify, create, and visualize colors, and a color is usually 

expressed using three coordinates, or parameters, that denote the position of the color in the color 

space (Ford and Roberts, 1998). Commonly used color spaces include RGB (red, green, blue), 

CMY(K) (cyan, magenta, yellow, black ), HSL (hue, saturation, lightness), HSB (hue, saturation, 

brightness),the Ycc color model, the LAB color model, and the YUV color model. Certain color 

spaces are usually more beneficial for certain applications, and the use of a specific color space 

depends on the application object (Ford and Roberts, 1998). For example, Zeng et al. (2015) 

proposed a method to extract the Leaf Area Index (LAI) in LAB color space from images taken 

under sunny weather conditions. Many literatures have also reported development of a variety of 

image processing algorithms to extract plant traits such as LAI, PVC, stems, flowers, and wheat 

heads in RGB color space (Lukina et al., 1999; Cointault et al., 2008; Kakran and Mahajan, 2012; 

Jiang et al., 2012). Other literature has reported use of average lightness obtained in LAB color 

space to increase uniformity of image lightness and then extract the objects in RGB color space 

(Zhu and Zhou, 2015). 

Vegetation coverage, expressed in percentage, refers to the ratio of a vertical projection 

area of regional plants to its geographic area. Lukina et al. (1999) used the software of 

Micrografx Picture Publisher R  version 7.0 to estimate the Percent Vegetation Coverage (PVC) 

of winter wheat. Zhao et al. (2009) presented a method based on particle swarm optimization and 

the K-means clustering methods to estimate the PVC of various types of agricultural images. The 

results showed that the method could efficiently achieve a high classification accuracy of 

approximately 90%. However, there was no literature reporting practical methods to estimate the 

PVC in wheat fields throughout the entire growth season. 
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Researches on wheat head counting based on image processing has focused on the 

counting accuracy. The main difficulty has been counting densely distributed heads in the images. 

Several methods, including the splitting and merging method, the wheat head shape index (WSI) 

method, and the joint point counting (JPC) method (Germain et al., 1995; Frédéric et al., 2012; 

Liu et al., 2014), have been reported.  The splitting and merging method could obtain the highest 

counting accuracy, but was time-consuming beacause the method involved spliting connected 

lobes of wheat heads and then restructuring individual wheat heads again(Germain et al., 1995). 

The counting accuracy of the WSI method was quite low because only the relationship between 

the areas of the head surface and the surface of its convex hull was considered in this method. 

For the JPC method, because the number of wheat heads was estimated based on the joint points 

in the image following a skeleton operation, high-quality, high-resolution images with smooth 

outlines were required. This type of image was difficult to obtain without human assistance.  

5.1.3 Objectives          

Based on past studies found in literature, the objectives of this study were:  

 Developing image processing algorithms for estimating percent vegetation coverage 

(PVC) of wheat; 

 Evaluating wheat growth status based on PVC data; 

 Counting wheat heads based on a texture-color analysis method; 

 Studying the effect of weather conditions on the accuracy in counting wheat head 

counting. 
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5.2 Material and Methods 

5.2.1 Material 

The study for detecting wheat growth status and counting wheat heads was conducted 

from March to June, 2015, on a sowed wheat field in Manhattan, Kansas (latitude: 39.23247°, 

longitude:96.58081°), as shown in Figure 5.3. Seven areas were randomly selected for study and 

labeled with wooden bars to ensure that images were always taken at the same positions.  

Figure 5.3 Experimental location 

 

As shown in Figure 5.4, a digital camera was placed in the nadir direction on the 

horizontal bar of a frame, at a height of 1.2 m from the ground. The field of view was 0.6 m2, 

covering three rows of wheat. The digital camera is a Canon brand, model number EOS Rebel 

T5i, with images of 5184X3456 pixels, giving an image resolution of about 50 pixels/mm2. 

Pictures were taken once every three days, except in rainy weather, and three pictures were taken 

at every position. All pictures were downloaded and renamed in the previously defined format.  

For example, a picture entitled FWH20150311-1 indicated that it was the first picture taken on 

March 11, 2015, at the selected area labeled FWH. The period of taking picture was from 11 Mar 

to 10 June 2015. Thus, totally 122 pictures were taken for each selected area. All images were 
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processed using MATLAB R2015a on an Intel(R) Core(TM) i7-2600 computer with a frequency 

of 3.4 GHz and 4 G RAM. 

Figure 5.4 Camera and mounting frame 

 

5.2.2 Methodology 

5.2.2.1 Extraction of vegetation coverage  

         In 1999 Lukina et al. first predicted Percent Vegetation Coverage (PVC) using digital 

image processing. Their study results showed that the estimated PVC was highly correlated with 

NDVI measurement for wheat canopy, and correlation was higher than 0.8. Kakran and Mahajan 

(2012) sought to determine wheat crop age by measuring the green color in wheat images 

obtained from digital image processing, thereby demonstrating that PVC not only represents 

wheat canopy coverage status in the corresponding area, but it also indicates wheat change with 

time, or status of wheat development. Consequently, this section primarily addresses the 

application of image processing to estimate PVC and analyze wheat development.Image 

segmentation, a mid-level processing technique, was the primary research focus in this study. 

Following image segmentation, the PVC was attained using its definition-----the sum of green 

pixels divided by total pixels in the image.  



73 

5.2.2.1.1 Method for determining the applicable green threshold (Selecting the images 

taken from the area marked Winter to demonstrate the calculation process) 

This study utilized the OTSU method named after Nobuyuki Otsu, the k-means clustering 

method, and the maximum entropy (ME) method combined with three kinds of color indices, the 

RGB-based color indices, the LAB-based color indices, and RGB&LAB-based color indices, to 

estimate the applicable thresholds for extracting the green pixels in the images. The OTSU 

method, proposed by Nobuyuki Otsu in 1979, maximizes the weighted sum of between-class 

variances of foreground and background pixels to estimate an optimum threshold. This method 

has been widely used for image segmentation (Huang et al., 2012; Khan and Ravi, 2013). The k-

means algorithm divides image pixels into K classes with K-1 thresholds by minimizing the total 

within-segment variance. The computing process searches for each cluster centroid, or the 

shortest total distance of data points to the corresponding centroid (Khan and Ravi, 2013). 

Because entropy represents uniformity of gray level pixel distribution (i.e., the more uniform the 

pixel gray level distribution, the greater the entropy), the ME method solves for the optimal 

threshold at which the sums of the two classes entropies have the maximum values respectively 

(Qi, 2014). The RGB-based color indices were calculated in the RGB color space by Equations 

5.1, 5.2, and 5.3: 

  

                                          

                                          

where R, G, and B are color data of red, green, and blue in the image, respectively; NDIgr and 

NDIgb are normalized difference indexes using green and red and green and blue, respectively 

(Stajnko et al., 2004; Zhao et al.
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LAB color space (Figure 5.5) as L for luminance, A for color on the green-magenta axis, and B 

for color on the blue-yellow axis. Therefore, the LAB-based color indices were the A component 

and then extracts the green components in the LAB color space.  

Figure 5.5 CIELAB color space (from www.linocolor.com).    

 

The definition of Percent Vegetation Coverage (PVC) is shown in Equation 5.4: 

 

where, The number of green pixels in an image; 

             The total pixel number in the image. 

Thus, the most important process for estimating the PVC is to extract the green pixels from the 

image using an image segmentation method, as shown in Figure 5.6. 

Figure 5.6 Green pixels in an image
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The critical step was to select a proper threshold for green pixels. To do so, the two color 

spaces  (RGB and LAB) and three segmentation methods were combined to form six 

combinations, as shown in Table 5.1. Results of these tests were then compared. 

Table 5.1 Acronyms of the six methods. 

Color indices\Methods K-means method ME method OTSU method 

RGB KRGB MRGB ORGB 

LAB KLAB MLAB OLAB 

 Totally 36 of the 122 images, taken from 11 Mar to 10 June 2015 in the  area, 

were randomly selected for the study. Figure 5.7 (a) and (b), obtained by ORGB method, showed 

that the thresholds changed with time. And the three images extracted from image WHF-

20150317-1, image WHF-20150410-1, and image WHF-20150608-1 using ORGB method were 

shown in Figure 5.8 (a), (b), and (c), respectively. Figure 5.8(b) gave the best result because 

almost no pixles representing soil background were extracted. 

Figure 5.7 (a) Thresholds vs Time in LAB color space, (b) Thresholds vs Time in RGB 
color space 

(a)                                                                         (b) 
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Figure 5.8 (a) Image extracted from image WHF-20150317-1, (b) Image extracted from 
image WHF-20150410-1, (C) Image extracted from image WHF-20150608-1. 

                             (a)                                         (b)                                        (c) 

 

The applicable threshold was determined based on the quality of image segmentation. A 

new criterion  was defined by Equation (5.5): 

 

where, The number of pixels representing soil background; 

            The total number of pixels in the image. 

 The first 7 images were selected to be processed using the six methods, and the   values 

were calculated by Equation (5.5). The results are listed in Table 5.2. 

Table 5.2  values obtained using 6 methods 

Images 
KRGB 

 
MRGB 

 
ORGB 

 
KLAB 

 
MLAB 

 
OLAB 

 

WHF-20150314-1 2.3% 3.2% 16.4% 1.2% 3.5% 13.8% 

WHF-20150317-1 2.4% 3.5% 17.6% 1.1% 3.1% 15.5% 

WHF-20150320-1 4.9% 100% 12% 3.8% 5.6% 10.2% 

WHF-20150323-1 0.9% 4.0% 2.7% 0.2% 0.3% 6.8% 

WHF-20150326-1 0.6% 5.6% 1.3% 0.4% 0 5.6% 

WHF-20150329-1 1.2% 8.9% 1.7% 1.2% 1.1% 5.3% 

WHF-20150301-1 0.5% 5% 0.4% 0.4% 0.5% 0.8% 
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In Table 5.2, the 100% (red color) value was obtained using the method MRGB from 

image WHF-20150320-1. Three sets of images, including the original images and their extracted 

images, were shown in Figure 5.9. The main difference between the three original images was 

that image WHF-20150320-1 was brighter than the other two. That was why only some small 

green groups (Green pixel number  20) was extracted from the image WHF-20150320-1. The 

result showed that the Maximum Entropy method was more sensitive to sunlight than the K-

means and OTSU method. From Table 5.2, we also found that the  values of the first three 

images estimated using either the ORGB method or the OLAB method were greater than the 

others and these values were regularly decreasing when the wheat matured. In the same way, the 

image processing results of three sets of images were shown in Figure 5.10 (a), (b), and (c). The 

result indicated that the OTSU method is more sensitive to wheat growth.  

Figure 5.9 Image processing results with the MRGB method for (a) images WHF-
20150317-1, (b) images WHF-20150320, and (C) image. 

                                         (a)                            (b)                             (c) 
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Figure 5.10 Image processing results with the OLAB method for (a) images WHF-
20150317-1, (b) images WHF-20150320, and (C) image about WHF-20150323-1. 

(a)                            (b)                             (c) 

 

The extracted groups in the image marked with a purple rectangle in Figure 5.10 (c) were 

analyzed. The  curve ( ) is shown in Figure 5.11. The value of   ( ) 

was equal to 6.75%, which represented 90% of the value of   ( ). The result showed 

that most pixles in the groups, with pixel number less than or equal to 20, were from the soil 

background. Therefore, a criterion for selecting the applicable threshold was found to be 

 

The applicable threshold was obtained when the  of the extracted image was less 

than 1% during image segmenting.  
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Figure 5.11   curve ( ) for the extracted image from WHF-20150323-1 

 

A test on criterion (5.6) was conducted. For images taken from the , the 

applicable threshold was found to be -9.56, which was obtained by the OLAB method using 

image WHF-20150401-1 based on criterion (5.6). This threshold with the OLAB method was 

are listed in 

Table 5.3. The results showed that the background noise were greatly reduced. Therefore, the 

criterion for selecting the optimal threshold was validated. This criterion was then applied to 

select the applicable thresholds for all six methods, and their results are listed in Table 5.4 and 

Table 5.5 respectively. 

Table 5.3 Results for testing criterion (5.6) 

Images  with OLAB method  with THoptimal  

WHF-20150314-1 20.2% 2.2% 

WHF-20150317-1 22.5% 2.6% 

WHF-20150320-1 15.2% 5.3% 

WHF-20150323-1 7.6% 0.3% 

WHF-20150326-1 6.2% 0.8% 

WHF-20150329-1 6.1% 2.3% 

WHF-20150401-1 0.9% 0.8% 

                  *  
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Table 5.4 Applicable thresholds from the three methods in LAB color space.  

Images 
KLAB MLAB OLAB 

 Threshold  Threshold  Threshold 

WHF-20150314-1 1.2% -7.9% 3.5% -5.1% 13.8% 0.4% 

WHF-20150317-1 1.1% -8.5% 3.1% -5.2% 15.5% -0.1% 

WHF-20150320-1 3.8% -11.1% 5.6% -8.9% 10.2% -1.5% 

WHF-20150323-1 0.2% -11.3% 0.3% -8.2% 6.8% -2% 

WHF-20150326-1 0.4% -11.1% 0 14.2% 5.6% -1.2% 

WHF-20150329-1 1.2% -13.4% 1.1% -14.2% 5.3% -5% 

WHF-20150401-1 0.4% -14.4% 0.5% -16.7% 0.8% -9.6% 

                  *  

*  

 

Table 5.5 Applicable thresholds from the three methods in RGB color space. 

Images 
KRGB MRGB ORGB 

 (%) Threshold  (%) Threshold  (%) Threshold 

WHF-20150314-1 2.31 0.22 3.24 0.17 16.37 0.08 

WHF-20150317-1 2.43 0.22 3.55 0.16 17.60 0.08 

WHF-20150320-1 4.90 0.29 100.00 1.04 11.97 0.14 

WHF-20150323-1 0.85 0.26 3.95 0.44 2.65 0.15 

WHF-20150326-1 0.60 0.25 5.61 0.47 1.29 0.14 

WHF-20150329-1 1.23 0.34 8.85 0.59 1.69 0.23 

WHF-20150401-1 0.55 0.35 5.05 0.57 0.43 0.31 
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Figure 5.12 Green leaves extracted from the image WHF-20150401-1 using the MRGB 
method. 

 

As shown in Figure 5.12, the green leaves extracted from image WHF-20150401-1 using 

the MRGB method gave a  value of 5.05%, the red number in Table 5.5. The large  

value was mainly caused by the groups of green pixels (pixel number  ) , not the noise from 

the image background. The six applicable thresholds were then obtained from only one image, 

WHF-20150401-1(Figure 5.13). The values with purple color were listed in Table 5.4 and 5.5. 

Figure 5.13 Image WHF-20150401-1 
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In order to select the best threshold to accurately extract the green pixels, a 

semiautomated algorithm was developed to count the actual green pixels in the image. The 

methods to be compared included the six methods listed in Table 5.1, plus methods KR&L, 

MR&L, and OR&L. Green pixeles were counted by lines. The semiautomated algorithm 

included three steps. The first step was to select most of the green pixels in one line by an 

automated method. color space were used to 

select. Any pixel in the red dash line area (  shown in 

Figure 5.14 was counted and marked with red color as shown in Figure 5.15 (d). 

Figure 5.14 Area of green pixels in the LAB color space. 

 

 

 

 

 



83 

Figure 5.15 Process of counting the green pixels, (a)  curve of pixels in the LAB color 
space, (b) a component of pixels in the LAB color space, (c) results of  , (d) results by 
the automated method, (e) results by manually counting. 

 

In the purple ellipse of Figure 5.15 (d), some green pixels were missed. The missed pixels 

were manually counted in the second step and are shown in Figure 5.15 (e). After green pixel 

counting, the PVC was obtained and the extracted image was shown in Figure 5.16. Because 

background noise stll existed, a third step was used to filter the noise. The resulting image was 

shown in Figure 5.17, and the actual PVC was equal to 48.7%, which was obtained from image 

WHF-20150401-1. 
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Figure 5.16 Image after counting green pixels. 

 

Figure 5.17 Image after filtering the background noise. 

 

Nine thresholds were used to segment the image WHF-20150401-1, and the PVCs obtained 

are listed in Table 5.6. The selected applicable threshold for all images taken in the Winter  

area was -9.6 which was the A component value in the LAB color space because the PVC value 

(48.4%) obtained using this threshold was closest to the actual PVC value (48.7%).  

 

 



85 

Table 5.6 PVCs of the extracted image by the nine thresholds in the bracket pairs. 

Methods LAB RGB LAB&RGB 

K-Means 
46.6% 
(-14.4) 

43.5% 
(0.35) 

38.2% 
(-14.4&0.35) 

ME 
39.7% 
(-16.7) 

20.3% 
(0.57) 

18.1% 
(-16.7&0.57) 

OTSU 
48.4% 
(-9.6) 

46.5% 
(0.31) 

44.2% 
(-9.6&0.31) 

 

5.2.2.1.2 Determination of the other four applicable thresholds  

The same method was used to estimate the other four selected applicable thresholds to 

extract the green pixels from the images taken the areas named Fungici, TRAY1, TRAY9, and 

U6837. The total selected applicable thresholds and the methods used to calculate them were 

listed in Table 5.7. 

Table 5.7 Applicable thresholds and methods used to calculate them. 

 

 

 

 

 

 

 

5.2.2.1.3 Validation of the image processing algorithm 

Three images from each weat group, including the images used to determine applicable 

threshold, were selected. The semiautomatical green pixel counting method was employed to 

count the actual PVCs for comparison. The actual PVCs, calculated PVCs, and Relative errors 

are listed in Table 5.8. The maximum and minimum erros were 9.1% and 0.3%, respectively. 

 Wheat pictures Applicable methods Applicable  thresholds 

Pictures of Winter area OLAB -9.6 

Pictures of Fungici area OLAB -9.1 

Pictures of TRAY1 area ORGB 0.24 

Pictures of TRAY9 area ORGB 0.26 

Pictures of U6837 area OR&L -1.1&0.15 
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Generally, the maximum errors occurred during the early wheat growth stage due to the impact 

of soil background. 

5.2.2.1.4 Extraction of PVCs of all images 

By using these thresholds, all images taken in the five areas, Fungici, TRAY1, TRAY9, 

U6837, and Winter, were segmented, and the results are compared in Figure 5.18. 

Figure 5.18 PVCs of all images. 

 

Areas Pictures 
Actual PVCs 

(%) 

Calculated PVCs 

(%) 

Relative errors 

(%) 

Winter 
area 

WHF-20150326-1  33 30 -9.1 

WHF-20150401-1 49.5 48.4 -2.2 

WHF-20150426-1  63.8 59.7 -6.4 

Fungici 
area 

FWH20150314-1  27.1 24.7 -8.9 

FWH20150323-2 50.2 48 -4.4 

FWH20150326-1  48 44.2 -7.9 

TRAY1 
area 

TRAY1-20150401-1  25.7 25.9 0.8 

TRAY1-20150410-1 44.9 44.6 -0.7 

TRAY1-20150517-1  65.6 65.8 0.3 

TRAY9 
area 

TRAY9-20150329-1  12.9 12.4 -3.9 

TRAY9-20150410-1  35 34.1 -2.6 

TRAY9-20150416-1  52.8 49.8 -5.7 

U6837 
area 

U6837 -20150407-1  16 17.5 9.4 

U6837 -20150416-1  37.5 36.6 -2.4 

U6837 -20150426-1  51.1 51.8 1.4 
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5.2.2.2 Texture-color analysis for counting wheat heads  

Figure 5.19 Gray-tone wheat picture. 

 

The gray-tone wheat picture in Figure 5.19 shows that texture is the main difference 

between the wheat head and the leaves, stems, soil ground, etc. Although some literatures have 

counted wheat heads based on color features, texture features, or both, the recognition rate has 

been affected by weather, lighting, planting method (drilling or broadcasting), or training method 

(Cointault et al., 2008; Liu et al., 2014). In this study, we proposed a combined texture-color 

analysis method based on the hypothesis that a wheat image can be divided into wheat head and 

background by texture features. The computing process of this method is shown in Figure 5.20. 

Figure 5.20 Computing process of the texture-color analysis method. 

 

Tuceryan and Jain (1993) defined image texture as a function of spatial variation in pixel 

intensities (gray values). Using image texture features to recognize image regions is an essential 

method in machine vision (Tuceryan and Jain, 1993). In the 1970s Haralick (1970) proposed the 

gray level co-occurrence matrix (GLCM), a well-known and widely used method for image 

analysis. Co-occurrence probabilities are conditional joint probabilities of all pair combinations 

of gray levels in the spatial window of interest given two parameters: interpixel distance ( ) and 
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orientation ( (Clausi, 2002). The probability measurement is given by Equations (5.7) and (5.8) 

(Clausi, 2002): 

 

 

Where  =the co-occurrence probability between grey level  and  in a normalized 

GLCM; 

             =the number of occurrences of grey levels  and  within the given window 

( ); 

             =the quantized number of grey levels; 

The mean, standard deviations, and other parameters for the matrix rows and columns are 

calculated using Equations (5.9)-(5.21) (Haralick et al., 1973; Soh and Tsatsoulis, 1999; Clausi, 

2002). 
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In this study, the optimal texture features were initially selected from the 23 texture 

features proposed by Haralick. Equations related to the 23 texture features are listed in Table 5.9 

(Haralick et al., 1973; Soh and Tsatsoulis, 1999; Clausi, 2002).  

Table 5.9 Equations related to 23 texture features. 

Autocorrelation(autoc)  

Contrast(contr)  

Correlation(Matlab)(corrm)  
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Correlation(corrp)  

Cluster Prominence(cprom)  

Cluster Shade(cshad)  

Dissimilarity(dissi)  

Energy(energy)  

Entropy(entro)  

Homogeneity(Matlab)(homom)  

Homogeneity(homop)  

Maximum Probability(maxpr)  

Sum of squares: 

Variance(sosvh) 

 

Sum Variance(savrh)  

Sum Average(savgh)  
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Sum Entropy(senth)  

Difference Variance(dvarh)  

Difference Entropy(denth)  

Information measure of 

correlatin1(inf1h) 

 

Information measure of 

correlation2(inf2h) 

 

Inverse Difference 

(INV)(homom) 

 

Inverse Difference 

Normalized(INN)(indnc) 

 

Inverse Difference Moment 

Normalized(IDN)(idmnc) 

 

A portion of one wheat image, shown in Figure 5.21, was used to select the parameters 

that best describe texture characteristics of wheat. A MATLAB code, written by Avinash 

Uppuluri (2010) to calculate the 23 texture features, was used in the image processing in this 

study. Gray-level figures based on texture features were created, as listed in Appendix M. 

Comparison of these gray-level figures to the original image shown in Figure 5.22 revealed that 
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the four texture parameters (autocorrelation, variance, sum variance, and sum average) are 

suitable for characterizing wheat texture. The binary images of the four texture parameters are 

illustrated in Figure 5.22. The white regions in the binary images represent wheat heads or leaf 

debris with green-yellow texture. Comparison of the four binary images to the original image 

revealed the following facts: 

 Although the parameter Savgh is most sensitive to the wheat texture, it causes noise (e.g., 

leaf debris with green-yellow texture [area within red circle in Figure 5.22 (b)] and dark 

green stems [areas within red rectangles in Figure 5.22 (b)]). 

 Figure 5.22 (a) and (c) show that the two parameters Autoc and Sosvh almost identically 

discriminated wheat heads and their background.  

 As shown in Figure 5.22 (d), parameter Svarh had most efficiently removed noise: Leaf 

debris in the red circle was smaller than others in Figure 5.22 (a), (b), and (c), but Svarh 

simultaneously removed the two wheat heads in the rectangular area. 

Figure 5.21 A portion of one wheat image. 
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Figure 5.22 Binary images of the corresponding grey level image. 

 

 Based on these facts, parameters Savsgh, Autoc, and Sosvh were selected to extract 

wheat heads from the original image. Figure 5.23 (a) is the original image, image (b) is the 

binary figure obtained by texture analysis, and image (c) shows the extracted wheat heads. The 

subsequent objective was to eliminate leaf debris, as indicated by red circles, and small green 

spots (pixels less than 50), as shown in Figure 5.23 (c). Individual objects, as shown in Figure 

5.23 (b) and (c), were then extracted and saved in smaller image files, as shown in Figure 5.24.  
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Figure 5.23 Extracted wheatheads image  

(a) 

 

(b) 

 

(c) 
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Figure 5.24 Extracted RGB and binary images 

 

Color indices shown in Equations (5.1), (5.2), and (5.3) were then used to eliminate non-

green pixels in the images of individual objects. The percent non-green coverage (PNGC) was 

calculated using Equation (5.45): 

 

Where 

  =total number of pixels number before color analysis 

             =total number of green pixels number after color analysis. 

The PNGC were calculated after color analysis, and a stem plot was made, as shown in Figure 

5.25. The threshold value was determined to be 15%, so all leaf debris with green-yellow texture 

were eliminated.  

Figure 5.25 Non-green coverage versus block number 

 



96 

 The final step of the algorithm was to count wheat heads. The wheat heads were directly 

counted if the heads were separated from each other; if the wheat heads were connected as 

shown in Figure 5.23, however, their connecting pattern must be judged before counting 

(Germain et al., 1995). The literatures have reported several methods for counting wheat heads, 

such as the splitting and merging method, the wheat head shape index method, and the joint point 

counting (JPC) method (Germain et al., 1995; Frédéric et al., 2012; Liu et al., 2014). The 

splitting and merging method splits the connected lobes of wheat heads based on skeleton 

analysis and restructures every wheat head using corresponding neighboring lobes based on the 

maximum length limitation for one wheat head and orientation similarity analysis (Germain et al., 

1995). Frédéric et al. (2012) proposed the wheat shape index and Equation (5.46) to calculate 

wheat shape index: 

 

where S is the surface and Sc is the convex hull surface of the pixel group, as shown in Figure 

5.26 (a) and (b).  

Figure 5.26   Pixel groups with concave shapes (a) and convex hull of a concave shaped 
pixel group (b). 

(a)                                                                       (b) 
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They also hypothesized that X number of wheat heads could be estimated using 

inequality (5.47). 

 

Although the value of wheatear shape index Q must be greater than zero, Q was less than 

zero because , indicating an input error in Equation (5.46). Instead the equation to 

calculate the wheat shape index should be 

 

The JPC method requires joint points in the image following a skeleton operation for an image of 

multiple connected wheat heads; X number of wheat heads could be calculated by  

 

Where N is the number of the joint points in the image (Figure 5.27 (a) and (b)).  

Figure 5.27 Image with two wheatheads (a) and its skeleton image (b) for counting 
wheatheads. 

(a)                                                                   (b) 

 

The wheat head shape index method and the JPC method were used to count wheat heads, 

and the counting results are shown in Figure 5.28(a) and (b). The number of red addition signs 

represented the number of wheat heads.  
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Figure 5.28 Wheatear counting results, (a) using the WSI method and (b) using the JPC 
method. 

(a) 

 

(b) 

 

A new method based on the wheat head counting model (WCM) was proposed in this 

study. As mentioned, every pixel group in the image was extracted and saved as a new binary 

image following texture analysis and segmentation (Figure 26 (a)). The function of regionprops 

in the Matlab image tool box was used to measure the geometrical parameters of every 

independent pixel group in an image, including Area(S), MajorAxisLength( ), 

MinorAxisLength( ), ConvexArea( ), ConvexArea( )and Perimeter( ). A new concept, 

area ratio (AR), ( ) was given by  

 

Another new concept, perimeter ratio (PR), (  was represented by  
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The number of wheat heads in every image was determined by the four parameters AR , 

wheat head shape index (WSI) Q, solidity , and PR . Then a WCM based on the image 

measurement was given by  

 

 Where,   ---------the observed wheatear number in the  image block; 

               ------the regression coefficients; 

              ------the left-over noise corresponding to the  image block 

                                          

In order to calculate wheat head counting model, 51 blocks of pixel group were extracted 

by experiments and measured using the function regionprops(). Their measurement data were 

recorded. The multiple linear regression model expressed by Equation (5.53) was obtained by the 

function regress() in MatlabR 2015.  

 

and,                    

                            

Because  , F-distribution at level with 

K-1, N-K degrees of freedom under the null hypothesis, here K=16, N=51 and based on a Type 

 was considered to differ from zero, resulting in significant association between the 
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wheat head number and at least one of the image measurement values. Counting results using 

WCM are shown in Figure 5.29. Disadvantages and advantages of the three methods and needed 

improvements are discussed below. 

Figure 5.29 Wheatear counting results using the WCM (Wheatear Counting Model) 
method. 

 

5.3 Results 

5.3.1 Percent vegetation coverage 

5.3.1.1 Wheat growth model (WGM) based on PVC 

All PVC data of each selected area are presented. In order to intuitively illustrate wheat 

growth status and compare PVC differences among the five selected areas, the wheat growth 

model (WGM) related to PVC versus time was defined by 

        

Where,   ---------the observed PVC on the  day from 1 Mar 2015; 

    ------the regression coefficients; 

     ------the left-over noise corresponding on the  day 

                                            

All PVC data were used in the regressional analysis, and the coefficients of every model 

corresponding to the selected area were obtained, as listed in Table 5.10. 
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Table 5.10 M . 

 Coeffi. Fungici* TRAY1*  TRAY9* U6837* Winter * 

 0 0 0 0 0 

 0 0 0 0 0 

 0.001 0 0 0 0.001 

 -0.034 -0.015 0.002 -0.002 -0.069 

 0.771 0.386 0.003 0.117 2.194 

 -4.306 -3.21 -0.282 -3.017 -30.871 

 0 0 0 25.633 168.722 
    * Fungici, TRAY1, TRAY9, U6837, and Winter are the wheat labels at the selected area. 

Statistics features are listed in Table 5.11. 

Table 5.11  

Name R square F -Value  Estimate of error variance 

Fungici 0.957 526.579 27.281 

TRAY1 0.961 587.131 19.938 

TRAY9 0.915 257.732 34.964 

U6837 0.946 344.314 21.440 

Winter 0.953 401.759 20.757 

Because  anyone of F-values in Table 5.5 , F-

distribution at level with K-1, N-K degrees of freedom under the null hypothesis, here K=7, 

N=116  least one 

of the coefficients  was considered to differ from zero, demonstrating a 

significant association between the PVC and time.  

5.3.1.2 Analysis of wheat growth status based on WGM 

Based on the models of WGM, wheat growth curves of the five selected wheat areas are 

shown in Figure 5.30. For real-world application, wheat growth status can be divided into two 
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phases: growth period and mature period. The date range of the turning point from the growth 

period to the mature period was May 15-18, 2015, after which time the wheat entered the Feekes 

11.0 stage. The wheat growth curve (WGC) showed the differences of wheat development in 

various areas.  

Figure 5.30 Wheat growth curves 

 

Figure 5.30 also shows that the PVC decreasing rate were different compared to each 

other throughout the mature period, and developing speed curves of the five selected wheat 

reinforced this result, as shown in Figure 5.31. In fact, all wheat in the five areas were affected 

by leaf rust in the mature period, as shown in Figure 5.32, and the conclusion was made that 

TRAY9 wheat was less affected than the others, and the Fungici wheat was most severely 

affected of all the wheat, as described in Appendix L. 

Figure 5.31 Wheat developing speed curves 
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Figure 5.32 Wheats affected by leaf rust, (a) Fungici wheat, (b) U6837 wheat, (c) TRAY1 
wheat, (d) TRAY9 wheat, (e) Winter wheat. 

 

5.3.2 Wheat head counting algorithm 

 As mentioned, the wheat head counting process based on machine vision was divided 

into three steps: wheat head image segmentation, leaf debris elimination, and wheat head 

counting. This study investigated the effects of light intensity on image segmentation, the 

efficiency of leaf debris elimination, and wheat head counting methods. The studied images were 

selected and cut from the corresponding original pictures; and the dimensions of cut images were 
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usually 400X400 pixels, and the window dimension to calculate texture features was 11X11 

pixels. 

Figure 5.33 (a) Original image, (b) autocorrelation grey-level image; (c) sum variance grey-
level image under sunny weather  

 

Figure 5.34 (a) Original image, (b) autocorrelation gray-level image, and (c) sum variance 
gray-level image under cloudy weather  

 

5.3.2.1 Wheat head image segmentation based on texture analysis 

Shade in the wheat image in sunny weather was a challenge for image segmentation 

based on texture analysis. Eighteen selected images were taken under sunny weather or cloudy 

conditions to be used in this study. Figures 5.33 and 5.34 showed two examples of the original 

images and corresponding texture parameter gray-level images. The texture parameter gray-level 

images show that the wheat heads in the gray-level images in Figure 5.33 had more gray levels 

than the wheat heads in the gray-level images in Figure 5.34. The gray level of wheat heads in 
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Figure 5.34 was almost uniform, but the gray level of wheat heads in the red circle was darker 

than other wheat heads in Figure 5.33. Significant gray-level difference between wheat heads in 

same image can easily lead missing wheat heads after converting the image into binary image. 

Therefore, two algorithms were used for various lighting conditions. For the image taken in 

sunny weather like the RGB image in Figure 33, the algorithm obtained the gray sum of two 

gray-level images (Figure 5.33) and then converted the summed gray-level image into a binary 

image. For the image taken in cloudy weather, however, the algorithm converted the two gray-

level images into two binary images and then combined the two binary images into one using OR 

Boolean operation. Finally, the extracted wheat head image was obtained by image segmentation 

based on the created binary image. A new concept of wheat head extracting rate was given 

by Equation (5.58): 

 

Where 

 =number of wheat heads in the original image 

 =number of extracted wheat heads in the segmented image. 

The wheat head extracting rates are listed in Table 5.12 for images taken under various 

weather conditions and time. Data with light brown backgrounds were obtained from images 

taken under cloudy weather conditions. The average of  for images taken under sunny and 

cloudy weather conditions were 90.1% and 82.8% respectively. 

Table 5.12 Wheat head extracting rates for various images 

Exp. No   (%) 

705-7 21 20 95.2 

705-5 21 21 100 

705-6 17 16 94.1 
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705-11 15 11 73.3 

705-13 16 13 81.3 

705-14 20 20 100.0 

705-15 17 16 94.1 

705-2 23 19 82.6 

705-9 18 16 88.9 

705-10 16 16 100 

705-12 27 23 85.2 

705-19 16 10 62.5 

705-20 26 24 92.3 

705-21 21 18 85.7 

705-22 20 18 90 

705-23 28 19 67.9 

705-24 20 18 90 

705-25 26 17 65.4 

       Average of  85.6 

5.3.2.2 Leaf debris elimination based on color analysis 

Extracted wheat head images were obtained following the texture analysis, as shown in 

Figure 5.35. Except the wheat head blocks in the image, there were some small leaf debris. The 

primary objective of the color analysis was to eliminate the leaf debris in order to obtain accurate   

head counting. In order to assess the capability of the color analysis method in eliminating leaf 

debris, two evaluation criteria (leaf-eliminating rate  and leaf-eliminating error rate ) 

were defined by Equations (5.59) and (5.60):  

                  

Where, = the number of eliminated leaf debris in the images; 

             =-the total number of leaf debris in the images; 
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Figure 5.35 Extracted wheat head images, (a) image taken under sunny weather, (b) image 
taken under cloudy weather. 

(a)                                              (b) 

 

                                           

Where, =the eliminated wheatear number wrongly taken as the leaf debris by the 

method; 

Table 5.13 Leaf-eliminating rate and eliminating error rate 

Exp. No.      
705-7 8 0 0 0  
705-5 8 0 0 0 
705-6 8 2 0 25 0 

705-11 11 0 0 0 
705-13 1 1 0 100 0 
705-14 4 0 0 0 
705-15 7 1 1 14.3 50 

705-2 3 0 0 0 
705-9 4 1 0 25 0 

705-10 2 1 0 50 0 
705-12 5 2 0 40 0 
705-19 2 1 0 50 0 
705-20 4 3 1 75 25 
705-21 5 4 0 80 0 
705-22 8 6 1 75 14.3 
705-23 5 2 0 40 0 
705-24 5 4 0 80 0 
705-25 2 2 1 100 33.3 
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Similar to Table 5.12, data with the light brown background in Table 5.13 were obtained 

from images taken under cloudy weather conditions. The average number of leaf debris block for 

images taken under sunny and cloudy weather conditions were 6.25 and 4.2 respectively. The 

average  were 17.4%, and 61.5% respectively. Thus, the color analysis method for 

eliminating leaf debris was more effective under cloudy conditions. Loss of wheat heads 

probably occurred during thresholding in the color analysis. 

5.3.2.3 Wheatear counting methods 

 As mentioned, the WCM method, JPC method, and WSI method were used in this study. 

Because the three methods were used to count wheat heads in the blocks after color analysis, the 

study was done under the assumption that all leaf debris had been completely eliminated. All 

tested data are listed in Table 5.14; the following relationship (Equation 5.61) is true for all 

methods. 

                                   

Where, =the total number of actual wheatear in the blocks of one experiment; 

            =the number of wheatear counted by the method; 

            =the number of wheateat over-counted; 

            =the number of wheatear under-counted; 

Table 5.14 Wheatear number using three methods. 

Exp. No  
WCM Method JPC Method WSI Method 

         

705-7 20 19 1 -2 31 12 -1 48 28 0 
705-5 21 22 2 -1 38 18 -1 70 50 -1 
705-6 16 15 0 -1 27 11 0 49 33 0 

705-11 11 17 6 0 23 12 0 57 46 0 
705-13 13 11 2 -4 15 2 0 21 9 -1 
705-14 20 18 1 -3 22 3 -1 38 18 0 
705-15 15 20 6 -1 29 14 0 38 23 0 
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In order to compare the three methods, three evaluation criteria were defined using 

Equations (5.62), (5.63), and (5.64):   

 Over-counting rate  

 

 Under-counting rate  

 

 Total counting error  

 

Table 5.15 Wheat head counting accuracy for the three methods 

Exp. No. 
WCM Method JPC Method WSI  Method 

         

705-7 5.0% 10% 15% 60% 5% 65% 140% 0 140% 
705-5 9.5% 4.8% 14.3% 85.7% 4.8% 90.5% 238.1% 4.8% 242.9% 
705-6 0 6.3% 6.3% 68.8% 0 68.8% 206.3% 0 206.3% 

705-11 54.5% 0 54.5% 109.1% 0 109.1% 418.2% 0 418.2% 
705-13 15.4% 30.8% 46.2% 15.4% 0 15.4% 69.2% 7.7% 76.9% 
705-14 5.0% 15% 20% 15% 5% 20% 90% 0 90% 
705-15 40.0% 6.7% 46.7% 93.3% 0 93.3% 153.3% 0 153.3% 
705-2 0 5.3% 5.3% 36.8% 0 36.8% 147.4% 0 147.4% 
705-9 0 0 0 0 6.3% 6.3% 143.8% 0 143.8% 

705-10 0 6.3% 6.3% 31.3% 6.3% 37.5% 87.5% 0 87.5% 
705-12 4.3% 30.4% 34.8% 65.2% 0 65.2% 65.2% 8.7% 73.9% 

705-2 19 18 0 -1 26 7 0 47 28 0 
705-9 16 16 0 0 15 0 -1 39 23 0 

705-10 16 15 0 -1 20 5 -1 30 14 0 
705-12 23 17 1 -7 38 15 0 36 15 -2 
705-19 10 13 3 0 12 2 0 38 28 0 
705-20 23 26 3 0 24 1 0 56 33 0 
705-21 18 19 2 -1 24 6 0 43 25 0 
705-22 17 18 1 0 22 11 -6 32 15 0 
705-23 19 19 1 -1 24 6 -1 51 32 0 
705-24 18 19 2 -1 24 6 0 43 25 0 
705-25 16 15 0 -1 18 4 -2 33 17 0 
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705-19 30% 0 30% 20% 0 20% 280% 0 280% 
705-20 13.0 0 13% 4.3% 0 4.3% 143.5% 0 143.5% 
705-21 11.1% 5.6% 16.7% 33.3% 0 33.3% 138.9% 0 138.9% 
705-22 5.9% 0 5.9% 64.7% 35.3% 100% 88.2% 0 88.2% 
705-23 5.3% 5.3% 10.5% 31.6% 5.3% 36.8% 168.4% 0 168.4% 
705-24 11.1% 5.6% 16.7% 33.3% 0 33.3% 138.9% 0 138.9% 
705-25 0 6.3% 6.3% 25.0% 12.5% 37.5% 106.3% 0 106.3% 

Average 11.7% 7.7% 19.4% 44% 4.5% 48.5% 156.8% 1.2% 158% 
Table 5.15 showed that, the WCM method performed better than the JPC and WSI 

methods. And, for the WCM method, the average counting error rate for images taken under 

cloudy and sunny weather conditions were 14%, and 26% respectively. 

5.3.2.4 WCM-based algorithm test  

Although the wheat head detection rate (90.1%) for images taken in sunny weather was 

greater than that under cloudy weather (82.8%), images taken without sunlight interference were 

recommended in this study due to their improved leaf debris elimination rate in color analysis 

and counting error rate using WCM method. The final image processing algorithm modified 

based on the above results was tested, where the non-green coverage threshold was 25%, and the 

image used in the test was taken without sunlight interference (under cloudy weather conditions). 

To further study these limitations, eight images taken from the Fungici and Winter areas were 

selected, and the WCM-based algorithm was employed to process these images. The results are 

shown in Table 5.16. The evaluation parameters as defined in equations (5.58), (5.59), (5.60), 

(5.62), (5.63), and (5.65) were calculated and are listed in Table 5.17.  The average wheat head 

extraction rate ( ) was 78.6% after the first processing step. The average leaf debris 

eliminating rate ( ) was 77.1%, and the average leaf debris eliminating error rate ( ) was 

4.5% after the second processing step. The average overcounting rate  was higher than 24%, 

indicating the need for further research. The recognition rates (RR) were calculated using 

equation (5.65), and the average recognition rate was 79.4% by using the WCM-based algorithm.  
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Table 5.16 Image processing results of the images taken from Fungici and Winter areas.  

Images          
FWH20150522-1 66 51 9 5 1 51 56 6 11 
FWH20150522-2 69 48 13 10 2 48 50 2 4 
FWH20150523-1 53 44 18 12 2 44 44 7 7 
FWH20150523-2 61 46 7 5 1 46 48 4 6 

WHF20150522-10 47 45 22 21 2 45 51 3 9 
WHF20150522-11 52 42 40 35 5 42 52 3 13 
WHF20150523-1 51 47 31 24 0 47 62 7 22 
WHF20150523-2 48 41 49 42 2 41 56 2 17 

Table 5.17 Evaluation parameters about the WCM-based algorithm. 

Images (%) (%) (%) (%) (%) (%) 
FWH20150522-1 77.3  55.6  16.7  21.6  11.8  80.4  
FWH20150522-2 69.6  76.9  16.7  8.3  4.2  92  
FWH20150523-1 83.0  66.7  14.3  15.9  15.9  84.1  
FWH20150523-2 75.4  71.4  16.7  13  8.7  87.5  

WHF20150522-10 95.7  95.5  8.7  20  6.7  82.4  
WHF20150522-11 80.8  87.5  12.5  31 7.1  75 
WHF20150523-1 92.2  77.4  0  46.8  14.9  64.5  
WHF20150523-2 85.4  85.7  4.5  41.5  4.9  69.6  

Mean 82.4 77.1 11.3 24.8 9.3 79.4 
 

5.4 Discussion 

5.4.1 Application of PVC         

As mentioned, PVC not only represents the status of wheat canopy coverage in the 

corresponding area, changes in PVC with time can reflect the status of wheat development. 

Therefore, the PVC map pertaining to wheat in the field can be used to instruct the field 

management in situations such as calculating spectral indices for topdress N application. The 

PVC map can also be used for plant breeding research, such as determining differences among 

various trains according to the wheat growth curves and selecting optimal wheat varieties for 

given field conditions. 
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5.4.2 Wheat head counting method 

Experiments showed that many factors affected the wheat head counting accuracies, 

including weather conditions, the date pictures were taken, and wheat varieties. As shown in 

Figure 5.36 (a), the wheat heads were located with the wheat leaves in the image, increasing the 

difficulty to extract the heads from the leaves, as shown in Figure 5.36 (b). Similarly, as shown 

in Figure 5.37, counting the total number of wheat heads was also difficult because some heads 

were occluded by others. Because non-green coverage was used as the threshold to eliminate leaf 

debris, this algorithm could only be used to count wheat heads before the wheat senescent stage.  

Figure 5.36 Wheatheads in the leaves. 

 

Figure 5.37 Crowed wheatheads. 
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5.5 Future work 

The study on wheat growth trend and head conting using image processing technology 

was only preliminary. Further research may be focused on the following aspects: 

 Exploring more accurate method to extract green pixels in the image; 

 Improving wheat head extraction rate ( ); 

 Reducing the over-counting rate  based on morphological analysis. 
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Chapter 6 -  

6.1 Conclusions 

This research presented the designs of two phenotyping platforms and described the 

development of a machine vision technology for estimating wheat growth status and counting 

wheat heads. The following conclusions were obtained from this study: 

1. Test results on the handheld phenotyper, Phenocorn, showed that the phenotyper can 

be reliably used as an instrument to collect plant phenotyping information.To further evaluate the 

Phenocorn, Crain et al. (2016) conducted a serial of field trials at the International Maize and 

Wheat Improvement Center (CIMMYT), Ciudad Obregon, Mexico.  Validation of the Phenocorn 

showed that it performed as well as other methods for canopy temperature measurement; 

additionally, NDVI and CT data from the Phenocorn were significantly correlated to grain yield 

(Crain et al., 2016). 

2. Design and analysis of the robotic phenotyper, including the mechanical structure and 

CAN-based communication system, were completed. Performances of the basic functions, 

including steering, load lifting, and moving, were tested in the laboratory. Results showed that 

the proposed design specifications were basically met. Integration of a laptop, proximal sensors, 

with a data acquisition system and complete design of the control system are the primary tasks 

for the next step of development. 

3. Machine vision-based detection of phenotyping traits was studied. An algorithm for 

PVC estimation based on color analysis was estabilished. This algorithm can be used to estimate 

the wheat growth status and diagnose plant health conditions. Compared to the JPC method and 

the WSI method, the WCM method proposed in this study was more effective in counting wheat 

heads. The rexperimantal results of 8 different images using the WCM-based algorithm indicated 
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that the average over-counting error rate was 24.8% and the average recognition rate RR was 

79.4% for images taken under cloudy weather conditions.  

6.2 Future work 

6.2.1 Future work on handheld phenocorn 

The handheld phenocorn developed in this study was based on a first-generation design. 

In order to promote rapid dissemination and utilization of the device in practical plant breeding 

field, reducing the total cost and weight should be the focus of future work. As discussed in 

Section 3.3.5, the cost may be reduced by using a less accurate and less expensive GPS selecting 

more affordable sensors, and the weight may be reduced by using Nimh batteries instead of 

Lead-acid batteries (Crain et al., 2016). 

6.2.2 Future work on robotic phenotyper 

For the robotic phenotyper, the design, fabrication, and assembly of the mechanical 

structures have been completed. Further testing on the reliability of the mechanical parts and 

design of the navigation system, electronic control, integration of multiple sensors with data 

acquisition, algorithms for complete robot control, and laboratory and field tests remain to be 

completed.  

6.2.3 Future work on image processing algorithms 

In order to improve the accuracy of the algorithms for crop growth trend study and wheat 

head countings, further research will be needed. This will include improving the algorithm for 

green pixel extraction and reducing the over-counting rate.  
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Appendix B-  

 

 

 

 

This guide was made with Phenocorn Software Version 100314.  The guide walks 

through starting the SXBlue GPS and the Phenocorn software program, checking data integrity, 

and common issues associated with the platform.  Many of the steps describe and then 

demonstrate the steps using screen captures of the actions.  Screen shots often include either the 

entire Windows desktop, or only of the software in use.  This should help the reader, and provide 

an opportunity to find any differences that may occur.  While we have taken every effort to 

insure its accuracy exact steps may be different based on different computers and operating 

systems.   Our goal is that this document should prepare the reader to collect high quality 

phenotypic data in the field, and detail many of the problems and solutions that have occurred 

while operating the equipment.   

CAUTION:  Due to the nature of the LabView executable file, any hardware 

substitutions may not be compatible.  At a minimum substituted hardware would have to 

conform to the baud rate and data output as listed hardware.   
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The manual has been put together in chronological fashion from first assembling 

components to phenotyping.  Thus, more detailed descriptions are provided headlier in the 

manual, and subsequent steps that repeat a process are only referenced, with the reference by 

section and subsection of the initial step(s).  If a particular step does not seem familiar, 

information in previous sections can add detail.  Even though the manual is highly documented, 

and will be crucial the first several uses, it should become no more than a reference guide for the 

experienced user. 

 

 SBAS, satellite based augmentation system; GPS, global positioning system; BER, bit 

error rate; NMEA, National Marine Electronics Association; GUI, graphical user interface: IRT, 

infrared thermometer; NDVI, normalized difference vegetative index  

 

Summary:  This section shows the installation and start up for the first time that the 

Phenocorn program is used.  Once the initial setup has been completed, field data collection can 

begin by proceeding to Section 6 Phenocorn Field Setup. 

4.1 Software Installation 

These steps were completed using Microsoft Windows 7, and show how to install the 

Phenocorn software.  

4.1.1 Download the Phenocorn Program software from 

http://people.beocat.cis.ksu.edu/~jcrain/ 

4.1.2 Unzip the downloaded software into a folder (C:drive used in example), the unzipped file 

 

 

                              Figure B.1  Unzipped "PHENOCORN100314" file. 
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4.1.3  

Clicking My Installer  Volume  setup 

            Depending on the security software on the computer, it may be necessary to allow the 

software to install. 

4.1.4  

 

Figure B.2  Phenocorn software installation dialog box, prompting user to click next to continue 

the installation. 

4.1.5 A dialog box asking for destination directory for both the Phenocorn program and the 

National Instruments software opens.  If the default destinations are not desired make 

changes as necessary.  The National Instruments products should be installed in their own 
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            Figure B.3  Dialog box prompting the user for destination directories.  Default can be 

used, or de

Phenocorn software and National Instruments Software is required.  

4.1.6 A dialog box prompting the user to accept the software license appears.  This is the 

National Instruments license, which must be accepted in order to run the Phenocorn 

program.  The Phenocorn program is made using LabView a National Instruments 

software. 

 

            Figure B.4  Dialog box asking user acceptance of terms for National Instruments 

Software. 

shows the programs to be installed, and the subsequent dialog box shows installation 

progress.  This may take several minutes to complete. 

 



131 

            Figure B.5  Installation Dialog box showing programs that will be installed or modified.  

 

 

         Figure B.6  Progress of the installation of the Phenocorn and LabView Software. 

 

 

                   Figure B.7  Completed installation of the Phenocorn Program. 

4.1.9 At the end of the install the computer must be restarted. 
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                            Figure B.8  Restarting the computer after installation 

4.1.10 The software has been installed.  Clicking on the Windows start menu should now display 

 

 

 

            Figure B.9   

4.2 Initial Hardware Setup 

 These steps work though how to initially plug in different instruments, via USB, find the 

instrument COM port numbers, and set the LabView interface to correctly read data from the 

instruments.  

4.2.1 Connect all instruments to the computer using USB ports.  Instruments connected include 

GreenSeeker, SXBlue IIIL GPS, CT Series Thermometer, and C920 Logitech camera.   
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                       Figure B.10  Connecting all instruments to a lap top computer.  

4.2.2 Find the COM port number for each instrument. 

1. Click on the Start button and then choose Control Panel. 

2. Click on the System and Security link. 

3. In the System and Security window, click on the Device Manager link located under 

the System heading tab. 

4. e COM number of the 

instruments will be visible.  

Note:  The COM port settings may differ based on computer.  It is essential to use the 

correct COM port for each computer so that the data from the Phenocorn can be 

recorded properly.  The following steps illustrate correctly setting the COM port.  

 

                     Figure B.11  COM port number for Phenocorn Instruments.   
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Troubleshooting:  The Ports (COM & LPT) may not show all of the USBs.  If this happens look 

for a tab Other Devices.  With the computer connected to the internet right click and update 

driver software Figure B.12. 

 

                                    Figure B.12  Updating USB device driver software. 

             The following table can be used to record COM port information: 

 

            Table B.1  Instrument baud rate and COM port specifications.  COM port must be found for each 

individual computer. 

4.2.3 To find the COM port of the web camera, open the NI MAX program.  NI Max and an Icon 

was installed with the Phenocorn software installation (Figure B.13).  The 

Measurement&Automation window will open.  Click and expand the Devices and 

Interfaces, then expand the NI IMAQdx Device to find the camera COM number Figure 

B.14 .  The camera port may not be like other ports named COMXX, instead it may be 

camX for the port number. 

Instrument Company Output Output type COM port 

GreenSeeker Trimble, CA 10HZ/38400 baud RS-232to 

USB 

 

SXBlue -L Geneq, Montreal, 

Canada 

10HZ/19200 baud USB  

CT Serial Thermometer MicroEpsilon, NC 10HZ/9600 baud USB  

C920  Camera Logitech <3Frames/Second USB  
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                                        Figure B.13  NI MAX icon on desktop.   

 

            Figure B.14  Measurement & Automation Explorer of NI MAX.  NI-IMAQdx Devices 

shows COM port for the web camera.  For this example the port is cam0, highlighted in 

red box. 

4.2.4 Within NI MAX set the COM ports.  This allows for communication between sensors, the 

computer, and software.  The NI MAX COM ports must match the computer COM ports 

for each instrument, and the baud rate within NI MAX must match the sensor baud rate.  

Set the COM ports and baud rates by 

 1.  Click on the Devices and Interfaces tab.  This will display all of the ports and 

instruments. 
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                                             Figure B.15  Devices and Interfaces tab. 

            2.  From the expanded menu in the Devices and Interfaces tab, click on the COM that has 

the GreenSeeker, this is COM found in Section 4.2.24.2.24.2.24.2.24.2.24.2.2, (example 

COM3 for GreenSeeker) 

 

                         Figure B.16  NI MAX screen after clicking on GreenSeeker COM. 

            

MAX.   
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                                         Figure B.17  Setting the GreenSeeker baud rate. 

            4.  Repeat this process for each instrument, selecting the correct COM port, changing the 

baud rate, and saving the settings.  Correct settings are found in Table B.1 

 

            Figure B.18  Setting COM and baud rate settings for each instrument.  Using information 

from Table B.1each instrument is set by:  1.  Clicking on the instrument.  2.  Changing to 

the Port Settings tab.  3.  Selecting the correct baud rate.  4.  Saving the settings by 

clicking the Save button. 

5. GPS Setup: 

5.1 Initial Software Setup 

5.1.1 Download SXBlue Config Setup (Current version v3.5.5.0) from 

http://sxbluegps.com/download/ 

5.1.2 Unzip the download and use the installation wizard to install SXBlue Config, a quick start 

icon should appear on the desktop. 

5.1.3 Download SxBlueHPSeed PC Setup (Current version v.1.2.4852) from 

http://sxbluegps.com/download/ 

5.1.4 Unzip, and run the SXBlue HPSeed program.  Follow the setup wizard and the installation 

should also include a desktop icon SXBlue HPSeed. 

5.2 Initial GPS Setup 

5.2.1 Connect the GPS to the computer using the USB port of the SXBlue, and have the antennae 

in view of the sky to receive GPS signal. 
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5.2.2 Click on the SXBlue Config Desktop Icon and find the correct Port and Baud Rate setting.  

Use the port for your specific operating system, which was found in Section 4.2.2 or 

Table B.1. 

 

                                     Figure B.19  Selecting correct port and baud rate. 

5.2.3 After filling in correct port and baud rate click Search. 

 

                                      Figure B.20  Software querying receiver settings. 

5.2.4 Click Advance. 

The screen that opens up has multiple tabs that allow monitoring of the GPS quality and 

signal.  The tabs provide many options to adjust the settings within the SXBLue, the main tabs 

that the Phenocorn uses include: 

 Position:  Parameters including date, time, Latitude, Longitude.  Note the Diff Used and Diff 

Status parameter and value.  Diff Used provides an indication that correction is being 

used, using Omnistar it should be OMNIHP or OMNIG2, if different from theses settings 

the correction may not be sufficiently accurate.  Diff Status provides information of how 

the signal is being tracked. 
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Figure B.21  SXBlue Config home screen, multiple tabs can be used to evaluate system functions. 

Satellites:  Displays satellites that are being tracked.  If no satellites are displayed, or there are 

very few satellites, the GPS receiver may be obstructed from receiving GPS signal.   

 

                   Figure B.22  Satellite information in the SXBlue Config program. 

            USB(This):  Displays what type of NMEA GPS strings are being output by the receiver, and the 

speed.  These can be changed by selecting string of interest and changing from the drop down 

menu (SectionB.3.).  The Phenocorn uses on the $GPGGA string at 10 Hz.  If this is changed 

then follow Section B.2.6B to save the configuration file. 
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            Figure B.23  USB(THIS) port displaying the GPS information that the receiver is sending to the 

computer. 

            Precision:  

to determine precision, there are two measurements one for latitude and one for longitude.  At 

ill be under 10 cm. 

 

            Figure B.24  SXBlue Config Precision tab.  Latitude and longitude precision are given as one 

standard deviation, so this picture has a 95% error rate of 1.24 meters by 0.84 meters. 

            L band Status:  Displays the type of SBAS (satellite based augmentation system) correction that 

is received and the quality.  BER (bit error rate) should be low, in open skies near 0, if BER 

increases then the satellite signal is potentially being blocked and accuracy will suffer. 
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      Figure B.25  LBand-Status tab.  Note the lack of BER. 

 

 

             Figure B.26  LBand_status showing BER.  This is usually indicative that the GPS antennae is 

blocked from overhead skies, or GPS quality is low.  The user should be cautious of taking data 

if BER is high, and visually check or perform other data quality assurance processes to insure 

accuracy. 

            LBand-Subscription:  Displays the Omnistar correction that is available.  May not appear until 

Omnistar is activated. 
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            Figure B.27  LBand-Subscrition tab.  Displays information about the purchased Omnistar 

correction. 

5.2.5 Initialize Omnistar.  Completed over the phone with Omnistar sales representatives.   The 

GPS receiver must be turned on and in view of satellites to acquire the Omnistar 

correction.  Once Omnistar is activated and the receiver locks onto the signal the LBand-

Subscription tab will display updated information. 

5.2.6 A. To close SXBlue Config without saving any configurations, the default option, click on 

 

 

                                      Figure B.28  Closing the SXBlue Config without saving. 

            B.  If a configuration has been changed, ie. output rate or type, and these changes are to be 

is option is used rarely, 
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usually after setting up a new reference point Section 5.3. The next time the system is opened the 

changed settings will be used. 

5.3 New Experiment Location 

This section introduces SXBlue HPSeed program that allows a user to setup a known reference 

point.  Using a known reference point will drastically decrease the time of convergence to <10 

cm accuracy from greater than 30 minutes to less than 4 minutes.  Using this method will save 

much time for any experiment that will be phenotyped more than once.  A reference point should 

be non-

The reference must remain in the same location, because convergence occurs to the reference.  If 

the reference is moved, convergence occurs but to an inaccurate location.  

5.3.1 Start the GPS.  From a cold start, it can take up to 30 minutes to converge to 10x10 cm 

accuracy with Omnistar.     

5.3.2 Check the accuracy using SXBlue Config application, and the precision tab. 

 

             Figure B.29  Checking the accuracy.  In this example more time is needed before saving a 

reference point. 

5.3.3 When the accuracy is <0.05m (<5cm) in the precision tab of the of the SXBlue Config, 

close the SXBlue Config Application Section 5.2.6 A..  A reference point can be seeded 

with this level of precision.  The SXBlue Config program must be closed to allow the 

SXBLue HPSeed Program to interface with the GPS. 

5.3.4 Place the GPS receiver on a reference point.  Be careful not to cover the antennae, or GPS 

signal will be lost.  If ever in doubt about the quality of signal or if signal has been lost 
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use the SXBlue Config application checking the Position tab for type of Diff Used and 

the precision tab (Figure B.21 and  Figure B.23).  

5.3.5 Launch the SXBlue HPseed program. 

5.3.6 From the drop down menu select the correct port and click Connect. 

 

            Figure B.30  Selecting correct COM port for GPS.  COM port is system specific found in Section 

4.2.2.  

5.3.6 A Virtual COM is created, click OK. 

5.3.7 Enter the correct baud rate and click OK. 

 

                                      Figure B.31  Selecting correct baud rate (19200). 



145 

5.3.8 A window with GSPSinfo, SEED, Config, Terminal, About opens.  The GPSInfo is the 

default tab.  When signal is being received the color to the left of the COM port number 

will be green. 

 

            Figure B.32  Home screen of SXBLue HPSeed.  Signal is being received as information is 

displayed and highlighted in green. 

5.3.9 Click on the SEED tab and two sub tabs (Log and Goto) will be visible. 

 

 

           Figure B.33  Seed tab of the SXBlue HPSeed Program, with the sub-tabs Log and Goto.  Current 

screen is on the log sub-tab. 

5.3.10 In the Log. Tab, enter a name for the reference station (HomeBase is the example used) 

and click GPS Log.  This will collect readings from the current location, where the GPS 
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antennae is and save the location. A popup box stating the type of reference data saved 

may appear, click Okay or next if it does. 

 

 

                 Figure B.34  Dialog box saying the reference (HomeBase) was correctly saved. 

5.3.11 The new reference point has been saved.  To exit SXBlue HPSeed click close connection 

and then the X to close the program.  SXBlue HPSeed is prone to crash if not closed in 

this order, the port connection must be closed before closing the program.  If not the GPS 

port will not be available to other programs. 

 

            Figure B.35  SXBlue HPSeed after closing the port connection to the GPS, but before exiting the 

program. 
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5.3.12 To save the reference point, SXBlue HPSeed turns on various NMEA strings.  These must 

be turned off, or they will interfere with data collection.  Open and connect the GPS to 

SXBlue Config (Section 5.2) and go to the USB(THIS) tab. 

 

            Figure B.36  SXBlue Config USB(THIS) tab showing NMEA strings turned on.  Examples are 

$GPGGA 10 Hz, $GPGNS 2 sec, $GPZDA 1 Hz. 

$GPZDA.  ($GPGGA and $GPZDA should be set to 10 Hz). 

 

 

             Figure B.37  Turning off NMEA strings in SXBlue Config.  $GPGNS has changed from 2 sec to 

off, $GPGSA and $GPGST are now off. 

5.3.14 Disconnect and save settings (Section 5.2.6B).  This will save the settings for only the 

$GPGGA and $GPZDA strings to be exported. 

 

                                     Figure B.38  Saving the new settings when exiting. 

5.4 Field GPS Setup  

Note:  Must have completed GPS setup. 
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5.4.1 Plug in all USB components as outlined in Initial Phenocorn Startup.  TIP: place different 

colored tape on each USB and computer port. 

5.4.2 Turn on the GPS and allow time to find GPS satellites and correction, normally 2-3 

minutes.  The SXBlue GPS receiver will have four LED lights that illuminate when GPS, 

DGPS, and DIFF (SBAS-Omnistar correction have been located) Place the GPS receiver 

at the seeded reference point (Section 5.2).  If the GPS receiver is not at the reference 

point, the program will seed the point but it will not be accurate.   

5.4.3 Open the SXBlue Config (Section 5.3) and check the Diff Used in the Position tab and the 

Omnistar is not used wait for the signal to be found.  Caution:  If Omnistar correction 

 the receiver will drift and readings will not be 

accurate. 

 

 

Figure B.39  Using the Position tab in SXBlue Config to verify the type of Diff Used.  OMNIHP 

 

 

Figure B.40  

steps are taken before allowing the signal to correct to OMNIHP, GPS readings will drift. 
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  5.2.6 A.).  

SXBlue Config must be closed to provide access to the GPS port. 

5.4.5 Open and connect the GPS to SXBlue HPSeed (Section 5.3.55.3.5).  

5.4.6 Click on the Seed tab and then Goto tab. 

5.4.7 From the list select reference point of reference (example: HomeBase) and click seed. 

 

Figure B.41  Selecting the reference point of interest HomeBase. 

5.4.8 Click seed with the reference point highlighted.  When the triangle moves to the center of 

the bulls eye, the position has been located with <10cm accuracy. 

 

            Figure B.42  SXBlue HPSeed after seeding the reference point.  Position, red cursor, is directly 

over the perpendicular x, y lines.  D, distance from point is <5cm (0.02m). 
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5.4.9 The program has seeded location of the antennae to the reference point.  Click disconnect 

and then close SXBlue Seed (Section 5.3.11).  This must be closed correctly or the 

program will crash. 

5.4.10 To verify correction position, open SXBlue Config (Section 5.2.2) and check the position 

Diff Used.  Diff Us

met repeat the seeding process.  Even if precision is high and Diff Used is not locked, the 

GPS readings will drift resulting in inaccuracies.  

 

                               Figure B.43  Verifying that the OMNIHP and Diff Status is Fixed. 

5.4.11 Close the SXBlue Config (Section 5.2.6 A.). 

6. Phenocorn Field Setup 

6.1.1 The GPS should be turned on and have corrected signal (Section 5.4.1-5.4.11). 

6.1.2 All hardware components should be connected to the laptop (Section 5.2). 

6.1.3 Create a folder in which to save the image data.  This could be saved anywhere on the 

computer.  This folder only needs set up once, subsequent phenotyping runs can be saved 

into the same folder/directory. 

 

                         Figure B.44  Creating a folder (example picture) to save image files. 
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6.1.4 Launch the Phenocorn icon (phenocorn100314) from the Desktop. 

6.1.5 When prompted, choose the location and file name that the data will be saved to including 

the file type extension, example.txt.  The text file containing IRT, NDVI, and GPS 

reference will be saved in this file name.  Click OK.  If a name is not entered the default 

GreenSeekerData will be used. 

 

            Figure B.45  Launching the Phenocorn program, and choosing the location to save the data file, 

including extension name. 

6.1.6 Within the graphical user interface select the correct COM port settings for each instrument.  

Use COM ports found in Table B.1.  On one particular computer, we found the following 

settings which are used for examples, our experience shows that COM ports can vary 

widely between computers. 

GreenSeeker   COM15 

IRT    COM12 

GPS    COM14 

           When the GPS COM is correct, the GUI will display current GPS location, elevation, and time 

without recording this data.  TIP: Check the GPS is functioning by observing that the output 

is changing. 

 

            Figure B.46  Selecting the correct COM port setting for each sensor:  GreenSeeker, IRT, and 

GPS.  This is initial screen and COM numbers are not set correctly. 



152 

6.1.7 Enter the absolute path (ie. C:\Users\phemu\Desktop|PhenocornPhoto) to save the video 

files.  This path will be to the folder made in Section 6.1.3, and this file is separate from 

the text data file.  If no path information is entered the video will not be saved.  TIP:  

Find the folder (using file explorer, etc.) that was created for the photo data and copy and 

paste the path, this saves typing and increases path accuracy. 

 

                                      Figure B.47  Entering path to save video. 

6.1.8 Click the red oval button. The button will turn green and the program is now ready to 

collect data.  TIP: move the mouse of the button, this prevents accidental clicking and 

stopping the program from recording data. 

 

            Figure B.48  Phenocorn Software ready to record data.  The oval button is green indicating data 

is ready to be collected.   

6.1.9 Press the GreenSeeker button, and data will begin to record. 
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            Figure B.49  GUI interface while recording real time data, the picture view also appears in the 

GUI, in this example the camera was over bare soil and leaves. 

            During data collection, the computer lid can be shut to save energy.  Occasional checks of the 

data, observing that GPS, NDVI, and CT readings are changing is recommended.  TIP: 

Checking data before taking readings of the experiment and after finishing is a good check 

to make sure data is being read and saved into the file properly.  If there are problems, post 

processing will have to be completed to remove bad data.  See Troubleshooting section.  

6.1.10 After collecting data, exit the program.  The data is saved automatically, and the program 

is robust to shutting down from the X (close the program), clicking the green button to 

turn off measurements and then exiting, or clicking the exit button. 

6.1.11 Data can be directly analyzed on the computer, or transferred to other computers for 

analysis. 

7.  Phenocart 

 The original Phenocorn design was carried by hand through field plots; however, the 

Phenocorn is approximately 12 kg with all equipment.  The Phenocart is one solution to allow 

the user to carry less weight in the field.  The following images show how a bicycle has been 

converted into a one-wheel cart that can carry the Phenocorn.  This provides a lot of flexibility 

for any type of planting system and crops. 
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            Figure B.50  PhenoCart to carry the Phenocorn in the field.  A.  Completed PhenoCart with 

arrows showing adjustable areas of the cart.  B.  Attaching a handle to the cart.  C.  Bracket to 

hold the GreenSeeker sensor using hose clamps.  D.  Bracket and GreenSeeker attached to the 

cart. 

 

                               Figure B.51  Phenocart and Phenocorn in bed planted wheat. 

8. Tips for Successful Phenotyping 

8.1.1 Charge equipment daily.  The Phenocorn operates with three separate batteries, computer, 

GPS, and GreenSeeker, failure of any one battery will disrupt phenotyping. 

8.1.2 Carry adequate tools for adjustment of equipment.  Useful equipment include:  flathead and 

Philips screwdriver, wrench or sockets to adjust GreenSeeker and PhenoCart, zip ties, 

duct tape or electrical tape. 

8.1.3 Take time to learn about your particular GPS unit.  Failure of GPS, due to lack of 

convergence, multipath, etc. will result in imprecise data. 

8.1.4 Make sure GPS signal is fixed for signal correction. 
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9. Additional Resources 

Trimble:  http://www.trimble.com 

GreenSeeker User manual:  

http://www.nue.okstate.edu/Hand_Held/GS_HandHeld_Manual_rev_K[1].pdf 

OmniStar:  http://www.omnistar.com 

SXBlue:  http://www.sxbluegps.com 

SXBlue User manuals:  http://www.sxbluegps.com/download/ 

MicroEpsilon CT series manual: 

 http://www.instrumart.com/products/32312/micro-epsilon-ct-series-infrared-thermometer 

10. Troubleshooting 

Problem:  The computer runs out of battery.   

Solutions:  Storing the HTP data, especially images, is an energy intensive process.  Turn off any 

unused processes and programs.  Disable the wireless adapter, dim the output screen, and 

changing energy savings options, (when the computer sleeps on low battery) are all 

options that will provide more time in the field. 

 

Problem:  The computer goes to sleep. 

Solution:  Change the power options, if phenotyping with the computer lid closed, change to an 

option that does not force sleep when the computer lid is closed. 

 

Problem:  Connection to the USB(s) is lost.  Usually associated with a noise similar to 

improperly unplugging a USB memory stick from a computer. 

Solutions:  Look for a USB connection that is loose.  Replacing USB cables also helps, if a 

connection is repeatedly being lost.  Depending on computer position, securing the USB 

connection so there is no movement can be useful. 

 

Problem:  SXBlue HPSeed crashes on closing. 

Solutions:  SXBlue HPSeed must be closed in the following order 1.  Close the connection to the 

GPS by clicking Disconnect.  2.  Close the program by clicking on the X.  If it is closed 

out of order, clicking on the X while still connected to the GPS, the program effectively 
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crashes and will not allow other programs to access the GPS.  If this occurs force quit the 

SXBlue HPSeed program by using Ctrl-Alt-Del and closing from the task manager. 

 

Problem:  The collected data have one (or more columns) that did not change in the file.   

Solution:  One of the sensor connections was malfunctioning, so the program writes the last, 

good, (before the connection malfunction) data point until the end of data collection.  In 

the field, before turning off the program run a check by collecting data and watching the 

screen to see if data is changing.  If the data stream is changing then there has not been an 

issue.  After data collection examine the end of the file for irregularities.  Depending on 

the sensor that malfunctioned either the column, containing the bad data, after the 

malfunction can be deleted (IRT, and NDVI), or all rows and columns after the 

malfunction need to be deleted (GPS) because there is no known location for these points. 

 

Problem:  The data look good, but instead of 10Hz there is irregularity, ie many good readings 

and then a pause in data collection. 

Solution:  Different NMEA strings turned on at different rates will cause data reading 

irregularities.  The LabView program will not continue its loop until all data  NMEA 

strings have been exported thus one string exporting at 1Hz will slow the overall data 

collection.  Only the $GPGGA string needs to be turned on at 10 Hz, all other NMEA 

output can be turned off.  Use the SXBlue Config to change any other NMEA strings to 

off and save the settings.  This usually occurs after setting a new reference point (Section 

5.3.12) 
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11. Hardware Equipment and Specifications 

Table B.2 Phenocorn hardware components and technical specifications. 

Instrument Company 
Field of 

View 
Output 

Output 

Type 
Other Specifications 

Aspire 

4830 

Acer Inc., 

San Jose, 

CA 
   

Windows 7, 2.4 Ghz process, 8 GB 

RAM, 64 bit 

GreenSeek

er 

Trimble, 

CA 

1cmX60c

m 

10 Hz/ 

38400 

baud 

RS-232 RS-232 to USB converter used 

SXBlue 

III-L 

Geneq, 

Montreal, 

Canada 
 

10 Hz / 

19200 

baud 

USB 
Omnistar HP for 95% accuracy <= 

10cm 

CT Series 

Thermome

ter  

MicorEpsil

on, 

Raliegh, 

NC 

1:2 

10 Hz/ 

9600 

baud 

analog 

Analog to Digital (AD) converter, 

Temperature resolution 0.1 °C, 

System accuracy: ±1 °C 

C920 

Logitech     ~3 Hz USB HD 1080p 
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Appendix C-Control system schematic 
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Appendix D-Control system wiring diagram 
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Appendix E-Control system panel 
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Appendix F-Control system C code 

#include <EEPROM.h> 
#include <Math.h> 
#include "mcp_can.h" 
#include <SPI.h> 
#include <stdio.h> 
#include <QTRSensors.h> 
#include <Wire.h> 
#include <Adafruit_MCP4725.h> 
 
#define CAN_ID 0X00 
#define Minimum_pwm 2000 
#define INT8U unsigned char 
#define UINT unsigned int 
#define NUM_SENSORS   1             // number of sensors used 
#define TIMEOUT       3000              // waits for 2500 microseconds for sensor outputs to go low 
#define EMITTER_PIN   43              // emitter is controlled by digital pin 43 
#define kP    5 
#define kI     3 
#define kD   3                                // for while constant speed control 
 
Adafruit_MCP4725 dac;              // 12-bit Digital to Analog converter for controlling wheel speed 
                                                      //  
QTRSensorsRC qtrrc((unsigned char[]) {14}, 
  NUM_SENSORS, TIMEOUT, EMITTER_PIN);  
unsigned int sensorValues[NUM_SENSORS]; 
 
/* Dinfine interface of HUB-MOTOR */ 
const int HM_CO_IN        = 17;        //OUTPUT PIN 
const int HM_EL               =16;         //OUTPUT PIN 
const int HM_SP               = 18;        //INPUT PIN 
const int HM_SP_CON    = 6;          //OUTPUT PIN 
 
 
/*Define interface of Steering Motor */ 
const int SM_DIRA        =41;           //OUTPUT PIN 
const int SM_DIRB        =42;           //OUTPUT PIN 
const int SM_SP_CON   = 8;            //OUTPUT PIN 
 
/*Define interface of ENCODER */ 
const int AXORB          =1;            // A^B 
const int ENCO_A        =3;            //OUTPUT PIN 
const int ENCO_B        =2;            //OUTPUT PIN 
const int ZERO_P         = 14;         //OUTPUT PIN  
 
/*Define interface of Lifter Motor */ 
const int LM_DIRA           =22;   //OUTPUT PIN 
const int LM_DIRB           =23;    //OUTPUT PIN 
const int LM_SP_CON      = 9;    //OUTPUT PIN 
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/*Define interface of Curtain Motor */ 
const int CM_DIRA           =28;   //OUTPUT PIN 
const int CM_DIRB           =29;    //OUTPUT PIN 
const int CM_SP_CON      =10;    //OUTPUT PIN 
 
/*Define interface of Brake Motor */ 
const int BM_DIRA        =43;   //OUTPUT PIN 
const int BM_DIRB        =44;    //OUTPUT PIN 
const int BM_SP_CON   =7;     //OUTPUT PIN 
 
/*Define Address A0 about MCP4725 */ 
 
const int MCP4725_A0=13; 
 
const int MOTORS_PIN[5][3]={  {HM_CO_IN,HM_EL,HM_SP_CON}, 
                                                       {SM_DIRA,SM_DIRB,SM_SP_CON}, 
                                                       {CM_DIRA,CM_DIRB,CM_SP_CON}, 
                                                       {BM_DIRA,BM_DIRB,BM_SP_CON}, 
                                                       {LM_DIRA,LM_DIRB,LM_SP_CON}, 
                                                     }; 
/*Define interface of KEYS */ 
 
const int KEYI1          =30;   //INPUT PIN 
const int KEYI2          =31;   //INPUT PIN 
const int KEYI3          =32;   //INPUT PIN 
const int KEYI4          =33;   //INPUT PIN 
const int KEYI5          =38;   //INPUT PIN 
const int KEYI6          =39;   //INPUT PIN 
const int KEYI7          =24;   //INPUT PIN 
const int KEYI8          =25;   //INPUT PIN 
const int KEYI9          =26;   //INPUT PIN 
const int LED1           =34;   //OUTPUT PIN 
const int LED2           =35;   //OUTPUT PIN 
const int LED3           =36;   //OUTPUT PIN 
const int LED4           =37;   //OUTPUT PIN 
const int LED5           =45;   //OUTPUT PIN 
const int LED6           =46;   //OUTPUT PIN 
const int EMK1           =A6; 
const int EMK2           =A7; 
const int EMK3           =A8; 
const int EMK4           =A9; 
const int keys[8]={KEYI1,KEYI2,KEYI3,KEYI4,KEYI5,KEYI6,KEYI7,KEYI8}; 
const int emks[4]={EMK1,EMK2,EMK3,EMK4}; 
const int LEDS[6]={LED1,LED2,LED3,LED4,LED5,LED6}; 
const int S_Threshold[4]={200,200,200,150};  
const int angle_co[4]={-1,1,-1,1}; 
INT8U BAddress=0; 
INT8U command_t=0; 
UINT  HMPWM= 0; 
UINT  desired_sp=0; 
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boolean desired_dir=0; 
INT8U report; 
INT8U Lifter_on_off; 
int  encoderPos=0; 
int  DencoderPos=0; 
int  encoderPosFlag=0; 
boolean Can_get_data = false; 
boolean ON_FLAG = false; 
boolean OFF_FLAG = false; 
boolean Test_run=false; 
boolean Stop_flag=false; 
INT8U Test_time=0; 
float speed_pi_p=0; 
float speed_pi_n=0; 
float Error=0; 
float Integral=0; 
float Derivative=0; 
float speed_present=0; 
float speed_preview=0; 
const INT8U BoardA[6][2]={{'F','R'},{'B','R'},{'F','L'},{'B','L'}, 
                                                {'A','L'},{'S','T'},{'F','A'},{'B','A'} 
                                              };                                                    // Board Addresses 
 
const INT8U Actuator_T[3]={'W','S','?'};                                   // W----WHEELS;  
                                                                                                     // S----STEERING MOTOR 
 
const INT8U Direction[3][2]={{'F','B'},{'L','R'},{'S','W'}};      // F----Forward running;  
                                                                                                     // B----Backward running;    
                                                                                                     // L---left turn;   
                                                                                                     // R----right turn; 
 
 
/* define arrays for saving the command parameters;          */ 
/* after resetting the parameters, the action code is set zero.*/ 
 
UINT   STATUS[2][3]={{0,0,0},{0,0,0}};           // Action Code 0-waiting, 1-reset; 
                                                                                // Displacement direction: 0-Corotation, 
                                                                                //                                        1-Inversion;  
                                                                                // Speed; 
                                                                                // 0-----wheel      1------steering motor 
 
/* Define arrays for saving the reported data */ 
 
float Speed[2]={0,0};                                             //Displacement direction: 0-Corotation, 
                                                                                //                                       1-Inversion;  
                                                                                //Speed, num/min; 
int   angle=0;                                                           //Turnning angle of steering motor;  
                                                                                //Positive angle-----right turn;  
                                                                                //Negative angle-----left turn; 
int d_time[4]={250,750,1250,1750}; 
boolean reply=0; 
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INT8U Flag_Recv = 0; 
INT8U len = 0; 
INT8U buf[8]; 
INT8U Rbuf[8]; 
INT8U j=0; 
 
/* Interrupt programs */ 
void MCP2515_ISR()                                //Can bus interrupt program,  Interrupt 4 
{ 
     Flag_Recv = 1; 
     CAN.readMsgBuf(&len, Rbuf); 
} 
 
void counting(void)                                   //Encoder interrupt program. Interrupt 1 
{ 
           if (digitalRead(ENCO_B) == LOW) 
                           { 
                                              encoderPos--; 
                           }  
           else  
                          { 
                                              encoderPos++; 
                          } 
           angle=3*pow(-1,BAddress)*encoderPos*angle_co[BAddress]; 
      
} 
 
void EEPROM_INI(void) 
{ 
           int address; 
           BAddress=EEPROM.read(0); 
           if(BAddress==255) 
                                             BAddress=0; 
           report=EEPROM.read(1); 
           if(report==255) 
                                             report=1; 
          Serial.print("BOARD ADDRESS = "); 
          Serial.write(BoardA[BAddress][0]); 
          Serial.write(BoardA[BAddress][1]); 
          Serial.println(); 
} 
 
void stop_all_motors() 
{ 
          INT8U i; 
          for(i=0;i<5;i++) 
          { 
                                         motors_s(i); 
           } 
} 
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void setup() 
{ 
              CAN.begin(CAN_500KBPS);                                 // init can bus : baudrate = 500k 
              attachInterrupt(4, MCP2515_ISR, FALLING);      // start interrupt 
              Serial.begin(115200); 
              EEPROM_INI(); 
            
              pinMode(SM_DIRA, OUTPUT);                         //ABOUT STEERING MOTOR PINS 
              pinMode(SM_DIRB, OUTPUT);  
              pinMode(SM_SP_CON, OUTPUT); 
              pinMode(LM_DIRA, OUTPUT);                        //ABOUT LIFTER MOTOR PINS  
              pinMode(LM_DIRB, OUTPUT);  
              pinMode(LM_SP_CON, OUTPUT); 
              pinMode(CM_DIRA, OUTPUT);                        //ABOUT CURTAIN MOTOR PINS 
              pinMode(CM_DIRB, OUTPUT);  
              pinMode(CM_SP_CON, OUTPUT); 
              pinMode(BM_DIRA, OUTPUT);                        //ABOUT BRAKE MOTOR PINS  
              pinMode(BM_DIRB, OUTPUT);  
              pinMode(BM_SP_CON, OUTPUT); 
              pinMode(HM_CO_IN, OUTPUT);                      //ABOUT HUBMOTOR PINS 
              pinMode(HM_EL, OUTPUT);  
              pinMode(HM_SP_CON, OUTPUT); 
              pinMode(HM_SP, INPUT); 
              pinMode(LED1, OUTPUT);                                //ABOUT LEDS PINS 
              pinMode(LED2, OUTPUT);  
              pinMode(LED3, OUTPUT); 
              pinMode(LED4, OUTPUT); 
              pinMode(LED5, OUTPUT); 
              pinMode(LED6, OUTPUT); 
 
              pinMode(KEYI1, INPUT);                                   //ABOUT KEYS PINS 
              pinMode(KEYI2, INPUT); 

 pinMode(KEYI3, INPUT); 
 pinMode(KEYI4, INPUT); 
 pinMode(KEYI5, INPUT); 
 pinMode(KEYI6, INPUT);  
 pinMode(KEYI7, INPUT); 
 pinMode(KEYI8, INPUT);  
 pinMode(KEYI9, INPUT);  
//ABOUT ENCODER PINS 
 pinMode(AXORB,INPUT); 
 pinMode(ENCO_A, INPUT); 
 pinMode(ENCO_B, INPUT); 
 pinMode(ZERO_P, INPUT); 
 pinMode(EMK1, INPUT); 
 pinMode(EMK2, INPUT); 
 pinMode(EMK3, INPUT); 
 pinMode(EMK4, INPUT); 
pinMode(MCP4725_A0, OUTPUT);                    //About MCP4725 
digitalWrite(MCP4725_A0, 0); 
dac.begin(0x62); 
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attachInterrupt(1, counting, RISING); 
Lifter_on_off=0; 
stop_all_motors();  
dac.setVoltage(0, false);   
angle=0; 
encoderPos=0; 
desired_sp=0; 

} 
 
void motors(int type,boolean Dir, int Duty) 
{ 

  if(type==0&digitalRead(KEYI9)==0) 
  { 

  digitalWrite(MOTORS_PIN[type][0], Dir); 
  digitalWrite(MOTORS_PIN[type][1],1); 
  //analogWrite(MOTORS_PIN[type][2], Duty);  
  dac.setVoltage(Duty, false); 

  } 
  else 
  { 

  digitalWrite(MOTORS_PIN[type][0], Dir); 
  digitalWrite(MOTORS_PIN[type][1], !Dir); 
  analogWrite(MOTORS_PIN[type][2], Duty);  

  } 
   
   
} 
void motors_s(int type) 
{ 

  if(type==0) 
  { 

  digitalWrite(MOTORS_PIN[type][0], 1); 
  digitalWrite(MOTORS_PIN[type][1], 0); 
  dac.setVoltage(0, false); 
  desired_sp=0; 

  } 
  else 
  { 

  digitalWrite(MOTORS_PIN[type][0], 0); 
  digitalWrite(MOTORS_PIN[type][1], 0); 
  analogWrite(MOTORS_PIN[type][2], 0);  

  }  
 

} 
 
// Detecting speed 
 
float V_num(void) 
{ 

unsigned long  duration; 
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 float speed_min; 
 duration = pulseIn(HM_SP, HIGH); 
  if(duration!=0) 

 speed_min=60000000/(72*duration); 
  else  

  speed_min=0; 
  return speed_min; 

} 
 
float average_s() 
{ 

float sp[5],t_sp=0; 
for(char i=0;i<5;i++) 
{ 

   sp[i]=V_num(); 
   delay(100); 

} 
for(char i=0;i<5;i++) 
{ 

  for(char j=i;j<5;j++) 
  { 

    if (sp[i]<sp[j])   
    { 

      t_sp=sp[i]; 
      sp[i]=sp[j]; 
      sp[j]=t_sp; 

    } 
  } 

 } 
 
  t_sp=(sp[1]+sp[2]+sp[3])/3; 
  Speed[1]=t_sp; 
  Speed[0]=STATUS[0][1]; 
  return(t_sp); 

} 
 
void mistake() 
{ 

  INT8U STOP_B[8]={'S','T','O','P','-','r','o','E'}; 
  STOP_B[5]=BoardA[BAddress][0]; 
  STOP_B[6]=BoardA[BAddress][1];   
   
 Serial.print("STOP_B = "); 
 for(int j = 0; j<8; j++)     
      { 

        Serial.write(STOP_B[j]); 
      } 
 CAN.sendMsgBuf(CAN_ID, 0, 8, STOP_B); 

   
} 
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void myPID(INT8U dir) 
{  

  INT8U i=0; 
  speed_present=average_s(); 
  if(speed_present==0)           speed_preview=0; 
  Error=(desired_sp-speed_present)/60; 
  Integral=Error; 
  Derivative=(speed_preview-speed_present)/180; 
  float drive_num=90*(kP*Error+kI*Integral+kD*Derivative);   
  HMPWM=int(drive_num); 
  i=0; 
   while(speed_present<5){ 

   if(HMPWM>Minimum_pwm) 
  { 

    mistake(); 
    desired_sp=0; 
    motors_s(0); 
    break; 

  } 
  if(i!=0) 
{ 

delay(3000); 
} 
i++; 

                          motors(0,dir,HMPWM);   
HMPWM= HMPWM+100;    
speed_present=V_num(); 

  } 
 Serial.print("HMPWM= ");Serial.println(HMPWM); 

} 
 
void const_speed(INT8U dir) 
{ 

 float speed_min; 
 float Delt_speed,RATE;  
 speed_min=average_s(); 
 speed_preview= speed_min; 
 if(desired_sp!=0) 
 { 

 Delt_speed=desired_sp-speed_min; 
 RATE=abs(Delt_speed)/1.5; 
 if(RATE>1&RATE<10) 
{ 

  if(Delt_speed>0)  
       HMPWM=HMPWM+8; 

  else  
       HMPWM=HMPWM-8; 

  HMPWM=constrain(HMPWM,0,4095); 
   motors(0,dir,HMPWM); 

 } 
 else 
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 { 
  if(RATE>10) 
{ 

  if(Delt_speed>0)  
             HMPWM=HMPWM+100; 
  else  
             HMPWM=HMPWM-100; 
  HMPWM=constrain(HMPWM,0,4095); 
   motors(0,dir,HMPWM); 

  } 
 } 

 } 
   
 delay(100); 
 Serial.print("HMPWM= ");Serial.println(HMPWM); 
 delay(100); 
 Serial.print("SPEED= ");Serial.println(speed_min,1); 

         
} 
 
void print_parameter() 
{ 

      Serial.print("encoderPos= ");Serial.println(encoderPos); 
      delay(10); 
      Serial.print("Angle= ");Serial.println( angle); 
      delay(10); 
      qtrrc.read(sensorValues); 
      Serial.print("sensorValues[0] = "); Serial.println(sensorValues[0]); 

} 
 
void Turn_to_Zero(boolean s_dir) 
{ 

    qtrrc.read(sensorValues); 
    Serial.print("sensorValues[0] = "); Serial.println(sensorValues[0]); 
    motors(1,s_dir,120); 
    while(sensorValues[0]<S_Threshold[BAddress]) 
     { 

      delay(20); 
      qtrrc.read(sensorValues); 
      Serial.print("sensorValues[0] = "); Serial.println(sensorValues[0]); 

      } 
    motors_s(1); 
    encoderPos=0; 
    angle=0; 

     
} 
 
void Step_Turn(boolean s_dir) 
{ 

  int pre_encoderPos; 
  int delta_step; 
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  pre_encoderPos=encoderPos; 
  delta_step=abs(abs(pre_encoderPos)-abs(encoderPos)); 
  motors(1,s_dir,120); 
  while(delta_step<1) 
    { 

     delta_step=abs(abs(pre_encoderPos)-abs(encoderPos)); 
     delay(10); 

     } 
  motors_s(1); 

} 
 
 
void Turn_Angle(boolean s_dir,int s_angle) 
{ 

  int pre_encoderPos; 
  int delta_step; 
  pre_encoderPos=encoderPos; 
  delta_step=abs(abs(pre_encoderPos)-abs(encoderPos)+1)*3; 
  motors(1,s_dir,120); 
  while(delta_step<s_angle) 
    { 

     delta_step=abs(abs(pre_encoderPos)-abs(encoderPos)+1)*3; 
     delay(10); 

     } 
  motors_s(1); 

} 
 
void set_BAddress() 
{ 

    if(Serial.available()>0) 
    { 

      Serial.readBytes(buf, 8);    
      delay(100);     
      Serial.write(buf,8); 
      delay(100); 
      Serial.println(':'); 
      switch(buf[0]) 
      { 

      case 'A':case 'a': 
        BAddress=buf[1]&0x0f; 
        EEPROM.write(0,BAddress); 
        delay(100); 
        BAddress=0; 
        EEPROM_INI(); 

      break; 
      case '?': 

        delay(100); 
        BAddress=0; 
        EEPROM_INI(); 
        Serial.print("Report "); 
        if(report==0) 
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        { 
        Serial.println("OFF !"); 

        } 
          if(report==1) 
        { 

        Serial.println("ON !"); 
        } 

      break; 
      case 'R':case 'r': 

        report=buf[1]&0x0f; 
        EEPROM.write(1,report); 
        delay(100); 
        report=0; 
        EEPROM_INI(); 
        Serial.print("Report "); 
        if(report==0) 
        { 

        Serial.println("OFF !"); 
        } 
          if(report==1) 
        { 

        Serial.println("ON !"); 
        } 

      break; 
 
      // Following code is used to test the encoder; 
       
      case 'B':case 'b':                            

          //Clear encoderPos and DencoderPos 
          encoderPos=0; 
          angle=0; 
          print_parameter(); 
          delay(1000); 
          print_parameter();            

      break; 
 
      case 'L':case 'l':                          

           // trun left to the zero position, 1---left turn; 
           //                                                0----right turn 
           Turn_to_Zero(1); 
           print_parameter(); 

      break; 
 
      case 'M':case 'm':                           

           // trun right to the zero position, 1---left turn;  
           //                                                  0----right turn 
           Turn_to_Zero(0); 
           print_parameter(); 

      break; 
 
      case 'C':case 'c':                           
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          // Step left turn, 1---left turn;  
          //                        0----right turn 
           Step_Turn(1); 
           print_parameter(); 

      break; 
 
      case 'D':case 'd':                           

          // Step right turn, 1---left turn; 0----right turn 
           Step_Turn(0); 
           print_parameter(); 

      break; 
 
      case 'E':case 'e': 

            Turn_Angle(1,90); 
            print_parameter(); 

      break; 
 
      case 'F':case 'f': 

            Turn_Angle(0,90); 
            print_parameter(); 

      break; 
     // End of testing encoder code       
      default: break;       

      } 
      

      } 
} 
 
void clear_buf() 
{ 

INT8U i; 
for(i=0;i<8;i++) 
{ 

  buf[i]=0; 
} 

} 
 
void save_data(INT8U j) 
{ 

INT8U i; 
for(i=0;i<8;i++) 
{ 

  if(j==1) buf[i]=Rbuf[i]; 
  Rbuf[i]=0; 

} 
} 
 
INT8U check_board() 
{ 

  INT8U i,j; 
  for(i=0;i<6;i++) 
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  { 
    if((Rbuf[0]==BoardA[i][0])&(Rbuf[1]==BoardA[i][1]))  
    { 

      j=i+1; 
      break; 

     } 
    else  j=0;      

                } 
delay(100); 
Serial.write(BoardA[BAddress][0]);Serial.write(BoardA[BAddress][1]); 
Serial.println(" GETS DATA!"); 
Serial.print("data len = ");Serial.println(len); 
Serial.print("j = ");Serial.println(j); 
Serial.print("Can Send Ok\r\n"); 
delay(100); 
return j; 

} 
 
void set_parameter() 
{  

   INT8U i, j,k; 
  switch(buf[2]) 
  { 

    case 'W':  case 'w': i=0; break; 
    case 'S':  case 's': i=1; break; 
    case '?': reply=1;goto loop4; break; 
    default: goto loop1; break; 

  } 
switch(buf[3]) 
  { 

    case 'R': STATUS[i][1]=0; break;     // 1-----Forward running or right turn; 
    case 'L': STATUS[i][1]=1; break;     // -1----Backward running or left turn; 
    case 'F': STATUS[i][1]=1; break;     // 1-----Forward running or right turn; 
    case 'B': STATUS[i][1]=0; break;     // -1----Backward running or left turn; 
    default: goto loop2; break; 

  } 
 switch(buf[4]) 
  { 

    case 'S':  STATUS[i][0]=1; break;    // 1------Starting 
    case 'W':  STATUS[i][0]=0; break;  // 0-----Waiting 
    default: goto loop3; break; 

  }  
  STATUS[i][2]=get_s_v(); 
  loop4:loop3:loop2:loop1:  
  clear_buf(); 

} 
 
void answer() 
{ 

  INT8U STOP_B[8]={'#','L','L','-','-','0','K','!'}; 
  STOP_B[1]=BoardA[BAddress][0]; 
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  STOP_B[2]=BoardA[BAddress][1];     
 Serial.print("STOP_B = "); 
  for( j = 0; j<8; j++)     
      { 

        Serial.write(STOP_B[j]); 
      } 
 CAN.sendMsgBuf(CAN_ID, 0, 8, STOP_B); 

} 
 
void take_parameter() 
{ 

  INT8U i,j,k; 
  i=check_board(); 
  switch(i) 
  { 

    case 0: 
    save_data(0); 

    break; 
    case 1:case 2:case 3:case 4: 
    if(i==(BAddress+1)) 
    { 

      save_data(1);       
      set_parameter(); 
      //answer(); 

    } 
    break; 
    case 5: 

    save_data(1); 
    set_parameter(); 

    break; 
    case 6: 

    stop_all_actuators();   
    save_data(0); 

     break; 
    default:  

    save_data(0); 
    break;     

  } 
} 
 
void stop_all_actuators() 
{ 

INT8U STOP_B[8]={'#','L','L','S','T','O','P','!'}; 
STOP_B[1]=BoardA[BAddress][0]; 
STOP_B[2]=BoardA[BAddress][1]; 
stop_all_motors(); 
delay(d_time[BAddress]); 
CAN.sendMsgBuf(CAN_ID, 0, 8, STOP_B);     
Stop_flag=1; 

} 
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void check_address() 
{  

  if(Flag_Recv)                   // check if get data 
    { 

      Flag_Recv = 0;   // clear flag       
      Serial.println("CAN_BUS GET DATA!"); 
      Serial.print("data len = ");Serial.println(len); 
      for(int i = 0; i<len; i++)    // print the data 
      { 

        Serial.write(Rbuf[i]); 
      } 
      Serial.println();       
      take_parameter(); 

    } 
      
} 
 
int get_s_v() 
{ 

int SPEED_V=0; 
if((buf[5]&0x0f==0)&(buf[6]&0x0f==0)&(buf[7]&0x0f==0)) 
{ 

  SPEED_V=0; 
} 
else 
{ 

SPEED_V=int(buf[5]&0x0f)*100+int(buf[6]&0x0f)*10+int(buf[7]&0x0f); 
} 
Serial.print("SPEED_V = ");Serial.println(SPEED_V); 
return(SPEED_V); 

} 
 
void RUNNING() 
{ 

  INT8U i; 
  for(i=0;i<2;i++) 
  {  

    if(STATUS[i][0]==1) 
        { 

           if(i==0)  
            { 

            desired_sp=STATUS[i][2]%100; 
            if(BAddress<2) desired_dir=!boolean(STATUS[i][1]); 
            else  desired_dir=boolean(STATUS[i][1]); 
             if(desired_sp==0) 
             { 

              motors_s(0);   
              motors_s(3);  

             } 
             else 
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             {  
               Test_time=STATUS[i][2]/100; 
               if(Test_time!=0){Stop_flag=0;} 
               motors(3,1,255); 
               delay(1000); 
               myPID(desired_dir);   

              } 
            } 
           else 
           { 

           if(STATUS[i][2]!=0)  
                                 Turn_Angle(STATUS[i][1],STATUS[i][2]); 
           else                Turn_to_Zero(STATUS[i][1]); 

           } 
          STATUS[i][0]=0; 
          STATUS[i][2]=0; 

       } 
}   

  
} 
 
void sent_info(INT8U i,INT8U j) 
{ 

INT8U STOP_B[8]={'#','T','L','E','T','O','P','!'}; 
INT8U STOP_B1[8]={'S','T','O','P','A','L','L','!'}; 
if(ON_FLAG&OFF_FLAG) 
{ 

ON_FLAG=0; 
OFF_FLAG=0; 
STOP_B[1]=BoardA[BAddress][0]; 
STOP_B[2]=BoardA[BAddress][1]; 
 switch(j) 
 { 

  case 'O':  
   STOP_B[4]='P'; STOP_B[5]='O'; STOP_B[6]='n'; 
   CAN.sendMsgBuf(CAN_ID, 0, 8, STOP_B);  

  break; 
  case 'C': case 'c': 

   STOP_B1[4]='P'; STOP_B1[5]='O';  
   STOP_B1[6]='f';STOP_B1[7]='f'; 
   CAN.sendMsgBuf(CAN_ID, 0, 8, STOP_B1);  

  break; 
  case 'B': 

   STOP_B1[4]='B'; STOP_B1[5]='J';  
   STOP_B1[6]='a';STOP_B1[7]='m'; 
   CAN.sendMsgBuf(CAN_ID, 0, 8, STOP_B1);  

  break; 
  case 'F':  

   STOP_B1[4]='F'; STOP_B1[5]='J';  
   STOP_B1[6]='a';STOP_B1[7]='m'; 
   CAN.sendMsgBuf(CAN_ID, 0, 8, STOP_B1);  



180 

  break;   
  case 'T':  

   STOP_B1[4]='T'; STOP_B1[5]='e'; 
   STOP_B1[6]='s';STOP_B1[7]='t'; 
   CAN.sendMsgBuf(CAN_ID, 0, 8, STOP_B1);  
   Stop_flag=1; 

  break;   
  default:break; 

 } 
 } 

} 
 
void manul_curtain(INT8U n, INT8U dir,INT8U ACT,INT8U duty) 
{  

  float sp; 
  digitalWrite(LEDS[n],1);motors(ACT,dir,duty); 
  while(digitalRead(keys[n])); 
  digitalWrite(LEDS[n],0); 
  motors_s(ACT);   

} 
 
void manul_steering(INT8U n, INT8U dir,INT8U ACT,INT8U duty) 
{  

  float sp; 
  digitalWrite(LEDS[n],1); 
  motors(ACT,dir,duty); 
  while(digitalRead(keys[n])) 
 { 

    qtrrc.read(sensorValues); 
    Serial.print("sensorValues[0] = "); Serial.println(sensorValues[0]); 
    delay(10); 
    Serial.print("encoderPos = "); Serial.println(encoderPos); 
    delay(10);      
    Serial.print("Angle = ");Serial.println(angle); 
    delay(10); 

   } 
  digitalWrite(LEDS[n],0); 
  motors_s(ACT);   

} 
 
void manul_movement(INT8U n, INT8U dir,INT8U ACT,int duty) 
{ 

float sp; 
INT8U N0=0; 
speed_present=0; 
speed_preview=0; 
Integral=0; 
  if(BAddress==1|BAddress==3) 
{ 

N0=4; 
} 
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 digitalWrite(LEDS[n],1); 
 desired_sp=60; 
 motors(3,1,255); 
 myPID(dir);   
 delay(2000);  
 while(digitalRead(keys[n+N0])) 
{ 

 const_speed(dir); 
 delay(3000); 

} 
 digitalWrite(LEDS[n],0); 
 motors_s(ACT);   
 motors_s(3);  
 delay(3000); 

} 
 
INT8U keyscan() 
{ 

INT8U key_value=0; 
for(INT8U i=0;i<6;i++) 
{ 

 key_value=(key_value<<1)+digitalRead(keys[i]); 
} 
return key_value; 

} 
 
void manually_runA(INT8U key_value) 
{ 

boolean dir=1; 
if(BAddress==2)          dir=!dir; 
  if(digitalRead(KEYI9)==1) 
  { 

    switch(key_value) 
    { 

    case 0x20:manul_steering(0, 1,1,150);break; 
    case 0x10:manul_steering(1, 0,1,150);break; 
    case 0x02:manul_curtain(4, 1,4,255);break; 
    case 0x01:manul_curtain(5, 0,4,255);break; 
    default: break; 

    } 
  } 
  else 
  { 

    switch(key_value) 
  { 

   case 0x20:manul_curtain(0, 1,2,255);break; 
   case 0x10:manul_curtain(1, 0,2,255);break; 
   case 0x02: manul_movement(4, dir,0,Minimum_pwm);break; 
   case 0x01: manul_movement(5, !dir,0,Minimum_pwm);break; 
   default: break; 

  } 
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  } 
desired_sp=0; 

} 
 
void manually_runB(INT8U key_value) 
{ 

  boolean dir=1; 
 if(BAddress==3) dir=!dir; 
  if(digitalRead(KEYI9)==1) 
  { 

  switch(key_value) 
  {  

 case 0x80: 
if(BAddress==3) 
{ 

digitalWrite(LEDS[1],0); 
digitalWrite(LEDS[0],1); 
stop_all_motors();sent_info(0,'C'); 

} 
             else  
            { 

             digitalWrite(LEDS[1],0); 
             digitalWrite(LEDS[2],1); 
             stop_all_motors(); 
             sent_info(0,'B'); 

               } 
              OFF_FLAG=1; 
    break; 
    case 0x40: 

 digitalWrite(LEDS[1],1); 
 digitalWrite(LEDS[0],0); 
 digitalWrite(LEDS[2],0); 
 digitalWrite(LEDS[3],0); 
 sent_info(0,'O'); 
 ON_FLAG=1; 

   break; 
   case 0x20: 

if(BAddress==3) 
{ 

digitalWrite(LEDS[1],0); 
digitalWrite(LEDS[2],1); 
stop_all_motors(); 
sent_info(0,'B'); 

} 
 else 
{ 

digitalWrite(LEDS[1],0); 
digitalWrite(LEDS[0],1); 
stop_all_motors(); 
sent_info(0,'C'); 

} 
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OFF_FLAG=1;break; 
    case 0x10: 

digitalWrite(LEDS[1],0); 
digitalWrite(LEDS[3],1); 
stop_all_motors(); 
sent_info(0,'F'); 
OFF_FLAG=1; 

   break; 
   case 0x48: 
              manul_steering(4, 1,1,150); 
   break; 
   case 0x44: 
             manul_steering(5, 0,1,150); 
   break; 
   case 0x42: 
            manul_curtain(2, 1,4,255); 
   break; 
   case 0x41: 
           manul_curtain(3, 0,4,255); 
    break; 
    default: break; 

  } 
  } 
  else 
  { 

     switch(key_value) 
  {  

case 0x80: 
if(BAddress==3) 
{ 

digitalWrite(LEDS[1],0); 
digitalWrite(LEDS[0],1); 
stop_all_motors();sent_info(0,'C'); 

} 
else  
{ 

digitalWrite(LEDS[1],0); 
digitalWrite(LEDS[2],1); 
stop_all_motors();sent_info(0,'B'); 

} 
              OFF_FLAG=1; 
              break; 
         case 0x40: 

  digitalWrite(LEDS[1],1); 
  digitalWrite(LEDS[0],0); 
  digitalWrite(LEDS[2],0); 
  digitalWrite(LEDS[3],0); 
  sent_info(0,'O'); 
  ON_FLAG=1; 

       break; 
      case 0x20: 
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if(BAddress==3) 
{ 

digitalWrite(LEDS[1],0); 
digitalWrite(LEDS[2],1); 
stop_all_motors(); 
sent_info(0,'B'); 

} 
            else 
            { 

digitalWrite(LEDS[1],0); 
digitalWrite(LEDS[0],1); 
stop_all_motors(); 
sent_info(0,'C'); 

} 
              OFF_FLAG=1; 
    break; 
    case 0x10: 

digitalWrite(LEDS[1],0); 
digitalWrite(LEDS[3],1); 
stop_all_motors(); 
sent_info(0,'F'); 
OFF_FLAG=1; 

    break; 
    case 0x48:  
                 manul_curtain(4, 0,2,255); 
    break; 
    case 0x44:  
                manul_curtain(5, 1,2,255); 
    break; 
    case 0x42: 
               manul_movement(2, dir, 0,Minimum_pwm); 
               desired_sp=0; 
    break; 
    case 0x41: 
               manul_movement(3, !dir,0,Minimum_pwm); 
              desired_sp=0; 
    break; 
    default: break; 
  } 

  } 
 
} 
 
void keys_detect() 
{ 

INT8U i,j; 
INT8U key_value=0; 
if(BAddress==0|BAddress==2) 
{ 

key_value=keyscan()&0x33; 
delay(200); 
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key_value=keyscan()&0x33; 
if(key_value!=0) 
{  

  manually_runA(key_value); 
} 

  
} 
else 
{ 

  for(i=0;i<8;i++) 
{ 

 if(i<4) 
 { 

   boolean BSL; 
   if(analogRead(emks[i])<850) BSL=0; 
    else BSL=1; 
    key_value=(key_value<<1)+BSL; 

 } 
 else 
 { 

  key_value=(key_value<<1)+digitalRead(keys[i]); 
 } 

  
} 

 
if(key_value!=0) 
{ 

  manually_runB(key_value);   
} 

 
} 

} 
 
void can_send_data() 
{ 

INT8U DATA_B[8]; 
int speed_v;  
if(reply==1){  

DATA_B[0]='#'; 
DATA_B[1]=BoardA[BAddress][0]; 
DATA_B[2]=BoardA[BAddress][1]; 
DATA_B[3]='S'; 
if(STATUS[0][1]==1) DATA_B[4]='F'; 
else DATA_B[4]='B'; 
speed_v=int((Speed[1]+0.5)); 
DATA_B[5]=speed_v/100+0x30; 
DATA_B[6]=(speed_v%100)/10+0x30; 
DATA_B[7]=speed_v%10+0x30; 
CAN.sendMsgBuf(CAN_ID, 0, 8, DATA_B);   
delay(100); 
DATA_B[3]='A'; 
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if(angle==0) 
{ 

  DATA_B[4]=0x30; 
  DATA_B[5]=0x30; 
  DATA_B[6]=0x30; 
  DATA_B[7]=0x30; 

  } 
else 
{ 

speed_v=abs(angle); 
if(angle<0)  DATA_B[4]='-'; 
else         DATA_B[4]='+'; 
DATA_B[5]=speed_v/100+0x30; 
DATA_B[6]=(speed_v%100)/10+0x30; 
DATA_B[7]=speed_v%10+0x30; 

} 
CAN.sendMsgBuf(CAN_ID, 0, 8, DATA_B); 
reply=0; 

} 
} 
 
void check_data() 
{  

  INT8U i,k,j; 
  INT8U NUM=0; 
  int speed_v; 
if(report){ 

    for(i=0;i<2;i++) 
    { 

      Serial.print("Actuator type = "); 
      switch(i) 
      {  

        case 0: 
        Serial.println("Wheel"); 

        break; 
        case 1: 

        Serial.println("Steering system"); 
        break; 

        } 
      
    for(k=0;k<3;k++) 
    {   

       NUM=STATUS[i][k]/100; 
       Serial.print(NUM); 
       NUM=(STATUS[i][k]%100)/10; 
       Serial.print(NUM);; 
       NUM=STATUS[i][k]%10; 
       Serial.print(NUM); 
       delay(100);Serial.print('\t'); 

    } 
    delay(100);Serial.println(); 
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    }   

  
 } 
report=0; 

} 
 
 
void delay_t(INT8U j) 
{ 

INT8U i; 
float s; 
for(i=0;i<j;i++) 
{ 

  delay(100); 
  if(i%10==0) 
  { 

    s=average_s(); 
   } 
  if(Flag_Recv) 
  { 

  check_address(); 
  RUNNING(); 

  } 
  keys_detect(); 

} 
} 
 
void loop() 
{  

  char serial_flag=0; 
  char i,k; 
    if(Flag_Recv) 
  { 

  check_address(); 
  RUNNING(); 

  } 
    set_BAddress();     
    check_data(); 
    if(desired_sp!=0) 
    { 
           if(Test_time==0) 

      {  
        const_speed(desired_dir);        
        delay_t(10); 

      } 
      else 
      { 

        for(i=0;i<Test_time;i++) 
        { 

        const_speed(desired_dir); 
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        delay_t(10); 
        } 
        desired_sp=0; 
        motors_s(0); 
        motors_s(3); 
        if(Stop_flag==false) 
       { 

        sent_info(0,'T'); 
        } 

      } 
     } 
    keys_detect(); 
    can_send_data(); 
    for(j=0;j<8;j++) 
    { 

      buf[j]=0; 
    } 

   } 
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-  

% ====================================================================== 
% Image segmentation with OTSU method 
% This code was modified based on some literatures. 
% ==================================================================== 
close all;   
clear all;   
clc;   
warning off; 
imagename=input('Enter the file name:','s');  
SE = strel('diamond',4); 
Image = imread(imagename); 
SImage=imresize(Image,0.2); 
I_gray=rgb2gray(SImage); 
BW=im2bw(I_gray); 
figure, imshow(I_gray) 
timestring=gettime(); 
figure,imshow(SImage),title(['Original image (Name:',imagename,')','    
',timestring]); 
I_double=double(I_gray); 
[wid,len]=size(I_gray); 
colorlevel=256;  
hist=zeros(colorlevel,1); 
  
for i=1:wid 
    for j=1:len 
        m=I_gray(i,j)+1; 
        hist(m)=hist(m)+1; 
    end 
end 
hist=hist/(wid*len); 
miuT=0; 
for m=1:colorlevel 
    miuT=miuT+(m-1)*hist(m); 
end 
xigmaB2=0; 
  
for mindex=1:colorlevel 

threshold=mindex-1; 
omega1=0; 
omega2=0; 
for m=1:threshold-1 

omega1=omega1+hist(m); 
end 
omega2=1-omega1; 
miu1=0; 
miu2=0; 
for m=1:colorlevel 

if m<threshold 
miu1=miu1+(m-1)*hist(m); 

else 
miu2=miu2+(m-1)*hist(m); 

end 
end 
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xigmaB21=omega1*(miu1-miuT)^2+omega2*(miu2-miuT)^2;  
xigma(mindex)=xigmaB21; 
if xigmaB21>xigmaB2 

finalT=threshold; 
xigmaB2=xigmaB21; 

end 
end 
fT=finalT/255 
T=graythresh(I_gray) 
  
for i=1:wid 

for j=1:len 
if I_double(i,j)>finalT 

bin(i,j)=1; 
else 

bin(i,j)=0; 
end 

end 
end 
timestring=gettime(); 
figure,imshow(bin),title(['Segmented Image (Name:',imagename,')',' with OTSU 
method','    ',timestring]); 
Cover=1-sum(bin(:))/(wid*len) 
[gray_im]=E_objectives(SImage, bin,1,0); 
figure,imshow(gray_im),title(['Objectives Image (Name:',imagename,')','with 
OTSU method']); 
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Appendix G-Matlab code of K-Means method 

% ====================================================================== 
% Image segmentation with K-Means 
% This code was modified based on some literatures. 
% ==================================================================== 
close all;   
clear all;   
clc;   
imagename=input('Enter the file name:','s'); 
C_Segments=2;  
Image = imread(imagename); 
SImage=imresize(Image,0.2); 
I_gray=rgb2gray(SImage); 
timestring=gettime(); 
figure,imshow(SImage),title(['Original Image (Name:',imagename,')','    
',timestring]);   
img_gray=rgb2gray(SImage);   
[m,n]=size(img_gray);    
T=graythresh(img_gray);   
img_bw=im2bw(img_gray,T); 
GraySeg= reshape(img_gray(:, :), m*n, 1);   
cGray=kmeans(double(GraySeg), 2);   
rGray= reshape(cGray, m, n);      
 
[wid,len]=size(rGray); 
bin=rGray-1; 
y=floor(m/2); 
for i=1:n 
    if bin(y,i)==1 
        x1=i; 
        break; 
    end 
end 
for i=1:n 
    if bin(y,i)==0 
        x2=i; 
        break; 
    end 
end 
timestring=gettime(); 
figure,imshow(bin),title(['Segmented Image (Name:',imagename,')',' with K-
Means method ','    ',timestring]); 
Cover=1-sum(bin(:))/(m*n) 
[gray_im]=E_objectives(SImage, bin,1,0); 
figure,imshow(gray_im),title(['Objectives Image (Name:',imagename,')',' with 
K-Means method']); 
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Appendix H-Matlab code of ME (Maximum Entropy) method 

% ====================================================================== 
% Image segmentation with Maximun Entropy 
% This code was modified based on some literatures. 
% ==================================================================== 
close all;   
clear all;   
clc;   
warning off; 
imagename=input('Enter the file name:','s'); 
BW1=imread(imagename); 
SImage=imresize(BW1,0.2); 
a=rgb2gray(SImage); 
[wid,len]=size(a); 
timestring=gettime(); 
figure,imshow(SImage),title(['Original Image (Name:',imagename,')','    
',timestring]); 
count=imhist(a); 
[m,n]=size(a); 
N=m*n; 
L=256; 
count=count/N; 
for i=1:L 

if count(i)~=0 
st=i-1; 
break; 

end 
end 
for i=L:-1:1 

if count(i)~=0 
nd=i-1; 
break; 

end 
end 
f=count(st+1:nd+1); 
size(f) 
E=[]; 
  
for Th=st:nd-1  

av1=0; 
av2=0; 
Pth=sum(count(1:Th+1)); 
  
for i=0:Th 

av1=av1-count(i+1)/Pth*log(count(i+1)/Pth+0.00001); 
end 
  
for i=Th+1:nd-1 

av2=av2-count(i+1)/(1-Pth)*log(count(i+1)/(1-Pth)+0.00001);  
end 
E(Th-st+1)=av1+av2; 

end 
position=find(E==(max(E))); 
finalT=st+position-1; %finalT is the gray threshold 
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for i=1:wid   % Image binarization 
for j=1:len 

if a(i,j)>finalT 
bin(i,j)=1; 

else 
bin(i,j)=0; 

end 
end 

end 
timestring=gettime(); 
figure,imshow(bin),title(['Segmentation Image (Name:',imagename,')',' with 
ME(Maximum Entropy) method','    ',timestring]); 
Cover=sum(bin(:))/(wid*len) 
[rgb_im]=E_objectives(SImage,bin,1,0); 
figure,imshow(rgb_im),title(['Objectives Image (Name:',imagename,')',' with 
ME(Maximum Entropy) method']); 
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Appendix I-Matlab code of RGB-based GF (Green Feature) method 

% =================================================================== 
% Image segmentation with GF(Green Feature) method 
% This code was modified based on some literatures. 
% ==================================================================== 
function G=ColourA(Image) 
fR=double(Image(:,:,1));  % RED 
fG=double(Image(:,:,2));  % GREEN 
fB=double(Image(:,:,3));  % BLUE 
[x,y]=size(Image); 
EG=2*fG-fR-fB; 
AV=0; 
range1=find(EG>=AV); 
range2=find(EG<AV); 
GEG=EG; 
GEG(range1)=1; 
GEG(range2)=0; 
Dgr=(fG-fR)./(fG+fR); 
range1=find(Dgr>0); 
range2=find(Dgr<=0); 
GGR=Dgr; 
GGR(range1)=1; 
GGR(range2)=0; 
Dgb=(fG-fB)./(fG+fB); 
range1=find(Dgb>0); 
range2=find(Dgb<=0); 
GGB=Dgb; 
GGB(range1)=1; 
GGB(range2)=0; 
G=(GEG.*GGR).*GGB; 
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Appendix J-Matlab code of LAB-based GF (Green Feature) method 

% =================================================================== 
% Image segmentation with LABGF(Green Feature) method 
% This code was modified based on some literatures. 
% ==================================================================== 
close all;   
clear all;   
clc;   
warning off; 
imagename=input('Enter the file name:','s'); 
BW1=imread(imagename); 
SImage=imresize(BW1,0.2); 
timestring=gettime(); 
figure,imshow(SImage),title(['Original Image (Name:',imagename,')','    
',timestring]); 
labim=rgb2lab(SImage); 
G=labim(:,:,2);  
[wid,len]=size(G); 
AV=-6; 
range1=find(G<=AV); 
range2=find(G>AV); 
bin=G; 
bin(range1)=1; 
bin(range2)=0; 
timestring=gettime(); 
figure,imshow(bin),title(['Segmentation Image (Name:',imagename,')',' with 
LAB-based GF method','    ',timestring]); 
Cover=sum(uint8(bin(:)))/(wid*len) 
[rgb_im]=E_objectives(SImage,bin,1,0); 
figure,imshow(rgb_im),title(['Objectives Image (Name:',imagename,')',' with 
LAB-based GF method']); 
 

  



196 

Appendix K-Wheat growth status 

1. Pictures taken on May 16th 2016 
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2. Pictures taken on May 27th and 29th 2015 
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Appendix L-Selection of Texture Features for wheatear counting 
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Appendix M-Matlab Code for estimating PVC  

% ======================================================================% 
% For estimating PVC(Percent Vegetation Coverage)                       % 
% Author: Yong Wei                                                      % 
% ======================================================================% 
close all;   
clear all;   
clc;   
warning off; 
  
jpgPath=input('Enter the file folder name:','s'); 
FileList=dir(jpgPath); 
ff=1; 
num=1; 
for rr=1:length(FileList) 

    
if(FileList(rr).isdir==1&&~strcmp(FileList(rr).name,'.')&&~strcmp(FileL
ist(rr).name,'..')) 
        fileFolder{ff}=[FileList(rr).name]; 
        ff=ff+1; 

      end 
end 
folder_num=size(fileFolder); 
for j=6:folder_num(2) 
    Fpath=char(strcat(jpgPath,'\', fileFolder(j),'\*.JPG')); 
    filename=dir( Fpath); 
    file_length=length(filename); 
    Fname=char(strcat(jpgPath,'\', fileFolder(j))); 
    FileN=['c:\whdata0628\',char( fileFolder(j)),'Data']; 
      
    a=['mkdir ' FileN]; 
    system(a) 
    for i=1:file_length 
        imagename=[Fname,'\',filename(i).name]; 
        idx=strfind(imagename,'2015'); 
        Time=imagename(idx:idx+7); 
        Time_n=str2num(Time)-20150000; 
        Image = imread(imagename); 
        [Gimage,GIMF,Cover]=LABRGBGF(Image,-6); 
        figure(1);   
        imname=['BW','-',filename(i).name]; 
        imshow(GIMF);title(imname); 
        path=[FileN,'\',imname,'.jpeg']; 
        print(1,'-djpeg',path); 
        figure(2);   
        imname=['G','-',filename(i).name]; 
        imshow(Gimage);title(imname); 
        path=[FileN,'\',imname,'.jpeg']; 
        print(2,'-djpeg',path); 
        coverage1(i,1)=Time_n; 
        coverage1(i,2)=Cover*100; 
    end 
      figure(3),plot(coverage1(:,1),coverage1(:,2),'+'); 
      imname=[char( fileFolder(j)),' Wheat Growth Curve']; 
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      title(imname,'FontName','Times New 
Roman','FontWeight','Bold','FontSize',16) 

      xlabel('Time(MMDD)','FontName','Times New Roman','FontSize',14) 
      ylabel('Green Coverage(%)','FontName','Times New 

Roman','FontSize',14,'Rotation',90) 
      set(gca,'FontName','Times New Roman','FontSize',14) 
      path=[FileN,'\',imname,'.jpeg']; 
      print(3,'-djpeg',path); 
      imname=[char( fileFolder(j)),' Green Coverage']; 
      path=[FileN,'\',imname,'.xls']; 
      xlswrite(path,coverage1); 
end 
% ======================================================================% 
function [rgb_im,bin,Cover]=LABRGBGF(BW1,AV) 
 

SImage=imresize(BW1,0.2); 
labim=rgb2lab(SImage); 
G=labim(:,:,2);  
[wid,len]=size(G); 
range1=find(G<=AV); 
range2=find(G>AV); 
bin1=G; 
bin1(range1)=1; 
bin1(range2)=0; 
bin2=ColourA(SImage); 
bin=bin1.*bin2; 
Cover=sum(uint8(bin(:)))/(wid*len); 
[rgb_im]=E_objectives(SImage,bin,1,0); 

% ======================================================================% 
function [Image]=E_objectives(SImage, bin,C_bit,gray_c) 
[y,x]=size(bin); 
if C_bit==1 
    re_bin=bin; 
else 
    re_bin=~bin; 
end 
  
for i=1:3 
    for j=1:y 
        for k=1:x 
            if re_bin(j,k)==0 
              SImage(j,k,i)=255; 
            end 
        end 
    end 
end 
if gray_c==1 

Image=rgb2gray(SImage); 
else 

Image=SImage; 
end 
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Appendix N-Matlab code for counting wheatheads  

% ====================================================================% 
% For counting  wheatheads                                            % 
% Author: Yong Wei                                                    % 
% ====================================================================% 
close all;   
clear all;   
clc; 
Param=['autoc';'contr';'corrm';'corrp';'cprom';'cshad';'dissi';'energ'; 
    'entro';'homom';'homop';'maxpr';'sosvh';'savgh';'svarh';'senth';'dvarh'; 
    'denth';'inf1h';'inf2h';'homom';'indnc';'idmnc']; 
  
FolderPath=input('Creat NEW FOLDER PATH TO STORE THE PROCESSING 
RESULTS:','s'); 
check=dir(FolderPath); 
FLength=length(check); 
if FLength~=0 
    fprintf('The folder has Existed!'); 
    Decision=input('Do you use it[yes/no]:','s'); 
    switch( Decision) 
         case 'YES' 
             fprintf('Now you are using the Existed folder!'); 
         case  'yes' 
             fprintf('Now you are using the Existed folder!'); 
         case 'NO' 
             FolderPath=input('Creat another NEW FOLDER PATH TO STORE THE 

PROCESSING RESULTS:','s'); 
         case  'no' 
             FolderPath=input('Creat another NEW FOLDER PATH TO STORE THE 

PROCESSING RESULTS:','s'); 
    end          
end 
mkdir(FolderPath); 
jpgPath=input('Enter the PROCESSED IMAGE PATH:','s'); %Input the storage path 
of the processed picture 
Image = imresize(imread(jpgPath), 0.25); 
figure,imshow(Image) 
[X,Y]=size(Image(:,:,1)); 
fprintf('Picture Size: %s\n',[ num2str(X),'X',num2str(Y)]); 
flag=1; 
while flag==1 

Image_Size=[input('Enter the selected size(Format:BPX-YSZX-
Y):','s'),'E'];  
FORNUMSXY=['P',TakePN1(Image_Size,'P','S'),'S']; 
SX_NUM=TakePN1(FORNUMSXY,'P','-'); 
SY_NUM=TakePN1(FORNUMSXY,'-','S'); 
FORNUMSIZE=['Z',TakePN1(Image_Size,'Z','E'),'E']; 
XSIZE_NUM=TakePN1(FORNUMSIZE,'Z','-'); 
YSIZE_NUM=TakePN1(FORNUMSIZE,'-','E'); 
sx=str2num(SX_NUM); 
sy=str2num(SY_NUM); 
xsize=str2num(XSIZE_NUM); 
ysize=str2num(YSIZE_NUM); 
imgcut=snipimg(sx,sy,xsize,ysize,Image,'RGB'); 
figure(1),imshow(imgcut); 
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Decision=input('Do you use it[yes/no]:','s'); 
    switch( Decision) 
         case  'yes' 
             flag=0; 
         case  'no' 
             flag=1; 
         case  'YES' 
             flag=0; 
         case  'NO' 
             flag=1; 
    end          

end 
imgcutYW=snipimg(sx,sy,xsize-11,ysize-11,Image,'RGB'); 
[P_name]=TakePN(jpgPath,'\','.'); 
imname=[P_name,'SP',num2str(sx),'X',num2str(sy),'SZ',num2str(xsize),'X',num2s
tr(ysize)]; 
simname=[imname,'RGB','Original']; 
figure(1),imshow(imgcutYW);title(simname); 
path=[FolderPath,'\',simname,'.jpeg']; 
print(1,'-djpeg',path); 
weather=input('Enter weather condition(sunny/cloudy):','s');  
TextureTraits= TextureA(imgcut,11,11,1,0); 
  
  
Texturepath=[FolderPath,'\TextureTraits(23)']; 
mkdir(Texturepath); 
for i=1:23 
    simname=[imname,'-GRAY-',Param(i,:)]; 
    figure(1), imshow(TextureTraits(:,:,i));title(simname); 
    path=[Texturepath,'\',simname,'.jpeg']; 
    print(1,'-djpeg',path); 
    bwDGIM=im2bw(TextureTraits(:,:,i)); 
    simname=[imname,'-BW-',Param(i,:)]; 
    figure(1),imshow( bwDGIM);title(simname); 
    path=[Texturepath,'\',simname,'.jpeg']; 
    print(1,'-djpeg',path); 
end 
switch(weather) 
         case  'sunny' 
             TH=35; 
             b=im2bw(TextureTraits(:,:,1)+TextureTraits(:,:,15)); 
             h = strel('disk',5);  
             D=imerode(b,h); 
             h = fspecial('disk',5);  
             D = imfilter(D,h); 
         case  'SUNNY' 
             TH=35; 
             b=im2bw(TextureTraits(:,:,1)+TextureTraits(:,:,15)); 
             h = strel('disk',5);  
             D=imerode(b,h); 
             h = fspecial('disk',5);  
             D = imfilter(D,h); 
         case  'cloudy'  
             TH=25; 
             A=im2bw(TextureTraits(:,:,1)); 
             B=im2bw(TextureTraits(:,:,13)); 
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             C=im2bw(TextureTraits(:,:,15)); 
             b=A|B|C;  
              h = strel('disk',3);  
              b=imdilate(b,h); 
              h = strel('disk',3);  
              D=imerode(b,h); 
         case  'CLOUDY' 
             TH=25; 
             A=im2bw(TextureTraits(:,:,1)); 
             B=im2bw(TextureTraits(:,:,13)); 
             C=im2bw(TextureTraits(:,:,15)); 
             b=A|B|C;    
             h = strel('disk',3);  
              b=imdilate(b,h); 
              h = strel('disk',3);  
              D=imerode(b,h); 
end          
simname=[imname,'-BW-','Synthe']; 
D= imfill( D,'holes');  
figure(1),imshow(D);title(simname); 
path=[FolderPath,'\',simname,'.jpeg']; 
print(1,'-djpeg',path); 
WB=uint8(D); 
WB=255-255*WB; 
R=imgcutYW(:,:,1)+WB;  
G=imgcutYW(:,:,2)+WB;   
B=imgcutYW(:,:,3)+WB;  
Gimage=cat(3,R,G,B); 
simname=[imname,'-RGB-',' wheatheads']; 
figure(1),imshow(Gimage);title(simname); 
path=[FolderPath,'\',simname,'.jpeg']; 
print(1,'-djpeg',path); 
  
Blockpath=[FolderPath,'\WheatearBlock']; 
mkdir(Blockpath); 
[L,num]=bwlabel(D,8); 
counter=0; 
for i=1:num 
    [r,c] = find(L == i); 
    RDRange=max(r)-min(r)+1; 
    CDRange=max(c)-min(c)+1; 
    a=zeros(RDRange,CDRange); 
    rowmin=min(r); 
    colmin=min(c); 
    numsize=size(r); 
    if numsize(1)>81 

    counter=counter+1; 
    for j=1:numsize                 
           a(r(j)-rowmin+1,c(j)-colmin+1)=D(r(j),c(j));       
    end 
    imname=['N',num2str(2*counter-

1),'EP',num2str(rowmin),'X',num2str(colmin),'SZ',num2str(RDRange),'X
',num2str(CDRange),'BW']; 

    figure(1),imshow(a); 
    title(imname); 
    path=[Blockpath,'\',imname,'.jpeg']; 
    print(1,'-djpeg',path); 
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    b=zeros(RDRange,CDRange,3); 
    for k=1:RDRange 

     for j=1:CDRange 
           b(k,j,1)=Gimage(k+rowmin-1,j+colmin-1,1); 
           b(k,j,2)=Gimage(k+rowmin-1,j+colmin-1,2); 
           b(k,j,3)=Gimage(k+rowmin-1,j+colmin-1,3); 
     end 

    end 
   
     fR=uint8(b(:,:,1));  % RED 
     fG=uint8(b(:,:,2));  % GREEN 
     fB=uint8(b(:,:,3));  % BLUE 
     WB=uint8(a); 
     R=fR.*WB;  
     G=fG.*WB;   
     B=fB.*WB; 
    % Form the RGB image using the CAT operator. 
    imgrec=cat(3,R,G,B);%   
           

imname=['N',num2str(2*counter),'EP',num2str(rowmin),'X',num2str(c
olmin),'SZ',num2str(RDRange),'X',num2str(CDRange),'RGB']; 
figure(1),imshow(imgrec); 
title(imname); 
path=[Blockpath,'\',imname,'.jpeg']; 
print(1,'-djpeg',path); 

    end    
end 
Features=Extract_ears0622(Blockpath); 
Morphology=Skeleton0701(Blockpath,Features,TH); 
Image_labeled=LabelNum(Morphology(:,:,1),imgcut); 
Earnum=sum(Morphology(:,8,1)); 
[P_name]=TakePN(jpgPath,'\','.'); 
imname=[P_name,'SP',num2str(sx),'X',num2str(sy),'SZ',num2str(xsize),'X',num2s
tr(ysize)]; 
simname=[imname,'  wheatheads Num(',num2str(Earnum),') with JPC method']; 
figure(1),imshow(Image_labeled);title(simname); 
path=[FolderPath,'\',simname,'.jpeg']; 
print(1,'-djpeg',path); 
Image_labeled=LabelNum(Morphology(:,:,2),imgcut); 
Earnum=sum(Morphology(:,8,2)); 
simname=[imname,'  wheatheads Num(',num2str(Earnum),') with WSI method']; 
figure(1),imshow(Image_labeled);title(simname); 
path=[FolderPath,'\',simname,'.jpeg']; 
print(1,'-djpeg',path); 
Image_labeled=LabelNum(Morphology(:,:,3),imgcut); 
Earnum=sum(Morphology(:,8,3)); 
simname=[imname,'  wheatheads Num(',num2str(Earnum),') with WCM method']; 
figure(1),imshow(Image_labeled);title(simname); 
path=[FolderPath,'\',simname,'.jpeg']; 
print(1,'-djpeg',path); 
fprintf('DONE!\n'); 
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function [out] = GLCM_Features4(glcmin,pairs) 
%  
%  
% This is an update of GLCM_Features2 (vectorized) without ismember() 
% 
% GLCM_Features2 helps to calculate the features from the different GLCMs 
% that are input to the function. The GLCMs are stored in a i x j x n 
% matrix, where n is the number of GLCMs calculated usually due to the 
% different orientation and displacements used in the algorithm. Usually 
% the values i and j are equal to 'NumLevels' parameter of the GLCM 
% computing function graycomatrix(). Note that matlab quantization values 
% belong to the set {1,..., NumLevels} and not from {0,...,(NumLevels-1)} 
% as provided in some references 
% http://www.mathworks.com/access/helpdesk/help/toolbox/images/graycomatrix 
% .html 
%  
% This vectorized version of GLCM_FEatures1.m reduces the 19 'for' loops 
% used in the headlier code to 5 'for' loops 
% http://blogs.mathworks.com/loren/2006/07/12/what-are-you-really-measuring 
% / 
% Using tic toc and cputime as in above discussion 
% 
% Although there is a function graycoprops() in Matlab Image Processing 
% Toolbox that computes four parameters Contrast, Correlation, Energy, 
% and Homogeneity. The paper by Haralick suggests a few more parameters 
% that are also computed here. The code is not fully vectorized and hence 
% is not an efficient implementation but it is easy to add new features 
% based on the GLCM using this code. Takes care of 3 dimensional glcms 
% (multiple glcms in a single 3D array) 
%  
% If you find that the values obtained are different from what you expect  
% or if you think there is a different formula that needs to be used  
% from the ones used in this code please let me know.  
% A few questions which I have are listed in the link  
% http://www.mathworks.com/matlabcentral/newsreader/view_thread/239608 
% 
% 
% 
% Features computed  
% Autocorrelation: [2]                      (out.autoc) 
% Contrast: matlab/[1,2]                    (out.contr) 
% Correlation: matlab                       (out.corrm) 
% Correlation: [1,2]                        (out.corrp) 
% Cluster Prominence: [2]                   (out.cprom) 
% Cluster Shade: [2]                        (out.cshad) 
% Dissimilarity: [2]                        (out.dissi) 
% Energy: matlab / [1,2]                    (out.energ) 
% Entropy: [2]                              (out.entro) 
% Homogeneity: matlab                       (out.homom) 
% Homogeneity: [2]                          (out.homop) 
% Maximum probability: [2]                  (out.maxpr) 
% Sum of squares: Variance [1]              (out.sosvh) 
% Sum average [1]                           (out.savgh) 
% Sum variance [1]                          (out.svarh) 
% Sum entropy [1]                           (out.senth) 
% Difference variance [1]                   (out.dvarh) 
% Difference entropy [1]                    (out.denth) 
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% Information measure of correlation1 [1]   (out.inf1h) 
% Informaiton measure of correlation2 [1]   (out.inf2h) 
% Inverse difference (INV) is homom [3]     (out.homom) 
% Inverse difference normalized (INN) [3]   (out.indnc)  
% Inverse difference moment normalized [3]  (out.idmnc) 
% 
% The maximal correlation coefficient was not calculated due to 
% computational instability  
% http://murphylab.web.cmu.edu/publications/boland/boland_node26.html 
% 
% Formulae from MATLAB site (some look different from 
% the paper by Haralick but are equivalent and give same results) 
% Example formulae:  
% Contrast = sum_i(sum_j(  (i-j)^2 * p(i,j) ) ) (same in matlab/paper) 
% Correlation = sum_i( sum_j( (i - u_i)(j - u_j)p(i,j)/(s_i.s_j) ) ) (m) 
% Correlation = sum_i( sum_j( ((ij)p(i,j) - u_x.u_y) / (s_x.s_y) ) ) (p[2]) 
% Energy = sum_i( sum_j( p(i,j)^2 ) )           (same in matlab/paper) 
% Homogeneity = sum_i( sum_j( p(i,j) / (1 + |i-j|) ) ) (as in matlab) 
% Homogeneity = sum_i( sum_j( p(i,j) / (1 + (i-j)^2) ) ) (as in paper) 
%  
% Where: 
% u_i = u_x = sum_i( sum_j( i.p(i,j) ) ) (in paper [2]) 
% u_j = u_y = sum_i( sum_j( j.p(i,j) ) ) (in paper [2]) 
% s_i = s_x = sum_i( sum_j( (i - u_x)^2.p(i,j) ) ) (in paper [2]) 
% s_j = s_y = sum_i( sum_j( (j - u_y)^2.p(i,j) ) ) (in paper [2]) 
% 
%  
% Normalize the glcm: 
% Compute the sum of all the values in each glcm in the array and divide  
% each element by it sum 
% 
% Haralick uses 'Symmetric' = true in computing the glcm 
% There is no Symmetric flag in the Matlab version I use hence 
% I add the diagonally opposite pairs to obtain the Haralick glcm 
% Here it is assumed that the diagonally opposite orientations are paired 
% one after the other in the matrix 
% If the above assumption is true with respect to the input glcm then 
% setting the flag 'pairs' to 1 will compute the final glcms that would 
result  
% by setting 'Symmetric' to true. If your glcm is computed using the 
% Matlab version with 'Symmetric' flag you can set the flag 'pairs' to 0 
% 
% References: 
% 1. R. M. Haralick, K. Shanmugam, and I. Dinstein, Textural Features of 
% Image Classification, IEEE Transactions on Systems, Man and Cybernetics, 
% vol. SMC-3, no. 6, Nov. 1973 
% 2. L. Soh and C. Tsatsoulis, Texture Analysis of SAR Sea Ice Imagery 
% Using Gray Level Co-Occurrence Matrices, IEEE Transactions on Geoscience 
% and Remote Sensing, vol. 37, no. 2, March 1999. 
% 3. D A. Clausi, An analysis of co-occurrence texture statistics as a 
% function of grey level quantization, Can. J. Remote Sensing, vol. 28, no. 
% 1, pp. 45-62, 2002 
% 4. http://murphylab.web.cmu.edu/publications/boland/boland_node26.html 
% 
% 
% Example: 
% 
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% Usage is similar to graycoprops() but needs extra parameter 'pairs' apart 
% from the GLCM as input 
% I = imread('circuit.tif'); 
% GLCM2 = graycomatrix(I,'Offset',[2 0;0 2]); 
% stats = GLCM_features4(GLCM2,0) 
% The output is a structure containing all the parameters for the different 
% GLCMs 
% 
% [Avinash Uppuluri: avinash_uv@yahoo.com: Last modified: 04/05/2010] 
  
% If 'pairs' not entered: set pairs to 0  
if ((nargin > 2) || (nargin == 0)) 
   error('Too many or too few input arguments. Enter GLCM and pairs.'); 
elseif ( (nargin == 2) )  
    if ((size(glcmin,1) <= 1) || (size(glcmin,2) <= 1)) 
       error('The GLCM should be a 2-D or 3-D matrix.'); 
    elseif ( size(glcmin,1) ~= size(glcmin,2) ) 
        error('Each GLCM should be square with NumLevels rows and NumLevels 
cols'); 
    end     
elseif (nargin == 1) % only GLCM is entered 
    pairs = 0; % default is numbers and input 1 for percentage 
    if ((size(glcmin,1) <= 1) || (size(glcmin,2) <= 1)) 
       error('The GLCM should be a 2-D or 3-D matrix.'); 
    elseif ( size(glcmin,1) ~= size(glcmin,2) ) 
       error('Each GLCM should be square with NumLevels rows and NumLevels 
cols'); 
    end     
end 
  
  
format long e 
if (pairs == 1) 
    newn = 1; 
    for nglcm = 1:2:size(glcmin,3) 
        glcm(:,:,newn)  = glcmin(:,:,nglcm) + glcmin(:,:,nglcm+1); 
        newn = newn + 1; 
    end 
elseif (pairs == 0) 
    glcm = glcmin; 
end 
  
size_glcm_1 = size(glcm,1); 
size_glcm_2 = size(glcm,2); 
size_glcm_3 = size(glcm,3); 
  
% checked  
out.autoc = zeros(1,size_glcm_3); % Autocorrelation: [2]  
out.contr = zeros(1,size_glcm_3); % Contrast: matlab/[1,2] 
out.corrm = zeros(1,size_glcm_3); % Correlation: matlab 
out.corrp = zeros(1,size_glcm_3); % Correlation: [1,2] 
out.cprom = zeros(1,size_glcm_3); % Cluster Prominence: [2] 
out.cshad = zeros(1,size_glcm_3); % Cluster Shade: [2] 
out.dissi = zeros(1,size_glcm_3); % Dissimilarity: [2] 
out.energ = zeros(1,size_glcm_3); % Energy: matlab / [1,2] 
out.entro = zeros(1,size_glcm_3); % Entropy: [2] 
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out.homom = zeros(1,size_glcm_3); % Homogeneity: matlab 
out.homop = zeros(1,size_glcm_3); % Homogeneity: [2] 
out.maxpr = zeros(1,size_glcm_3); % Maximum probability: [2] 
  
out.sosvh = zeros(1,size_glcm_3); % Sum of sqaures: Variance [1] 
out.savgh = zeros(1,size_glcm_3); % Sum average [1] 
out.svarh = zeros(1,size_glcm_3); % Sum variance [1] 
out.senth = zeros(1,size_glcm_3); % Sum entropy [1] 
out.dvarh = zeros(1,size_glcm_3); % Difference variance [4] 
%out.dvarh2 = zeros(1,size_glcm_3); % Difference variance [1] 
out.denth = zeros(1,size_glcm_3); % Difference entropy [1] 
out.inf1h = zeros(1,size_glcm_3); % Information measure of correlation1 [1] 
out.inf2h = zeros(1,size_glcm_3); % Informaiton measure of correlation2 [1] 
%out.mxcch = zeros(1,size_glcm_3);% maximal correlation coefficient [1] 
%out.invdc = zeros(1,size_glcm_3);% Inverse difference (INV) is homom [3] 
out.indnc = zeros(1,size_glcm_3); % Inverse difference normalized (INN) [3] 
out.idmnc = zeros(1,size_glcm_3); % Inverse difference moment normalized [3] 
  
glcm_sum  = zeros(size_glcm_3,1); 
glcm_mean = zeros(size_glcm_3,1); 
glcm_var  = zeros(size_glcm_3,1); 
  
% http://www.fp.ucalgary.ca/mhallbey/glcm_mean.htm confuses the range of  
% i and j used in calculating the means and standard deviations. 
% As of now I am not sure if the range of i and j should be [1:Ng] or 
% [0:Ng-1]. I am working on obtaining the values of mean and std that get 
% the values of correlation that are provided by matlab. 
u_x = zeros(size_glcm_3,1); 
u_y = zeros(size_glcm_3,1); 
s_x = zeros(size_glcm_3,1); 
s_y = zeros(size_glcm_3,1); 
  
% checked p_x p_y p_xplusy p_xminusy 
p_x = zeros(size_glcm_1,size_glcm_3); % Ng x #glcms[1]   
p_y = zeros(size_glcm_2,size_glcm_3); % Ng x #glcms[1] 
p_xplusy = zeros((size_glcm_1*2 - 1),size_glcm_3); %[1] 
p_xminusy = zeros((size_glcm_1),size_glcm_3); %[1] 
% checked hxy hxy1 hxy2 hx hy 
hxy  = zeros(size_glcm_3,1); 
hxy1 = zeros(size_glcm_3,1); 
hx   = zeros(size_glcm_3,1); 
hy   = zeros(size_glcm_3,1); 
hxy2 = zeros(size_glcm_3,1); 
  
corm = zeros(size_glcm_3,1); 
corp = zeros(size_glcm_3,1); 
  
for k = 1:size_glcm_3 
     
    glcm_sum(k) = sum(sum(glcm(:,:,k))); 
    glcm(:,:,k) = glcm(:,:,k)./glcm_sum(k); % Normalize each glcm 
    glcm_mean(k) = mean2(glcm(:,:,k)); % compute mean after norm 
    glcm_var(k)  = (std2(glcm(:,:,k)))^2; 
     
    for i = 1:size_glcm_1 
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        for j = 1:size_glcm_2 
            p_x(i,k) = p_x(i,k) + glcm(i,j,k);  
            p_y(i,k) = p_y(i,k) + glcm(j,i,k); % taking i for j and j for i 
            %if (ismember((i + j),[2:2*size_glcm_1]))  
                p_xplusy((i+j)-1,k) = p_xplusy((i+j)-1,k) + glcm(i,j,k); 
            %end 
            %if (ismember(abs(i-j),[0:(size_glcm_1-1)]))  
                p_xminusy((abs(i-j))+1,k) = p_xminusy((abs(i-j))+1,k) +... 
                    glcm(i,j,k); 
            %end 
        end 
    end 
     
end 
  
% marginal probabilities are now available [1] 
% p_xminusy has +1 in index for matlab (no 0 index) 
% computing sum average, sum variance and sum entropy: 
  
  
%Q    = zeros(size(glcm)); 
  
i_matrix  = repmat([1:size_glcm_1]',1,size_glcm_2); 
j_matrix  = repmat([1:size_glcm_2],size_glcm_1,1); 
% i_index = [ 1 1 1 1 1 .... 2 2 2 2 2 ... ] 
i_index   = j_matrix(:); 
% j_index = [ 1 2 3 4 5 .... 1 2 3 4 5 ... ] 
j_index   = i_matrix(:); 
xplusy_index = [1:(2*(size_glcm_1)-1)]'; 
xminusy_index = [0:(size_glcm_1-1)]'; 
mul_contr = abs(i_matrix - j_matrix).^2; 
mul_dissi = abs(i_matrix - j_matrix); 
%div_homop = ( 1 + mul_contr); % used from the above two formulae 
%div_homom = ( 1 + mul_dissi); 
  
for k = 1:size_glcm_3 % number glcms 
     
    out.contr(k) = sum(sum(mul_contr.*glcm(:,:,k))); 
    out.dissi(k) = sum(sum(mul_dissi.*glcm(:,:,k))); 
    out.energ(k) = sum(sum(glcm(:,:,k).^2)); 
    out.entro(k) = - sum(sum((glcm(:,:,k).*log(glcm(:,:,k) + eps)))); 
    out.homom(k) = sum(sum((glcm(:,:,k)./( 1 + mul_dissi)))); 
    out.homop(k) = sum(sum((glcm(:,:,k)./( 1 + mul_contr)))); 
    % [1] explains sum of squares variance with a mean value; 
    % the exact definition for mean has not been provided in  
    % the reference: I use the mean of the entire normalized glcm      
    out.sosvh(k) = sum(sum(glcm(:,:,k).*((i_matrix - glcm_mean(k)).^2))); 
    out.indnc(k) = sum(sum(glcm(:,:,k)./( 1 + (mul_dissi./size_glcm_1) ))); 
    out.idmnc(k) = sum(sum(glcm(:,:,k)./( 1 + (mul_contr./(size_glcm_1^2))))); 
    out.maxpr(k) = max(max(glcm(:,:,k))); 
     
    u_x(k)       = sum(sum(i_matrix.*glcm(:,:,k)));  
    u_y(k)       = sum(sum(j_matrix.*glcm(:,:,k)));  
    % using http://www.fp.ucalgary.ca/mhallbey/glcm_variance.htm for s_x 
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    % s_y : This solves the difference in value of correlation and might be 
    % the right value of standard deviations required  
    % According to this website there is a typo in [2] which provides 
    % values of variance instead of the standard deviation hence a square 
    % root is required as done below: 
    s_x(k)  = (sum(sum( ((i_matrix - u_x(k)).^2).*glcm(:,:,k) )))^0.5; 
    s_y(k)  = (sum(sum( ((j_matrix - u_y(k)).^2).*glcm(:,:,k) )))^0.5; 
     
   corp(k) = sum(sum((i_matrix.*j_matrix.*glcm(:,:,k)))); 
   corm(k) = sum(sum(((i_matrix - u_x(k)).*(j_matrix - 

u_y(k)).*glcm(:,:,k))));  
    
   out.autoc(k) = corp(k); 
   out.corrp(k) = (corp(k) - u_x(k)*u_y(k))/(s_x(k)*s_y(k)); 
   out.corrm(k) = corm(k) / (s_x(k)*s_y(k));  
    
   out.cprom(k) = sum(sum(((i_matrix + j_matrix - u_x(k) - u_y(k)).^4).*... 
                glcm(:,:,k)));  
   out.cshad(k) = sum(sum(((i_matrix + j_matrix - u_x(k) - u_y(k)).^3).*... 
                glcm(:,:,k)));         
     
             
  
     
  
   out.savgh(k) = sum((xplusy_index + 1).*p_xplusy(:,k)); 
   % the summation for savgh is for i from 2 to 2*Ng hence (i+1) 
   out.senth(k) =  - sum(p_xplusy(:,k).*... 
            log(p_xplusy(:,k) + eps)); 
    
    % compute sum variance with the help of sum entropy 
    out.svarh(k) = sum((((xplusy_index + 1) - out.senth(k)).^2).*... 
        p_xplusy(:,k)); 
        % the summation for savgh is for i from 2 to 2*Ng hence (i+1)     
     
    % compute difference variance, difference entropy, 
    % out.dvarh2(k) = var(p_xminusy(:,k)); 
    % but using the formula in  
    % http://murphylab.web.cmu.edu/publications/boland/boland_node26.html 
    % we have for dvarh 
    out.denth(k) = - sum((p_xminusy(:,k)).*... 
        log(p_xminusy(:,k) + eps)); 
    out.dvarh(k) = sum((xminusy_index.^2).*p_xminusy(:,k)); 
     
    % compute information measure of correlation(1,2) [1] 
    hxy(k) = out.entro(k); 
    glcmk  = glcm(:,:,k)'; 
    glcmkv = glcmk(:); 
     
    hxy1(k) =  - sum(glcmkv.*log(p_x(i_index,k).*p_y(j_index,k) + eps)); 
    hxy2(k) =  - sum(p_x(i_index,k).*p_y(j_index,k).*... 
        log(p_x(i_index,k).*p_y(j_index,k) + eps)); 
     hx(k) = - sum(p_x(:,k).*log(p_x(:,k) + eps)); 
     hy(k) = - sum(p_y(:,k).*log(p_y(:,k) + eps));    
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    out.inf1h(k) = ( hxy(k) - hxy1(k) ) / ( max([hx(k),hy(k)]) ); 
    out.inf2h(k) = ( 1 - exp( -2*( hxy2(k) - hxy(k) ) ) )^0.5; 
     
    %     eig_Q(k,:)   = eig(Q(:,:,k)); 
    %     sort_eig(k,:)= sort(eig_Q(k,:),'descend'); 
    %     out.mxcch(k) = sort_eig(k,2)^0.5; 
    % The maximal correlation coefficient was not calculated due to 
    % computational instability  
    % http://murphylab.web.cmu.edu/publications/boland/boland_node26.html     
     
               
end 
  
  
  
%       GLCM Features (Soh, 1999; Haralick, 1973; Clausi 2002) 
%           f1. Uniformity / Energy / Angular Second Moment (done) 
%           f2. Entropy (done) 
%           f3. Dissimilarity (done) 
%           f4. Contrast / Inertia (done) 
%           f5. Inverse difference     
%           f6. correlation 
%           f7. Homogeneity / Inverse difference moment 
%           f8. Autocorrelation 
%           f9. Cluster Shade 
%          f10. Cluster Prominence 
%          f11. Maximum probability 
%          f12. Sum of Squares 
%          f13. Sum Average 
%          f14. Sum Variance 
%          f15. Sum Entropy 
%          f16. Difference variance 
%          f17. Difference entropy 
%          f18. Information measures of correlation (1) 
%          f19. Information measures of correlation (2) 
%          f20. Maximal correlation coefficient 
%          f21. Inverse difference normalized (INN) 
%          f22. Inverse difference moment normalized (IDN) 
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function Features=Extract_ears0622(Blockpath) 
  
Fname=Blockpath; 
% Fname='C:\ wheatheads0622_3\WheatearBlock'; 
Fpath=[Fname,'\*.jpeg']; 
filename=dir(Fpath); 
file_length=length(filename); 
Features=zeros(file_length/2,4); 
for i=1:file_length/2 

k=0; 
PN=0; 
while PN~=2*i 

k=k+1; 
imagename=[Fname,'\',filename(k).name]; 
P_NUM=TakePN1(filename(k).name,'N','E'); 
PN=str2num(P_NUM); 

end 
Imagergb = imread(imagename); 
% imshow(Imagergb) 
[imagergb_cut,~,~,~,~]=Cutting_Im(Imagergb); 
%  figure(3),imshow(imagergb_cut) 
I_gray=rgb2gray(imagergb_cut); 
BW=im2bw(I_gray); 
Sumbw1=sum(BW(:)); 
% figure(1),imshow(BW) 
% imgrec=snipimg(SX,SY,15,15,imagergb_cut,'RGB'); 
% figure,imshow(imgrec) 
G=ColourA(imagergb_cut); 
% figure,imshow(G) 
BW1=uint8(G); 
BW2=logical(BW1); 
EG=BW2.*BW; 
% figure(2),imshow(EG); 
Sumbw2=sum(EG(:)); 
Per=100*(Sumbw1-Sumbw2)/Sumbw1; 
  
 Features(i,2)=Sumbw1; 
 Features(i,3)=Sumbw2; 
 Features(i,4)=Per; 
 Features(i,1)=i; 
 % end 

end 
  
path=[Fname,'\NoGreenCoverage.xls']; 
xlswrite(path,Features,1); 
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function Morphology=Skeleton0701(Blockpath,Features,TH) 
[myfit,stats,NUM1]=wtearscm(); 
Fname=Blockpath; 
Fpath=[Fname,'\*.jpeg']; 
filename=dir(Fpath); 
file_length=length(filename); 
Morphology=zeros(file_length/2,8,3); 
AREA=zeros(file_length/2,13); 
Number=0; 
for i=1:file_length/2 

if Features(i,4)<TH 
Number=Number+1; 
k=0; 
PN=0; 
while PN~=2*i-1 

k=k+1; 
imagename=[Fname,'\',filename(k).name]; 
P_NUM=TakePN1(filename(k).name,'N','E'); 
P_NAM=TakePN1(filename(k).name,'E','.'); 
PN=str2num(P_NUM); 

end 
 Imagebw = imread(imagename); 
STATS=countingwte(Imagebw); 
Morphology(Number,8,2)=STATS(1,13); 
AREA(Number,:)=STATS; 
NUM(1,1)=STATS(1,2); 
NUM(1,2)=STATS(1,3); 
NUM(1,3)=STATS(1,4); 
NUM(1,4)=STATS(1,7); 
NUM(1,5)=STATS(1,9); 
NUM(1,6)=STATS(1,11); 
Morphology(Number,8,3)=wtecum(NUM,myfit); 
 %imshow(Imagebw) 
 [imagebw_cut,~,~,~,~]=Cutting_Im(Imagebw); 
I_gray=rgb2gray(imagebw_cut); 
BW=im2bw(I_gray); 
BW=imfill(BW,'holes'); 
RBW=~BW; 
 RBW=imfill(RBW,'holes'); 
 BW=~RBW; 
 %figure,imshow(BW) 
h = fspecial('disk',20);  
FBW = imfilter(BW,h);  
FBW1 =FBW; 
figure(1),imshow(FBW) 
counter=0; 
[Heteromor,~,~]=D_Heteromorphism(FBW,15); 
counter=counter+Heteromor; 
[Heteromor,~,~]=D_Heteromorphism(FBW,30); 
counter=counter+Heteromor; 
[Heteromor,~,~]=D_Heteromorphism(FBW,35); 
counter=counter+Heteromor; 
if counter==3 
    Heteromor=1; 
else 
    Heteromor=0; 
end 
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FORNUM=[P_NAM,'E','.']; 
FORNUMSXY=['P',TakePN1(FORNUM,'P','S'),'S']; 
SX_NUM=TakePN1(FORNUMSXY,'P','X'); 
SY_NUM=TakePN1(FORNUMSXY,'X','S'); 
FORNUMSIZE=['Z',TakePN1(FORNUM,'Z','B'),'B']; 
XSIZE_NUM=TakePN1(FORNUMSIZE,'Z','X'); 
YSIZE_NUM=TakePN1(FORNUMSIZE,'X','B'); 
Morphology(Number,1,1)=i; 
Morphology(Number,2,1)=Heteromor+1; 
Morphology(Number,3,1)=str2num(SX_NUM); 
Morphology(Number,4,1)=str2num(SY_NUM); 
Morphology(Number,5,1)=str2num(XSIZE_NUM); 
Morphology(Number,6,1)=str2num(YSIZE_NUM); 
Morphology(Number,7,1)=Morphology(Number,5,1)*Morphology(Number,6
,1); 
if Heteromor+1==1 
    if Morphology(Number,7,1)>20000 
        Morphology(Number,8,1)=2; 
    else 
        Morphology(Number,8,1)=1; 
    end 
else 
   h = fspecial('disk',10);  
   FBW = imfilter(BW,h); 
   Skeleton=bwmorph(FBW,'thin',100); 
   imname=['S',num2str(i),'E',P_NAM]; 
   figure(1),imshow(Skeleton); 
   title(imname); 
   path=[Fname,'\',imname,'.jpeg']; 
   print(1,'-djpeg',path); 
   a=bwmorph(Skeleton,'branchpoints'); 
   [~,num]=bwlabel(a,8); 
   Morphology(Number,8,1)=num+1; 
end 
Morphology(Number,1:7,2)=Morphology(Number,1:7,1); 
Morphology(Number,1:7,3)=Morphology(Number,1:7,1); 
AREA(Number,1)=Morphology(Number,1,1); 

  
end 

end 
path=[Fname,'\ wheatheads.xls']; 
xlswrite(path,Morphology(:,:,1),1); 
xlswrite(path,Morphology(:,:,2),2); 
xlswrite(path,Morphology(:,:,3),3); 
xlswrite(path,AREA,4); 
xlswrite(path,myfit,5); 
xlswrite(path,stats,6); 
xlswrite(path,NUM1,7); 
imname=['No-Green Coverage Stem']; 
x=1:file_length/2; 
figure(1), stem(x,Features(:,4));  
title(imname); 
xlabel('Number of suspected wheatear block'); 
ylabel('No-Green coverage(%)'); 
path=[Fname,'\',imname,'.jpeg']; 
print(1,'-djpeg',path);  
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function AREA=countingwte(image) 
AREA=zeros(1,13); 
[imgcut,~,~,~,~]=Cutting_Im(image); 
I_gray=rgb2gray(imgcut); 
BW=im2bw(I_gray); 
% figure, imshow(BW) 
 [x,y]=size(BW); 
% sump=sum(BW(:))/(x*y) 
BWS=zeros(x+200,y+200); 
BWS(102:x+97,102:y+97)=BW(2:x-3,2:y-3); 
% figure, imshow(~BWS) 
STATS = regionprops(BWS,'all'); 
AREA(1,2)=getfield(STATS,'Area'); 
AREA(1,3)=getfield(STATS,'MajorAxisLength'); 
AREA(1,4)=getfield(STATS,'MinorAxisLength'); 
AREA(1,5)=getfield(STATS,'Eccentricity'); 
AREA(1,6)=getfield(STATS,'Orientation'); 
AREA(1,7)=getfield(STATS,'ConvexArea'); 
AREA(1,8)=getfield(STATS,'EquivDiameter'); 
AREA(1,9)=getfield(STATS,'Solidity'); 
AREA(1,10)=getfield(STATS,'Extent'); 
AREA(1,11)=getfield(STATS,'Perimeter'); 
AREA(1,12)=getfield(STATS,'PerimeterOld'); 
AREA(1,1)=1; 
a=getfield(STATS,'ConvexArea'); 
b=getfield(STATS,'Area'); 
% cimage=getfield(STATS,'ConvexImage'); 
% figure, imshow(~cimage) 
AREA(1,13)=fix(((a-b)/b)*10)+1; 
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function [myfit,stats,NUM]=wtearscm() 
 
GCCD='WheatearCountingModelDatasbase0704.xls'; 
NUM=xlsread(GCCD,1); 
[xs,~]=size(NUM); 
% Y=zeros(xs,1); 
X=zeros(xs,16); 
Y=NUM(:,8); 
  
X(:,2)=NUM(:,2)./(NUM(:,3).*NUM(:,4)); 
X(:,1)=1; 
X(:,3)=(NUM(:,5)-NUM(:,2))./NUM(:,2); 
X(:,4)=NUM(:,6); 
X(:,5)=NUM(:,7)./(2*(NUM(:,3)+NUM(:,4)));  
X(:,6)=X(:,2).*X(:,3); 
X(:,7)=X(:,2).*X(:,4); 
X(:,8)=X(:,2).*X(:,5);  
X(:,9)=X(:,3).*X(:,4); 
X(:,10)=X(:,3).*X(:,5);  
X(:,11)=X(:,4).*X(:,5);  
X(:,12)=(X(:,2).*X(:,3)).*X(:,4); 
X(:,13)=(X(:,2).*X(:,3)).*X(:,5); 
X(:,14)=(X(:,3).*X(:,4)).*X(:,5); 
X(:,15)=(X(:,4).*X(:,5)).*X(:,2);  
X(:,16)=((X(:,2).*X(:,3)).*X(:,4)).*X(:,5); 
  
[myfit,~,~,~,stats]=regress(Y,X,0.05); 
NUM(:,9)=round(X*myfit); 
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function wheatear=wtecum(NUM,myfit) 
 
X(1,2)=NUM(1,1)./(NUM(1,2).*NUM(1,3)); 
X(1,1)=1; 
X(1,3)=(NUM(1,4)-NUM(1,1))./NUM(1,1); 
X(1,4)=NUM(1,5); 
X(:,5)=NUM(:,6)./(2*(NUM(:,2)+NUM(:,3))); 
  
X(1,6)=X(1,2).*X(1,3); 
X(1,7)=X(1,2).*X(1,4); 
X(1,8)=X(1,2).*X(1,5); 
  
X(1,9)=X(1,3).*X(1,4); 
X(1,10)=X(1,3).*X(1,5); 
  
X(1,11)=X(1,4).*X(1,5); 
  
X(1,12)=(X(1,2).*X(1,3)).*X(1,4); 
X(1,13)=(X(1,2).*X(1,3)).*X(1,5); 
X(1,14)=(X(1,3).*X(1,4)).*X(1,5); 
X(1,15)=(X(1,4).*X(1,5)).*X(1,2); 
  
X(1,16)=((X(1,2).*X(1,3)).*X(1,4)).*X(1,5); 
  
wheatear=round(X*myfit); 
if wheatear==0 
    wheatear=1; 
end 
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function Image_labeled=LabelNum(Morphology,image_cut) 
 [Block,~]=size(Morphology); 
Image_labeled=image_cut; 
for i=1:Block 
     xs=fix(Morphology(i,3)+0.5*Morphology(i,5)-5); 
    if xs<1 
           xs=Morphology(i,3); 
    end 
    ys=fix(Morphology(i,4)+0.5*Morphology(i,6)-5); 
    if ys<1 
           ys=Morphology(i,4); 
    end 
    for j=1:Morphology(i,8) 

    Image_labeled=ImLabeled(Image_labeled,xs,ys+(j-1)*15,3); 
    end 
end 
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