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Abstract 

Global climate change could lead to less frequent but more severe precipitation events in 

the Great Plains, altering the hydrologic regimes of streams.  It is important to quantify species 

roles in these dynamic systems, because changes in stream communities are likely to accompany 

predicted changes in hydrology.  The effects of species on ecosystem processes also are limited 

by the frequency of disturbance, because prairie streams are harsh, nonequilibrium systems 

characterized by a wide range of disturbances.  In particular, frequent floods that reset the 

ecosystem to an early successional state can override the influence of consumer populations 

because the availability of resources is too unpredictable to maintain stable populations of those 

species or because species are absent following the flood.  As flood frequency decreases, 

potential consumer effects may intensify.  Using a combination of field and experimental stream 

mesocosm experiments, I (1) characterized the ecosystem effects of southern redbelly dace 

(Phoxinus erythrogaster), a grazing minnow, (2) tested the interactive effects of flood frequency 

and the presence of water column (red shiner; Cyprinella lutrensis) or grazing minnows 

(Phoxinus) on ecosystem processes, and (3) tested the effects of species loss from the grazer 

functional feeding group on stream ecosystem structure and function.  I found that dace affected 

some aspects of ecosystem structure but not function, which suggested that grazer effects in 

prairie streams may not be consistent across taxa.  In the context of flood frequency, both the 

water column omnivore and dace affected recovery of prairie stream primary producers 

following flooding disturbance by stimulating production, presumably through nutrient 

remineralization.  However, some of these effects were transient or dependent on flood 

frequency, and my results indicate that consumer effects depend not only on environmental 

venue but also on the balance between consumptive losses and nutrient stimulation.  In a 

comparison of the effects of removing different taxa from a grazer assemblage, the loss of 

crayfish, snails, or dace from a grazer assemblage did not differentially affect ecosystem 

processes, suggesting overlap in the ecosystem roles of these species in the context of this 

experiment.
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remineralization.  However, some of these effects were transient or dependent on flood 

frequency, and my results indicate that consumer effects depend not only on environmental 
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CHAPTER 1 - OVERVIEW OF DIVERSITY, DISTURBANCE, 

AND ECOSYSTEM FUNCTION IN PRAIRIE STREAMS 

Globally, freshwater ecosystems are among the systems most impacted by human 

activities and, as such, experience some of the highest rates of species loss.   Maintaining 

ecosystem function in prairie streams is particularly critical because nearly 30% of all global 

runoff is carried by grassland streams (Dodds 1997).  In Great Plains streams, organisms are 

adapted to the harsh conditions, but drainage networks are oriented along an East to West axis, 

thus there is great potential for species loss under regional climate change scenarios, especially 

for fishes unable to migrate North or South to escape intolerable conditions (Matthews and 

Zimmerman 1990).  In light of potential species extirpations and extinctions, it is critical to 

understand the role of species in Great Plains streams in order to prevent and mitigate the effects 

of potentially altered ecosystem function.   

The consequences of species loss on ecosystem productivity are understood according to 

three main hypotheses.  The idiosyncratic hypothesis (Lawton 1994) suggests that ecosystem 

function changes when diversity increases or decreases, but the change in function has no 

particular direction and is unpredictable.  The rivet hypothesis (Erlich and Erlich 1981) contends 

that each species in a community makes a contribution to ecosystem function, but there is some 

minimum level of species diversity required to maintain function.  The drivers and passengers 

hypothesis  (Walker 1992) suggests that there are critical species in the community that maintain 

ecosystem function (i.e., drivers), and there are also non-critical species (i.e., passengers) whose 

loss would not alter ecosystem function.  These views provide a framework against which to 
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evaluate the effects of species loss in a system and contribute to a greater understanding of the 

role of biodiversity in ecosystem functioning. 

It is not biodiversity per se that mediates ecosystem function but rather the density and 

functional diversity of the organisms present in a system.  However, species loss does limit the 

number of ways in which a system can reorganize following disturbance (Peterson et al. 1998).  

Several freshwater and marine studies demonstrated that changes in the structure of higher 

trophic levels are reflected in changes in the structure and productivity of lower trophic levels, 

likely because higher trophic levels are less diverse and have inherently fewer redundant species 

(Hooper et al. 2005).  In general, the effects of benthic biodiversity depend on nutrient 

concentrations, temperature, water flow, and frequency of disturbance, but lower trophic levels 

in freshwater systems, especially those in streams, are poorly understood with regard to the 

effects of consumer diversity on ecosystem function (Covich et al. 2004).   

Prairie streams are ideal systems for evaluating the effects of species loss, because they 

play critical roles in global water quality and their biota are among the most threatened.  In 

contrast to forested streams, autotrophy and heterotrophy are typically more balanced (P:R ≈ 1) 

in prairie streams, because the riparian canopy bordering the stream is open, increasing solar 

irradiance reaching the stream (Webster et al. 2003).   Consumer assemblages in many prairie 

streams are dominated by grazers, which could be considered functionally redundant (sensu 

Lawton 1994) based on trophic position.  The grazer functional feeding group directly consumes 

primary producers, and relative to densely canopied stream systems, grazers can have potentially 

strong effects on ecosystem structure and function in prairie streams (Matthews 1998, Evans-

White and Dodds 2003).  Ecosystem effects of the grazer functional feeding group have been 

well-studied in streams, but most of these studies have focused on the effects of one grazing 
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minnow, the central stoneroller (Campostoma anomalum).  The generality of grazer effects based 

on studies of this single species is still largely unknown.  Furthermore, the effects of stream 

organisms have not previously been studied in the context of disturbance.   

Water column omnivores also have strong effects in prairie streams by consuming 

terrestrial invertebrates.  In contrast with benthic invertivores, which consume primarily aquatic 

invertebrates, water column omnivores provide an allochthonous source of remineralized 

nutrients to the stream ecosystem (Gido and Matthews 2001).  The activities of benthic grazers 

and water column omnivores determine in part the capacity for processing of labile nutrients and 

organic matter within the reach, thus mediating downstream water quality. 

Given the potential for global change to alter disturbance regimes in streams, there is a 

need for information on the relevance of species in ecosystem recovery under varied flood 

frequencies.  The relationship between biodiversity and ecosystem function has been well-

studied in terrestrial plant communities (Tilman et al. 2001) and in fine-scale short-term aquatic 

experiments with microconsumers (Naeem and Baker 2005), but little work has been done to 

identify the role of biodiversity within the macroconsumer grazer functional group in streams.  

Given the threatened status of prairie stream biota (e.g., Haslouer et al. 2005), it seems prudent to 

investigate the effects of species loss from this group on ecosystem structure and function. 

To address these research needs, this dissertation consists of three research-based 

chapters.  In chapter two, I characterized the effects of a grazing minnow, southern redbelly dace 

(Phoxinus erythrogaster), on ecosystem structure and function to examine whether the strong 

effects of other grazing fishes (e.g., Campostoma) could be generalized to a co-occuring grazing 

minnow.  This study consisted of two investigations in experimental streams as well as a field 

experiment in nearby Kings Creek.  Chapter 3 examined the interactive effects of two fishes (a 
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grazer and a water column omnivore) and flood frequency on ecosystem structure and function 

with two studies in the experimental streams and a field experiment in Kings Creek.  In chapter 

4, I describe manipulations of species composition of grazer assemblages in the experimental 

streams to test the hypothesis of functional redundancy of a grazing fish, crayfish, and snail. 
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CHAPTER 2 - EFFECTS OF THE HERBIVOROUS MINNOW, 

SOUTHERN REDBELLY DACE (PHOXINUS 

ERYTHROGASTER), ON STREAM PRODUCTIVITY AND 

ECOSYSTEM STRUCTURE 

Katie N. Bertrand and Keith B. Gido 

ABSTRACT 
We used field and mesocosm experiments to measure effects of southern redbelly dace 

(Phoxinus erythrogaster), a grazing minnow, on stream ecosystem structure and function.  

Ecosystem structure was quantified as algal filament length, algal biomass, size distribution of 

particulate organic matter, algal assemblage structure, and invertebrate assemblage structure, 

whereas ecosystem function was based on gross and net primary productivity.  Our experiments 

showed that moderate densities of Phoxinus temporarily reduced mean algal filament length and 

mean size of particulate organic matter relative to fishless controls.  However, there was no 

detectable effect on algal biomass or ecosystem primary productivity.  Several factors could 

explain the lack of effect of Phoxinus on primary productivity including increased algal 

production efficiency in grazed treatments or increased grazing by other organisms in fishless 

treatments.  The inability of Phoxinus to reduce algal biomass and system productivity contrasts 

experimental results based on other grazing minnows, such as the central stoneroller 

(Campostoma anomalum), and questions the generality of grazer effects in stream ecosystems.  

However, environmental venue and the spatial and temporal scale of ecosystem measurements 

can greatly influence the outcome of these experiments.
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INTRODUCTION 
Accelerated rates of species extinctions (Lawton and May 1995; Pimm et al. 1995; 

Vitousek et al. 1997; Rosenzweig 1999; Sala et al. 2000) are forcing ecologists to consider the 

consequences of diversity losses on ecosystems.  Whereas the loss of entire functional groups is 

likely to alter ecosystem processes (Ghilarov 2000; Schwartz et al. 2000; Rosenfeld 2002), 

recent studies indicate that even individual species can make unique contributions to an 

ecosystem (e.g., Cardinale et al. 2002).  In particular, grazing animals are tightly coupled with 

primary production and can affect both structural (e.g., species composition, standing stock) and 

functional (e.g., productivity) components of ecosystems.  Although grazers ingest producer 

biomass (Krebs 2001), they also remineralize nutrients, which may stimulate production and 

decrease turnover time of remaining cells (Cooper 1973; Hill et al. 1992).  Grazing also can 

increase biomass-specific productivity by altering the availability of limiting resources such as 

light and nutrients (e.g., by decreasing shading and increasing the rate of delivery of nutrients 

across the boundary layer; Newbold et al. 1982; Power et al. 1988a).  The trade-off between 

biomass loss and increased photosynthetic efficiency of residual algae will dictate the rate of 

ecosystem primary productivity (Carpenter and Kitchell 1984).   

Effects of grazers on ecosystem structure and function in streams have been reported for 

a variety of organisms including insects (e.g., Wallace and Webster 1996), snails (e.g., Hill et al. 

1992; Sarnelle et al. 1993; Vaughn et al. 1993; Turner 1997), crayfishes (e.g., Gelwick 2000; 

Evans-White and Dodds 2003), tadpoles (e.g., Nystrom and Abjornsson 2000), and fishes (e.g., 

Cooper 1973; Power 1990; Matthews 1998; Flecker et al. 2002).  In prairie streams, which are 

typically more net autotrophic (i.e., Production/Respiration ≈ 1) relative to densely canopied 

streams (Webster et al. 2003), we might expect grazing organisms to have a stronger influence 
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on ecosystem structure and function than in more heterotrophic systems because they interact 

directly with autotrophs (e.g., ingesting them) but only indirectly with heterotrophs.  Studies of 

Campostoma anomalum (central stoneroller) demonstrate the potentially strong effects of 

grazing minnows in prairie streams (Matthews 1998; Evans-White and Dodds 2003), but it is not 

clear if these results can be generalized to other grazing fishes. 

Our study tested for structural and functional effects of the herbivorous minnow, 

Phoxinus erythrogaster, which can occur in sympatry with Campostoma in prairie streams.  Both 

of these species prefer streambeds dominated by pebble, gravel, or sand and avoid reaches with 

greater proportions of silt or clay (Lennon and Parker 1960; McKee and Parker 1982; Slack et al. 

1997).  Phoxinus are abundant in springfed headwater reaches, whereas Campostoma are 

typically found downstream from these habitats (Hill and Jenssen 1968; Settles and Hoyt 1976; 

Felley and Hill 1983).  Campostoma appear to be selective feeders preferring diatoms to other 

forms of algae (Stewart 1987; Power et al. 1988a; Napolitano et al. 1996), whereas Phoxinus are 

more generalist omnivores, feeding on algae and invertebrates when they are available (Phillips 

1969; Settles and Hoyt 1976; Felley and Hill 1983).  Whereas Phoxinus can only bite algae 

(Forbes and Richardson 1920), Campostoma uses a cartilaginous ridge on its lower jaw (McKee 

and Parker 1982; Miller and Robinson 2004) to swipe, shovel, or bite attached algae from the 

substrate (Matthews et al. 1986).  Although these fishes can use similar habitat and overlap in 

diet, it is unknown if the effects of Phoxinus are redundant (sensu Lawton 1994) with those of 

Campostoma in prairie streams.   

To test the structural and functional effects of Phoxinus in prairie streams, we used field 

and mesocosm experiments.  Mesocosm experiments allowed us to replicate treatments, control 

effects of heterogeneous discharge, and improve the precision of our whole stream productivity 
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measurements.  Measurements of structural components from field experiments allowed us to 

extrapolate our experimental stream results to local natural streams.  Based on studies of 

Campostoma (Gelwick and Matthews 1992), we predicted that structural effects of Phoxinus 

would include reduced algal filament length, reduced algal biomass, altered algal assemblage 

structure, and reduced mean particle size of particulate organic matter.  Moreover, these 

structural changes should result in functional changes (i.e., reduced primary productivity) and 

bottom up effects on invertebrate assemblage structure.     

MATERIALS AND METHODS 

Field experiment 

Study site—The field experiment was conducted in four pools in Kings Creek, Riley County, 

Kansas (USA), from August to October 2002.  Kings Creek drains 1059 ha of tallgrass prairie on 

the Konza Prairie Biological Station (KPBS).  Physicochemical and biological descriptions of 

this stream are in Gray et al. (1998) and Gray and Dodds (1998).  The four study pools were 

located in a forested stream reach with perennial flow.  Pool surface area ranged from 23 to 84 

m2 (mean = 59 m2), and substrate typically was cobble, pebble, and gravel, according to the 

Wentworth scale (Cummins 1962).   Dominant fishes in the study reach included three minnows 

[Campostoma anomalum, Phoxinus erythrogaster, and Semotilis atromaculatus (creek chub)] 

and the orangethroat darter (Etheostoma spectabile).  Grazing invertebrates such as crayfish 

(Orconectes spp.) and snails (Physa and Physella spp.) also were present. 

Experimental design—Wire screen (5-mm mesh) was used to block the upstream and 

downstream ends of four study pools (fishless exclosures and fish enclosures).  Wire mesh was 

secured to steel poles and buried roughly 20 cm into the streambed to prevent the escape or 
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entrance of fishes.  Leaf litter was removed from the wire mesh as needed to maintain natural 

stream flow through the study pools.  On 15 August 2002 (day 0) of the experiment, three-pass 

electrofishing depletion samples were conducted in each study pool.  In two randomly selected 

exclosure pools, all captured Phoxinus, other fish species and crayfishes were removed.  Fishes 

collected from the other two enclosure pools were counted, measured (total length) and returned 

to the pools.  Another depletion sample was conducted in each pool during the sixth week of the 

experiment to quantify the immigration of young-of-the-year fishes into exclosures.  Phoxinus 

densities in each study pool were based on maximum-likelihood population estimates (Van 

Deventer and Platts 1989) from the three-pass electrofishing depletion samples.  Because we did 

not initially remove all fish from the exclosures, we estimated the density of fish remaining as 

the difference between the maximum-likelihood population estimate and the total number of fish 

removed after three passes.    

Mesocosm experiments 

Study system—The second phase of this study was conducted in nine experimental streams at the 

KPBS.  Experimental streams were similar to those used by Gido and Matthews (2001), and each 

stream consisted of a 2.54 m2 pool connected to a 0.84 m2 riffle.  Recirculating flow was 

powered by an electric trolling motor with a mean discharge of 10.8 L / s, and water was 

supplied by a natural spring that also supplies nearby Kings Creek.  Substrate was a mixture of 

gravel, pebble, and fines from a local quarry.  Although algae and winged invertebrates (e.g., 

chironomids) readily colonized these systems, each stream was inoculated one week prior to the 

beginning of the experiment with an algal slurry obtained from Kings Creek to stimulate algal 

growth.   
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Experimental design—In Fall 2002, two Phoxinus treatments [small Phoxinus (30 – 50 mm TL, 

28.3 fish / m2) and large Phoxinus (> 60 mm TL, 5.7 fish / m2)] and a fishless control were 

randomly assigned to stream units with three replicates each.  The different stocking densities 

were intended to equalize biomass and isolate the effect of body size; however, biomass in the 

small fish treatment (26.1 g / m2) was slightly greater than that in the large fish treatment (22.4 g 

/ m2).  The experiment began on 17 October 2002 (day 0) and concluded on 26 November 2002 

(day 40).  Mean water temperature was 7°C (range: 2 - 13°C).  Fish that were lost to natural 

mortality during this experiment were replaced within one week. 

This experiment was repeated in the summer of 2003 with eight experimental stream 

units.  However, we only compared a fishless control to a fish treatment [24 Phoxinus (mean TL 

= 56 mm, range TL: 40 - 78 mm, 6.8 fish / m2, 14.9 g / m2)] because we found no significant 

differences between large and small Phoxinus treatments in 2002 (see Results).  This experiment 

began on 5 June 2003 (day 0) and concluded on 8 August 2003 (day 65).  Mean water 

temperature was 22°C (range: 13 - 31°C). 

Data collection 

Ecosystem function—Gross primary productivity (GPP) and net primary productivity (NPP) in 

experimental streams were based on diurnal changes in dissolved oxygen measurements from 

YSI 600XLM sondes (Yellow Springs Instruments, Inc.).  We used the open-system single-

station approach to estimate productivity (Bott 1996).  Water was recirculated at the same 

velocity and the bed-form was similar in all experimental units so turbulence-induced aeration 

was similar across experimental stream channels.  Reareation was estimated using the surface 

renewal model, which is calculated from velocity (V, in cm / s) and mean depth (H, in cm) using 

the formula  
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f(20°C) = 50.8 V0.67 H-0.85         (1) 

(Owens 1974).  The flow-through rates were the same for all experimental units leading to an 

approximate turnover time of 13 hrs (i.e., effective channel length ~ 1700 m).  The prolonged 

exposure to stream biota assured that diurnal changes in water oxygen concentration reflected 

biotic processes in these stream units.  We estimated NPP as the mean rate of change per hour in 

oxygen concentration during daylight and darkness, whereas GPP was estimated by subtracting 

the mean hourly rate of oxygen uptake during darkness from the mean hourly rate of oxygen 

productivity during daylight.  During the first experimental stream study (Fall 2002), sondes 

were deployed in three streams for 24h then transferred to another stream, such that metabolism 

in all nine experimental streams was measured over a period of three days.  GPP was estimated 

for each stream twice: once between day 7 and 27 and again between day 31 and 40.  On 14 of 

25 sample days, we only recovered oxygen curves during the night and part of the day (before 

1300).  However, on the other 11 days we recovered complete 24-hour curves, and we found 

productivity between 0900 and 1300 to be a significant predictor of productivity between 0900 

and 1700 (r2 = 0.48, P < 0.01).  Thus, for the 2002 experiment we used this relationship to 

predict daytime productivity rates for days without complete data.  In Summer 2003, GPP was 

measured in each stream during eight, 4-day periods beginning on days 1, 8, 14, 20, 29, 38, 50, 

and 65.   

Ecosystem structure—Algal biomass was estimated as the concentration of chlorophyll a 

extracted from pebbles taken from study pools or experimental streams.  Pebbles were collected 

on site and frozen within four hours of collection.  Chlorophyll was extracted by submerging 

pebbles in a 78˚C, 95% EtOH solution as described in Sartory and Grobelaar (1984).  

Concentration of chlorophyll a was corrected for cross-sectional area of pebbles and algal 
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biomass was reported per unit area.  During the field experiment in Kings Creek 2002, we 

removed three pebbles along ten equally spaced transects perpendicular to the direction of flow 

from each pool on days 4 and 32.  In Fall 2002, chlorophyll a samples from pools were lost, but 

we present data from riffles that were collected across each of three equally spaced transects 

perpendicular to the direction of flow in the riffles of experimental streams on day 40; 

chlorophyll a in riffles was significantly correlated with that in pools during Summer 2003 (r = 

0.65, P < 0.01).  In Summer 2003, we collected four pebbles from the edges of the pools and one 

from the deep center of the pools on days 1, 6, 18, 29, 42, 54, and 65. 

In the field experiment, algal height was measured on day 39 along the same ten transects 

used for collecting algal biomass samples.  We measured the vertical height of the algae over the 

substratum at ten points along each transect (100 points per stream pool).  The length of the 

longest filament (vertical or horizontal) was measured in experimental streams because filaments 

typically were much longer.  In Fall 2002, we measured three filaments along each of the same 

three transects used for collecting algal biomass (9 points per stream riffle) on day 45.  In 

Summer 2003, we measured filaments at the same sampling points used for collecting algal 

biomass samples (5 points per pool) on days 12, 23, 35, and 47. 

Invertebrate samples from Kings Creek were a composite of four replicate Hess samples 

(500-µm mesh bag) that were combined and subsampled (30-40 % of total sample).  Because 

these samples were only taken on day 4, these data only were used as a reference for assemblage 

structure comparison between experimental streams and the natural stream because the 

invertebrate assemblages likely did not have time to respond to treatments.  In the experimental 

stream studies we used a modified core sampler that consisted of a 0.018 m2 corer with an 

electric pump (0.1 L / s) to collect invertebrates, particulate organic matter (POM), and algae 
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from the substrate.  Substrata inside the corer were agitated by hand for either 1 min (Fall 2002) 

or 1.5 min (Summer 2003) while materials were pumped through a 250 µm sieve.  In the Fall 

2002 experiment, we took one invertebrate sample from the approximate center of each riffle on 

day 16, and on day 40 we took two core samples from each riffle and each pool.  The 

invertebrates were preserved in formalin and later identified to order or family.  We took four 

additional replicate core samples on day 40 (two from the riffle and two from the pool) to 

estimate size distribution of fine particulate organic matter (FPOM).  Particulate organic matter 

samples were preserved in formalin, and dry as well as ash-free dry mass (AFDM) was measured 

for six size classes: >1 µm, 1000-500 µm, 500-250 µm, 250-180 µm, 180-98 µm, and 98-0.45 

µm.  In Summer 2003, we took separate core samples from both the riffle and the pool on days 1, 

6, 18, 29, 42, 54, and 65.  In Summer 2003, the material pumped from each riffle or pool was 

homogenized in a bucket and subsampled for fine particulate organic matter (FPOM; 500 mL) 

and algal assemblage structure (AAS; 50 mL).  The remaining invertebrates and detritus were 

concentrated on a 250 µm sieve and preserved in formalin.  Dry and AFDM of FPOM was 

measured for five size classes: >500 µm, 500-250 µm, 250-180 µm, 180-98 µm and 98-1 µm.  

Algal assemblage structure samples also were preserved in formalin and later categorized into 

four general taxonomic groups (unicellular green, filamentous green, diatom, or cyanobacteria).  

The first 100 algal cells that intersected the ocular transect were placed in these categories.   

At the conclusion of the Fall 2002 experiment and twice during the Summer 2003 

experimental stream study (days 54 and 78), we collected two Phoxinus from each experimental 

stream to characterize diet.  Diet items in the foregut were identified and enumerated using a 

transect method similar to the procedure for quantifying algal assemblage structure; we 

categorized the first 100 algal cells as filamentous green algae or diatoms (unicellular green and 
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cyanobacteria were absent or in very low abundance), and noted the occurrence of invertebrate 

animal matter. 

Statistical analysis 

Data from Kings Creek 2002 were not statistically analyzed because each treatment was 

only replicated twice.  Thus, we were limited to qualitative comparisons between results from 

these experiments and those from experimental stream studies.  In Fall 2002, ANOVA was used 

to test for differences among treatments in the concentration of chlorophyll a on pebbles and 

algal filament length in the experimental streams.  In 2003, we used repeated-measures ANOVA 

with sample date (day) as the repeated factor to test for fish effects on ecosystem function and 

structure variables over time in the experimental streams.  If the variance-covariance matrices of 

the repeated measures failed Mauchly’s sphericity test, we referred to the Huyhn-Feldt adjusted 

P-value for tests of within-subjects effects.  Because we found a significant correlation between 

GPP and mean daily solar irradiance (see Results), we used repeated-measures ANCOVA with 

GPP as the response variable, day as the repeated factor, and irradiance as the covariate to test 

for differences in metabolism among treatments (SAS 2003).  We used the value of Akaike’s 

Information Criterion (Akaike 1974) to select the most adequate covariance structure from those 

evaluated (Milliken and Johnson 2002).  The covariance structure that best fit our data was first-

order autoregressive.  We then used backward model selection and chi-square tests, which 

compared reduced and full model –2 residual log likelihood values, to select the best model of 

our data (gpp = day + fish + day*fish + irradiance*day*fish).  In a repeated measures design 

such as this, with different sized experimental units, the denominator degrees of freedom must be 

computed from a linear combination of mean squares, and the denominator is not chi-squared.  

Thus, we used the Kenward-Rogers approximation to find approximate degrees of freedom for 
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the F-test, which produced fractional denominator degrees of freedom.  Where we found 

significant differences in main effects, we applied Tukey post hoc comparisons to test the 

relative differences between the fish treatment and the control.  Oxygen sonde dysfunction in 

Summer 2003 resulted in unequal replication between the fish treatment and the control on days 

65 – 68 and analysis was limited to three replicates each for the fish treatment and the control on 

day 29 – 32.  Thus, we excluded measurements from days 65 – 68 and used linear trend at point 

estimates (SPSS 2001) to replace the missing observations from days 29 – 32.  Differences in 

proportional abundance of four major algal groups were tested with repeated-measures ANOVA.  

Proportions were arcsine square-root transformed prior to this analysis.  In Summer 2003, we 

used a paired t-test to evaluate differences in the ratios of filamentous green algae and diatoms 

between the diet and core samples.  Ratios were square-root transformed prior to analysis to 

reduce inequality of variances among samples.  We tested for differences in invertebrate 

assemblage structure in Fall 2002 using a partial redundancy analysis (pRDA).  This analysis 

tested the significance of the association between invertebrate assemblage structure and the 

presence of Phoxinus after controlling for effects of sample date.  In Summer 2003, we used 

principal response curve (PRC) analysis, which is an extension of a partial redundancy analysis 

that considers repeated measures designs (pRDA, ter Braak and Smilauer 2002), to test the 

effects of fish and a time x fish interaction on invertebrate assemblage structure.  Both pRDA 

and PRC used a Monte Carlo randomization procedure to test the significance of the first axis of 

the ordination.  Monte Carlo simulations were based on 500 permutations and run using 

CANOCO (ter Braak and Smilauer 2002).  Ordinations were based on square-root transformed 

densities of each taxa (i.e., number of individuals per core), but an analysis based on proportional 

abundance yielded similar results. 
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RESULTS 

Fish density and biomass in stream enclosures 

Our removal efforts in field exclosures only initially affected total numbers and biomass of 

fishes.  Immigration and rapid growth of juvenile fishes resulted in similar fish assemblage 

structure between enclosures and exclosures by the sixth week of the experiment.  After the 

initial removal, Phoxinus densities were estimated at 0.4 and 0.5 fish / m2 in exclosures as 

compared to densities of 3.1 and 1.4 fish / m2 in enclosures.  In the same study pools, the density 

of Campostoma was 1.5 and 1.0 fish / m2 in exclosures and 1.6 and 0.5 fish / m2 in enclosures.  

By the sixth week of the experiment, Phoxinus densities in the exclosures were 4.6 and 18.3 fish 

/ m2 (1.8 and 7.9 g / m2) compared to 5.5 and 5.6 fish / m2 (8.0 and 10.3 g / m2) in enclosures.  

Although densities and biomass were similar, mean length of Phoxinus was much smaller in 

exclosures (31.2 mm and 32.6 mm TL) than in enclosures (44.5 mm and 47.3 mm TL).  Density 

of Campostoma was similar between exclosures [8.2 and 10.5 fish / m2 (10.3 and 10.9 g / m2)] 

and enclosures [9.4 and 9.2 fish / m2 (16.7 and 12.4 g / m2)], but biomass was less in exclosures 

by the sixth week.  Mean length of Campostoma was slightly smaller in exclosures (45.6 mm and 

43.1 mm TL) than in enclosures (49.7 mm and 46.8 mm TL). 

Ecosystem function 

Primary productivity—There was no significant effect of the presence of Phoxinus on GPP in the 

experimental streams during Fall 2002 (all F ≤ 0.44 and all P-values ≥ 0.66, Fig. 2.1a).  In 2003, 

we found a significant correlation between GPP and mean daily solar irradiance (r = 0.57, P < 

0.01; Fig. 2.2), but no effect of Phoxinus on GPP after controlling for the effects of irradiance 

(F1,23.2 = 2.38, P = 0.14, Fig. 2.1b).  As with GPP, the presence of Phoxinus did not affect NPP in 

experimental streams (all F ≤ 2.62 and all P-values ≥ 0.15).   
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Ecosystem structure 

Algal biomass—In Kings Creek, the concentration of chlorophyll a on pebbles was slightly 

higher (from 13 to 38%, on days 4 and 32 respectively) in the exclosures than enclosures on days 

4 and 32, but there was high variability among pools (Fig. 2.3a).  Similarly, in the experimental 

streams, algal biomass was not significantly affected by the presence of Phoxinus during Fall 

2002 (F2,6 = 1.09, P = 0.40; Fig. 2.3b) or Summer 2003 (F1,6 = 1.98, P = 0.21; Fig. 2.3c).   

Algal assemblage structure —In Summer 2003, filamentous green algae dominated the 

assemblage (65%) followed by diatoms (17%), unicellular green algae (11%), and cyanobacteria 

(7%).  We found a temporal pattern of increasing relative abundance of unicellular green algae 

(F6,36 = 13.49, P < 0.01) and a subsequent decline in filamentous green algae (F6,36 = 6.99, P < 

0.01), but no effect of grazing by Phoxinus on the relative abundance of the four algal taxa (all F 

≤ 4.43 and all P-values ≥ 0.08). 

Algal Filament Length—In Kings Creek, algal filaments were 0.2 to 1.6 cm shorter in enclosures 

than in the exclosures on day 39 (Fig. 2.4a).  In the experimental streams during Fall 2002, algal 

filaments were, on average, more than two orders of magnitude shorter in riffles with Phoxinus 

(F2,6 = 104.87, P < 0.01, Fig. 2.4b).  Post hoc comparisons among treatment means revealed that 

the control had significantly (Tukey HSD P < 0.01) longer algal filaments than both the small 

Phoxinus and the large Phoxinus treatments, but filament lengths in the small Phoxinus 

treatments were not significantly different than in the large Phoxinus treatments (Tukey HSD P = 

1.00).  In Summer 2003, using repeated-measures ANOVA, we found that the presence of 

Phoxinus significantly reduced mean algal filament length (F1,6 = 6.24, P = 0.05), but there also 

was a significant day x fish interaction effect (F4,24 = 6.12, sphericity-assumed P < 0.01; Fig. 
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2.4c).  The difference in mean algal filament length between treatments was greatest on day 9 

and diminished by day 36. 

Invertebrate Assemblage structure—We did not observe an effect of Phoxinus on invertebrate 

assemblage structure in experimental streams (Appendix A).  Redundancy analysis (RDA) 

showed that sampling date explained a significant fraction of the variability in invertebrate 

assemblage structure during Fall 2002 (1st axis eigenvalue 0.47, F = 12.25, P = 0.01; Fig. 2.5).  

However, when sample date was included as a covariate, the presence of Phoxinus did not 

explain the remaining variability among samples (1st axis eigenvalue 0.08, F = 2.24, P = 0.25).  

Using PRC in Summer 2003, we also did not find a significant effect of fish or a day x fish 

interaction on invertebrate assemblage structure (1st axis eigenvalue 0.06, F = 7.44, P = 0.26; 

Fig. 2.6).  In the four most abundant taxa, we found that Bosmina sp. and copepods decreased 

slightly where fish were present (Bosmina sp. density was 16% lower and copepod density was 

90-95% lower in fish treatments but only on days 54 and 65), whereas oligochaetes and 

chironomids increased slightly (oligochaete density was 2% higher in the presence of fish and 

chironomid density was 7% higher in the presence of fish).  Using repeated-measures ANOVA, 

the only significant effect of Phoxinus on individual taxa densities was a day*fish interaction on 

density of copepods (F6,11.5 = 6.86, P < 0.01). 

Fine Particulate Organic Matter—In the experimental streams in Fall 2002, there was no 

significant difference in the relative mass of FPOM among the two fish treatments and the 

control for any size fraction.  However, Phoxinus treatments had a greater proportion of the 99–1 

µm size fraction than no fish treatments across sample days in Summer 2003 (Fig. 2.7).  FPOM > 

500 µm also was greater in the no fish treatments, but this effect diminished by day 42.  
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Although there was a significant day x fish interaction for FPOM 180 – 250 µm, there was not a 

consistent temporal trend that would indicate an effect of the fish treatments.   

Diet—Phoxinus consumed diatoms and filamentous green algae in both the Fall 2002 and 

Summer 2003 experiments.  We noted that one-third of the individuals examined had consumed 

some animal matter, but diatoms and filamentous green algae largely dominated gut contents.  In 

Fall 2002, there was no significant difference (t4 = 0.55, P = 0.30) in the ratio of filamentous 

green algae to diatoms consumed by small and large Phoxinus; overall, diet consisted of 

approximately 2 times more filamentous green algae than diatoms.  In Summer 2003, Phoxinus 

ingested 5.4 times more filamentous green algae than diatoms.  This was not significantly 

different (t7 = 0.26, P = 0.40) from the ratio of available filamentous green algae to diatoms (i.e., 

5.5 times more filamentous green algae than diatoms) measured from core samples. 

DISCUSSION 

Results from our experiments suggest that Phoxinus affected algal filament length, but 

had negligible effects on other aspects of ecosystem structure and whole stream primary 

productivity.  Specifically, grazing by Phoxinus did not change GPP or NPP in the mesocosm 

studies, even though significantly shorter mean algal filaments in all three experiments distinctly 

characterized grazing treatments.  Whereas the relative abundance of major algal taxa was not 

significantly affected by the presence of Phoxinus in the Summer 2003 experiment, the structural 

changes in the periphyton (i.e., decreased algal filament length and increased proportion of the 

smallest size fraction of FPOM) were apparent.  In Kings Creek, algal filaments in exclosures 

grew markedly after the initial removal of Phoxinus, so much so that when juvenile Phoxinus 

and other grazing organisms (e.g., Campostoma) invaded, those fish were unable to crop the long 

filaments.  Similarly, in Summer 2003 the ability of Phoxinus to control long algal filaments 
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disappeared by day 36, further suggesting that moderate densities of Phoxinus may not be able to 

maintain short algal turfs once long filamentous forms become established.  Concordantly, the 

proportion of organic matter in the smallest size fraction increased in the presence of Phoxinus 

until day 36, likely a function of Phoxinus maintaining short algal turfs.  Grazers typically reduce 

mean algal filament length (Power and Matthews 1983, Gelwick and Matthews 1992, Liess and 

Hillebrand 2004), but this structural change is usually linked with an increase in the relative 

abundance of adnate diatoms and turf-forming cyanobacteria in the grazer treatments, as was 

reported for Campostoma (Power et al. 1985, Power et al. 1988a, Gelwick and Matthews 1992).  

In contrast, Phoxinus grazing replaced long algal filaments that dominated the assemblage with 

more abundant, shorter filaments.   

Although we were unable to measure GPP or NPP in Kings Creek, we assume rates of 

primary productivity in the experimental streams reflect processes that occur in a natural stream 

for several reasons.  First, observations of reduced algal filament length and no change in algal 

biomass between fish treatments and controls in experimental streams was consistent with 

observations from field studies.  Second, measurements of GPP and NPP in experimental 

streams are comparable with published estimates from Kings Creek.  Finally, there was a 

significant positive association between irradiance and GPP (r = 0.57, P < 0.01), which indicates 

our measurements of GPP in the experimental streams were sensitive to factors known to 

influence photosynthetic rates.  However, ecosystem metabolism may typically be more 

heterotrophic (P:R ratio = 0.75; Webster et al. 2003) and NPP slightly lower [(-0.01 to -0.19  g 

O2 / m2 / h (O’Brien 2006)] in Kings Creek than in the experimental streams, because the 

experimental stream studies began at an early successional stage in the algal assemblage 
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compared to that in Kings Creek.  In the experimental streams, mean NPP was 0.12 g O2 / m2 / h 

in Fall 2002 and -0.08 g O2 / m2 / h in Summer 2003.  

It is important to note differences in algal and invertebrate assemblage structure between 

Kings Creek and the experimental streams.  The algal assemblage during the Kings Creek field 

study was in a late successional stage because the experiment was conducted during an interval 

with little precipitation and no flooding disturbances.  In contrast, the experimental stream 

studies represented earlier successional stages of algal assemblage development.  The temporal 

switch from net autotrophy to net heterotrophy during both mesocosm experiments illustrates 

this development of the algal community.  Invertebrate grazers that could colonize by drift or 

over longer time scales were excluded from the experimental streams.  Although lower 

invertebrate richness and nutrient limitation are potentially important components of ecosystem 

structure and function, the consistent effect of Phoxinus on structural components of the 

ecosystem in both the natural and experimental streams suggests our stream mesocosms reflect 

major processes occurring in the natural stream. 

There are several explanations for the lack of a difference in productivity, algal biomass 

(chlorophyll a), and algal assemblage structure among treatments in the experimental streams.  

First, the densities at which we stocked Phoxinus may not have been high enough to significantly 

reduce biomass or productivity because the loss of algal cells by consumption may have been 

offset by increased production of remaining algal cells.  Whereas the densities at which we 

stocked Phoxinus in the experimental streams (6.8 fish / m2) was within the range of natural 

densities in Kings Creek (0.2 – 14.3 fish / m2), this was higher than densities in previous studies 

of Campostoma that reported an effect on structure and function (mean density = 3.87; range 
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density: 0.4 – 10 fish / m2).  Thus, the lack of effect on the measurements was likely not due to 

low densities of Phoxinus in our experiments.   

Second, at moderate densities, mechanical removal of algae by grazers may stimulate 

algal growth by increasing basal regeneration or mucilage secretions of algae (Power et al. 

1988a), reducing shading, and increasing the rate of material transport across the boundary layer 

(Mulholland et al. 1991).  In addition, excretion of limiting nutrients can further stimulate algal 

growth; assuming nutrient turnover by fish is great relative to the nutrient loading to the system 

(Vanni 2002).  In the experimental streams, low nutrient concentrations in our water supply limit 

algal growth (Gido, unpublished data), thus excretion by fish could increase availability of 

soluble nutrients.  For example, in Summer 2003 total N loading to experimental streams was 

estimated at 51.1 mg N / m2 / d, assuming an average inflow of 1728 L / d and mean total N 

concentration of 99.9 ± 17.5 µg / L from inflow.  Estimates of nutrient excretion by Phoxinus 

based on rates published for other stream fishes (Vanni 2002) range between 3 and 10 µmol N / g 

fish / h, which would yield a daily excretion rate between 13.4 and 44.8 mg N / m2 / d, or 26 and 

87% of the daily loading of nitrogen from spring water.  These data suggest nutrient turnover by 

Phoxinus may play an important role in offsetting consumptive losses to grazing in these 

experiments.   

Third, in the absence of Phoxinus, abundance of other grazers (i.e., fishes, crayfishes, 

snails, and insects) may have increased resulting in no difference between fishless controls and 

fish treatments.  However, we found no measurable effect on the invertebrate assemblage among 

treatments in experimental streams, as the densities of invertebrates and species composition 

among grazing treatments were similar (e.g., between 50 and 70% of species were shared among 

treatments).  This result was not surprising given the weak effect of Phoxinus on other measures 
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of system function and structure.  That is, if exploitative or interference competition was intense, 

we also would have expected a decrease in the abundance of grazing invertebrates in Phoxinus 

treatments.  Nevertheless, the presence of Phoxinus could have altered the behavior of grazing 

insects such that their grazing rates were higher in the no fish treatments (Vaughn et al. 1993; 

Peckarsky et al. 2001; Alvarez and Peckarsky 2005).   

The inability of Phoxinus to alter area-specific GPP or NPP across the mesocosm 

experiments stands in contrast to grazing effects reported for other aquatic grazers (e.g., 

Hillebrand 2002) and for Campostoma (Stewart 1987, Gelwick and Matthews 1992), which 

decrease NPP / m2 and increase NPP / g of benthic algae.  However, there were several factors 

limiting a comparison of our results to studies of Campostoma.  In particular, the spatial scale 

over which productivity was measured could strongly influence the effects of a grazer, as 

measurements over larger scales (e.g., entire pools) are likely to be less sensitive to grazer 

effects, particularly if the system has a higher relative abundance of heterotrophs (e.g., the stream 

is net heterotrophic).  Production estimates reported in studies of Campostoma were based on 

artificial (i.e., ceramic quarry tiles, Stewart 1987) or natural (i.e., limestone cobbles, Gelwick and 

Matthews 1992) substrates placed in enclosed containers, whereas our measurements reflected 

metabolism of an entire mesocosm.  Enclosed chamber measurements may be more sensitive to 

grazing effects because uptake rate of nutrients by the attached algae from the water column is 

influenced by a smaller amount of water relative to the amount of substratum and a lack of water 

movement within the chamber (Uehlinger and Brock 1991, Carpenter 1996, Bott et al. 1997).   

Moreover, whole stream estimates of productivity encompass a broader range of habitats (e.g., 

deeper hyporheic zone) and might mask the effects of grazers, which are likely most intense at 

the substrate-water interface.  Finally, surface heterogeneity of substrates placed in enclosures 
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also could be an important source of bias, as Evans-White and Dodds (2001) found Campostoma 

prevented accumulation of algal biomass (chlorophyll a concentration) on artificial tile substrates 

but not on natural pebbles in experimental channels.    

The ability of grazers to affect autochthonous primary productivity is particularly 

important for prairie streams in which allochthonous organic matter contributions are relatively 

low.   Whereas our experiments suggest that Phoxinus at moderate densities affected some 

aspects of ecosystem structure, they did not change algal biomass or primary productivity.  

Because these results contrast studies of other grazing organisms, it will be important to evaluate 

if these differences were due to differences in interaction strengths among organisms or 

experimental design, as most tests of grazer effects were conducted at fine spatial and temporal 

scales.  Whereas finer scale measurements of productivity and algal biomass help identify the 

mechanisms through which grazers affect ecosystem properties, tests of species effects at the 

scale of natural stream pools or reaches will provide a more comprehensive assessment of the 

role of these organisms in ecosystems. 
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Figure 2.1.  Gross primary productivity (GPP; +1SE) of streams with and without 

Phoxinus erythrogaster in (a) nine experimental streams in Fall 2002 (n = 3), and (b) eight 

experimental streams in Summer 2003 (n = 4).  Data in (b) are corrected for irradiance.  

Control (No fish) data points in (b) are offset one day later than data for streams with fish 

to prevent overlap. 
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Figure 2.2.  Gross primary productivity (GPP) of streams with and without fish as a 

function of mean daily solar irradiance in eight experimental streams in Summer 2003. 
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Figure 2.3.  Algal biomass (chlorophyll a, +1SE) in stream pools and riffles with and 

without fish in (a) four Kings Creek pools in Fall 2002 (n = 2), (b) nine experimental stream 

riffles in Fall 2002 (n = 3), and (c) eight experimental stream pools in Summer 2003 (n = 4).  

Each bar in (a) represents data recorded in one pool in Kings Creek (P1, P2, P3, or P4).  

Control (No fish) data points in (c) are offset one day later to prevent overlap. 
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Figure 2.4.  Algal (a) height and (b,c) filament length (+1SE) in (a) four Kings Creek pools 

in Fall 2002 (n = 2) on Day 39, (b) nine experimental stream riffles in Fall 2002 (n = 3) on 

Day 45, and (c) eight experimental stream pools in Summer 2003 (n = 4) with (grey and 

solid bars and symbols) and without (open bars and symbols) fish.  Each bar in (a) 

represents data recorded in one pool in Kings Creek (P1, P2, P3, or P4).  Control (No fish) 

data points in (c) are offset one day later to prevent overlap. 
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Figure 2.5.  RDA of invertebrate assemblage structure data with and without fish on day 20 

(circles) and 40 (squares) in nine experimental streams in Fall 2002.  Small fish are 

represented by grey symbols; large fish by solid symbols and controls (No fish) are 

represented by open symbols.  Plotted vectors are dominant invertebrate taxa.  In 

parentheses is the cumulative percent variation explained by each axis. 
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Figure 2.6.  RDA of invertebrate assemblage structure data with and without fish in eight 

experimental streams in Summer 2003.  Vectors plotted in bold are dominant invertebrate 

taxa, and numbered vectors indicate day of experiment.  In parentheses is the cumulative 

percent variation explained by each axis. 
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Figure 2.7.  Mean fraction (±1SE) of total fine particulate organic matter (FPOM) in eight 

experimental stream pools with and without fish in five size classes (a) >500 µm (day*fish: 

F=2.74, P<0.05), (b) 499-250 µm, (c) 249-180 µm (day*fish: F=2.71, P<0.05), (d) 179-100 µm 

(day: F=7.09, P<0.01), and (e) 99-1 µm (day: F=16.37, P<0.01; fish: F=12.47, P<0.05) in 

Summer 2003.  Control (No fish) data points are offset one day later to prevent overlap. 
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CHAPTER 3 - INTERACTIVE EFFECTS OF FLOOD 

FREQUENCY AND FISHES ON STREAM STRUCTURE AND 

FUNCTION 

Katie N. Bertrand, Keith B. Gido, Walter K. Dodds, Justin N. Murdock, and Matt R. 

Whiles 

ABSTRACT 

Global climate change may lead to less frequent but more severe precipitation events in 

the Great Plains, thus altering the hydrology of streams.  Because changes in species composition 

are likely to accompany the predicted changes in hydrology, it is of interest to quantify how 

species influence the recovery of stream ecosystem structure and function after hydrologic 

disturbance.  We tested the interactive effects of flood frequency and two common functional 

groups of fishes (benthic grazers and water column omnivores) on the resilience of stream 

ecosystem processes using experimental streams and a field experiment.   Both recovery of 

stream ecosystem function (e.g., primary productivity) and structure (e.g., algal biomass, 

invertebrate assemblage structure, and particulate organic matter) were measured as response 

variables.  Species from both functional groups affected recovery of ecosystem structure and 

function by stimulating primary production following simulated floods.  However, some of these 

effects were temporally variable or dependent on flood frequency.  In the natural stream 

experiment, recovery of ecosystem structure and function after a major flood was not influenced 

by fish treatment, rather ecosystem processes varied with position in the watershed.  The lack of 

a species effect in the natural stream after a single, large flood, was generally consistent with 
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experimental streams treatments without repeated flooding.  We also attributed the observed 

differences between field and mesocosm experiments to the inability of small (mean = 35.8 m2) 

field enclosures to capture the influence of nutrient remineralization by fishes.  Our results 

indicate that fishes from two dominant functional groups can influence the successional 

trajectory of stream ecosystems following scouring floods.  However, the transient nature of 

these effects necessitates an understanding of the interaction between fishes and floods to predict 

the consequences of simultaneous changes in hydrology and species composition. 

INTRODUCTION 

Predicted effects of climate change in the Great Plains will likely include an increase in 

the occurrence of large flood disturbances with legacies that may influence subsequent 

ecosystem processes (Parsons et al. 2006).  Climate change will be accompanied by changes in 

stream community structure including species invasions and extirpations, which also are likely to 

have effects on ecosystem processes (Resh et al. 1988).  The resulting interaction between 

altered disturbance regime and community composition will make predicting ecosystem response 

difficult.  For example, decreased disturbance frequency is likely to shift control of ecosystem 

processes from abiotic to biotic effects; however the interactive effects of disturbance and altered 

community structure are largely unknown (Power et al. 1988b; Uehlinger 2000). 

Most streams are nonequilibrium systems that experience a wide range of disturbances 

that regulate densities of the biota (Resh et al. 1988, Dodds et al. 2004a).  In frequently flooded 

streams, the disturbance regime also is predicted to constrain the species composition and 

mediate the interactions of species.  Thus, frequent flooding that resets the community might 

limit the effect of species on ecosystem processes because resources are too unpredictable to 

maintain stable populations of consumers (Lepori and Hjerdt 2006).  During inter-flood periods, 
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communities structured by the flood regime may influence ecosystem processes (Biggs et al. 

2005), and consumer effects may intensify.  In the absence of disturbance, periphyton growth is 

limited by self-shading, and grazers can have stronger effects on succession (Steinman et al. 

1989).  Alternatively, consumer effects may diminish during long inter-flood periods, as low 

densities of grazers may be insufficient to limit algal growth (Sarnelle et al. 1993). 

Recovery of ecosystem processes following a disturbance is difficult to quantify in lotic 

algal assemblages (Steinman et al. 1987).  However, accrual and senescence in benthic 

communities may be analogous to successional processes in terrestrial plant communities, with 

transitions from low- to high-profile growth forms (Hudon and Bourget 1981; Hoagland et al. 

1982; Roemer et al. 1984), or early seres may be dominated by large, elongate diatoms 

(Bacillariophyceae) or colonial growth forms of algae (Oemke and Burton 1986; Steinman and 

McIntire 1986; Peterson and Stevenson 1989, 1990).  Alternatively, succession is described as 

bi-phasic with rapid increases in taxa richness in early seres (i.e., days to weeks after flooding) as 

a result of r-strategist colonists (e.g., many diatoms) and moderate increases in taxa richness in 

later seres (i.e., one to several months after flooding) as a result of late-stage colonists (Biggs and 

Smith 2002).   

Consumers can alter the successional trajectory of periphyton by returning it to an earlier 

sere, maintaining dominance of an early sere, or facilitating progress to a later sere.  The 

influence of consumers on periphyton succession depends on consumer trophic position, 

consumer density, periphyton resource limitation, and timing during succession when the 

consumers are present (Steinman 1996; Rosemond et al. 2000).  Primary consumers 

mechanically remove algae from the substrata (Gelwick and Matthews 1992; Bertrand and Gido 

2007), and at high grazer densities, can change both ecosystem structure and function.  
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Secondary consumers may expedite succession through suppression of grazers or by 

remineralizing nutrients from autocthonous or allochthonous sources (Gido and Matthews 2001).   

To quantify how changes in flood frequency and fish assemblage structure interact to 

affect prairie stream structure and function, we conducted two mesocosm studies and a natural 

stream study.  Our aim was to develop a predictive framework for the effects of global change in 

aquatic systems and test the importance of consumer effects under non-equilibrium conditions.  

Experimental streams allowed us to replicate different flood-frequency scenarios and manipulate 

functional composition of consumers in a factorial design, where the mechanisms underlying 

ecosystem processes could be disentangled from the background noise and variability inherent in 

natural systems.  A field experiment in Kings Creek provided a natural context for comparing 

experimental stream results.  In the experimental streams, we predicted that fish effects would be 

greatest soon after flooding and the magnitude of their effects would depend on the balance 

between consumptive losses and stimulation through nutrient remineralization.  In frequently 

flooded streams, fish effects might not be detected, because ecosystem rates and biomass accrual 

would be continuously reset to low levels (Biggs et al. 2005).  We predicted that grazers would 

decrease primary productivity following flood disturbances, whereas water column omnivores 

would increase primary productivity following disturbances.  In the natural stream, we predicted 

that fish effects would largely reflect local food web interactions (e.g., consumptive losses) 

because ecosystem processes are an integrated measure of catchment processes and food web 

interactions occur in local habitats such as stream pools (Houser et al. 2005).   

METHODS 
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Study sites 

Twenty-four experimental streams located on the Konza Prairie Biological Station 

(KPBS) in north central Kansas, USA were used to test the effects of floods and fish species on 

ecosystem processes.  Each stream consisted of a 2.54 m2 pool connected to a 0.84 m2 riffle.  The 

basic design of these streams is given in Matthews et al. (2006).  Water was supplied by a natural 

spring and recirculated with electric trolling motors creating a mean discharge of 2.0 L s-1.  

Substrata were a mixture of pebble, gravel, and fine sediment from a local quarry.  Algae and 

invertebrate taxa with winged adults (e.g., chironomids) readily colonized these systems.  In 

addition, each stream was inoculated one week prior to the beginning of the experiment with a 

slurry of benthos from nearby Kings Creek to stimulate algal growth.   

We simulated floods in experimental streams by scouring the substrata for 10 minutes 

with a high-pressure hose and a second trolling motor attached to the pool to keep dislodged 

material in suspension.  A 500 mL grab sample of suspended organic matter was taken prior to 

draining the stream through a 13 cm drain hole in the bottom of each pool.  Streams were 

immediately refilled with spring water.  Flood intensity was consistent across streams, dates, and 

experiments.   

Field enclosures were constructed in 20 pools in Kings Creek on the KPBS.  A 

physicochemical and biological description of Kings Creek is in Gray et al. (1998) and Gray and 

Dodds (1998).  The study pools were located in three reaches of the creek: a spring-fed 

headwater (HW; N=8), an intermittent middle reach (IM; N=8), and a perennial downstream 

reach (PD; N=4).  Temperature was strongly influenced by groundwater inputs and varied by 

reach with HW ranging from 15 to 31°C (mean = 22°C), IM ranging from 14 to 24°C (mean = 

18°C), and PD ranging from to 16 to 38°C (mean = 19°C).  Surface area, depth, and discharge 
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increased from the HW to the PD reach and varied through the sample period.  Between 11 and 

25 July, pool surface area ranged from 11.2 to 62.5 m2 (mean = 35.8 m2), pool depth ranged from 

0.13 to 0.31 m (mean = 0.21 m), and discharge ranged from 1.9 to 35.4 L s-1 (mean = 12.4 L s-1).  

Substrata in the study pools was similar in size and texture to that in the mesocosms. 

The fish assemblage in Kings Creek is dominated by two grazing minnows [Campostoma 

anomalum (central stoneroller), Phoxinus erythrogaster (southern redbelly dace)] and the 

orangethroat darter (Etheostoma spectabile) (Franssen et al. 2006).  Red shiner (Cyprinella 

lutrensis) occur in the lower reaches of Kings Creek, but never in high abundance.  Grazing 

insects, crayfish (Orconectes spp.) and snails (Physa and Physella spp.) are present in varying 

abundance. 

Treatment organisms 

We tested the interactive effects of flood frequency and two common functional feeding 

groups of stream fishes, grazers and water-column minnows, on stream ecosystem processes.  

Southern redbelly dace (hereafter referred to as dace) is one of several species of grazing 

minnows that occur in prairie streams and can influence stream ecosystem processes (Bertrand 

and Gido 2007).  They prefer streambeds dominated by pebble, gravel, or sand and avoid reaches 

with greater proportions of silt or clay (Lennon and Parker 1960, McKee and Parker 1982, Slack 

et al. 1997).  Dace are abundant in springfed headwater reaches but migrate throughout the 

stream when upstream and downstream reaches are connected (Hill and Jenssen 1968, Settles 

and Hoyt 1976, Felley and Hill 1983).  Red shiner (hereafter referred to as shiners) are water-

column omnivores broadly distributed throughout the Great Plains (Cross and Collins 1995) and 

also known to influence stream ecosystem processes (Gido and Matthews 2001).  Because of 

their adaptations to reproduce quickly and tolerate high temperatures and high ammonia 
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concentrations typical of drying intermittent streams this species can reach extremely high 

densities (Matthews and Hill 1979). 

Mesocosm experimental design 

We tested the interactive effects of flood frequency and dace in Summer 2003 and shiners 

in Summer 2004.  In 2003, two levels of flood frequency (12- and 24-day return intervals) and a 

no flood control were crossed with the presence (6.8 fish m-2; 14.9 g m-2) or absence of dace.  In 

nearby Kings Creek, a scouring flood capable of overturning and displacing large cobbles (i.e., 

discharge > 0.5 m3 s-1; Dodds et al. 1996) has a reoccurrence interval of approximately 1.2 y, 

which indicates that over ten years, Kings Creek will experience at least one scouring flood in 

eight out of ten years.  However, it is not uncommon for multiple scouring events to occur within 

one year.  For example, from 1995 – 2004, at a weir in the intermittent reach of Kings Creek 

(N4D), there were three years with at least four scouring floods, two years with three scouring 

floods, and four years with one scouring flood.  We randomly assigned each of the six treatment 

combinations to four replicate experimental streams.  All 24 streams were flooded on 3 June 

2003 to begin the experiment, and the last measurements were recorded on 8 August 2003 (day 

65).  Water temperature ranged from 13 to 31°C (mean = 22°C).  In Summer 2004, the same 

flood treatments were crossed with the presence (8.9 fish m-2; 11.5 g m-2) or absence of shiners.  

The experiment began on 26 May 2004, and the last measurements were recorded on 14 August 

2004 (day 80).  Water temperature ranged from 15 to 30°C (mean = 22°C).  Fish were stocked at 

densities typical of dace in Kings Creek, which ranged from 0 to 9 individuals m-2 (Bertrand et 

al. 2006, Franssen et al. 2006).   

Within experimental streams, we sampled in both riffles and pools to evaluate effects of 

consumers and floods on the two habitats.  We expected the two species in our experiments to 
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primarily occupy the deeper pool habitat.  Thus, we expected direct consumptive effects in pools 

and indirect effects (i.e., nutrient excretion) to dominate in riffles. 

Field experimental design 

We installed 5-mm mesh hardware cloth barriers (secured to steel poles and buried 

roughly 20 cm into the streambed) at the upstream and downstream ends of 20 study pools (8 in 

HW, 8 in IM, and 4 in PD) following two successive scouring floods (5.5 m3 s-1 flood on 4 June 

2005 and 2.1 m3 s-1 flood on 10 June) in spring 2005.  Substantial substrata scouring occurred 

throughout the stream and no visible periphyton were present in any of the study reaches at the 

start of the experiment.  Following the second flood, discharge decreased steadily and there were 

no additional precipitation events or increases in discharge.  Summertime baseflow (i.e., 

consistent surface discharge maintained by groundwater with little or no precipitation 

contribution) for this stream is approximately 0.01-0.10 m3 s-1 (measured about 1km upstream of 

IM; USGS gauging station #06879650).  A strong nutrient gradient exists from the upper to the 

lower reach.  The headwater site is fed by low nutrient groundwater (mean levels during 

experiment: 34 µg L-1 NH4
+-N, 7 µg L-1 NO3

--N, and 3 µg L-1 soluble reactive phosphorus), 

whereas the lower portion of the watershed contained more agriculturally influenced 

groundwater, which increased the nutrient content of Kings Creek with distance downstream 

(IM: 28 µg L-1 NH4
+-N, 56 µg L-1 NO3

--N, 2 µg L-1 SRP; PD: 19 µg L-1 NH4
+-N, 425 µg L-1 NO3

-

-N).  Leaf litter was removed from the mesh as needed to maintain natural stream flow through 

the study pools.  Enclosures were assigned one of four treatments: fish exclosure, ambient fish 

assemblage enclosure, dace enclosure, or red shiner enclosure.  The experiment started on 15 

June 2005 in the HW and approximately a week later at the IM and PD reaches; the experiment 

ran for 8 weeks in all three reaches, ending on 9 August in the HW and approximately a week 
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later in the IM and PD reaches.  We removed all fish and crayfish from the fish exclosure, dace 

enclosure, and red shiner enclosure treatment pools and re-stocked dace and shiner treatment 

pools at 8 fish m-2.   

We were unable to fully prevent movement of fish and other organisms in some field 

exclosures; young-of-year (YOY) fishes migrated through the wire mesh, crayfishes and some 

fishes were able to move through gravel under exclosure barriers.  Thus, we used a backpack 

electrofisher to remove invaders on weeks 2 and 6.  In addition, we conducted population 

censuses at the end of the experiment to evaluate the integrity of each treatment. One exclosure 

barrier was lost to beaver activity and another study pool dried up in week 6. 

Data collection 

Stream metabolism – Gross primary productivity (GPP) and net ecosystem productivity (NEP) 

were based on diurnal changes in dissolved oxygen measurements from YSI 600XLM sondes 

(Yellow Springs Instruments, Inc.).  In the mesocosm experiments, we used a single sonde and 

the open-system single-station approach to get biweekly estimates of production (Owens 1974).  

Because water was recirculated and the effective channel length was increased (~1700 m), 

reareation was estimated using the surface renewal model (Owens 1974) and was assumed to be 

the same across all stream units.   

In the field experiment, substrata specific metabolism was estimated from substrata 

baskets placed in recirculating chambers.  Thirty plastic mesh baskets (10 cm x 10cm x 10cm) 

containing dried pebbles (16-64 mm) from the stream bank were placed in each pool. Baskets 

were arranged into three rows of ten baskets perpendicular to the channel in the downstream half 

of the pool. Baskets were buried approximately 10 cm in the streambed so basket tops were flush 

with the stream bottom.  Three baskets were randomly selected from each pool once per week 
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and returned to the laboratory in moist, sealed plastic containers within 2 hours of collection. 

Baskets were analyzed for benthic metabolism [respiration and net primary productivity (NPP)] 

in 22 L recirculating chambers (Dodds and Brock 1998) using stream water collected from the 

study reach.   

The baskets from each pool were sealed airtight in a plexiglass chamber fitted with a YSI 

DO probe, and water circulated at approximately 10 cm s-1.  Light was excluded from the 

chambers and the DO decline (i.e., respiration) was measured for 1.5 hours. After respiration 

measurements, chambers were exposed to overhanging fluorescent grow lights (approximately 

300 µmol quanta m-2 s-1 PAR) and dissolved oxygen monitored for another 1.5 hours.  

Respiration and NPP were calculated using linear regressions fit to the change in water oxygen 

concentration over time.  Gross primary productivity was calculated as NPP + respiration. 

Nutrient retention and uptake – Nutrient retention was estimated in the mesocosm experiments 

by sampling inflowing and outflowing water for total nitrogen (TN) and total phosphorus (TP).  

In the dace experiment, we collected 125 mL of unfiltered water from the inflow and overflow 

for each stream.  Samples were stored frozen until digestion and nutrient analysis following the 

methods of Dodds (2003).  Because of high variability in nutrient measurements in 2003, we 

collected 500 mL water samples during the shiner experiment and filtered a homogenized 125 

mL subsample through a 1 µm filter before analysis of dissolved nitrogen.   

Kings Creek study pool ammonium uptake rates were measured directly following 

metabolism measurements using substrata baskets in the recirculating chambers. An ammonium 

spike was added to raise the water concentration by approximately 40 µg L-1 and filtered water 

samples were taken at 0, 15, 30, 45, 60, 90, and 120 minutes to monitor the decline in water 

concentration over time.  Ammonium uptake rates were calculated as the slope of the natural log 
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transformed NH4
+ concentration versus time and adjusted to µg NH4

+-N m  s  and corrected for 

background concentrations (Dodds et al. 2002).   

-2 -1

Algal filament length – We estimated algal filament length in the mesocosms every 12 days prior 

to flooding as the mean of the longest algal filaments at three points along each of three equally-

spaced transects oriented perpendicular to flow in the riffle (N=9), and five points in the pool 

(four around the outer perimeter and one in the deep center).  We did not measure algal filament 

lengths in Kings Creek study pools, because there were few, if any, noticeable strands of algae > 

1 mm in length during the experiment.    

Algal biomass – Algal biomass was estimated as the concentration of chlorophyll a extracted 

from pebbles taken from experimental streams or from substrata baskets from study pools 

(following metabolism and nutrient uptake measurements).  Pebbles were collected on site and 

frozen within 4 hours of collection.  Chlorophyll was extracted by submerging pebbles in a 78˚C, 

95% EtOH solution as described in Sartory and Grobelaar (1984).  Extracts were analyzed for 

chlorophyll a with a Turner Model 112 fluorometer (Turner Designs Inc., Sunnyvale, CA, USA) 

using an optical configuration optimized for the analysis of chlorophyll a without phaeophyton 

interference (Welschmeyer 1995).  Algal biomass was reported as chlorophyll a per m-2 (cross-

sectional area of pebbles or surface area of the substrata basket opening).  In the mesocosm 

studies, we estimated biomass on days 1, 6, and every 12 days thereafter, with three haphazardly 

selected pebbles along algal filament length transects from the riffle and five from the pool.  In 

the field study, we estimated algal biomass weekly from one of the three substratum baskets used 

for metabolism and nutrient uptake measurements.   

Fine particulate organic matter – We used a modified core sampler that consisted of a 0.018 m2 

corer with an electric pump (0.1 L s-1) to collect FPOM, invertebrates, and algae from the 
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substrata.  Substrata inside the corer were agitated by hand until 9 L of water were transferred to 

a bucket.  After homogenizing the collected material, we took a 500 mL subsample for FPOM, 

and preserved it in formalin.  One core sample was taken from the riffle and the pool in each 

experimental stream unit on days 1, 6, and every 12 days thereafter.  Five replicate core samples 

were taken weekly from five equally spaced transects in each pool during the field study.  Dry 

mass and AFDM of FPOM was measured for five size classes: >500 µm, 499-250 µm, 249-180 

µm, 179-100 µm and 99-1 µm.   

Algal assemblage structure – A 20 mL subsample of the 9L slurry from the core sample was 

collected for algal assemblage structure and preserved in formalin.  Because we were more 

concerned with physical structure of the assemblage than genera-level responses of algal taxa, 

we used coarse taxonomic groupings for algae.  We described algal cells according to functional 

groups (e.g., filaments, single cells, and colonies) within one of three broad taxonomic 

classifications (i.e., Chlorophyta, Bacillariophyta, or Cyanobacteria).   

Invertebrate assemblage structure – The remaining slurry (~8.5 L) from the core sample was 

passed through a 250 µm mesh sieve to collect invertebrates.  We identified and enumerated 

invertebrates to the lowest possible taxonomic resolution (typically genus).   

Diet – Twice during the dace experiment (days 54 and 78), we collected two dace from each 

stream to characterize diet.  Because of the fine-grained diet of dace, a subsample from the 

foregut was examined at 200X power and the first 100 algal cells that crossed an ocular transect 

were classified as filamentous green algae or diatom (unicellular green and cyanobacteria were 

absent or in very low abundance) to give percentage occurrence of algal taxa for each individual.  

The occurrence of animal matter was also noted.  In the shiner experiment, we collected at least 

two shiners from each stream on days 27, 48, and 79, and all diet items for each fish were 
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identified and enumerated under a stereomicroscope to estimate percent contribution of each diet 

item to the total diet of the individual as well as percent of shiners containing each diet item.  

Percent contribution of each diet item was estimated by counting the number of grid cells filled 

by a particular item relative to the total number of grid cells filled by the entire diet of the 

individual, and mean percent contribution was calculated for each diet item across all fish 

collected from a particular treatment and day of the experiment (Franssen and Gido 2006).  In 

the Kings Creek field study, diet was quantified for all fishes collected during the 4th week of the 

experiment and for two individuals of each species collected at the end of the experiment (week 

8).  Where possible, diet was quantified for at least two individuals of each species from each 

enclosure.  In the field study, diet of benthic grazers was quantified using the same method as 

was used for the dace experiment, whereas diet of all other fishes was quantified using the same 

method as was used for the shiner experiment. 

Statistical analysis 

Mesocosm experiments – Because streams were not flooded before the 12th day of the 

experiment, we tested for early effects of fish from days 1 through 11 on ecosystem processes 

using independent samples t-tests with fish as the main effect.  Similarly, prior to the 24th day of 

the experiment, streams to be flooded at a 24-day interval were combined with no flood controls 

and were tested for interactive effects of fish and floods from days 12 through 23 on response 

variables using two-way ANOVAs with fish and flood as the two main effects.  We tested the 

effects of all six treatment combinations from day 24 until the end of each experiment using 

repeated-measures ANOVA with presence of fish and flood frequency as the two main effects.  

Algal assemblage structure was only analyzed on two dates from each experiment, so on each 

date, we tested for interactive effects of fish and flood using two-way ANOVAs.  A likelihood-
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ratio test of homogeneity of variances was used to test if variance in response variables differed 

among treatments.  We evaluated heteroscdasticity in our data and applied the best variance-

stabilizing transformation wherever necessary.  Where we found significant differences in main 

effects, we applied Tukey post hoc comparisons to test the relative differences between levels of 

flood frequency.   

Because primary production showed a strong significant dependence on mean daily solar 

irradiance in the dace study, we used repeated measures ANCOVA with GPP as the response 

variable and irradiance as the covariate to test for differences in metabolism among treatment 

combinations (SAS 2003).  Irradiance was measured on the Konza Prairie Biological Station 

approximately 1 km from the experimental stream facility.  The experimental streams were 

covered overhead by a shade canopy that blocked 57% of incoming solar irradiance.  For the 

repeated measures ANCOVA, we used the value of Akaike’s Information Criterion (Akaike 

1974) to select the most adequate covariance structure from those evaluated (Milliken and 

Johnson 2002).  We then used backward model selection and chi-square tests, which compared 

reduced and full model -2 residual log likelihood values, to select the best model of our data.  In 

a repeated measures design such as this, with different sized experimental units, the denominator 

degrees of freedom must be computed from a linear combination of mean squares, and the 

denominator is not chi-squared.  Thus, we used the Kenward-Rogers approximation to find 

approximate degrees of freedom for the F-test, which produced fractional denominator degrees 

of freedom.  

We used chi-square tests to evaluate diet shifts among fishes of the same species 

subjected to different flood frequencies.  Tests were performed on fishes to compare mean 

proportions of diet items among individuals across treatments within a given sample day. 
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In addition to the above quantification of how fishes and floods influenced algal biomass 

and total organic matter from cores, we also tested these effects on organic matter export during 

simulated flooding using two-way ANOVA in the streams flooded on 12-day and 24-day 

intervals.    

Field experiment – We used an information theoretic approach (Burnham and Anderson 1998) to 

evaluate which manipulations (i.e., fish densities) or field conditions (i.e., days since flood) were 

significant predictors of measured response variables in the field experiment.  We developed 

models to predict GPP, ammonium uptake rate, algal biomass, abundance of size fractions of 

FPOM, percent composition of four algal taxa groups individually, and invertebrate assemblage 

structure.  To simplify the analysis of invertebrate assemblage structure, we summarized 

invertebrate data using a principle components analysis based on a correlation matrix of log-

transformed densities.  We chose a subset of candidate models that included individual predictor 

or groups of predictor variables that were thought to be important based on our previous 

experiments in the experimental streams.  For each response variable, if the full model (y = 

intercept + days since flood + shiner density + grazer density + error) explained less than 15% of 

the variance, we did not compare candidate models.  As recommended by Burnham and 

Anderson (1998), we used the small sample adjustment of AIC (AICc; Akaike 1973) to rank 

candidate models by the difference between the AICc value for each candidate model and the 

model with the lowest AICc value.  We then calculated the Akaike weight (wi; weight of 

evidence) for each candidate model, which gives the probability that each model is the best 

model for the data, relative to the highest ranked model. 

RESULTS 
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Mesocosm experiments 

Gross primary productivity –GPP was generally highest in the streams that were not flooded and 

in streams with shiners present.  The lowest rates of GPP were recorded in those streams that 

were flooded every 12-days (Table 1; Fig. 3.1a-b).  During the dace experiment, mean daily solar 

irradiance was a significant predictor of GPP on days 1 – 4 (r2 = 0.59, P = 0.03), 20 – 23 (r2 = 

0.64, P = 0.02), and 29-65 (r2 = 0.15, P = 0.04), and during the shiner experiment mean daily 

solar irradiance was a significant predictor of GPP on days 1 – 4 (r2 = 0.21, P = 0.03) and days 

30 – 77 (r2 = 0.04, P = 0.03).  Thus, we incorporated irradiance as a covariate for every date on 

which irradiance was a significant predictor of GPP except on days 30-77 of the shiner 

experiment, where irradiance explained a very small fraction of the total variance in GPP.  

Whereas the flood on the 12th day reduced GPP in the dace experiment relative to streams that 

were not flooded (F1,20 = 9.09, P < 0.01), we did not find a similar effect of flooding in the shiner 

experiment.  After day 29, floods decreased GPP in both the dace (F2,15.2 = 4.01, P = 0.04) and 

the shiner (F2,23.6 = 17.27, P < 0.01) experiments relative to streams that were not flooded.  In the 

dace experiment, streams that were not flooded had significantly higher rates of GPP than those 

that were flooded every 12 days (Tukey P-value = 0.03), but streams that were flooded every 24 

days did not significantly differ from other flood treatments.  In the shiner experiment, streams 

that were not flooded had significantly higher rates of GPP than those that were flooded every 12 

or 24 days (both Tukey P-values < 0.01).  Shiners only significantly increased GPP after day 29, 

and this effect was most notable in the streams flooded every 24 days (F1,23.6 = 8.33, P < 0.01).   

Nutrient retention – The difference in total nitrogen (N) in water flowing in and out of the 

streams (i.e., retention) was not statistically different among flood treatments.  However, 

compared to streams without fish, dace significantly increased N retention on days 42 and 56 
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(93.1 vs. –14.4 µg L-1; F1,13.6 = 5.63, P = 0.03; Fig. 3.2a-b).  We found no effect of shiners on N 

retention (Fig. 3.2c-d).   

Algal filament length – Dace, shiners, and flood frequency affected algal filament lengths.  In the 

dace experiment (Fig 3.3a-b), effects of flood frequency and fish changed with time.  On day 23, 

pool filaments were longer in streams that had not been flooded than other treatments (F1,20 = 

4.66, P = 0.04).  Relative to streams without fish, dace significantly decreased mean algal 

filament length in pools on day 11 (t22 = 8.05, P < 0.01; means 0.2 versus 5.3 cm) and day 23 

(F1,20 = 16.65, P < 0.01; means 0.4 versus 2.1 cm), but dace increased filament lengths after day 

36 (F1,18 = 8.50, P < 0.01; means 1.1 versus 0.6 cm).  In riffles, dace had no effect on filament 

lengths through the first 24 days of the experiment, but after 5 weeks, filaments were nearly 

twice as long in streams with dace compared to streams without dace (F1,19.4 = 7.86, P = 0.01; 

means 7.1 versus 4.1 cm) (Table 1 - 2).   

In the shiner experiment the presence of shiners generally increased algal filament 

lengths and floods decreased filament lengths (Fig. 3c-d).  On day 23, streams that were not 

flooded had longer algal filaments if shiners were present (mean = 1.5 cm) than if shiners were 

absent (mean = 0.3 cm; F1,20 = 4.70, P = 0.04).  After the 5th week of the experiment, floods 

decreased filament lengths in pools (F2,19.2 = 6.49, P < 0.01) such that filaments were two to 

three times longer in streams that were not flooded (mean = 2.7 cm) compared with streams that 

were flooded every 12 days (Tukey P-value < 0.01; mean = 0.9 cm) or streams that were flooded 

every 24 days (Tukey P-value = 0.03; mean = 1.3 cm).  In riffles, shiners increased filament 

lengths by day 23 compared to streams without fish (F1,20 = 4.46, P = 0.05; means 7.1 versus 3.6 

cm).  There also was a significant interaction between day of experiment, shiners, and flood 

frequency after week 5 in the riffles (F6,36.5 = 4.02, P < 0.01).  On day 35, streams without fish 
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that were not flooded had significantly shorter filaments than streams with fish (all Tukey P-

values < 0.04), and filaments in these streams grew significantly longer by days 47, 60, and 71 

(all Tukey P-values < 0.01).  On average, in streams that were not flooded, filaments were 

significantly shorter on day 35 than on days 47 and 60 (both Tukey P-values < 0.03) (Table 1 - 

2).    

Algal biomass – Both dace and shiners increased algal biomass, but the effects of dace were only 

apparent in the first 23 days, whereas the effects of shiners were only detectable after 29 days 

and were dependent on flood frequency.  In the presence of dace, algal biomass was 30% and 

43% greater in pools on days 6 (t22 = -2.09, P < 0.05; means 6.6 versus 8.6 mg m-2) and 18 (F1,20 

= 10.16, P < 0.01; means 7.7 versus 10.9 mg m-2), respectively, and biomass was nearly 50% 

greater in riffles on day 18 than in streams without fish (F1,20 = 6.71, P = 0.02; means 28.1 versus 

18.8 mg m-2).  After day 30, the effects of dace were undetectable, and flooding decreased 

biomass in pools (day*flood: F6,37.9 = 3.93, P < 0.01; day 42: 12-day versus 65-day flood 

frequency Tukey P-value < 0.01) but not riffles relative to streams that were not flooded (Fig. 

3.4a-b).  There was no detectable effect of shiners or floods on algal biomass on days 6 or 18 

(Fig. 3.4c-d).  After day 30, shiners approximately doubled algal biomass in pools and riffles of 

streams that were flooded every 24 days relative to streams without shiners (fish*flood: both P < 

0.03; means 14.7 and 14.6 versus 28.9 and 22.7 mg m-2; both Tukey P-values < 0.01) (Table 1 - 

2).   

Fine particulate organic matter – Total particulate organic matter in streams decreased with 

increasing flood frequency in both experiments, and fish effects were temporally variable (Figs. 

3.5 – 3.8).  On day 6, dace decreased the abundance of all size classes of FPOM in pools except 

249-180 µm and decreased the abundance of the > 500 µm and 99-1 µm size classes in riffles in 
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comparison with streams without dace (decrease ranged from 20 to 43%).  By day 18, there was 

a significant interaction between dace and flood in riffles, such that flooded streams with dace 

had significantly less FPOM in the > 500 µm and 499-250 µm size classes than flooded streams 

without dace (87 and 31% less in each of the two size classes, respectively).  Thereafter, flood 

effects, not fish effects, determined the size distribution of FPOM (Table 1 - 2).   

Shiners had no detectable early effect on FPOM size fractions, but by day 30, shiners 

increased the abundance of the smallest size fraction of FPOM in pools by 29% and riffles by 

26% (pools: F1,23.5 = 21.06, P < 0.01; riffles: F1,28.7 = 34.24, P < 0.01), increased the abundance 

of the largest size fraction in pools by 75% and in riffles by 100% (pools: F1,18 = 6.13, P = 0.02; 

riffles: F1,28.4 = 21.06, P < 0.01), and increased the abundance of the 249-180 µm size class in 

riffles by 28% (F1,19.7 = 6.42, P = 0.02) relative to streams without shiners (Table 1 - 2).   

Algal assemblage structure – Floods and shiners had significant effects on algal assemblage 

structure, but there was no significant effect of dace.  Overall, green filaments were the most 

abundant type of algae present during the dace experiment (mean = 65% of assemblage; range: 1 

– 99%), whereas cyanobacteria (mean = 17% of assemblage; range: 0 – 94%), diatoms (mean = 

10% of assemblage; range: 0 – 84%), and green algae (mean = 6% of assemblage; range: 0 – 

33%) comprised less of the total assemblage.  In the shiner experiment, green filaments were the 

most abundant type of algae present (mean = 48% of assemblage; range: 0 – 94%), followed by 

diatoms (mean = 38% of assemblage; range: 0 – 98%), cyanobacteria (mean = 8% of 

assemblage; range: 0 – 99%), and green algae (mean = 5% of assemblage; range: 0 – 48%).  

Relative abundance of green algae was 2 to 4 times greater in pools and riffles of streams that 

were flooded than in streams that were not flooded on day 18 of the dace experiment (pool: F1,20 

= 10.89, P < 0.01; riffle: F1,20 = 9.90, P < 0.01).  By day 42 in pools, green algae was 4 times 
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more abundant in streams flooded every 12 days compared to streams that were not flooded 

(F2,16 = 3.91, P = 0.04; Tukey P-value = 0.04).  Relative abundance of green filamentous algae 

on day 18 also was 50% greater in riffles of streams that were flooded during the dace 

experiment than in streams that were not flooded (F1,20 = 6.95, P = 0.02).  Relative abundance of 

cyanobacteria showed trends opposite those of unicellular green and filamentous green algae.  

On day 18, there was 7 times more cyanobacteria in riffles of streams that were not flooded than 

in streams that were flooded (F1,20 = 10.05, P < 0.01). On day 42 in pools, we found relatively 

more cyanobacteria in the 24-day streams than in either the 12-day streams or the streams that 

were not flooded during the dace experiment, and we found the same result on day 42 during the 

shiner experiments (dace: F2,16 = 4.01, P = 0.04, 12-day vs. no flood Tukey P-value = 0.04; 

shiner: F2,18 = 4.04, P = 0.04, 24-day vs. no flood Tukey P-value < 0.05) (Table 1 – 2).   

Relative to streams without fish, the abundance of filamentous green algae was twice as 

high (F1,20 = 4.70, P = 0.04) and diatoms half as high (F1,20 = 8.72, P < 0.01) in riffles of streams 

with shiners on day 18.  Relative abundance of filamentous algae also was over 50% higher in 

pools with shiners on day 42 (F1,18 = 6.01, P = 0.03) (Table 1 – 2).   

Invertebrate assemblage structure – Invertebrate abundance generally decreased with increasing 

flood frequency in both experiments (Table 1 – 2; Figs. 3.9 – 3.12).  Some taxa were too rare to 

test temporal patterns or treatment effects, so we focused our analyses on the following major 

taxonomic groups: microcrustaceans (mean = 63% of total invertebrate biomass; SD = 30%; 

range: 0 – 100%; Calanoida, Cyclopoida, Chydoridae, Ostracoda, and Isopoda), oligochaetes 

(mean < 1%; SD = 3%; range: 0 – 26%), gastropods (mean = 3%; SD = 9%; range: 0 – 66%), 

and chironomids (mean = 20%; SD = 23%; range: 0 – 92%; Chironomini, Tanytarsini, 

Tanypodinae, and Orthocladiinae).  In the presence of dace, chironomid density was 80% lower 
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than no fish treatments in riffles on day 18 (F1,20 = 5.28, P = 0.03).  After day 24, 

microcrustacean, oligochaete, and chironomid densities were typically greatest in treatments with 

dace, but this effect varied with flood frequency.  In pools, we found a significant interactive 

effect of fish and flood frequency on the density of microcrustaceans (F2,17.5 = 7.53, P < 0.01), 

such that microcrustaceans were 10 – 15 times denser in dace streams that were not flooded, 

compared with dace streams that were flooded (both Tukey P-values < 0.01).  Furthermore, 

microcrustaceans were almost 20 times denser in unflooded streams with dace, than in unflooded 

streams without dace (Tukey P-value < 0.01).  In riffles, we detected a different fish*flood 

interaction on the density of oligochaetes (F2,18.9 = 5.68, P = 0.01), such that streams without 

dace had 87 – 90% lower densities of oligochaetes if they were flooded every 12 days, as 

compared to streams that were flooded every 24 days (Tukey P-value = 0.02) or not flooded 

(Tukey P-value < 0.01).  Additionally, streams with dace had 9 to 43 times denser oligochaetes 

in pools if they were not flooded than streams with dace that were flooded every 12 (Tukey P-

value < 0.01) or 24 (Tukey P-value < 0.01) days, respectively.  In streams that were flooded 

every 24 days, oligochaetes were approximately 4 times denser in riffles of streams without dace 

than in streams with dace (Tukey P-value = 0.04).  In riffles, we detected a three-way interaction 

among day of experiment, presence of fish and flood frequency in the density of chironomids 

(F4,20.2 = 3.19, P = 0.04), such that on day 54, the difference in chironomid density between 

unflooded streams and streams that were flooded either every 12 days or every 24 days was 

greater in streams where dace were present than in streams without dace (both Tukey P-values = 

0.03).  Chironomids were 10 to 100 times denser in unflooded streams with dace than in flooded 

streams with dace, whereas chironomids were 4 to 6 times denser in unflooded streams without 

dace than in flooded streams without dace.   
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Prior to day 24, we did not detect an early effect of shiners on invertebrate abundances in 

riffles or pools.  After day 24, we detected a significant fish*flood interaction in riffles (F2,18.7 = 

8.11, P < 0.01), such that in streams without shiners microcrustaceans were nearly three times 

denser in unflooded streams than in streams flooded every 12 days (Tukey P-value = 0.04).  

Furthermore, in streams with shiners, microcrustaceans were 36 to 86% denser in unflooded 

streams than in streams that were flooded (both Tukey P-values < 0.01). 

Fish diet – Fish diet in the mesocosms varied by flood frequency and day of experiment.  Dace 

diet consisted primarily of filamentous green algae and diatoms, but 27% of the fishes we 

examined ingested some animal matter (Table 3).  On day 54, flood frequency significantly 

affected dace diet, such that dace consumed the most filaments in the no flood treatment and the 

least in the 24-day flood treatments (chi-square P-values < 0.01).  On day 77, dace consumed 

more green filamentous algae than diatoms in the 24-day than in the no flood and 12-day flood 

treatments (P < 0.01). 

The most frequent diet items among shiners examined were chironomids, chydorids, 

ostracods, and terrestrial invertebrates (Table 4).  On day 27, shiners consumed a significantly 

greater proportion of ostracods (40%) in 12-day flood treatments than in the no flood (30%) or 

24-day flood (2%) treatments (P-values < 0.03).  On day 48, diet significantly differed between 

no flood and the two flood treatments (P-values < 0.01).  Terrestrial invertebrates and chydorids 

each comprised more than 25% of the mean fraction in shiners from the no flood streams, 

whereas in the 12-day and 24-day streams, these items comprised less than 5% of the mean 

fraction of gut volume in shiners.  Additionally, chironomids comprised 11% of the mean 

fraction of gut volume in shiners from the 24-day streams, whereas chironomids comprised 4% 

or less of the mean fraction of gut volume in shiners from either the 12-day or the no flood 
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streams.  On day 79, we found significant differences in the proportion of diet items among all 

flood treatments (P < 0.01).  Gut volumes occupied by chydorids and ostracods were greater in 

streams that were not flooded than in streams that were flooded every 12 days (chydorids: no 

flood = 12%, 12- and 24-day floods ≤ 2%; ostracods: 12-day floods = 1%, 24-day and no floods 

≥ 22%).  Finally, in 24-day streams, shiner gut volume was comprised of twice as many 

chironomids and almost no terrestrial invertebrates, compared with shiners from 12-day or no 

flood streams in which gut volume was filled with 6 to 9% terrestrial invertebrates. 

Field experiment 

Following the scouring flood in 2005, there was a strong temporal trend of increasing 

GPP and algal biomass that was dependent on study reach (Fig. 3.13 and 3.14) but not fish 

assemblage treatment and was consistent with the no flood treatment in the experimental 

streams.  Productivity was greatest downstream and increased with days since flood disturbance.  

Nutrient uptake rate did not show a strong temporal trend, and was not as strongly associated 

with study reach (Fig. 3.15).  Diet of fishes collected from Kings Creek was similar to that of 

fishes collected from the experimental stream mesocosms.  Grazers, including dace and central 

stonerollers, primarily consumed diatoms (64 – 100% of diet item occurrence), filamentous 

green algae (0 – 19% of diet item occurrence), and unicellular green algae (0 -17% of diet item 

occurrence), whereas shiners primarily consumed terrestrial invertebrates (Table 5 - 6).  Grazer 

diet varied slightly by reach, such that diet in HW differed significantly from IM and PD in 

weeks 4 and 8 (all P-values < 0.05), but grazer diets in IM and PD were similar in weeks 4 and 8 

(both P-values ≥ 0.05).  Red shiners had variable diets, but the most common items were 

terrestrial invertebrates (0 - 100% of diet item occurrence) (Table 6).  We were unable to 

compare shiner diet by reaches in week 4 because no shiners were collected from PD during 
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week 4.  In week 8, terrestrial invertebrates and unidentifiable algae/detritus were the only diet 

items found across all three reaches, so there were no significant differences among shiner diets 

by reach.   

Time since the flood disturbance had the strongest associations with ecosystem response 

variables in Kings Creek study pools, based on our model ranking criteria (Table 7).  Variance in 

GPP (Adjusted r2 = 0.10) was best predicted with days since flood disturbance.  The Akaike 

weight (wi = 0.38) of this model suggests that is was approximately twice as likely to be the best 

approximating model as the next two candidate models which included measures of grazer 

density (wi = 0.21), or shiner density (wi = 0.19) with measures of days since flood.  The best 

model for predicting ammonium uptake rate included measures of days since flood disturbance 

and explained approximately 28% of the variance in uptake rate.  The Akaike weight (wi = 0.59) 

of this model suggests that it was approximately 3 times more likely to be the best approximating 

model than the next two candidate models (both wi < 0.20).  Algal biomass was best predicted 

with a model including days since flood disturbance and explained approximately 32% of the 

variance in uptake rate.  The Akaike weight (wi = 0.40) of this model suggests that it was only 

30% more likely to be the best approximating model than the next highest ranked candidate 

model which included grazer density (wi = 0.31).   

The principal components analysis of invertebrate assemblages structure sampled from 

enclosures revealed high species loadings for Chironomidae (Tanypodinae) and cyclopoid 

copepods on the first component axis.  The second component axis distinguished samples based 

on the abundance of Oligochaeta and Cambaridae, the third component axis distinguished 

samples based on the abundance of Dytiscidae, Cambaridae, and Tabanidae, and the fourth 

component axis distinguished samples based on the abundance Tabanidae, Physa sp., and 
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Stenonema sp. (Table 3.8).  The first component axis was best predicted (Adjusted r2 = 0.39) by 

days since flood disturbance.  The Akaike weight (wi = 0.59) of this model suggests that it was 

approximately 3 times more likely to be the best approximating model than the next two best 

candidate models (both wi < 0.20).  The third component axis was best predicted by days since 

flood disturbance (Adjusted r2 = 0.10).  The Akaike weight (wi = 0.37) of this model suggests 

that it was only 12% more likely to be the best approximating model than the next best candidate 

model which included grazer density (wi = 0.33). 

DISCUSSION 

Our results indicate that fishes from two dominant functional groups can influence the 

successional trajectory of stream ecosystems following scouring floods.  Because prairie streams 

are highly disturbed, non-equilibrium systems, measures of ecosystem rates such as stream 

metabolism, nutrient uptake, and nutrient retention, are critical in understanding their dynamics.  

Although we predicted grazers and omnivores should have opposite effects on primary 

production, our results demonstrated that both fishes stimulated some aspects of primary 

production (e.g., shiners increased GPP, whereas dace increased overall algal biomass and 

shiners increased biomass in the streams flooded every 24 days), presumably through nutrient 

remineralization or selective grazing.  It is possible that grazing fishes consumed primarily 

elongate green filaments (i.e., later successional stages of the algal assemblage), which would 

have allowed the r-selected colonial species to accumulate, thus increasing productivity.  Since 

fish diet and algal assemblage structure only represent a snapshot at a coarse taxonomic 

resolution of what a fish consumes and what is available, diet and algal assemblage structure 

analyses provide only a limited evaluation of selective feeding.  However, based on our diet and 

algal assemblage structure analyses, we have no evidence to support selective feeding by grazing 
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minnows.  As expected, red shiners consumed terrestrial invertebrates in both the experimental 

streams and in Kings Creek, and thus excreted remineralized nutrients from an allochthonous 

source.  The net effect of each functional group appears to be dependent upon the balance 

between consumptive losses and nutrient stimulation. 

In natural streams, flooding is clearly a driver of stream ecosystem processes (e.g., Biggs 

et al. 2005), and in the experimental streams, frequent floods dominated ecosystem processes.  

Productivity rates in experimental streams flooded every 12 days were lower than in less 

frequently flooded streams because they were continuously reset to an early successional stage 

with short algal filaments, low algal biomass, and low densities of invertebrates.  In the absence 

of flooding, stream primary productivity rates were greater than grazing fishes could control, 

algal biomass increased to a plateau (i.e., recovered), and algal filaments were extremely long.  

Thus, the potential for fishes to influence ecosystem processes is most prevalent within the first 

30 days after a flood (e.g., dace) or in systems that are flooded at intermediate frequencies (e.g., 

shiners). 

For some responses, disturbance frequency interacted with the presence of dace or 

shiners.  Most notably, in the shiner experiment, streams that were flooded with an intermediate 

return interval had significantly higher algal biomass if shiners were present than if there were no 

fish present, and fish effects were not detected in streams that were not flooded or in the most 

frequently flooded streams.  The effect of shiners under intermediate disturbance frequency is 

consistent with other research, which suggests the influence of biota on ecosystem recovery 

depends on disturbance frequency and disturbance legacy (Parsons et al. 2006) as well as the 

potential for these fishes to alleviate constraints on primary productivity.  The potential for 

differential fish effects under varied disturbance frequencies also may depend on whether 
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nutrients, rather than grazing pressure, light, or temperature, are the most limiting resources for 

primary producers.  

Mesocosm and field experiments allowed us to compare the interactive effects of fishes 

and flood disturbance regime at multiple spatial scales.  Across these scales, we found transient 

effects of consumers on ecosystem structure and function.  For example, in both the experimental 

streams and the natural stream, dace and shiners predominantly occupied pool habitats, but it was 

likely that nutrients excreted by those fishes affected production in the downstream riffle 

habitats.  Thus, fish effects likely occurred in local habitats through consumption and excretion, 

whereas only excretion is transferred downstream and combined with other watershed-scale 

disturbances including terrestrial nutrient inputs (Houser et al. 2005).  Because we found strong 

effects of consumers in experimental streams but not in our field enclosures, we hypothesize that 

advectional throughflow greatly diluted remineralized nutrients in stream enclosures as 

compared to the experimental streams.  In the natural stream, study pools were between 12 and 

20 meters in length whereas the experimental streams, as a result of their recirculating design and 

low rates of recharge, had an effective channel length of approximately 1700 meters.  The 

patterns that we documented in the field also were driven largely by the long time required for 

recovery of primary producers following the intense scouring flood that exported organic matter 

and nutrients.  Long algal filaments did not develop within the 8-week experiment in Kings 

Creek, possibly due to greater intensity of flooding (i.e., scour), lower nutrients, and grazing by a 

complex assemblage of invertebrates and vertebrates that re-colonized after the flood.  Whereas 

algal biomass in the experimental streams typically recovered within 30 days to pre-flood levels 

(30 – 50 mg m-2), in the field, algal biomass continued to increase through the 8th week of the 

experiment and reached values of over 150 mg m-2.  Similarly, GPP in the experimental streams 
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appeared to have reached recovery by 30 days after disturbance, but in Kings Creek, GPP 

continued to increase through the end of the experiment.   

Surprisingly, nutrient uptake rate, which remained fairly constant throughout the 

experiment, did not match this trend in algal biomass and GPP, but it may have been related to 

uptake by heterotrophs or changing algal assemblage structure, such that nitrogen-fixing 

cyanobacteria may have affected the nutrient limitation of the assemblage as a whole.   

Invertebrate assemblages in the experimental streams were primarily colonized by taxa with 

winged adults, whereas the exclosures in Kings Creek were colonized by drifting invertebrates in 

addition to taxa with winged adults.  Invertebrate assemblages also may have differed in terms of 

the relative abundance of functional feeding groups: in the lower reaches of Kings Creek there is 

a niche for shredders and collectors to process coarse particulate organic matter (CPOM; e.g., 

senesced leaves from riparian vegetation), whereas the experimental streams are largely void of 

this material.   

Another difference that we noted between experimental streams and Kings Creek was the 

high density of microcrustaceans in the experimental streams.  We hypothesize that this was a 

result of the floating mats of algae that accumulate and senesce in experimental streams, 

providing a refuge from predation for the microcrustaceans.  These differences were supported 

by the analyses of field data, which suggested the most important factor driving ecosystem 

processes in the Kings Creek study pools was the number of days since flood disturbance.  Even 

after 8 weeks post-flood, Kings Creek had not yet recovered, and most ecosystem processes and 

populations were still increasing at the end of our experiment. 

Quantifying effects of fishes on ecosystem rates allowed us to speculate about their 

potential to alter ecosystem services at a coarser scale, such as downstream water quality and 
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export of organic matter.  In the streams that we flooded every 12 and 24 days, we found that 

dace decreased the amount of FPOM export during flooding by 10% (range: 9 – 12%), whereas 

shiners increased the amount of FPOM export by nearly 20% on average (range: 19 – 29%) but 

up to almost 30% in streams flooded every 24 days (Fig. 3.16).  The increase in export in the 

shiner treatments was likely due to the increased productivity of these systems as a result of their 

nutrient excretion benefiting the primary producers.  These differences, summed across many 

small grassland streams occupied by these species can have large cumulative impacts on 

downstream water quality (Dodds et al. 2004b).  As fish effects depend on the balance between 

consumptive losses and the increased rate of supply of limiting nutrients, dace increased 

productivity but incorporated some of the surplus algal production into fish tissue, so that it was 

not exported downstream during flooding.  Alternatively, shiners increased productivity but did 

not directly consume the surplus algal production, and the excesses were exported downstream.  

Differences in export also could be linked to the retention or loss of nutrients from the systems.   

Fish might also influence basin-wide nutrient dynamics by altering nutrient retention of 

streams.  On day 42, we found that dace increased nutrient retention by 50 µg L-1, whereas 

shiners only increased nutrient retention by 15 µg L-1, relative to fishless controls.  This supports 

the hypothesis that more of the excess organic matter and nutrients should be lost to downstream 

advection where water column omnivores dominate as compared to streams dominated by 

grazing minnows, in which more of the organic matter and nutrients should be recycled within 

the system.  It is important to note that our nitrogen retention estimates in the experimental 

streams were calculated as a budget of concentration in the inflow versus concentration in the 

outflow over the course of the experiments, and we did not measure denitrification.  Although 

we assume that reductions in nitrogen were primarily due to incorporation in the biota because 
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coarse substrate was likely well aerated, we cannot rule out the possibility that fish altered 

denitrification rates in the experimental streams.   

General considerations 

Prairie streams carry nearly 30% of global runoff and thus play important roles in 

controlling downstream water quality (Dodds 1997, Peterson et al. 2001).  In North America, 

95% of the prairie biome has been converted to agriculture or urban areas (Samson and Knopf 

1994) and very few of the remaining fragments contain entire watersheds, or unaltered structure 

and function (Dodds et al. 2004a).  Our results suggest that fishes may play important, but 

transitional roles in regulating ecosystem processes in these non-equilibrial systems.  

Furthermore, using time-integrated measures of whole ecosystem processes such as total 

downstream export of organic matter, we found that regional changes in fish assemblage 

structure might affect ecosystem services in large river basins.  We conclude that global change, 

by altering species composition and disturbance regime in once-abundant prairie streams, may 

have far-reaching effects on downstream water quality.  However, because species effects can be 

offsetting, predicting those effects will require a comprehensive understanding of the functional 

roles of species in these aquatic systems. 
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Table 3.1.  Mean differences from experimental stream pools; boldface terms indicate significant differences (P < 0.05).  Fish 

effects were calculated by subtracting the mean of the no fish treatment from the mean of the fish treatment, whereas flood 

effects were calculated by subtracting the mean of the streams that were not flooded from the mean of the streams that were 

flooded. 

 Effect      Flood    fish 

 
Day of 
experiment 

12 – 23    > 24 6 - 11 12 - 23 > 24 

 
Comparison flood v no 

flood 
 

12-day v no
flood 

 24-day v no 
flood 

all    

       
   

  
 

  
  

   
 

   

   
 

   

   
 

   
 

 

  

 

  

12-day 24-day + no
flood 

 12-day 24-day no flood

Response Fish treatment
 
   

Gross primary productivity      
(g O2 m-2 h-1) 

dace d14: -0.08
d20: 0.02

 

-0.18 0.20 -0.04 d14:-0.03
d20: 0.04

d14:0.00 
d20: 0.04

0.13 0.00 0.05

red shiner 0.03 -0.10 -0.08 0.02 -0.01 0.06 0.02 0.08 0.03
Algal filament length (cm) 
 

dace -0.89 -0.23 -0.10 -5.03 -1.40 -1.92 1.19 0.39 0.10
red shiner

 
-0.34 -1.76 -1.43 0.72 0.27 1.17 0.44 1.07 0.45

Algal biomass (mg m-2)
 

dace 0.50 -6.82 -3.99 1.97 4.68 1.89 2.19 3.14 1.30
red shiner -7.37 -3.28 1.41 2.13 2.95 -3.95 3.29 14.23 -0.64

FPOM > 500 µm (mg) 
 

dace -1.82 -3.26 -2.81 -1.32 -1.77 0.38 -0.57 -1.22 0.77
red shiner -0.64 -6.56 -7.47 0.39 -0.20 0.93 0.63 0.55 5.13

FPOM 499 - 250 µm (mg) 
 

dace -0.17 -0.95 -0.68 -0.56 -0.24 0.27 -0.05 -0.03 -0.18
red shiner -0.43 -0.44 -0.69 0.18 0.04 0.23 0.06 0.28 0.39

FPOM 249 - 180 µm (mg) 
 

dace 0.19 -0.58 -0.52 -0.18 -0.16 -0.17 0.01 0.25 0.33
red shiner -0.28 -0.33 -0.06 0.08 0.00 0.04 -0.04 0.15 0.26

FPOM 179 – 100 µm (mg) 
 

dace -0.34 -1.70 -1.45 -0.51 -0.28 -0.13 -0.25 0.01 -0.04
red shiner -0.44 -1.06 -0.20 0.22 0.30 0.19 0.04 0.29 0.64

FPOM 99 – 1 µm (mg) 
 

dace -3.49 -7.28 -6.33 -0.84 -1.12 2.27 -0.04 -0.16 1.06
red shiner -2.15 -2.63 -2.50 0.41 0.55 1.76 0.32 1.37 3.21

Green algae (%) 
 

dace 10.84
 

4.67 9.30 N/A -9.40 -2.08 2.93 5.13 0.31
red shiner

 
4.54 -0.25 0.63 N/A 10.50 1.41 -11.30 -9.57 -12.50

Green filamentous algae (%) 
 

dace 9.85 -2.98 -29.55 N/A 28.71 -2.92 19.83 -23.85 -3.20
red shiner -3.80 -7.07 -6.83 N/A 4.68 13.13 21.95 19.70 27.43

Cyanobacteria (%) 
 

dace -5.98 -10.70 10.27 N/A -13.84 10.06 3.05 17.42 1.04
red shiner -10.02 -2.32 0.44 N/A -0.72 0.46 -0.70 -2.43 -0.73

Diatoms (%) dace -14.71
 

-1.63 9.34 N/A -5.47 -5.06 -5.80 1.29 0.57
red shiner 10.63 11.00 6.98 N/A -14.48 -18.51 -9.95 -7.40 -11.48
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Chironomidae (ind. m-2)  dace -205.16 -6968.20 -5146.35 -23.86 3.67 -315.15 -1115.59 -1139.81 3914.24
 red shiner

 
  

  
  

  
  

  
   

 -960.41 -3245.22 -2977.55 -220.29 31.69 -59.56 -13.12 216.82 2668.12
Microcrustacea (ind. m-2)
 

dace -20506.2 -15464.99 -15605.08 210.2 -3879.4 5915.87 1747.02 1072.73 32278.12
red shiner

 
 -34165.30 -63495.61 -41849.39 9255.06 4076.60 14867.35 7445.76 29665.27 18348.26

Oligochaeta (ind. m-2)
 

dace -821.82 -19463.67 -16514.03 -15.8 -231.04 1539.86 -502.85 -3430.29 -1637.02
red shiner

 
 -197.36 -544.98 -549.98 -79.21 0.00 436.6 4.57 15.14 1099.1

Physa sp. (ind. m-2)
 

dace 7.74 -47.81 35.93 N/A 44.56 -5.28 6.35 -64.2 21.58
red shiner N/A -38.39 -51.73 -18.25 N/A N/A 86.95 -31.34 -56.86
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Table 3.2.  Mean differences from experimental stream riffles; boldface terms indicate significant differences (P < 0.05).  Fish 

effects were calculated by subtracting the mean of the no fish treatment from the mean of the fish treatment, whereas flood 

effects were calculated by subtracting the mean of the streams that were not flooded from the mean of the streams that were 

flooded. 

 Effect     Flood      fish 

 
Day of 
experiment 

       12 – 23                 > 24      6 - 11              12 - 23                        > 24 

 
Comparison flood v no 

flood 
 

12-day v 
no flood 

 

24-day v 
no flood 

 

all     

      
 

 

   
 

  

  
 

  
 

  

  
 

  

 

 

  
 

 
 

12-day 24-day +
no flood 

 

 12-day 24-day no flood

Response Fish treatment
Algal filament length (cm) 
 

dace -0.31 -0.57 -1.48 -3.42 -1.15 0.76 4.16 1.98 3.06
red shiner

 
 -1.39 -0.93 -0.80 1.5 1.18 6.10 0.50 1.64 0.64

Algal biomass (mg chla m-2) 
 

dace 1.29 -9.83 -7.87 -2.08 7.88 10.62 6.46 3.17 5.87
red shiner -1.51 -20.64 -18.62 1.8 -0.88 -0.45 4.69 8.16 -5.05

FPOM > 500 µm (mg) 
 

dace -4.78 -3.86 -3.48 -2.39 -5.10 3.03 0.08 0.19 1.36
red shiner -0.81 -3.44 -2.50 0.33 -0.22 1.84 0.41 1.54 3.82

FPOM 499 - 250 µm (mg) 
 

dace -0.54 -1.09 -1.00 -0.12 -0.53 0.31 0.02 0.15 -0.11
red shiner -0.26 -0.42 -0.08 0.11 -0.13 0.47 0.03 0.21 0.36

FPOM 249 - 180 µm (mg) 
 

dace -0.36 -0.67 -0.71 2.67 -0.28 0.18 0.11 0.01 0.06
red shiner -0.02 -0.1 0.13 0.24 -0.06 0.21 0.12 0.48 0.13

FPOM 179 – 100 µm (mg) 
 

dace -0.27
 

-1.86 -1.57 -0.37 -0.28 0.25 -0.25 0.01 0.37
red shiner 0.01 -0.26 0.08 0.26 -0.12 0.30 0.19 0.52 0.44

FPOM 99 – 1 µm (mg) 
 

dace -5.28 -6.96 -5.84 -1.75 -1.66 2.51 -0.23 0.23 2.75
red shiner -1.62 -1.33 -0.46 0.55 -0.19 2.01 0.27 1.44 1.66

Green algae (%) 
 

dace 5.05 7.34 4.76 N/A -1.72 -0.42 1.65 -8.52 0.47
red shiner 3.68 0.07 -5.12 N/A 5.76 -0.39 -3.52 0.12 -8.98

Green filamentous algae (%) 
 

dace 25.15
 

-0.14 -17.21 N/A -7.37 13.52 -11.30 17.04 -2.63
red shiner 6.98 -11.70 -25.95 N/A 25.40 20.11 21.43 21.75 33.64

Cyanobacteria (%) 
 

dace -27.36
 

-2.91 -4.79 N/A 11.29 -6.62 11.44 0.27 -0.75
red shiner 0.44 6.03 38.77 N/A 11.72 0.70 -13.74 -29.27 0.66

Diatoms (%) dace 0.44 -3.97 9.65 N/A -1.57 -0.89 -2.45 6.35 2.92
red shiner

 
 -12.94 16.64 3.34 N/A -42.88 -24.10 -4.17 7.40 -3.26

Chironomidae (ind. m-2)
 

dace -173.89
 

-4555.82 -3427.91 -92.31 -185.30
 

-424.36 -1111.63 -1862.03 -3044.88
red shiner

 
N/A -2606.19 -2158.58 -21.74 N/A N/A -226.12 -386.19 470.96

Microcrustacea (ind. m-2) dace -28280.80 -24682.49 -22914.75 -1844.03 -2934.01 -12942.5 1357.81 -493.49 6695.8
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    red shiner N/A -54139.71 -22460.65 -1071.98 N/A N/A -653.93 59853.97 54642.30
Oligochaeta (ind. m-2)
 

  
 

  
   

dace -2782.43
 

-13303.42 -8846.84 -57.7 -633.87 425.23
 

-1244.52 -6807.90 5848.81
red shiner

 
N/A -309.75 -283.01 20.57 N/A N/A 24 72.88 479.46

Physa sp. (ind. m-2)
 

dace 0.64 -30.85 52.16 N/A 3.43 -0.86 -16.93 56.33 35.46
red shiner N/A -98.17 -92.38 7.42 N/A N/A 24 0.22 -94.7
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Table 3.3.  Diet of southern redbelly dace (Phoxinus erythrogaster) collected from 

experimental stream mesocosms on the Konza Prairie Biological Station on two days (54 

and 77) during the dace study of summer 2003.  Percentages of diet items represent the 

mean number of cells of each type per 100 total cells counted in each fish. 

Trt Day N 

% 

unicellular 

green 

algae 

% 

filamentous 

green algae 

% 

diatoms

ratio 

filaments:diatoms

% fish 

with 

inverts 

in diet 

12-day  54 6 0 60 40 1.50 0 

 77 11 1 41 56 0.73 27 

 mean  1 51 48 1.12  

24-day 54 7 1 38 60 0.63 14 

 77 8 3 74 23 3.22 13 

 mean  2 56 42 1.93  

65-day 54 8 0 79 21 3.82 50 

 77 8 0 56 44 1.29 50 

 mean  0 68 32 2.56  

Overall mean  1 58 41 1.87 26 
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Table 3.4.  Diet of red shiner (Cyprinella lutrensis) collected from experimental stream mesocosms on the Konza Prairie 

Biological Station on three days (27, 48 and 79) during the shiner study of summer 2004.  Diet is reported as percent 

occurrence, which is the percent of individuals in which the diet item was found, and as gut volume (mean squares), which is 

the mean number of grid cells (cell area 4 mm2) that were filled by each type of diet item. 

 

   

     

 terrestrial

invertebrate Chydoridae Ostracoda Chironomidae algae/detritus

Trt Day N 

% 

occurrence 

mean 

squares 

% 

occurrence

mean 

squares 

% 

occurrence 

mean 

squares 

% 

occurrence

mean 

squares mean squares 

12-day 27 6          

           

           

            

           

           

          

           

           

50 1 17 <1 67 1 17 <1 7

48 6 50 2 50 3 83 2 67 3 58

79 7 43 1 43 2 43 <1 57 1 27

24-day 27 4 75 3 50 <1 50 1 0 0 75

48 6 0 <1 50 <1 0 0 83 4 41

79 7 14 <1 14 <1 86 17 43 1 38

80-day 27 6 67 2 50 <1 33 6 33 <1 18

48 7 43 2 57 16 71 2 14 <1 20

79 8 38 1 63 10 88 3 63 1 36
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Table 3.5.  Diet of southern redbelly dace (Phoxinus erythrogaster) and central stoneroller 

(Campostoma anomalum) collected from 20 Kings Creek study pools on the Konza Prairie 

Biological Station during weeks 4 and 8 of the summer 2005 field study.  Percentages of 

diet items represent the mean number of cells of each type per 100 total cells counted in 

each fish. 

Trt Reach Week N 

% 

unicellular 

green 

% green 

filaments

% 

diatoms

ratio 

filaments:diatoms 

% fish 

with 

inverts in 

diet 

no fish HW 4 4 2 17 80 0.21 0 

no fish IM 4 5 4 1 95 0.01 0 

no fish IM 8 5 1 3 96 0.03 0 

no fish PD 8 2 1 2 80 0.03 0 

control HW 4 6 1 5 93 0.05 0 

control HW 8 7 <1 6 94 0.06 0 

control IM 4 5 7 1 93 0.01 0 

control IM 8 7 <1 1 99 0.01 0 

control PD 4 3 5 <1 95 0.01 0 

control PD 8 4 0 <1 >99 0.01 0 

dace HW 4 6 6 1 92 0.01 0 

dace HW 8 6 <1 11 89 0.12 0 

dace IM 4 3 17 19 64 0.30 0 

dace IM 8 5 1 3 96 0.03 0 

dace PD 4 3 10 2 88 0.02 0 

dace PD 8 4 0 0 100 0 0 

red shiner HW 4 4 2 4 93 0.04 0 

red shiner HW 8 7 0 12 88 0.14 14 

red shiner IM 4 3 <1 1 99 0.01 33 

red shiner IM 8 8 1 11 88 0.13 0 

red shiner PD 8 2 1 2 98 0.02 50 
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Table 3.6.  Diet of red shiner (Cyprinella lutrensis) collected from 20 Kings Creek pools on the Konza Prairie Biological Station 

during weeks 4 and 8 of the summer 2005 field study.  Diet is reported as percent occurrence, which is the percent of 

individuals in which the diet item was found, and as gut volume (mean squares), which is the mean number of grid cells that 

were filled by each type of diet item. 

       

terrestrial 

invertebrates Chydoridae Ostracoda Chironomidae algae/detritus

Trt Reach Week N 

% 

occurrence

mean 

squares

% 

occurrence

mean 

squares

% 

occurrence

mean 

squares

% 

occurrence

mean 

squares mean squares

no fish             

            

             

            

             

           

            

            

            

HW 4 5 80 34.4 0 0 20 <1 20 <1 6

no fish HW 8 1 0 0 0 0 0 0 0 0 20

control IM 8 2 100 4 0 0 0 0 0 0 0

dace HW 8 2 100 4 0 0 0 0 0 0 1

dace PD 8 1 100 6 0 0 0 0 0 0 0

red shiner HW 4 6 88 12 0 0 67 <1 0 0 12 

red shiner HW 8 3 100 5 0 0 0 0 0 0 3

red shiner IM 4 4 100 9 0 0 0 0 25 <1 2

red shiner IM 8 1 50 3 0 0 0 0 0 0 5

red shiner PD 8 2 50 2 0 0 0 0 0 0 <1

 

69 



Table 3.7.  Best approximating linear models for predicting ecosystem structure and 

function variables in Kings Creek study pools during Summer 2005 as determined by 

Akaike Information Criterion (AIC) values. 

Response variable 

Model and 

parameters 

Adjusted r2

AICc K ∆i wi

GPP Day 0.10 -88.88 3 0.00 0.38 

GPP day, shiner 0.11 -87.71 4 1.18 0.21 

GPP day, grazer 0.10 -87.50 4 1.38 0.19 

GPP day, shiner, grazer 0.11 -86.22 5 2.67 0.10 

GPP Shiner 0.01 -85.09 3 3.79 0.06 

GPP Grazer 0.00 -84.95 3 3.93 0.05 

NH4
+ uptake Day 0.28 147.57 3 0.00 0.59 

NH4
+ uptake day, grazer 0.31 149.84 4 2.27 0.19 

NH4
+ uptake day, shiner 0.26 150.14 4 2.57 0.16 

algal biomass Day 0.32 290.57 3 0.00 0.40 

algal biomass day, grazer 0.33 291.07 4 0.49 0.31 

algal biomass day, shiner 0.31 292.34 4 1.76 0.17 

algal biomass day, shiner, grazer 0.33 292.92 5 2.35 0.12 

Invertebrate PCA AX1 Day 0.39 -13.56 3 0.00 0.59 

Invertebrate PCA AX1 day, grazer 0.37 -11.23 4 2.33 0.19 

Invertebrate PCA AX1 day, shiner 0.37 -11.07 4 2.49 0.17 

Invertebrate PCA AX3 Day 0.10 1.41 3 0.00 0.37 

Invertebrate PCA AX3 day, grazer 0.13 1.63 4 0.22 0.33 

Invertebrate PCA AX3 day, shiner 0.08 3.74 4 2.33 0.11 

Invertebrate PCA AX3 day, shiner, grazer 0.11 4.11 5 2.70 0.09 

Invertebrate PCA AX3 Grazer 0.02 4.84 3 3.43 0.07 

AICc is the AIC corrected for small sample size; K is the number of parameters in the fitted model including the 
intercept and error term; ∆i is the difference between the candidate model and the model with the lowest ranking 
AICc; the Akaike weights (wi) sum to zero. 
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Table 3.8.  Species loadings on first four axes of principle components analysis of 

invertebrate assemblage structure in Kings Creek study pools during summer 2005. 

Taxon Axis 1 Axis 2 Axis 3 Axis 4 

MOLLUSCA     

Gastropoda     

Physa 0.1441 0.1449 0.1856 0.4371 

Helisoma 0.0001 0.0494 0.1703 0.2555 

Hydrobiidae 0.1635 0.2289 0.3987 0.5792 

Bivalvia     

Sphaerium 0.0008 0.4759 0.4905 0.5359 

     

ANNELIDA     

Clitellata (Oligochaeta) 0.0055 0.2164 0.2304 0.2395 

     

NEMATODA 0.1594 0.1999 0.2086 0.2564 

     

ARTHROPODA     

Arachnida     

Hydracarina 0.3561 0.482 0.4981 0.5252 

     

Crustacea     

Amphipoda 0.0134 0.025 0.4109 0.5741 

Isopoda 0.2935 0.2972 0.523 0.5374 

Cambaridae 0.0721 0.3953 0.3997 0.4182 

Ostracoda 0.6574 0.6636 0.6885 0.6935 

Copepoda     

Cyclopoid 0.819 0.821 0.8439 0.8541 

Harpacticoid 0.0575 0.1344 0.5461 0.5737 

     

Insecta     

Trichoptera     

Polycentropodidae 0.3098 0.3143 0.5015 0.5019 

Diptera     

Chironomidae (Tanypodinae) 0.8536 0.8576 0.8579 0.8597 

Chironomidae (non-Tanypodinae) 0.7854 0.8044 0.8422 0.8437 
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Taxon Axis 1 Axis 2 Axis 3 Axis 4 

Chironomidae (pupae) 0.4929 0.5465 0.6139 0.6159 

Ceratopogonidae 0.1419 0.5894 0.6095 0.6096 

Tipulidae 0.413 0.5502 0.6848 0.6901 

Tabanidae 0.0573 0.0574 0.1951 0.6337 

Coleoptera     

Dytiscidae (larvae) 0.0266 0.1135 0.4914 0.6533 

Elmidae (larvae) 0.1512 0.4299 0.4747 0.5912 

Ephemeroptera     

Baetidae 0.1878 0.3649 0.3792 0.5669 

Caenidae (Caenis) 0.5609 0.5848 0.6103 0.6151 

Leptophlebiidae 0.5101 0.5607 0.5714 0.5738 

Heptageniidae (Stenonema) 0.5575 0.5956 0.7607 0.7839 
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Figure 3.1.  Gross primary production (GPP + SE) in dace study (a) and shiner study (b).  

Control (no fish; open symbols) data points are offset one day later to prevent overlap. 
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Figure 3.2.  Mean concentration (+ SE) of total nitrogen retained in experimental streams 

with (gray bars) and without (black bars) fish during the dace (a)-(b) and shiner (c)-(d) 

mesocosm studies.  Values of bars were calculated by subtracting the concentration of total 

nitrogen measured in the outflow from that measured in the inflow of each stream. Note 

that y-axis scale differs among panels. 
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Figure 3.3.  Mean algal filament length (+ SE) in dace mesocosm pools (a) and riffles (b) 

and in shiner mesocosm pools (c) and riffles (d).  Control (no fish; open symbols) data 

points are offset one day later to prevent overlap. 
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Figure 3.4.  Algal biomass (chlorophyll a; + SE) in dace mesocosm pools (a) and riffles (b) 

and in shiner mesocosm pools (c) and riffles (d).  Control (no fish; open symbols) data 

points are offset one day later to prevent overlap. 
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Figure 3.5.  Mean mass (+ SE) of total fine particulate organic matter (FPOM) in 

experimental stream pools with (filled symbols) and without (open symbols; offset 1 day 

later) fish in five size classes during the dace study: (a) >500 µm, (b) 499-250 µm, (c) 249-

180 µm, (d) 179-100 µm, and (e) 99-1 µm. 
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Figure 3.6.  Mean mass (+ SE) of total fine particulate organic matter (FPOM) in 

experimental stream riffles with (filled symbols) and without (open symbols; offset 1 day 

later) fish in five size classes during the dace study: (a) >500 µm, (b) 499-250 µm, (c) 249-

180 µm, (d) 179-100 µm, and (e) 99-1 µm. 

 

78 



Figure 3.7.  Mean mass (+ SE) of total fine particulate organic matter (FPOM) in  

experimental stream pools with (filled symbols) and without (open symbols; offset 1 day 

later) fish in five size classes during the shiner experiment: (a) >500 µm, (b) 499-250 µm, (c) 

249-180 µm, (d) 179-100 µm, and (e) 99-1 µm. 
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Figure 3.8.  Mean mass (+ SE) of total fine particulate organic matter (FPOM) in 

experimental stream riffles with (filled symbols) and without (open symbols; offset 1 day 

later) fish in five size classes during the shiner experiment: (a) >500 µm, (b) 499-250 µm, (c) 

249-180 µm, (d) 179-100 µm, and (e) 99-1 µm. 
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Figure 3.9.  Mean densities (+ SE) of (a) Chironomidae, (b) microcrustacea, (c) 

Oligochaeta, and (d) Physa / Physella spp. in experimental stream pools with (closed 

symbols) and without (open symbols; offset 1 day later) dace.   
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Figure 3.10.  Mean densities (+ SE) of (a) Chironomidae, (b) microcrustacea, (c) 

Oligochaeta, and (d) Physa / Physella spp. in experimental stream riffles with (closed 

symbols) and without (open symbols; offset 1 day later) dace.   
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Figure 3.11.  Mean densities (+ SE) of (a) Chironomidae, (b) microcrustacea, (c) 

Oligochaeta, and (d) Physa / Physella spp. in experimental stream pools with (closed 

symbols) and without (open symbols; offset 1 day later) shiners.   
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Figure 3.12.  Mean densities (+ SE) of (a) Chironomidae, (b) microcrustacea, (c) 

Oligochaeta, and (d) Physa / Physella spp. in experimental stream riffles with (closed 

symbols) and without (open symbols; offset 1 day later) shiners.   
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Figure 3.13.  GPP measured in recirculating chambers on substrate baskets incubated 

during the field experiment in 20 Kings Creek pools. 
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Figure 3.14.  Algal biomass on substrate baskets collected from 20 Kings Creek pools. 
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Figure 3.15.  Uptake rates of ammonium in recirculating chambers by substrate baskets 

collected from 20 Kings Creek pools.  
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Figure 3.16.  Mean mass (+ SE) of exported particulate organic matter (FPOM) during 

flooding in 24 experimental streams with (black bars) and without (grey bars) fish in (a) 

dace and (b) shiner studies. 
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CHAPTER 4 - CONSEQUENCES OF GRAZER LOSS ON 

PRAIRIE STREAM ECOSYSTEM FUNCTION 

Katie N. Bertrand 

ABSTRACT 

I tested the overlapping effects of three common grazers on stream ecosystem structure 

and function in experimental stream mesocosms by either removing them from a community 

containing a full complement of grazers or evaluating their effects across a range of variable 

densities.  The presence of southern redbelly dace (Phoxinus erythrogaster), a grazing minnow, 

and crayfish (Orconectes nais), a grazing decapod, was experimentally manipulated, whereas 

variation in grazing snail abundance was tested with analysis of covariance.  Ecosystem structure 

was quantified as algal filament length, algal biomass, size fractionation of fine particulate 

organic matter (FPOM), algal assemblage structure, and invertebrate assemblage structure.  

Ecosystem function was assessed using gross and net primary productivity, respiration, nutrient 

uptake, and nutrient limitation.  Significant effects of grazer removal included an increase in 

nutrient limitation when crayfish were removed and idiosyncratic effects of dace and crayfish 

removal on abundance of size fractions of FPOM and invertebrate assemblage structure.  The 

general lack of response to herbivore diversity is consistent with the effects of herbivore 

diversity on ecosystem function in estuary mesocosms, but could also be related to the spatial 

and temporal scale at which my study was conducted or the context of physical conditions 

present during the experiment. 
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INTRODUCTION 

Species loss is a global phenomenon that is accelerating in recent decades (Millenium 

Assessment 2005; Balvanera et al. 2006) because of global climate change, altered land use 

patterns, altered biogeochemical cycles, and the introduction of nonnative species (Loreau 2000).  

In many situations, extinction is a non-random result of these anthropogenic disturbances, and 

the outcome of continued species loss is not well-understood.  Traits of surviving species in 

altered communities structured by resource partitioning or facilitation will determine the 

functional consequences of these extinctions (Gross and Cardinale 2005).  In spite of the gaps in 

current understanding, accumulating evidence links biodiversity and ecosystem function and 

substantiates the argument for conserving biodiversity (Hector et al. 2001). 

Whereas several studies have examined the effects of microconsumer biodiversity on 

ecosystem function at small spatial scales (e.g., Lawton et al. 1993), few studies have 

investigated multiple trophic level systems or the effect of biodiversity within consumer 

functional groups of streams. Within aquatic systems, Covich et al. (2004) reviewed 18 studies 

of the effects of benthic biodiversity on ecosystem function, of which only 8 were stream studies, 

and none included gastropods, decapods, or fishes.  Furthermore, only three functional groups 

were considered in these 8 studies: decomposers (1), filter-feeders (2), and shredders (5).  

Although the ecosystem effects of aquatic grazers have been well characterized for many taxa, 

the effects of diversity within the grazer functional feeding group is understudied, with a few 

exceptions in marine systems.  In estuary mesocosms, isopod and amphipod diversity did not 

affect eelgrass, periphyton, or herbivore production (Duffy et al. 2001).  However, in marine 

microcosms, consumer richness was associated with reduced algal biomass and increased 
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consumer biomass (Gamfeldt et al. 2005).  These contrasting studies make it difficult to 

extrapolate these results to the role of herbivore diversity in freshwater streasms. 

Whereas ecological stability may depend more on the diversity of functional groups than 

the species diversity within functional groups, species within those groups may respond to 

environmental cues at different spatial and temporal scales (Peterson et al. 1998).  That is, if two 

or more grazers are functionally redundant (sensu Lawton 1994) but use different habitats, the 

loss of one grazer from the community would potentially alter ecosystem function.  For example, 

many grazing aquatic insects (e.g., mayflies) are found at substantially higher densities in riffle, 

than in pool habitats, because the faster water velocities and shallower water provide greater 

concentrations of dissolved oxygen (Cummins and Merritt 1995).  In contrast, grazing minnows 

are typically found in greater densities in pool habitats, because riffles that separate the pools are 

too shallow for fish passage and may expose fish to avian predators (Power et al. 1985).  In 

addition to partitioning longitudinal habitats, grazer size and motility also may play a role in 

resource partitioning.  Larger, more motile vertebrate grazers such as cyprinids, are predicted to 

graze on longer filaments in the algal overstory, whereas smaller grazers (e.g., snails) graze more 

effectively on the algal understory (Vaughn et al. 1993; Steinman et al. 1987).  Grazers also may 

perform similar functions over different temporal scales, in that species with shorter generation 

times may be able to recolonize and restore the grazing function more rapidly following a 

disturbance than larger, longer-lived taxa.  Peak abundances of different grazer taxa also may 

vary depending upon their timing of reproduction.  Thus, although they may perform similar 

ecological functions, it is important to consider the effects of species loss within the grazer 

functional feeding group because the loss of a species may eliminate existing complementarity in 

the community and potentially change ecosystem function. 
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My primary objective was to investigate the functional effects of species loss in the 

grazer functional feeding group of prairie stream ecosystems.  In open-canopied prairie streams, 

where primary production dominates total respiration, autochthonous production plays a 

dominant role in energy flow through the system.  Grazers are closely associated with primary 

producers, often responsible for regulating their abundance, and in prairie streams, they 

potentially affect ecosystem functioning through their consumption of primary production.  

Grazing minnows such as Phoxinus erythrogaster (southern redbelly dace), crayfish (Orconectes 

spp.) and snails (Physa and Physella spp.) are present in varying abundance but are typical 

occupants of prairie streams. Using these three commonly abundant grazers from nearby Kings 

Creek, on the Konza Prairie Biological Station, I tested the redundancy of a grazing minnow, a 

crayfish, and snails.  If these species were largely similar in the ecological roles they performed, 

and are able to compensate for the loss of a member of that group, I expected to find no response 

of ecosystem structure and function to grazer diversity (Loreau 2000).  However, if one species 

in the grazer assemblage performed the majority of the measured ecosystem function (e.g., 

drivers and passengers hypothesis), I would expect significant differences in ecosystem 

processes as result of removing the “driver” species from the grazer assemblage (Walker 1992).   

METHODS 

Study design 

Eighteen experimental streams located on the Konza Prairie Biological Station (KPBS) in 

north central Kansas, USA were used to test the effects of grazer species loss on ecosystem 

processes.  Each stream consisted of a 2.54 m2 pool connected to a 0.84 m2 riffle.  The basic 

design of these streams is given in Matthews et al. (2006).  Water was supplied by a low-nutrient 
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(NO3
--N < 100 µg L-1) natural spring until day 33, when drought conditions necessitated the use 

of higher-nutrient well water (NO3
--N ≈ 2000 µg L-1) through the end of the experiment.  Water 

was recirculated with electric trolling motors creating a mean discharge of 2.0 L s-1.  Substrata 

were a mixture of pebble, gravel, and fine sediment from a local quarry.  Algae and invertebrate 

taxa with winged adults (e.g., chironomids) readily colonized these systems.  Streams were filled 

three weeks prior to the beginning of the experiment, and each stream was inoculated one week 

prior to the beginning of the experiment with a slurry of benthos from nearby Kings Creek to 

stimulate algal growth.   

Experiments began after scouring the substrata with a high-pressure hose to homogenize 

streams.  After 10 minutes of scouring, streams were rapidly drained through a 13 cm drain hole 

in the bottom of each pool.  Streams were immediately refilled with new spring water after 

scouring was complete.  This procedure was sufficient to remove the majority of the organic 

matter in the streams (e.g., overturned pebbles were dislocated from the riffle into the pool), and 

scour intensity was consistent across streams. 

To test the effects of losing a member of the grazer assemblage in prairie streams, I 

compared ecosystem structure and function among experimental streams containing different 

grazer assemblages: a full assemblage (control; fish + crayfish + snails) and two reduced 

assemblages (the full assemblage minus fish or crayfish).  In addition, analysis of covariance was 

used to test for interactive effects of these treatments and snail densities.  I randomly assigned 

each of the three assemblages to six replicate experimental streams.  All 18 streams were scoured 

and homogenized on 8 July 2005 (day 0 of experiment), and the last measurements were 

recorded on 25 August 2005 (day 48).  Mean water temperature was 23°C (range: 20-25°C).  

Fish and crayfish were stocked at densities typical in Kings Creek, which ranged from 0 to 9 
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individuals m-2 (Evans-White 2001, Bertrand and Gido 2006, Franssen et al. 2006).  To prevent 

escape of crayfish and fish from streams, I installed mesh hardware cloth coverings at the 

upstream and downstream ends of each stream.  Streams were observed regularly for mortalities, 

and dead crayfish or dace were replaced immediately.  Five plastic mesh baskets (10 x 10 x 10 

cm) were filled with pebbles (16-64 mm dia.) and incubated in the pool of each stream to allow 

colonization by algae and invertebrates.  Baskets were removed for measurement of ecosystem 

function in recirculating chambers. 

Ecosystem function measurements 

Gross primary productivity (GPP), net primary productivity (NPP), and respiration (R) in 

experimental streams were based on diurnal changes in dissolved oxygen measurements from 

YSI 600XLM sondes (Yellow Springs Instruments, Inc.) using the open-system single-station 

approach (Bott 1996).  Water was recirculated at the same velocity and the bed-form was similar 

in all experimental units so turbulence-induced aeration was similar across experimental stream 

channels.  Reareation was estimated using the surface renewal model, which is calculated from 

velocity (V, in cm s-1) and mean depth (H, in cm) using the formula  

f(20°C) = 50.8 V0.67 H-0.85         (1) 

(Owens 1974).  The flow-through rates were the same for all experimental units leading to an 

approximate turnover time of 13 hrs.  Because of the recirculating design of the experimental 

streams, I estimated that the effective channel length (i.e., discharge/inflow * length of the 

experimental stream) was approximately 1700 m.  The prolonged exposure to stream biota to 

recirculated water assured that diurnal changes in water oxygen concentration reflected biotic 

processes in these stream units.  NPP was estimated by averaging the mean hourly rate of R at 

night (from 2300 – 0400 hours) and the mean hourly rate of production during day (from 0800 – 
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1600 hours), whereas GPP was estimated by adding the mean hourly rate of R at night to the 

mean daytime production.  Sondes were deployed in six streams for 24h then transferred to 

another stream, such that metabolism in all eighteen experimental streams was measured over a 

period of three days.  GPP was estimated for each stream at the conclusion of the experiment 

between days 45 and 47.   

Primary productivity also was estimated from substrate baskets in recirculating chambers.  

Four baskets were selected from each of eight pools once per day from days 45 through 47 and 

returned to the laboratory in moist, sealed plastic containers within 2 hours of collection. Baskets 

were analyzed for benthic metabolism (GPP, R, and NPP) and ammonium (NH4
+) uptake rates in 

22 L recirculating chambers (Dodds and Brock 1998) filled with streamwater collected from the 

experimental streams.   

The baskets from each pool were sealed airtight in one of eight chambers, which 

incorporated an YSI oxygen probe, with water circulated at approximately 10 cm s-1.  Light was 

excluded from the chambers and the decline in dissolved oxygen concentration was measured for 

1.5 hours.  After measuring R, chambers were exposed to overhanging fluorescent grow lights 

(approximately 300 µmol quanta m-2 s-1 PAR) and dissolved oxygen monitored for another 1.5 

hours.  Respiration and NPP were calculated using linear regression as the change in water 

oxygen concentration over time per the total area of the three baskets (300 cm2) and adjusted to 

mg O2 m-2 hr-1.  Gross primary productivity was calculated as NPP + R. 

Ammonium uptake rates were measured directly following metabolism measurements 

using substrata baskets.  An ammonium spike was added to raise the water concentration by 

approximately 40 µg L-1 and filtered water samples were taken at 0, 15, 30, 45, 60, 90, and 120 

minutes to monitor the decline in water concentration over time.  Ammonium uptake rates were 

95 



calculated as the slope of the natural log transformed NH4
+ concentration versus time and 

adjusted to µg NH4
+-N m-2 s-1 and corrected for background concentrations (Dodds et al. 2002). 

Nutrient limitation was assessed with nutrient diffusing substrata incubated in the center 

of each stream pool for 39 days and subsequently removed for analysis (Tank and Dodds 2003).  

I extracted chlorophyll a from the porous silica caps to estimate algal biomass by submerging 

caps in a 78˚C, 95% EtOH solution as described in Sartory and Grobelaar (1984).  Extracts were 

analyzed for chlorophyll a with a Turner Model 112 fluorometer (Turner Designs Inc., 

Sunnyvale, CA, USA) using an optical configuration optimized for the analysis of chlorophyll a 

without phaeophyton interference (Welschmeyer 1995). 

Ecosystem structure measurements 

The length of the longest algal filament (vertical or horizontal) was measured along each 

of the same three transects used for collecting algal biomass (9 points per stream riffle, and 5 

points per stream pool) on day 47.   

Algal biomass was estimated as the concentration of chlorophyll a extracted from pebbles 

taken from study pools or experimental streams.  Pebbles were collected on site, frozen within 

four hours of collection, and later analyzed for chlorophyll a as described above.  To capture any 

spatial heterogeneity, I collected one pebble from each of three transects (upstream, middle, and 

downstream) in the riffles, and I collected four pebbles from the edges of the pools and one from 

the deep center of the pools on days 2, 7, 18, 31, and 47. 

I used a modified core sampler that consisted of a 0.018 m2 corer with an electric pump 

(0.1 L s-1) to collect fine particulate organic matter (FPOM), invertebrates, and algae from the 

substrata.  Substrata inside the corer were agitated by hand, and 9 L were pumped from each 

riffle or pool, homogenized in a bucket, and subsampled for fine particulate organic matter 
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(FPOM; 500 mL) and algal assemblage structure (AAS; 50 mL).  Remaining invertebrates and 

detritus in the bucket were concentrated on a 250 µm sieve, preserved in formalin, and later 

identified to order, family, or genus.  Fine particulate organic matter samples were preserved in 

5% formalin, and dry as well as ash-free dry mass (AFDM) was measured for five size classes: 

>500 µm, 500-250 µm, 249-180 µm, 179-100 µm and 99-1 µm.  I took separate core samples 

from both the riffle and the pool on days 2, 7, 18, 31, and 47.  Algal assemblage structure 

samples also were preserved in formalin and later categorized into four general taxonomic 

groups (unicellular green, filamentous green, diatom, or cyanobacteria).  The first 100 algal cells 

that intersected the ocular transect were placed in these categories.   

At the conclusion of the experiment, I preserved at least two individual Phoxinus and at 

least one crayfish captured from each experimental stream to later characterize diet.  Diet items 

in the foregut of Phoxinus were identified and enumerated using a transect method similar to the 

procedure for quantifying algal assemblage structure; we categorized the first 100 algal cells as 

filamentous green algae or diatoms (unicellular green and cyanobacteria were absent or in very 

low abundance), and noted the occurrence of animal matter.  Diet items in the crayfish stomach 

were identified using a stereomicroscope and the percent of total diet volume that each item 

comprised was recorded. 

Statistical analysis 

ANCOVA, with snail density (Table 1) as the covariate, was used to test for differences 

among treatments in algal filament length, wholestream metabolism (i.e., NPP, R, and GPP), 

basket metabolism (i.e., NPP, R, and GPP), basket nutrient uptake, and the concentration of 

chlorophyll a on nutrient diffusing substrata.  The overall ANCOVA test was followed with 

Bonferroni post hoc comparisons among grazer assemblages.  Using repeated-measures 
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ANCOVA with sample date as the repeated factor, I tested for grazer assemblage effects on 

ecosystem structure (including algal biomass and FPOM size fractionation) over time in the 

experimental streams.  I followed the overall repeated-measures ANCOVA with Tukey post hoc 

comparisons among grazer assemblages.  Levene’s test was used to check for heterogeneity of 

error variances among treatment groups and any necessary transformations were applied to 

correct heteroscedasticity.  Discriminant function analysis (DFA, SPSS 2001), discriminated 

among grazer assemblage treatments using: (1) algal assemblage structure and (2) invertebrate 

assemblage structure.  Stepwise model entry was used to identify taxa responding to the grazer 

assemblage structure treatments, and cross-validated classification was used to predict group 

membership.  The analyses were based on log-transformed abundances of invertebrates (i.e., 

number of individuals per core) or arcsin square-root transformed proportional abundances of 

algae.  Only invertebrates that occurred in more than 10% of samples were included in the 

analysis. 

RESULTS 

Whereas no crayfish were found dead during the experiment, I was unable to recover the 

majority of crayfish from the experimental streams (mean = 13% of initial stocking).  In an 

experiment conducted in these streams in fall 2005, an average of 25% of the crayfish were 

recovered from experimental streams, but the number recovered was significantly associated 

with initial stocking density (r2 = 0.63, P < 0.01) (Bengtson et al., in prep).  Although I cannot 

rule out mortality or escape, it is likely the deep substrate (> 50 cm in some locations) and 

complexity of the experimental stream units limited my ability to recover crayfish.  I 

successfully recovered the majority (mean = 57%) of the dace that were stocked into streams. 
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Ecosystem function 

The snail density covariate was not significant and there was no significant difference 

among the two reduced assemblage treatments and the control assemblage in wholestream 

metabolism (i.e., NPP, R, and GPP), metabolism (i.e., NPP, R, and GPP) measured from 

substrate baskets in recirculating chambers, or ammonium uptake measured in recirculating 

chambers. 

There was no effect of the snail covariate on algal biomass on nutrient diffusing 

substrata, but the no crayfish assemblage accumulated significantly more algal biomass on the 

combined nitrogen and phosphorus releasing substrata than the no fish assemblage (mean 

difference = 3.79 mg m-2 chlorophyll a; Bonferroni P < 0.01; Fig. 4.1).   

Ecosystem structure 

Neither grazer assemblage treatment nor the snail covariate affected algal filament length 

(Fig. 4.2), or algal biomass (Fig. 4.3).  In riffles, there was no effect of the snail covariate or 

grazer assemblage treatment on abundance of any of the size fractions of FPOM (Fig. 4.4).  In 

pools, there was no effect of the snail covariate, but grazer assemblage treatment did affect the 

abundance of 249 – 180 µm FPOM, where there was a significant interaction between day of 

experiment and grazer assemblage treatment (Fig. 4.5).  On days 2 and 7, the greatest mass of 

this size fraction was found in the no fish assemblage, whereas on days 31 and 48, the greatest 

mass of this size class was found in the no crayfish assemblage on day 31.   

Effects of grazer assemblage treatments on invertebrate assemblage structure varied 

between days 18 and 48 of the experiment and between riffles and pools.  Invertebrate 

assemblage structure was numerically dominated in the experimental streams by zooplankton 

and dipteran larvae.  Overall, DFA classified the no crayfish treatments most accurately (mean 
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correct classifications = 83%) followed by the no fish treatments (mean = 56%) and then the full 

grazer assemblages (< 50%; Table 2).  In riffles on day 18, DFA revealed two taxa that 

discriminated among the three grazer assemblages: early-instar chironomids (Wilks’ Λ = 0.49, 

F2,14 = 7.17, P < 0.01) and cyclopoid copepods (Wilks’ Λ = 0.28, F4,26 = 5.72, P < 0.01) (Fig. 

4.6).  Early-instar chironomids were only found in 3 of the 6 no fish assemblage streams (mean = 

46 m-2; SD = 54 m-2) as compared to full grazer assemblage streams (mean = 714 m-2; SD = 1115 

m-2) and no crayfish assemblage streams (mean = 516 m-2; SD = 430 m-2), that each had at least 

one early-instar chironomid.  In riffles on day 48, two taxa discriminated among the three grazer 

assemblages: baetid mayflies (Wilks’ Λ = 0.60, F2,15 = 5.01, P = 0.02) and oligochaetes (Wilks’ 

Λ = 0.38, F4,28 = 4.34, P < 0.01) (Fig. 4.7).  In the absence of fish, baetid mayflies and 

oligochates were approximately half as dense as that of the full grazer and no crayfish 

assemblages.  In pools on day 18, DFA did not identify any taxa that discriminated among the 

treatments (no variables were selected).  In pools on day 48, two taxa discriminated among the 

three grazer assemblages: chironomids (Wilks’ Λ = 0.61, F2,15 = 4.75, P = 0.03) and chydorids 

(Wilks’ Λ = 0.39, F4,28 = 4.18, P < 0.01) (Fig. 4.8).  Chironomids were more abundant in the no 

crayfish assemblage streams (mean = 1400 m-2; SD = 1116 m-2) than they were in either the full 

grazer assemblage streams (mean = 192 m-2; SD = 186 m-2) or the no fish assemblage streams 

(mean = 220 m-2; SD = 220 m-2).   

Algal assemblage structure was dominated by filamentous green algae and diatoms, but 

desmid green algae, unicellular green algae, and cyanobacteria also appeared consistently in the 

assemblage.  Based on stepwise DFA, grazer assemblage structure did not affect algal 

assemblage structure (no variables were selected).   
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Grazer diet varied by species, but dace diet was dominated by filamentous green algae 

and diatoms (Table 3), which matched the proportions of algal taxa available for grazing.  The 

majority of crayfish guts were empty, but one individual consumed aquatic nymphs (Table 4).  I 

was unable to compare the diets of dace and crayfish after finding predominantly empty 

stomachs in the crayfish. 

DISCUSSION 

There was not a significant effect of the snail covariate on any of the measured response 

variables, despite densities of snails in the experimental streams that did not vary by treatment 

and ranged from 0 – 17130 individuals m-2 (mean = 1303 individuals m-2), which exceeded 

densities from previous studies that found effects of snails (i.e., 200 – 1400 individuals m-2; Hill 

et al. 1992; Rosemond 1993).  This stands in contrast to other studies of snails (e.g., Steinman et 

al. 1987; Hill et al. 1992) that have reported significant reductions in algal biomass, biomass 

specific primary productivity, and changes in taxonomic composition and morphology of the 

primary producer assemblage.  One explanation for the lack of effect of snails could be a 

perceived or real predation threat from the presence of other grazers, particularly crayfish 

(Turner 1997).  There is some observational evidence to support this hypotheis: on day 13, I 

observed that there were very few snails in pools of streams with crayfish present.  However, the 

density and biomass of snails across treatments suggests that crayfish were not effective 

predators. 

Although there have been relatively few studies on crayfish effects in streams, Creed 

(1994) demonstrated that crayfish reduced biomass of filamentous green algae (Cladophora sp.), 

and Gelwick (2000) demonstrated that crayfish reduced algal filament lengths in stream pools.  

Either of these effects may inhibit grazing by other invertebrate herbivores (Nystroem et al. 
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1996).  In contrast, crayfish in the experimental streams had no unique effect on algal biomass or 

algal filament length when compared to other grazer assemblages.  Removal of crayfish may 

have been compensated by the presence of other grazers, but as with snails, the lack of a unique 

ecosystem response to crayfish removal could be explained by several other factors including 

insufficient densities to produce a measureable effect.  Assuming the inability to recover crayfish 

was due to ineffective sampling, rather than mortality, densities in the experimental streams (2.3 

crayfish m-2) were within the range of natural densities (0.12 – 8.15 m-2) observed in nearby 

Kings Creek (Evans-White and Dodds 2001). 

The effects of grazing minnows in prairie streams have been relatively well documented 

in the literature.  Studies of central stoneroller (Campostoma anomalum) demonstrated that 

grazing fishes have potentially strong effects on both ecosystem structure and function including 

reduced algal filament length, algal biomass, and mean particle size of organic matter as well as 

altered algal assemblage structure and primary productivity (Matthews 1998; Gelwick and 

Matthews 1992).  Studies of Phoxinus demonstrated that these fishes decreased algal filament 

length and mean particle size of FPOM (Bertrand and Gido 2007).  Additional studies in the 

context of varied flood frequencies demonstrated that Phoxinus actually increase algal biomass, 

presumably through their nutrient remineralization (Bertrand et al., in prep).  In contrast, this 

study found no significant effect of removing Phoxinus from the grazer assemblage on algal 

filament length or algal biomass.  Since fishes were stocked at the same densities as in the 

previous study by Bertrand and Gido (2007), densities were sufficient to find an effect.  

Moreover, short algal filaments lengths (< 5 cm) were typical of grazed treatments from previous 

experiments, compared to 19 cm in ungrazed treatments (Bertrand and Gido 2007).  Thus, 

removal of Phoxinus may have been compensated by the presence of other grazers.   
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Given the spatial and temporal constraints of this experimental stream study, it appeared 

that variation in snail density or the removal of crayfish or dace had minimal effects on stream 

ecosystem structure or function.  Because I used an additive design (i.e., I did not equalize 

biomass across grazer assemblage treatments), finding a lack of effect of grazer removal is 

synonymous with finding a lack of effect of decreased grazer biomass.  In a study of the effects 

of grazing caddisflies on periphyton biomass, Anderson et al. (1999) found that the effect of 

grazers decreased with increasing grazer biomass.  There were significant differences in 

periphyton biomass between grazed and ungrazed treatments, but the differences among varied 

levels of grazer biomass were small.  Therefore, in prairie streams, ecosystem processes may 

depend on the presence of at least one grazer, but there may not be strong effects of removing 

one species from an assemblage with multiple grazers.   

Grazer assemblage structure appeared to elicit idiosyncratic effects on nutrient limitation, 

distribution of FPOM size fractions, and macroinvertebrate assemblage structure.  By removing 

crayfish from the grazer assemblage, algal growth on substrates supplemented with nitrogen and 

phosphorus increased, whereas removing dace from the assemblage decreased algal growth on 

substrates supplemented by nitrogen and phosphorus.  Because the degree of limitation in the full 

assemblage was intermediate to those of the two reduced assemblages, it is uncertain what 

mechanism underlies the difference.  However, since nutrient releasing substrates were 

unprotected from grazing by dace, crayfish, or snails, it’s possible that the grazer assemblages 

directly removed algae from the substrates.  It’s also possible that under the low ambient nutrient 

concentrations (TN ≈ 100 µg L-1; TP < 10 µg L-1), identities of grazers in the assemblage 

affected nutrient limitation through grazer-specific excretion stoichiometry (Evans-White and 

Lamberti 2006). 
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Although grazers consume benthic algae, I only found an interactive effect of grazer 

assemblage structure and day of experiment on size fractionation of FPOM in pools for the 249 – 

180 µm size class, which, on average, accounted for only 6% (range: 0 – 30%) of the total mass 

of FPOM.  Similar to nutrient limitation, the mass of this size class in streams with the full grazer 

assemblage was intermediate to the two reduced grazer assemblages throughout the experiment, 

again making it difficult to predict what mechanism might be driving differences in ecosystem 

properties among grazer assemblages.  Given the small proportional abundance of this size class, 

it seems possible that this was a spurious result.   

Differences in invertebrate assemblage structure among the full and reduced assemblages 

suggest that grazer assemblage structure may have indirect effects on ecosystem processes over 

longer time intervals.  Since crayfish are omnivorous, I expected that if crayfish were 

preferentially consuming invertebrates there would be a significant increase in the abundance of 

invertebrates in the no crayfish assemblage streams.  However, there were no consistent effects 

of removing crayfish on invertebrate assemblage structure.  For example, chironomid abundance 

helped discriminate among grazer assemblages in samples from day 18 riffles and day 48 pools, 

but they were consistently found in low abundance in the no fish assemblage streams, as opposed 

to the no crayfish assemblage streams.  It is possible that the unexplained differences in 

invertebrate assemblage structure could translate into differences in other ecosystem processes 

(e.g., productivity and algal community structure) given time for additional generations to 

develop and ameliorate the differences in invertebrate assemblage structure.   

Overall, I did not find sufficient evidence to reject the hypothesis that prairie stream 

grazers perform similar ecological roles under the spatial and temporal constraints of this 

experiment.  Although this is a coarser spatial and temporal scale than those over which many 
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other studies of biodiversity and ecosystem function have been conducted (Covich et al. 2004), 

the importance of biodiversity is likely scale dependent (Peterson et al. 1998) and may not have 

been adequately represented in my study.    It is possible that since benthic biodiversity effects 

are dependent on flow, nutrient limitation, light, and other physical characteristics in the stream, 

grazer biodiversity may be critical to ecosystem function under conditions other than those in 

which my study was conducted.   Moreover, grazers vary greatly in body size and life history 

characteristics, and it is likely that r-selected species such as snails regenerate quickly following 

disturbances (e.g., floods), whereas longer-lived species such as fishes require more time to re-

establish sufficient population sizes to produce grazing effects.  Thus, in non-equilibrium prairie 

stream systems the effect of grazers will be continuous if snails are present early, and then 

crayfishes and fishes return later.  In contrast, if one of these species were absent, ecosystem 

recovery post-disturbance might be drastically altered. 
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Table 4.1.  Mean (and range) of snail densities from core samples and mean (and range) of 

snail densities and biomasses from substrata baskets across treatments (All = full grazer 

assemblage, NC = no crayfish assemblage, and NF = no fish assemblage) in 18 experimental 

streams on the Konza Prairie Biological Station. 

Sample 

method 

Day of 

experiment 

Response variable 

All NC NF 

Core 18 Density (ind. m-2) 1812 (0 - 4008) 1876 (0 - 4392) 2608 (0 - 7906)

Core 48 Density (ind. m-2) 4209 (220 - 17130) 1766 (0 - 9663) 439 (0 - 1318)

Basket 34 Density (ind. m-2) 920 (0 - 2810) 520 (0 - 1650) 400 (0 - 870)

Basket 34 Biomass (g m-2) 290 (0 – 720) 273 (0 – 858) 159 (0 – 763)
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Table 4.2.  Summary of discriminant function analysis classifications into three grazer 

assemblage treatments (All = full grazer assemblage, NC = no crayfish assemblage, or NF = 

no fish assemblage) based on invertebrate data from 18 experimental streams on the Konza 

Prairie Biological Station.  Values represent the percent of correct classifications using the 

stepwise procedure and “leave-one-out” cross-validation. 

Habitat Day of experiment All NC NF 

Riffle 18 17 83 83

Riffle 48 17 100 67

Pool 18 N/A N/A N/A

Pool 48 33 67 17
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Table 4.3.  Diet of Phoxinus erythrogaster collected from experimental stream mesocosms 

on the Konza Prairie Biological Station at the conclusion of the grazer assemblage study of 

summer 2005.  Percentages of diet items represent the mean number of cells of each type 

per 100 total cells counted in each fish from grazer assemblage treatments (Trt) with all 

species present (ALL) and with crayfish removed (NC). 

Trt Species N 

% 

cyanobacteria

% 

desmid 

green 

algae 

% 

filamentous 

green algae

% 

diatoms

Total 

invertebrates

Total 

fish with 

inverts in 

diet 

All dace 6 1 42 35 23 2 2 

NC dace 8 < 1 23 46 28 1 1 
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Table 4.4.  Diet of Orconectes nais collected from experimental stream mesocosms on the 

Konza Prairie Biological Station at the conclusion of the grazer assemblage study of 

summer 2005.  Diet is reported as percent occurrence, which is the percent of individuals in 

which the diet item was found, and as percent gut fullness, which is the mean number of 

grid cells that were filled by each type of diet item divided by the total number of grid cells 

filled by the entire diet of all individuals examined from grazer assemblage treatments 

(Trt) with all species present (ALL) and with fish removed (NF). 

      Aquatic nymphs Snails Microcrustacea Chironomids 

Algae / 

detritus

Trt species N 

% 

occur 

% gut 

fullness

% 

occur

% gut 

fullness

% 

occur

% gut 

fullness

% 

occur 

% gut 

fullness 

% gut 

fullness

All crayfish 5 0 0 0 0 1 1 0 0 99 

NF crayfish 2 50 3 50 90 0 0 50 1 0 
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Figure 4.1.  Mean algal biomass (+ SE) grown on nutrient releasing substrates (C = control, 

N + P = nitrogen and phosphorus) in 18 experimental streams on the Konza Prairie 

Biological Station.  Treatments included two reduced grazer assemblages (N=6; NC = no 

crayfish; NF = no fish), which were compared to a control (N=6; All = full grazer 

assemblage). 
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Figure 4.2.  Mean algal filament length (+ SE) in 18 experimental streams on the Konza 

Prairie Biological Station.  Treatments included two reduced grazer assemblages (N=6; NC 

= no crayfish; NF = no fish), which were compared to a control (N=6; All = full grazer 

assemblage). 
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Figure 4.3.  Mean algal biomass (+ SE) in riffles (a) and pools (b) in 18 experimental 

streams on the Konza Prairie Biological Station.  Treatments included two reduced grazer 

assemblages (N=6; NC = no crayfish; NF = no fish), which were compared to a control 

(N=6; All = full grazer assemblage).  Reduced grazer assemblages (open symbols) data 

points are offset ½ day later to improve visibility. 
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Figure 4.4.  Mean fractions (+ SE) of fine particulate organic matter (FPOM) sized (a) > 

500 µm, (b) 499 – 250 µm, (c) 249 – 180 µm, (d) 179 – 100 µm, and (e) 99 – 1 µm in riffles of 

18 experimental streams on the Konza Prairie Biological Station.  Treatments included two 

reduced grazer assemblages (N=6; NC = no crayfish; NF = no fish; open symbols; offset ½ 

day later), which were compared to a control (N=6; All = full grazer assemblage). 
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Figure 4.5.  Mean fractions (+ SE) of fine particulate organic matter (FPOM) sized (a) > 

500 µm, (b) 499 – 250 µm, (c) 249 – 180 µm, (d) 179 – 100 µm, and (e) 99 – 1 µm in pools of 

18 experimental streams on the Konza Prairie Biological Station.  Treatments included two 

reduced grazer assemblages (N=6; NC = no crayfish; NF = no fish; open symbols; offset ½ 

day later), which were compared to a control (N=6; All = full grazer assemblage). 
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Figure 4.6.  Boxplots representing 25th, 50th and 75th percentile densities of (a) early instar 

chironomids and (b) cyclopoid copepods in riffles of 18 experimental streams on the Konza 

Prairie Biological Station on day 18.  Treatments included two reduced grazer assemblages 

(N=6; NC = no crayfish; NF = no fish), which were compared to a control (N=6; All = 

crayfish + fish). 
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Figure 4.7.  Boxplots representing 25th, 50th and 75th percentile densities of (a) baetid 

mayflies and (b) oligochaetes in riffles of 18 experimental streams on the Konza Prairie 

Biological Station on day 48.  Treatments included two reduced grazer assemblages (N=6; 

NC = no crayfish; NF = no fish), which were compared to a control (N=6; All = crayfish + 

fish). 
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Figure 4.8.  Boxplots representing 25th, 50th and 75th percentile densities of (a) early instar 

chironomids and (b) chydorids in pools of 18 experimental streams on the Konza Prairie 

Biological Station on day 48.  Treatments included two reduced grazer assemblages (N=6; 

NC = no crayfish; NF = no fish), which were compared to a control (N=6; All = crayfish + 

fish). 
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CHAPTER 5 - CONCLUSIONS 

Species extirpations and altered disturbance regimes of grassland streams will likely 

continue if global change progresses according to predictive climate models.  It is critical then to 

understand the role of species in Great Plains streams in order to prevent and mitigate the effects 

of potentially altered ecosystem function.  Although knowledge of consumer effects on stream 

ecosystem structure and function has increased greatly over the past 30 years, questions still 

remain about the generality of species effects within functional feeding groups, the interactive 

effects of species and disturbance regime, and the effects of within-functional group diversity on 

stream ecosystem structure and function.  To address these research needs, I (1) characterized the 

effects of a grazing minnow, southern redbelly dace (Phoxinus erythrogaster), on ecosystem 

structure and function, (2) examined the interactive effects of two fishes (a grazer and a water 

column omnivore) and flood frequency on ecosystem structure and function, and (3) tested the 

hypothesis of functional redundancy among grazing fish, crayfish, and snails.  Moderate 

densities of Phoxinus temporarily reduced mean algal filament length and mean size of 

particulate organic matter relative to fishless controls, but there was no detectable effect on algal 

biomass or ecosystem primary productivity.  Both benthic grazers and water column omnivores 

affected recovery of ecosystem structure and function by stimulating primary production 

following simulated floods, but some of these effects were temporally variable or dependent on 

flood frequency.  In the natural stream, recovery of ecosystem structure and function after a 

major flood was not influenced by fish treatment, rather ecosystem processes varied with 

position in the watershed.  When single grazer species were removed from the assemblage, 

effects included an increase in nutrient limitation when crayfish were removed and transient 
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effects of dace and crayfish removal on abundance of size fractions of FPOM and invertebrate 

assemblage structure.   

The transient nature of these effects necessitates an understanding of contingency effects 

on ecosystem studies.  For example, several factors could explain the lack of effect of Phoxinus 

on primary productivity including increased algal production efficiency in grazed treatments or 

increased grazing by other organisms in fishless treatments.  Environmental venue and the spatial 

and temporal scale of ecosystem measurements also can greatly influence the outcome of these 

experiments.  This was illustrated by the lack of a species effect in the natural stream after a 

single, large flood.  Whereas this was generally consistent with experimental streams treatments 

without repeated flooding, the observed differences between field and mesocosm experiments 

were more likely related to the inability of small (mean = 35.8 m2) field enclosures to capture the 

influence of nutrient remineralization by fishes.  Finally, the general lack of unique ecosystem 

effects among grazer assemblages could be related to the spatial and temporal scale at which my 

study was conducted or the context of physical conditions present during the experiment.  My 

research suggests that it is important to identify major factors driving experimental results and to 

perform experiments that characterize the interaction of species effects and confounding factors.  

Prairie streams are ideal systems for studying the effects of disturbance and species 

composition on ecosystem processes.  Characteristically harsh disturbance regimes and the 

global importance in carrying runoff make understanding these systems critical.  To this end, my 

investigations indicate that the inhabitants of prairie streams may provide ecosystem services in 

terms of mitigating downstream water quality.  Dace decreased organic matter export during 

flooding and increased short-term nutrient retention, whereas shiners increased organic matter 

export.  Given that these systems carry nearly 30% of global runoff (Dodds 1997), it is likely that 
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differences in organic matter export and nutrient retention may translate into larger economic 

differences in the availability of clean water or the commercial fisheries in the Gulf of Mexico.  

Although assigning dollar values is not possible at this time, the potential services provided by 

intact communities in grassland streams are another reason for continued investigation and 

further understanding of the dynamics of these important systems. 
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Appendix A - ELECTRONIC SUPPLEMENTARY MATERIAL 

TO CHAPTER 2 

Table A.  Mean (range) of invertebrate densities (individuals / m2) across the three 

experimental venues.  Means were not presented for Kings Creek study pools because there 

were only two replicates for each of the fish and no fish treatments.  No fish and fish 

treatments were reported separately in the experimental streams, but not in Kings Creek, 

where data are from day 4 of the experiment. 

 Kings Creek  

 

Experimental Streams 2002 

 

Experimental Streams 2003 

 

Taxon  no fish fish no fish fish 

COLLEMBOLA (0-3) 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 

INSECTA      

Ephemeroptera      

Baetidae (0-23) 4 (1-7) 2 (0-4) 4 (1-8) 3 (0-6) 

Caenidae (8-38) 0 (0-0) 0 (0-0) 1 (0-3) 1 (0-3) 

Heptageniidae (8-49) 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-1) 

Leptophlebiidae (0-8) 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 

Libellulidae  0 (0-0)  0 (0-8)  

Megaloptera      

Sialidae (0-8) 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 

Coleoptera      

Dytiscidae  1 (0-2)  0 (0-2)  

Elmidae (0-4) 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 

Diptera      

Ceratopogonidae  0 (0-0)  0 (0-1)  

Chironomidae (4-87) 25 (22-27) 31 (10-53) 465 (3-2257) 436 (2-1987) 

Simuliidae  0 (0-0)  0 (0-1)  

Pupae (0-11) 0 (0-0) 0 (0-0) 5 (0-15) 4 (0-14) 
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Adults   0 (0-0) 0 (0-0) 0 (0-1) 

Trichoptera       

Philopotamidae (0-8) 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 

CRUSTACEA      

Cladocera      

Bosmina sp.  0 (0-0)  2383 (150-7982)  

Copepoda (0-72) 15 (14-16) 16 (7-26) 325 (5-1317) 448 (24-1421) 

Isopoda      

Caccidotea 

tridentata (0-3) 0 (0-0) 0 (0-0) 0 (0-1) 0 (0-1) 

ARACHNIDA      

Acari (0-15) 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 

ANNELIDA      

Oligochaeta (0-30) 1 (0-3) 1 (0-2) 1042 (2-3561) 1026 (3-2744) 

MOLLUSCA      

Gastropoda  0 (0-0)  10 (0-43)  

      

Terrestrial   0 (0-0) 0 (0-0) 2 (0-8) 

      

22 TOTAL TAXA      

mean abundance 6.51 2.10 2.35 192.68 217.54 
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Appendix B - PERMISSION TO INCLUDE CHAPTER 2 

Figure A.  License agreement with Springer to include a published manuscript (Chapter 2) 

in dissertation. 
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