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Abstract 

Despite the growing number of urban adaptation planning initiatives to climate change hazards, 

there exist significant barriers related to implementation uncertainties that hinder translation of adaptation 

plans into actions, resulting in a widely recognized ‘planning-implementation gap’ across scales and 

regions. Bridging the planning-implementation gap will require overcoming implementation uncertainties 

by better understanding the relationships between the primary factors driving adaptation planning 

initiatives and emerging adaptation options across spatial scales.  

The modified Driver-Pressure-State-Impact-Response model published by Rounsevell, Dawson, 

and Harrison in 2010 provided a robust framework for identifying the primary factors driving adaptation 

planning initiatives and the emerging adaptation options related to risk of  changing climate and flooding 

events in the urban context. Drawing on evidence from the systematic review of 121 adaptation planning 

case studies across North America, this research derived qualitative and quantitative data, which was 

subsequently analyzed using binary logistic regression to generate objective and generalizable findings.  

The findings of binary logistic regression models suggest that the choice of specific adaptation 

options (namely enhancing adaptive capacity; management and conservation; and improving urban 

infrastructure, planning, and development) may be predicted based on the assessment of primary factors 

driving adaptation planning initiatives (namely, anticipation of economic benefits; perceived threats to 

management and conservation of urban natural resources; support of human and social systems; and 

improvement of policy and regulations) in relation to the risk of changing climate and urban flooding 

events. This does not imply that other primary factors (namely information and knowledge; perceived 

funding and economic opportunities; evidence of climate change effects; and general concerns) have no 

or insignificant relationships with the selection of adaptation options, only that the review did not find 

evidence to support such claims.  

These study findings may offer useful guidance to the design and further development of 

planning and decision support tools that could be used for assessment of adaptation plans and selection of 

robust adaptation options that take account of uncertainties surrounding implementation of effective 

climate adaptation actions. Study findings can also inform evidence-based policy and investment decision 

making, especially in regions where urban adaptation plans are weak or absent. 
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Chapter 1 - Introduction 

Evidence is overwhelming that the earth’s climate is warming and changing human and 

ecological systems around the globe (IPCC, 2012). Increasing frequency and magnitude of 

extreme events (e.g. drought and flooding) coupled with population growth, demographic 

structure and change, human migration, economic dynamics, land use change, and societal 

behavior are among the conspicuous changes that pose great challenges to planning, design, and 

policy decision-making in essentially every nation (Carmin et al. 2012b; Fussel, 2007; IPCC, 

2012).  

Urban environments are particularly vulnerable due to concentrations of people, built 

infrastructure, property investments, and services (Bulkeley and Tuts, 2013). The need for urban 

adaptation has become inevitable across all regions to reduce the impacts of changing climate 

(e.g. sea-level rise) and extreme flood events such as Superstorm Sandy’s destruction to coastal 

urban infrastructure in New Jersey and New York in 2012 (Berrang-Ford, 2011; Bierbaum et al. 

2012; Ford et al. 2011; Fussel, 2007).  

Emerging adaptation planning research combined with advances in planning support 

systems (PSS) offer new possibilities for understanding, anticipating, and responding to the 

current and potential effects of changing climate (e.g. sea-level rise) and extreme events (e.g. 

drought and flooding) on urban land use, water quality, built infrastructure, and public health 

across spatial and temporal scales (Bierbaum et al. 2012; Preston, 2013). The evolution of PSS—

an integrated system combining a range of databases, models, and visualization tools —represent 

a primary strategy to connect planning and decision-making and prepare cities to respond 

effectively to changing climate and extreme events (see e.g. Batty, 2008; Chakraborty et al. 

2012; Drummond and French, 2008; Geertman and Stillwell 2009; Klosterman and Pettit, 2005; 

Nedovic`-Budic`, 2000; Vonk and Geertman, 2008 ). 

In a number of regions and cities adaptation is beginning to take place at interlinking 

scales and consists of incremental rather than transformational adjustments to reduce 
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vulnerability1 and enhance the adaptive capacity2 of natural systems, the built environment, and 

human populations to climate change and extreme events that involve severe flooding and 

drought (Carmin et al. 2012b; Fussel, 2007; IPCC, 2007; Kates et al. 2012). Though evidence 

shows similarities in approaches (‘top-down’ or ‘bottom-up’)3 to design and implementation of 

adaptation planning initiatives, multiple qualitative and quantitative methods (e.g. scenario 

development and cost-benefit analysis) and tools (e.g. frameworks, models, and visualization 

tools) have been used to 1) understand climate vulnerability, 2) identify and evaluate adaptation 

response options, and 3) generate measures and strategies that can be implemented (including 

green infrastructure projects now burgeoning in many cities) at a variety of scales (Bierbaum et 

al. 2012; Carmin et al. 2012a; Kirshen et al. 2012). 

Based on a global survey conducted in 2011 on urban climate adaptation planning, 68 

percent of surveyed cities worldwide were engaged in some form of adaptation planning 

initiatives (Carmin et al. 2012b). This included 59 percent of surveyed cities in U.S. regions and 

80 percent of surveyed cities in Africa regions (Carmin et al. 2012b).  Examples of adaptation 

initiatives in the U.S. include the following communities: Keene, New Hampshire; New York 

City, New York; Seattle (King County), Washington; and Chicago, Illinois (Bierbaum et al. 

2012). Each of these communities have designed and generated climate adaptation response 

options, and are in the process of implementing specific adaptation measures such as green 

building and ecologically based infrastructure that is predominantly decentralized and integrated 

with natural functions and settings (Bierbaum et al. 2012). It emerges that urban adaptation 

response options now common in practice include green infrastructure interventions, protection 

of coastal cities to effects of sea-level rise, flood insurance investments, and diversification and 

integration of climate adaptation plans into mainstream policies (IPCC, 2007; Karl et al. 2009).  

                                                 

1 Vulnerability is the context of uncertainty in which adaptation takes place, “the degree to which a system is 

susceptible to, and unable to cope with, adverse effects of climate change, including variability and extremes” 

(IPCC, 2007). 

2 Adaptive capacity is the ability or potential of a system to respond successfully to change, in order to reduce 

adverse impacts and take advantage of new opportunities (IPCC, 2007; Kates et al. 2012). 

3 The ‘top-down’ (impact-based) approaches consider climate risks, vulnerabilities, and impacts as the basis for 

adaptation planning while the ‘bottom-up’ (capacity-based) approaches employ participatory approaches, are place-

based and scenario development forms the basis for the evaluation of these approaches (Bierbaum et al. 2012; 

Dessai and Hulme, 2004; Wilby and Dessai, 2010). 

http://www.tandfonline.com/doi/abs/10.1080/14693062.2004.9685515#.UwuuGvR_t60
http://onlinelibrary.wiley.com/doi/10.1002/wea.543/full
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 1.1 Problem description  

Urban adaptation planning has been increasingly acknowledged to offer new possibilities 

for responding to the current and potential effects of changing climate (e.g. sea-level rise) and 

extreme events (e.g. drought and flooding) in regards to land use, built infrastructure, water 

quality, and public health across different scales (Berrang-Ford et al. 2010; Bierbaum et al. 2012; 

Carmin et al. 2012b; Ford et al. 2011; Hallegate and Corfee-Morlot, 2011). Nevertheless, despite 

the growing number of urban adaptation planning initiatives, there exists a widely recognized 

‘planning-implementation gap’ that can be attributed to barriers (e.g. information and 

knowledge, funding, policy and regulations, and uncertainties) that continues to impede the 

effective implementation of adaptation options across a range of scales (Bierbaum et al. 2012; 

Biesbroek et al. 2013; Gagnon-Lebrun and Agrawala, 2007; Lehmann et al. 2013; Moser and 

Ekstrom, 2010).  

Planning-implementation gaps occur when there is failure to translate the outcomes of a 

planning process into effective and beneficial actions (Knight et al. 2006). In adaptation planning 

practices, the planning-implementation gap (Figure 1.1) emerges as the divide between the 

spatial prioritization and the process of design, development, and selection of adaptation options 

and the implementation of selected adaptation options (Knight et al. 2006; Mills, 2011). In other 

words, the implementation gap manifests as the failure to translate the designed, developed, and 

selected robust and flexible adaptation options into adaptation actions across a range of spatial 

scales. 

Studies that examine general trends related to climate adaptation planning initiatives in 

cities (e.g. Anguelovski and Carmin, 2011; Carmin et al. 2009; Poyar and Beller-Simms, 2010), 

suggest that having a good understanding about the drivers of adaptation planning (especially 

those associated with variations in the decision to select particular adaptation options over 

others), is the bottom line to reducing implementation uncertainties of adaptation options and 

subsequently bridging the planning-implementation gap across a range of scales and regions. 

Carmin et al. (2009) identified incentives (such as perceived risks to assets and property, 

economic benefits, funding, and policy and regulation), information (especially hard data), and 

resources (capacity) as the primary drivers of adaptation planning in cities. 
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Figure 1.1: A schematic of the three phases4 of adaptation process and gaps5 analysis 

 

Source: Modified from Mills, 2011. 

 

While the primary drivers of urban adaptation planning have been recognized, there is 

still limited insight into the association between the primary driving factors and the selection of 

adaptation options (such as enhancing urban adaptive capacity, natural resource management and 

conservation, improving infrastructure planning, and urban governance) that operate across a 

range of scales and regions (Biesbroek et al. 2010; Carmin et al. 2012a; Hallegate and Corfee-

Morlot, 2011; Poyar and Beller-Simms, 2010).  

                                                 

4 The three main phases of adaptation process represented by the grey boxes include; (1) undertaking research to 

understand and define the problem, (2) planning process that entails developing, assessing, and selecting options for 

implementation, (3) implementation of selected adaptation options across a range of scales and context. 

5 The blue arrows between the phases represent the gaps that together make up the broader knowing-doing gaps 

(Pfeffer and Sutton, 1999). The focus narrows from research undertaking to implementation of actions.  
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Literature shows that adaptation planning initiatives are mostly reported in the form of 

case studies or project reports (Bierbaum et al. 2012; Biesbroek et al. 2013; Carmin et al. 2012a; 

Rounsevell et al, 2010). Much of the documentation that exists is in “grey” (non-peer-reviewed) 

literature, such as government reports and planning documents; agency “white” papers; and 

“expressions of interest” for consideration in national climate assessment reports (Bierbaum et 

al. 2012; Mastrandrea et al. 2010; Plummer and Armitage, 2010). The individuality of adaptation 

planning case studies also pose critical challenge to generalizability of outcomes (Garg et al. 

2008). Individual adaptation planning cases are normally characterized with subjectivity in 

relation to their scope and geographic coverage, motivating factors, diversity of planning 

methods, approaches and tools used, and outcomes (UNFCCC, 2012). According to Garg et al. 

(2008), knowledge development is partly influenced by combining data from multiple primary 

studies of acceptable quality, and drawing from a larger context to provide generalizable findings 

with greater explanatory power, making lessons learned from these studies useable for planning 

and policy decision making.  

 1.2 Goal and research questions 

This dissertation focuses on bridging the ‘planning-implementation gap’ of adaptation 

initiatives related to changing climate and extreme weather events. Bridging the gap requires 

better understanding of the primary drivers of adaptation planning and the emerging adaptation 

options across a range of scales. This dissertation explores the relationships between primary 

factors driving adaptation planning initiatives for specific cases in North America (United States 

and Canada) and the selection of adaptation options related to risk of flooding events across 

scales in their urban contexts.  

The guiding question formulated for this study was: What are the relationships between 

primary factors driving climate adaptation planning initiatives and the selection of adaptation 

response options related to risk of urban flooding events across spatial scales? The supporting 

questions include: (1) what are the primary factors driving climate adaptation planning initiatives 

related to risk of urban flooding events, and (2) what are the emerging adaptation response 

options related to risk of urban flooding events across a range of cases?  



6 

 

 

 

A modified Drivers-Pressures-States-Impacts-Responses (DPSIR) framework developed 

by Rounsevell, Dawson, and Harrison (2010) was used to organize the information from 

adaptation planning case studies and explore relationships between primary factors driving 

adaptation planning and the emerging adaptation response options from a social-ecological 

systems (SES) perspective of urban environments (Rounsevell et al. 2010). For this dissertation, 

the coupled framework was significant in structuring, visualizing, and organizing relevant 

relational data (Dawson et al. 2010) from the selected individual adaptation planning case studies 

across a range of scales. 

In the coupled DPSIR-SES framework, drivers (either internal or external) reflect the 

interplay between socio-economic activities and environmental processes, and how they are 

manifest in pressures that generate change (impact) to the state of intertwined social-ecological 

systems (Dawson et al, 2010; Kelble et al. 2013). Impacts are seen as positive or negative effects 

in the state of SES (Rounsevell, 2010). Responses emerge as a result of pressures, states and 

impacts, but responses rarely directly affect drivers (Keble et al. 2013).  

The systematic review approach6 provided a means to identify, examine, and synthesize 

both qualitative and quantitative data derived from individual adaptation planning case studies to 

generate objective and generalizable findings that address the research questions (Garg et al. 

2008; Mantyka-Pringle et al. 2012; Stewart et al. 2013).  

 1.3 Hypothesis 

Hypothesis: There is evidence of association between primary factors driving adaptation 

planning initiatives and the selection of adaptation options.  

The study hypothesis was based on the modified DPSIR-SES model framework 

(Rounsevell et al. 2010) that suggest there are possibilities of deriving primary drivers of 

adaptation planning in the context of urban SES from the interactions of pressures-states-impacts 

(PSI) components of the framework. However, the pressure-state and state-impact relationships 

                                                 

6 A systematic review involves: 1) an explicit keyword and specialist search of adaptation planning initiatives from 

available project databases and documents; 2) clear inclusion/exclusion criteria for case studies identified; 3) 

extraction of case study information (e.g. geographic location, driving factors, emerging response options among 

other variables) to create a dataset stored in MS Excel worksheet; and 4) coding and analysis of selected cases 

(Brooks et al. 2013; Ford et al. 2011; Munroe et al. 2012). 
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are much more complex and dynamic than a simple transformation (Rounsevell et al. 2010). 

Response options are feedback loops that reflect different response strategies that aim at 

minimizing impacts (or maximize positive impacts or benefits) by acting on the interactions 

between the pressures-states-impacts variables (Rounsevell et al. 2010). Thus, the selection of 

adaptation response options seems to be dependent on the fit between the impacts or benefits that 

urban communities experience in relation to the interacting pressures-states-impact variables. 

As planners, designers, and policy-makers identify and map the interactions between the 

pressures-states-impacts variables, a clear understanding of the primary driving factors 

associated with adaptation planning initiatives can be developed and subsequently used to select, 

implement, manage, and evaluate adaptation response options across a range of scales in the 

urban context. 

 1.4 Significance of study 

Evidence exists that a growing number of cities around the globe have initiated 

adaptation planning using a wide range of databases, models, and visualization tools in complex 

design and decision-making environments (Carmin et al. 2012b). However, there exists barriers 

to implementation of adaptation planning outcomes, resulting in a widely recognized ‘planning-

implementation gap’ across a range of scales and regions (Bierbaum et al. 2012).  

This study is timely with the great need for bridging the gap between adaptation planning 

and implementation of adaptation options (also referred to as a ‘planning-implementation gap’) 

that exists in the face of changing climate (e.g. sea-level rise) and extreme events (e.g. flooding) 

across a range of regions and scales in the urban context (Berrang-Ford, 2011; Bierbaum et al. 

2012; Ford et al. 2011; Fussel 2009). The results of this study are significant in narrowing the 

‘planning-implementation gap’ in three main ways.  

First, understanding the relationships between primary drivers of adaptation planning 

initiatives and the selection of emerging adaptation options can guide the design and/or scaling-

up of interventions for better climate adaptation (for example the restoration of vital natural 

ecosystems and the creation of integrated and resilient green infrastructure networks), improved 

institutional frameworks (namely better land use regulations and policy), and increased social 

learning (Bierbaum et al. 2012; Plummer and Armitage, 2010). Improving the understanding of 
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the range of factors that influence adaptation response options can encourage organizations to 

develop strategies appropriate to their particular circumstances when taking on the challenge of 

planning for a changing climate and extreme events.  

Second, the implementation and management of robust adaptation actions that promote 

urban resilience in the face of changing climate and extreme events require an understanding of 

(and learning from) the interactions between primary drivers of adaptation planning initiatives 

and the emerging adaptation response options across spatial scales and the feedbacks generated 

by the adaptation actions (Gagnon-Lebrun and Agrawala, 2011; Rounsevell et al. 2010). 

Third, bridging the divide between planning and implementation/management of 

adaptation actions forms the basis for evaluation of planning outcomes to reduce uncertainty of 

targeted adaptation responses across regions and scales. For instance, the costs and benefits of 

specific adaptation planning initiatives can only be analyzed if the selected options are 

prioritized and effectively implemented as targeted actions. 

 1.5 Structure of the dissertation  

This introductory chapter is followed by Chapter 2 which describes the theoretical and 

conceptual frameworks guiding this study by reviewing theories and concepts of social-

ecological systems and resilience in the context of urban adaptation planning. This chapter 

includes review of related literature on climate change and extreme events, status of adaptation 

planning initiatives, planning support systems (PSS) and urban adaptation planning across scales, 

drivers of adaptation planning initiatives, the emerging adaptation response options and barriers 

to implementation adaptation planning actions across the globe—with a particular focus on 

North America. 

Chapter 3 describes the research design and methodology for systematic review of 

adaptation planning cases across the North America and includes:- (a) an explicit keyword and 

specialist search of adaptation planning initiatives from available project databases and 

documents; (b) clear inclusion/exclusion criteria for case studies identified; (c) extraction of 

relevant case study information to create a dataset stored in MS Excel worksheet; and (d) coding 

and analysis of emerging information related to the selected plans and planning initiatives.  
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Chapter 4 presents the main results from the synthesis of data related to the objectives 

and primary question as well as the hypothesis of the study—seeking to better understand the 

association between primary factors driving climate adaptation planning initiatives and the 

selection of climate adaptation options. This chapter highlights the search strategy results, the 

characteristics of included studies, and the significant relationships between primary factors 

driving urban adaptation initiatives and the selection of adaptation options related to risk of 

urban flooding events.  

Chapter 5 presents a discussion of findings and the advances made through this study in 

the understanding of the relationships between primary factors driving urban adaptation 

initiatives and the selection of adaptation options related to risk of urban flooding events, and 

concludes the dissertation with a summary discussion of key lessons, and further research 

directions.  
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Chapter 2 - Literature review 

Urban adaptation has gained increasing recognition in recent years, due to the realization 

of its potential value to reduce the vulnerability of urban systems (natural systems, built 

environments, and human populations) and improve resilience of urban communities and 

environment to existing and future changing climate risks (e.g. sea-level rise) and related 

extreme events (e.g. drought and flooding) across a range of scales (Bierbaum et al. 2012; 

Preston, 2013).  Recent observed trends in the frequency and magnitude of extreme events such 

as urban flooding and their perceived impacts pose great challenges for planning, design, and 

policy decision making across all regions (see e.g. Bierbaum et al. 2012; Carmin et al. 2012b).  

A global survey by Carmin et al. (2012b) conducted between April and May, 2011 show 

that 74 percent of U.S. cities perceived changes in the climate, including increased storm 

intensity (31 percent), higher temperatures (30 percent) and more precipitation (28 percent). The 

cities surveyed identified primary challenges as follows: - increased stormwater runoff (72 

percent), changes in energy demand (42 percent), loss of natural systems (39 percent), and 

coastal erosion (36 percent) (Carmin et al. 2012b). Other challenges that ranked closely behind 

were loss of economic revenue, drought, and solid waste management (Carmin et al. 2012b). 

Recent examples of climate variability and extreme events that have impacted urban built 

infrastructure, socio-economic and institutional frameworks and public health (Bierbaum et al. 

2012) particularly in North America include hurricanes Katrina and Rita; Superstorm Sandy, and 

numerous typhoons in the Pacific.  

In their survey, Carmin et al. (2012b) provided deeper insight into: (1) the status of 

adaptation planning globally, (2) the approaches that cities around the world are taking, and 3) 

the challenges cities are encountering as they seek to prepare for a changing climate. The survey 

shows that a wide range of cities are thinking about how they can be prepared for future extreme 

events. 

Survey responses from 298 U.S. local governments indicated that 59 percent are engaged 

in some form of adaptation process (ranging from assessments to planning to implementation) 

(Carmin et al. 2012b). There is evidence that 48 percent of U.S. cities were in the preliminary 
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planning and discussion phases – including gathering information, exploring adaptation options 

and/or holding informal consultations. The remaining 52 percent were either in the risk and 

vulnerability assessment phase (13 percent) or involved in plan development and implementation 

phases (39 percent) (Carmin et al. 2012b). The survey concludes that a considerable number of 

the responding cities are taking action to adapt to climate change via planning or through the 

process of implementation.  

 2.1 Theoretical and conceptual framework  

Urban climate adaptation processes consist of planning initiatives, actions, and 

adjustments (both incremental and transformational) that aim to reduce vulnerability while 

increasing the resilience of natural systems, the built environment, and human populations to 

actual and anticipated change (Carmin et al. 2012; IPCC, 2007; Kates et al. 2012).  

This theory and concepts section (1) reviews the linkages between urban vulnerability, 

adaptive capacity, and resilience in the context of social-ecological systems, (2) introduces the 

modified Drivers-Pressures-States-Impacts-Responses and Social-Ecological Systems (DPSIR-

SES) conceptual framework, and (3) explores the issue of scale. 

 2.1.1 Urban vulnerability, adaptive capacity, and resilience  

Vulnerability, adaptive capacity and resilience are important concepts for understanding 

adaptation in the context of urban social-ecological systems (Grimm et al. 2012; Smit and 

Wandel, 2006). Urban social-ecological systems (SES) are characterized by interactions and 

feedbacks between external drivers, social (human), and ecological (natural) subsystems across 

multiple scales (Bai et al. 2010; Damm, 2010; Grimm et al. 2012). From a climate change 

perspective urban social-ecological systems (Figure 2.1) are mainly composed of (1) external 

drivers (e.g. changing climate); (2) press and pulse events (e.g. flooding risk and drought); (3) 

urban social subsystems comprised of human actions (including planning, design, and 

regulation) and outcomes (e.g. quality of life and public health); (4) urban ecological subsystems 

that include urban ecosystem infrastructure (e.g. built and designed structures, and green to grey 

infrastructure), and ecosystem functions ((climate regulation via sequestration of carbon 

dioxide); and (5) ecosystem services (such as water supply, stormwater management, and 
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tempering of urban heat loads), all functioning across spatial (local, regional, and global) and 

temporal scales (Grimm et al. 2012).   

 

Figure 2.1: Elements of urban social-ecological systems (SES) 

 

Source: Modified from Grimm et al. 2013. 

 

Urban social-ecological systems are unique in how they evolve as a result of myriad 

interactions between diverse actors (e.g. individuals, community, and governments), their 

choices and actions, and the emerging challenges of changing climate (such as sea-level rise for 

coastal cities) and flooding risks due to increased intensities of storm events (Alberti et al. 2003). 
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The choices and actions of actors have the potential to influence urban growth and development 

patterns (e.g. through land use and infrastructure density) and affect ecosystem processes 

(through land use change, resource consumption, and generation of emissions and waste) with 

potential impacts on ecosystem services, public health, and quality of life (Alberti et al. 2003). 

Thus, urban social-ecological systems constantly experience change and adaptation processes 

related to utilization, management, policy, ecological, and external influences within and across a 

range of scales (Folke, 2006).  

A number of adaptation studies have employed the generic framework shown in Figure 

2.2 to understand the linkages between vulnerability, adaptive capacity and resilience of cities as 

social-ecological systems to address factors that interact to foster or impede climate adaptation 

processes across spatial and temporal scales.  Studies emphasizing the need to create more 

resilient, adaptive cities across a range of scales are many, and include those by Adger et al. 

(2005), Smit and Wandel (2006), Lankao and Tribbia (2009), and Wilbanks (2009).  

While urban vulnerability is the susceptibility of a city or region to significant climate 

change impacts that cannot be adequately addressed under present circumstances, adaptive 

capacity in the urban context is the ability or potential of the urban social-ecological systems to 

respond successfully to change, in order to reduce adverse impacts and take advantages of new 

opportunities (IPCC, 2007; Kates et al. 2012).  

Vulnerability is a function of adaptive capacity and susceptibility to serious impacts and 

is directly connected to the sensitivity of social-economic-ecological systems to climate 

variability and extreme events (Bulkeley and Tuts, 2013). It is widely accepted that adaptive 

capacity is a social construct driven by factors operating at many different scales and highly 

varied within and between urban settings (Bulkeley and Tuts, 2013; Smit and Wandel, 2006). 

Physical constraints are important, but in most cases it is the social processes that increase or 

decrease adaptive capacity (Bulkeley and Tuts, 2013). The social drivers of adaptive capacity are 

varied but may include broad structures such as economic and political processes, as well as 

local structures such as access to information and knowledge for effective decision making and 

the structure of social networks and relationships within a community (Damm, 2010). 

The resilience of urban social-ecological systems depends on the capacity of ecosystems 

to generate ecosystem services and the functional groups of species that provide these services, 
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in combination with governance networks, social dynamics and the built environment (Damm, 

2010; Folke, 2006). 

 

Figure 2.2: Linkages between urban vulnerability, adaptive capacity, and resilience 

 

Source: Modified from Lankao and Tribbia, 2009.  

 

From this vantage point urban resilience refers not only to the amount of disturbances 

(change or variability) an urban social-ecological system can withstand before shifting to 

alternative states, but also the self-organizing capacity to retain the same structure and ways of 

functioning (Folke, 2006). Self-organization mechanisms allow urban social-ecological systems 

to absorb internal and external disturbances up to a level where thresholds are exceeded, then 
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shift to alternative states – which may or may not result in undesirable outcomes and reduced 

functions (Adger et al. 2005; Folke, 2006; Liao, 2012).  

Urban adaptation can be seen as related to a system’s level of resilience, which involves 

reflecting on and responding to current trends and projected changes to either reduce 

vulnerability and  impacts of changing climate and extreme events, or harness new opportunities 

arising at interlinking scales (Folke, 2006). Urban adaptation emerges as a continuous 

heterogeneous process that involves planning initiatives, choices of options, and implementation 

of actions within and across spatial scales (Adger et al. 2005: Bierbaum et al. 2012). 

 2.1.2 Issues of scale and complexity 

Urban adaptation planning for changing climate (e.g. sea-level rise) and extreme events 

(namely flooding and drought) involve social and decision processes that occur within and across 

space and time (Adger et al. 2005; Bierbaum et al. 2012; Poyar and Beller-Simms, 2010). Issues 

of scale (in space and time) and complexity of urban social-ecological systems have well 

acknowledged implications in the design of adaptation planning initiatives, development, 

assessment, and selection of adaptation options, and implementation of adaptation actions 

(Adger et al. 2005; Bierbaum et al. 2012; Wilbanks, 2009). Recognizing that various studies (see 

Cash et al. 2006; Gibson et al. 2000; Kok and Veldkamp, 2011) have conceptualized scale to 

include spatial, temporal, and other quantitative or analytical dimensions, this section only 

provides in-depth discussion on the spatial dimensions of scale, its levels (or units of analysis), 

and interactions.  

Following Cash et al. (2006), “spatial scale” connotes the different functional dimensions 

of space, used to observe or measure and characterize or study phenomena, social patterns, and 

ecological processes. Figure 2.3 illustrates the ecological, social, and functional spatial scales 

and their respective levels of analysis that may be of significance in the current study (Damm, 

2010). It emerges that the ecological and social spatial scales explain phenomena that exist in the 

social-ecological systems from the perspective of functional spatial scales that extends from site 

specific scale to regional scale and beyond (Damm, 2010). The functional spatial scale was 

identified to be of great importance for the assessment of plans that support urban adaptation to 

changing climate and related extreme events. 
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Figure 2.3: Ecological, social, and functional spatial scales in adaptation planning 

 

Source: Adapted from Damm, 2010 

 

In the urban context, issues of complexity emerge from the dynamic interactions and 

linkages between community social patterns and ecosystem service processes within and across 

spatial scales (Cash et al. 2006; Damm, 2010). The scale dependent characteristics of urban 

social-ecological systems may emphasize the diversity of the factors motivating adaptation 

planning and affecting the ability to adapt—based not only on phenomena and geo-political 

context, but also on the social and ecological processes (Brooks, 2003; Damm, 2010; Wilbanks, 

2007). Issues of scale  may arise from the perceptions of risk, design of adaptation planning 

initiatives, and mismatches between the ecological and social scales with regard to prioritization 

of adaptation options, decisions, and implementation of actions with transboundary effects (see 

Adger et al. 2005; Cash and Moser, 2000; Folke et al. 2007; Gibson et al. 2000).  
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Figure 2.4 (adapted from Wilbanks, 2009) shows significant cross-scale interactions in 

urban social-ecological systems. For instance, overarching phenomena and processes at macro 

scale (such as urban policies and market signals) interact to influence local actions that 

conversely accumulate to impact or “drive” macro scale processes and structures (Wilbanks, 

2009). In the same vein, “institutional responses on larger scales, shaped by democratic support 

or opposition from smaller scales, lead to large-scale structures that enable, (or constrain)” 

adaptation initiatives at the local scale (Damm, 2010: 30). 

 

Figure 2.4: Cross-scale interactions in the context of urban social-ecological systems 

 

Source: Adapted from Wilbanks, 2009 

 

The spatial scale becomes a key consideration in adaptation planning since not all scales 

are suitable for design, development, and implementation adaptation options and actions 

(Johnson and Breil, 2012). For instance, individual or household responses to changing climate 

and extreme flooding events are less likely to require planning interventions given limitations of 
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resources for effective adaptation planning process (Adger et al. 2005). Most adaptation planning 

initiatives are undertaken from community-scale to regional or national scales requiring more 

resources, investment and involvement of many participants (Johnson and Breil, 2012). 

According to Adger et al. (2005) spatial scale issues have significant implications on the 

successes or failures in the implementation of adaptation actions, while also determining the 

relevance of different factors influencing vulnerability, adaptive capacity and resilience. Omunga 

and Kim (2011) found that scale dependencies significantly influence the implementation of 

appropriate planning support approaches, models and tools for the design and development of 

adaptation options in environmental and land use-transportation planning practices.   

Adger et al. (2005) examined multiple case studies and revealed that driving factors 

motivating adaptation planning initiatives and the emerging adaptation response options may 

exhibit multiple dynamic interactions with feedback loops across spatial scales. Other recent 

studies (e.g. Gagnon-Lebrun and Agrawala, 2011) have also revealed that the implementation of 

robust adaptation actions that promote urban resilience in the face of changing climate and 

extreme events require an understanding of (and learning from) the interactions and feedbacks 

between drivers of adaptation planning and the selection of adaptation response options across 

spatial scales. 

It emerges that the issue of spatial scale is very important in understanding and assessing 

adaptation planning initiatives, particularly the question posed by this dissertation (Adger et al. 

2005; Carmin et al. 2009; Wilbanks, 2009). The urban (city) scale was selected as the spatial unit 

of analysis in this research for two primary reasons: 1) a sufficient number of urban adaptation 

planning case studies were available from climate adaptation databases, 2) the objective to 

explore the relationships between what is driving cities to engage in adaptation planning 

initiatives and the emerging adaptation response options with regard to changing climate and the 

risks of extreme flood events can be provided best at city level (Bierbaum et al. 2012; Carmin et 

al. 2012b; Johnson and Breil, 2012; Da Silva et al. 2012). Drawing inspiration from Rounsevell 

et al. (2010), Brooks et al. (2013), and other authors noted above, the urban spatial scale of 

analysis influenced the conceptual framework as well as methodological approach of the present 

study. 
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 2.1.3 The DPSIR-SES conceptual framework  

The Drivers-Pressures-States-Impacts-Responses (DPSIR) is one of the notable 

frameworks devised in the early 1990s aimed at structuring and organizing information on the 

relationships between human activities and the ecosystem services, across a range of scales from 

local to global (Kristensen, 2004; Sekovski et al. 2012). Since then, the framework has rapidly 

evolved as a systematic interdisciplinary approach and is now widely utilized for understanding 

causes, consequences and responses in global change assessments (e.g. Millennium Ecosystem 

Assessment), ecosystems and human-environment interactions research, sustainability and 

quality of life studies (Dawson and Rounsevell, 2008; Kristensen, 2004; Rounsevell et al. 2010; 

Sekovski et al. 2012).  

Specifically, the utility of the DPSIR framework has been realized in exploring 

interactions and feedbacks between social-economic drivers, environmental pressures, state of 

change in environment and societal responses to the changes (Dawson and Rounsevell, 2008; 

Kurzbach et al. 2013; Rounsevell et al. 2010; Sekovski et al. 2012; Song and Frostell, 2012). 

Rapidly emerging areas of application include assessing strategies for forest management and 

evaluating sustainability of coastal areas, integrated catchment-coastal zone management and 

urbanization, urban public health, and other water-related issues (Maxim and Spangenberg, 

2006; Tscherning et al. 2012). 

Figure 2.5 provides a simple representation of the DPSIR framework from the 

management perspective of flood risk resulting from future urban growth and climate change 

(Kurzbach et al. 2013). The DPSIR framework in Figure 2.5 has five interacting components as: 

(1) Drivers that are a reflection of past and present conditions or future scenarios and projections 

of socio-economic change related to economy, demography, technology and culture that may 

interact to drive the demand and supply of urban land, competition for space, and spatial 

planning, consequently producing different pressures (e.g. land use/cover changes) to urban 

social-ecological systems (SES); (2) Pressures (e.g. land-use/cover change) which combined 

with scenarios of changing climate and extreme events may exert change on the state of urban 

systems in the form of increasing imperviousness and stormwater runoff, flood risk and 

vulnerability to extreme flooding events, and the delivery of ecosystem services; (3) States 

describe the quality and sensitivity of the whole social-ecological system (including supporting 
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systems, actors and ecosystem services) to current and future trends of pressures and related 

variables; (4) Impacts are the result of changes in state variables associated with SES that may 

increase perceived risk and the social, environmental, and economic effects of flooding events to 

provoke the need for adaptation planning, investment, and policy responses across urban scales; 

(5) Responses generate a feedback (at times simultaneous) towards all other components of the 

framework (Dawson and Rounsevell, 2008; Kristensen, 2004; Kurzburch et al. 2013; Rounsevell 

et al. 2010; Sekovski et al. 2012).  

 

Figure 2.5: Drivers-Pressures-States-Impacts-Responses (DPSIR) model framework applied to 

climate change and urban flood risk management 

 

Source: Adapted from Kurzbach et al. 2013. 
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However, the DPSIR framework displays inconsistencies in its application to 

environmental problems, namely the use of terminology such as “drivers” within particular fields 

of research (Kristensen, 2004; Rounsevell et al. 2010). The DPSIR model has also been 

criticized for its simplistic ‘one-size-fits-all’ approach to human-environment phenomena, 

unclear cause-effect relationships, and failure to capture dynamics of complex adaptive 

interrelationships (especially in urban systems) that are crucial in planning and decision making 

(Kristensen, 2004; Song and Frostell, 2012). The various components can be interpreted 

differently depending on context and focal question of any analysis, especially in complex urban 

social-ecological systems (Rounsevell et al. 2010).  

The modified Driver-Pressure-State-Impact-Response and social-ecological systems 

(DPSIR-SES) framework (Figure 2.6) adapted from the framework published by Rounsevell et 

al. (2010) provided a robust conceptual framework for the present research. The framework 

provided a useful platform for structuring and organizing information needed to explore the 

relationships between primary factors driving adaptation planning initiatives and the emerging 

adaptation options related to risk of flooding events across scales in the urban context 

(Rounsevell et al. 2010). The significance of the modified DPSIR-SES framework in this 

dissertation is improved understanding of cross-scale dynamics and the interactions between 

pressures, states, and impacts (the pressure-state change-impact (P-S-I) linkage) that influence 

engagement in adaptation planning initiatives to generate specific adaptation response options 

across urban spatial scales (Kelble et al. 2013; Rounsevell et al. 2010; Weng, 2011). Also from 

the systems perspective, non-linear processes and interaction models can be developed within the 

DPSIR-SES framework to facilitate policy and investment decision-making in complex urban 

environments (Rounsevell et al. 2010). 

Based on the modified DPSIR-SES framework, it emerges that there are possibilities of 

deriving primary drivers of urban adaptation planning from the interactions of pressures-states-

impacts (P-S-I) components (Iannucci et al. 2011). However, it should be noted that the 

pressures-states and states-impacts relationships are much more complex and dynamic than a 

simple transformation (Rounsevell et al. 2010). “The states may change in response to the 

pressures in dynamic ways as characterized by concepts such as urban resilience and robustness” 

to reach certain thresholds that have a negative (or positive) impacts on human health and 
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wellbeing, the economy, specific ecosystems, and other environmental resources (Rounsevell et 

al. 2010:2829). Response options are feedback loops that reflect different response strategies that 

aim at minimizing impacts (or maximizing positive impacts or benefits) by acting on pressures-

states-impacts interaction variables (Rounsevell et al. 2010).  

 

Figure 2.6: The modified DPSIR-SES conceptual framework 

 

Source: Modified from Rounsevell et al. 2010.  

 

The modifications were made in the conceptual framework (Figure 2.6) in order to adapt 

the framework to the theoretical underpinnings of adaptation planning and urban resilience 

(Adger et al. 2005; Folke, 2006; Grimm et al. 2012) and the demands of present research. The 

modifications relate to the concepts discussed in the previous and the following sections.  
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 2.2 Planning support systems and adaptation planning across scales 

Urban adaptation planning has been increasingly acknowledged to offer new possibilities 

for responding to the current and potential effects of changing climate (e.g. sea-level rise) and 

extreme events (e.g. drought and flooding) in regards to land use, built infrastructure, water 

quality, and public health across different scales (Berrang-Ford et al. 2010; Bierbaum et al. 2012; 

Carmin et al. 2012b; Ford et al. 2011; Hallegate and Corfee-Morlot, 2011).  

Evidence exists that a growing number of cities around the globe have initiated 

adaptation planning using a wide range of databases, models, and visualization tools in complex 

design and decision-making environments (Carmin et al. 2012b). In addition, recent years have 

witnessed many types of planning support systems (PSS), designed to enhance various planning 

tasks (e.g. data collection, analysis, collective decision-making, etc.) and eventually to realize a 

more efficient, robust and collaborative planning process. (Klosterman and Pettit, 2005; Batty, 

2008).  

According to Geertman and Stillwell (2004), PSS inventory includes a broad range of 

tools that support visualization, communication, and interaction as well as problem solving (i.e., 

modeling, analysis, and simulations). Systematic integration of data, models, and visualization 

components has also been achieved and integrated support systems are now available for 

planning practitioners in the field (Geertman and Stillwell, 2009). 

Emerging climate adaptation research effectively combined with advances in planning 

support systems (PSS) –  integrating databases, models and visualization tools – offers new 

frameworks to support each of the phases and stages of the adaptation process depicted in Figure 

2.7, and contribute significantly to understanding, planning, anticipating and effectively 

responding to the impacts of changing climate and related extreme events (Batty, 2008; 

Chakraborty et al. 2012; Geertman and Stillwell 2009; Klosterman and Pettit, 2005; Moser and 

Ekstrom, 2010; Vonk and Geertman, 2008).  
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Figure 2.7: Moser and Ekstrom’s phases and stages of the adaptation process 

 

Source: Redrawn from Moser and Ekstrom, 2010:22027 

 

In adaptation planning process, there are reported similarities in approaches (broadly 

categorized as community-based and ecosystem–based). These approaches are employed to 

develop, assess, and select options for response to current and future impacts of climate change 

and related extreme events across a range of scales (Bierbaum et al. 2012; Hunt and Watkiss, 

2011; Moser and Ekstrom, 2010; Preston et al. 2013).  

Cities may focus on impact-oriented (“top-down”) and/or integrated capacity-focused 

(“bottom-up”) adaptation planning approaches to explicitly identify, evaluate adaptation options, 

and generate effective, robust, and flexible adaptation measures and strategies (Adger et al. 2005; 

Bierbaum et al. 2012; McCarthy, 2012; Preston et al. 2013). Top-down approaches consider 

climate risks, vulnerabilities and impacts as the basis for adaptation planning while bottom-up 

approaches focus on participatory approaches, are place-based and scenario development forms 

the basis for projective evaluations of what the future may hold (Adger et al. 2005).  
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Although there are reported similarities in approaches to adaptation planning, cities are 

employing various qualitative and quantitative methodologies (such as case studies, scenario 

analyses, and sensitivity analyses) and tools (modeling, and visualization) to vulnerability or risk 

assessment, plan development and implementation of emerging adaptation actions at different 

spatial scales (Bierbaum et al. 2012; Hunt and Watkiss, 2011; Preston et al. 2013). The emerging 

modeling and enhanced visualization tools have been employed to: (1) promote understanding by 

making climate change and adaptation explicit to planners’ and other engaged stakeholders’; (2) 

facilitate their dialogue between a range of stakeholders; (3) contribute to social learning; and 

eventually (4) support more informed decision-making throughout the various phases and stages 

of adaptation process (Batty, 2008; Burch et al. 2010; Sheppard et al. 2011).  

 2.3 Implementation of planning support systems 

 Given that the claimed potentials of planning support systems (PSS) can be realized only 

when they are employed in real world planning practices, increasing attention has been paid to 

the implementation of the support systems.7 For instance, Vonk (2006) conducted a series of 

expert interviews and a web-based survey to see how various types of PSS have been received by 

the planning profession in the field. Vonk found that a majority of planners in the field have not 

fully utilized planning support systems in their daily work due to the lack of user’s awareness, 

experience, and motivations to utilize many of the support systems (2006). 

Te Brömmelstroet (2010) also conducted a survey of Dutch land use and transportation 

planning practitioners and received a considerable number of responses, saying that planning 

support systems are “implemented too late in the planning process,” “too far from the political 

process,” and/or “do not fit the … [target] planning process” (p.31-32). There is other evidence 

showing that in real applications, the full potentials of PSS are yet to be realized (see for 

example, Geertman and Stillwell, 2009). 

                                                 

7 PSS potentials for a broad range of planning practices have been discussed in many studies. For instance, recently, 

Te Brömmelstroet (2010:28) contended that PSS can help “1) to facilitate interaction among planners; 2) to contain 

structured and accessible information; 3) to facilitate social interaction, interpersonal communication and debate (in 

order to address common concerns); and 4) to support continuous and interactive process of constantly integrating 

new information (generated as analytical results) and thus redefining design issues.” It is claimed that PSS is a 

promising tool that planners need to possess to deal with wicked planning challenges posed by increased complexity 

and uncertainty of urban systems (Brail 2008). For additional discussions, see Harris (1989); Harris and Batty 

(1993); Klosterman (2001); Brail (2005); Geertman (2006); Vonk et al. (2007); Geertman and Stillwell (2009). 
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Understanding the implementation issues becomes critical in PSS literature and some 

recent studies attempt to answer the question “why not implemented as much as expected, 

despite great potential usefulness?” Vonk et al. (2005) is a notable study, examining and 

discussing the PSS implementation issues. According to Vonk and colleagues, there are various 

human, organizational, institutional, and technical factors that can cause under-utilization of PSS 

in real world planning practice. These include the lack of trained human resources able to use 

complex PSS; lack of organizational infrastructure and readiness to adopt PSS; and institutional 

resistance to technological changes (Vonk et al. 2005).   

In a follow-up study by Vonk and Geertman (2008), more careful consideration is given 

to the barriers to the PSS implementation on both supply-side and demand-side. On the supply-

side, the following bottlenecks are found – “little insight … into the features that characterize a 

PSS…; little proof of the actual value of PSS…; technology-oriented rather than user-driven 

approach to PSS development…; [and] limited usage of PSS across national boundaries” (Vonk 

and Geertman 2008:158-159). On the demand-side, it is reported that “the main bottlenecks … 

[include] a lack of awareness concerning the existence and potential of PSS in planning practice, 

a lack of experience in using PSS and a general lack of intention to use PSS by the actors in the 

planning community” (p.159). The authors also find that PSS adoptions can often be hindered by 

supply-demand mismatches, including poor fitness of technology (Vonk and Geertman, 2008).  

Pozoukidou (2006) also examines the critical barriers to active adoption of PSS.  Here, 

twenty metropolitan planning agencies are asked to respond to a set of survey questionnaires 

after having a trial of a support system, called “TELUM.’  According to the agencies’ responses, 

external barriers include – “obstacles that are not directly related to the developer or the user, but 

are more general issues that affect the applicability of models in planning practice … [such as] 

lack of appropriate quantitative education” for planning professional (p.13). Such barriers are 

regarded as the most significant challenge for implementation.  The second and third most 

challenging barriers are “lack  of  operational  support  from  the  developer  or  the  provider  of  

the software” and “the extensive data requirements” (Pozoukidou 2006:14). 

Although the above studies indeed shed light on the PSS implementation barriers, there 

are adaptation-related environmental planning projects where PSS have been employed for their 

planning purposes (Omunga and Kim, 2011). For instance, The Ecosystem-Based Management 
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(EBM) Tools database compiled twenty-nine environmental planning projects (as of June 2011) 

where various kinds of PSS had been employed. The projects included planning works for 

environmentally sensitive and hazard-prone areas; planning efforts to create sustainable 

communities; community-based ecosystem management; and ecological impact assessments 

(Omunga and Kim, 2011). The Federal Highway Administration (FHWA) Planning Tools 

database provided a list of land use – transportation planning practices that utilized widely 

defined tools (including design guidelines and funding tools as well as support systems). Some 

of the projects with PSS have been documented; and the materials are useful resources for 

studying the PSS implementation in real planning practices.  

In examining the EBM Tools database, Omunga and Kim (2011) found that two specific 

planning tasks – (1) problem exploration and analysis, and (2) change exploration and analysis 

– were the main targets of PSS applications.8  For instance, in the Coastal Storms Initiative 

project in Brevard and Volusia Counties, Florida, the project group used NOAA’s (National 

Oceanic and Atmospheric Administration) Risk and Vulnerability Assessment Tool (RVAT: 

http://www.csc.noaa.gov/rvat) to explore risk and vulnerabilities arising in the area due to the 

Florida coastal storms, and analyzed the coastal hazard and mitigation scenarios in an interactive 

manner (“Coastal Storms Initiatives,” n.d.).  In the case of a project, titled Watershed-based 

Analysis of Threats to Coral Reefs, the analytic tasks for their environmental planning have been 

supported by the N-SPECT: Nonpoint Source Pollution and Erosion Comparison Tool 

(www.csc.noaa.gov/nspect). More specifically, the PSS has been implemented “to derive 

estimates of runoff, erosion, and pollutant sources from across the landscape and examine the 

transport of sediment and pollutants” (“Costal Storms Initiatives,” n.d.). Another example is the 

Solomon Islands project where SimCLIM (http://www.climsystems.com/simclim/), a climate 

change impact and adaptation software, has been applied (Simpson et al. 2009). This PSS is used 

to analyze significant changes in climate and associated problems including, “coastal hazards,” 

such as hurricane-driven storm surges and “extreme high tides” that will likely arise due to future 

                                                 

8 More than a half of the projects from the EBM Tools database adopted PSS for the analytic purposes. It also needs 

to be noted that most of the projects, where 1) problem exploration and analysis are conducted with supports of one 

or more PSS, utilized the tool(s) for 2) change exploration and analysis as well.   

http://www.csc.noaa.gov/rvat
http://www.csc.noaa.gov/nspect
http://www.climsystems.com/simclim/
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climate change and be exacerbated by increasing human settlement and/or degraded land 

conditions within certain coastal zones (Simpson et al. 2009, p.48).  

    It appears that this pattern is even stronger in the projects from the FWHA Planning 

Tools database that contain land use and transportation planning practices. Most applications 

were primarily utilized for both problem exploration and analysis and change exploration and 

analysis. For example, “Paint the Town,” a customized version of the INDEX (www.crit.com/), 

has been used by the Mid-America Regional Council (MARC), in exploring land use and 

transportation problems and developing alternative future growth scenarios (MARC, 2008). The 

San Diego Association of Governments employs I-PLACE3S (http://places.energy.ca.gov/) for 

analytic purposes during the neighborhood planning process. I-PLACE3S helped planners 

explore neighborhood problems, generate various scenarios, and analyze potential changes in 

land uses while taking specified economic and regulatory constraints into account (DKS 

Associates et al. 2007).  

In sum, the findings of Omunga and Kim (2011) demonstrated the utility of planning 

support tools for assisting with adaptation strategies in general and specifically helping the 

adaptation planning process such that the full potential of PSS are realized (see, for one example, 

Geertman and Stillwell, 2009).  

 2.4 Status of adaptation planning initiatives in North America 

 Adaptation planning effectively represents social and decision processes that facilitate 

implementation of interventions to reduce vulnerability and/or take advantage of potential 

opportunities associated with climate variability and change (Preston et al. 2010). A recent 

global survey conducted in 2011 by Carmin and colleagues (2012b) entitled, “Progress and 

Challenges in Urban Climate Adaptation Planning” attracted responses from 468 cities 

worldwide and provided deeper insight into: (1) the status of adaptation planning globally, (2) 

the approaches that cities around the world are taking, and (3) the challenges cities are 

encountering as they seek to prepare for a changing climate. Responses to this survey indicate 

that 68 percent of the responding cities of varying sizes across geopolitical scales are taking 

action to adapt to climate change and related extreme events via planning or implementation of 

selected strategies (Carmin et al. 2012b). 

http://www.crit.com/
http://places.energy.ca.gov/
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For instance, responses from 298 U.S. cities participating in the survey indicated that 59 

percent were engaged in some form of adaptation planning initiative (Carmin et al. 2012b). 

According to the report 48 percent of the U.S. cities engaged in adaptation planning process 

(ranging from assessments to planning to implementation) were in preliminary planning and 

discussion phases (either gathering information, exploring adaptation options or holding informal 

consultations), while the remaining 52 percent were either in risk and vulnerability assessment 

phase (13 percent) or plan development and implementation phases (39 percent) (Carmin et al. 

2012b). Survey responses from Canadian cities indicate that 92 percent are engaged in adaptation 

initiatives while the status analysis shows that 69 percent of the cities initiating adaptation 

planning were equally distributed between preparatory planning phase, initial planning phase, 

and risk or vulnerability assessment, 31 percent were in plan development/approval and 

implementation phases (see Carmin et al. 2012b). 

Bierbaum et al. (2012) recently reviewed existing and planned climate adaptation 

initiatives by regional and local governments, nonprofit organizations, and private sector entities 

throughout the United States, including technical inputs to the 2013 United States National 

Climate Assessment (NCA), they noted that most adaptation actions were focused more on 

incremental change than wide-scale transformational shifts. The comprehensive review study 

conducted by Bierbaum et al. (2012) provided a number of examples of current climate 

adaptation initiatives and communities currently implementing prioritized options that include 

Grand Rapids, Michigan; Keene, New Hampshire; New York City, New York; Seattle (King 

County), Washington; and Chicago, Illinois.  Table 2.1 (below) details a number of examples of 

urban adaptation initiatives to highlight the types of adaptation activities taking place in U.S. 

cities and states, and at regional levels (Bierbaum et al. 2012).  

Studies in the Great Lakes Region (Barclay et al. 2013; Gregg et al. 2012) focus on how 

cities and people can adapt to climate change while remaining or becoming more economically, 

socially, or ecologically resilient. In their integrated assessment of four cities (Barclay et al. 

2013) measure adaptive capacity and examine how each city government manages that adaptive 

capacity to achieve positive adaptive outcomes. 
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Table 2.1: Selected examples of U.S. City/State/Regional level adaptation initiatives related to 

climate change and flooding, stormwater management and/or sea level rise 

City/State/Region Adaptation Initiative 

Satellite Beach, FL  Collaboration with the Indian River Lagoon National Estuary Program led to the 

incorporation of sea-level rise projections and policies into the city’s comprehensive 

growth management plan (Gregg et al. 2011). 

Portland, OR  The City of Portland, Oregon created a Climate Action Plan and updated the city 

code to require on-site stormwater management for new and re-development. The 

city offers a downspout disconnection program to promote on-site stormwater 

management (EPA, 2010b; www.portlandoregon.gov/bps/article/268612). 

Lewes, DE  In partnership with Delaware Sea Grant, ICLEI-Local Governments for 

Sustainability, the University of Delaware, and state and regional partners, the City 

of Lewes undertook an intensive stakeholder process to integrate climate change into 

the city’s updated hazard mitigation plan (www.ci.lewes.de.us/Hazard-Mitigation-

Climate-Adaptation-Action-Plan/). 

San Diego Bay, CA  Five municipalities partnered with the port, the airport, and more than 30 

organizations with direct interests in the future of the Bay to develop the San Diego 

Bay Sea-level-rise Adaptation Strategy. The strategy identified key vulnerabilities 

for the Bay and adaptation actions that can be taken by individual agencies, as well 

as through regional collaboration (Solecki and Rosenzweig, 2012). 

Chicago, IL  The City of Chicago has integrated climate adaptation into a citywide Climate 

Adaptation Plan. Since its release, a number of strategies have been implemented to 

help the city manage heat, protect forests, and enhance green design, such as their 

work on permeable surfaces and green roofs (www.chicagoclimateaction.org/pages/

adaptation/11.php). 

King County, WA  In Washington State, the King County Flood Control District reformed in 2007 to 

address increased impacts from flooding via activities such as maintaining and 

repairing levees and revetments, acquiring repetitive loss properties, and improving 

countywide flood warnings (Wolf, 2009; www.nerrs.noaa.gov/doc/pdf/training/

strategies_king_county.pdf). 

Keene, NH The City of Keene, New Hampshire replaced culverts with larger ones that were 

designed to withstand projected increases in precipitation and population demand 

(www.ci.keene.nh.us/sites/default/files/CMPprint-final-1027-fullversion_2.pdf). 

New York City, NY Through a partnership with the Federal Emergency Management Agency (FEMA), 

the city is updating FEMA Flood Insurance Rate Maps based on more precise 

elevation data. The new maps will help stakeholders better understand their current 

and future flood risks, and allow the city to more effectively plan for climate change 

(City of New York, 2012). The city has also created a Green Infrastructure Plan and 

is committed to goals that include the construction of enough green infrastructure 

throughout the city to manage 10% of the runoff from impervious surfaces by 2030 

(www.nyc.gov/html/dep/html/stormwater/nyc_green_infrastructure_plan.shtml). 

Grand Rapids, MI The City of Grand Rapids, Michigan released a Sustainability Plan that integrates 

future climate projections to ensure that the economic, environmental, and social 

strategies embraced are appropriate for today as well as the future (http://grcity.us/

enterprise-services/officeofenergyandsustainability/Pages/default.aspx/). 

 

http://www.portlandoregon.gov/​bps/​article/​268612
http://www.ci.lewes.de.us/​Hazard-Mitigation-Climate-Adaptation-Action-Plan/​
http://www.ci.lewes.de.us/​Hazard-Mitigation-Climate-Adaptation-Action-Plan/​
http://www.chicagoclimateaction.org/​pages/​adaptation/​11.​php
http://www.chicagoclimateaction.org/​pages/​adaptation/​11.​php
http://www.nerrs.noaa.gov/​doc/​pdf/​training/​strategies_​king_​county.​pdf
http://www.nerrs.noaa.gov/​doc/​pdf/​training/​strategies_​king_​county.​pdf
http://www.ci.keene.nh.us/​sites/​default/​files/​CMPprint-final-1027-fullversion_​2.​pdf
http://www.nyc.gov/​html/​dep/​html/​stormwater/​nyc_​green_​infrastructure_​plan.​shtml
http://grcity.us/enterprise-services/officeofenergyandsustainability/Pages/default.aspx/
http://grcity.us/enterprise-services/officeofenergyandsustainability/Pages/default.aspx/
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Table 2.1: (continued) 

Phoenix, AZ; Boston, 

MA; Philadelphia, PA; 

and New York, NY  

Climate change impacts are being integrated into public health planning and 

implementation activities that include creating more community cooling centers and 

neighborhood watch programs, and reducing the urban heat island effect (EPA, 

2011; Horton et al. 2012; White-Newsome et al. 2011). 

Boulder, CO; New York, 

NY; and Seattle, WA  

Water utilities in these communities are using climate information to assess 

vulnerability and inform decision-making (EPA, 2010b). 

Philadelphia, PA  The City of Philadelphia began a program to develop a green stormwater 

infrastructure intended to convert more than one-third of the city’s impervious land 

cover to “Greened Acres”– green facilities, green streets, green open spaces, green 

homes, etc., along with stream corridor restoration and preservation and enhance 

adaptation to climate change (ORNL, 2012b; www.phillywatersheds.org/ltcpu/). 

Cedar Falls, IA The City of Cedar Falls, Iowa passed legislation that includes a new floodplain 

ordinance that expands zoning restrictions from the 100-year floodplain to the 500-

year floodplain, because this expanded floodplain zone better reflects the flood risks 

experienced by the city during the 2008 floods (www.epa.gov/dced/pdf/iowa_

climate_adaptation_report.pdf). 

Tulsa, OK Tulsa, Oklahoma has a three-pronged approach to reducing flooding and managing 

stormwater: (1) prevent new problems by looking ahead and avoiding future 

downstream problems from new development (e.g., requiring on-site stormwater 

detention); (2) correct existing problems and learn from disasters to reduce future 

disasters (e.g., through watershed management and the acquisition and relocation of 

buildings in flood-prone areas); and (3) act to enhance the safety, environment, and 

quality of life of the community through public awareness, an increase in stormwater 

quality, and emergency management (www.smartcommunities.ncat.org/articles/

rooftop/program.shtml). 

Western Adaptation 

Alliance 

Western Adaptation Alliance is a group of 10 cities in four states in the 

Intermountain West that share lessons learned in adaptation planning, develop 

strategic thinking that can be applied to specific community plans, and join together 

to generate funds to support capacity building, adaptation planning, and vulnerability 

assessment (http://sustainablecommunitiesleadershipacademy.org/workshops/

regional-western-adaptation-alliance). 

Source: Modified from Bierbaum et al. 2012 

 

The report, “Implementing climate change adaptation: lessons learned from ten 

examples” (Headwaters Economics, 2012), highlighted primary lessons from ten cities and 

counties across the United States including Boulder (Colorado), Chicago (Illinois), Chula Vista 

(California), Eugene (Oregon), Keene (New Hampshire), Miami-Dade County (Florida), New 

York City, Olympia (Washington), Portland (Oregon), and Taos (New Mexico), as an attempt to 

inform and inspire other communities in regards to climate adaptation planning and actions. 

Primary concerns from the cases included recognition of potential threats, local knowledge, 

http://www.phillywatersheds.org/​ltcpu/​
http://www.epa.gov/​dced/​pdf/​iowa_​climate_​adaptation_​report.​pdf
http://www.epa.gov/​dced/​pdf/​iowa_​climate_​adaptation_​report.​pdf
http://www.smartcommunities.ncat.org/​articles/​rooftop/​program.​shtml
http://www.smartcommunities.ncat.org/​articles/​rooftop/​program.​shtml
http://sustainablecommunitiesleadershipacademy.org/​workshops/​regional-western-adaptation-alliance
http://sustainablecommunitiesleadershipacademy.org/​workshops/​regional-western-adaptation-alliance
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values and capacity; integration with existing processes, institutions and economy; and 

involvement of local actors or stakeholders (Headwaters Economics, 2012).  

Several other evidence-based (qualitative and quantitative) studies (e.g. surveys and 

reviews) on climate adaptation and adaptation planning in cities have been conducted across 

regions and sectors (e.g. Heinz Center, 2007) that highlight available adaptation planning 

guidebooks and frameworks, as well as adaptation planning underway in western developed 

countries. The Heinz Center (2007) survey also provides a roadmap to some of this information 

as well as a benchmark for information or knowledge sharing on lessons-learned across 

adaptation community types. Whereas most of the adaptation planning initiatives are 

government-led, there is evidence of private sector and NGO engagement in various activities 

that include “planning guidance, provision of implementation tools, contextualized climate 

information, exchange platforms for best practices and bridging the science-policy gap across 

sectors” (Bierbaum et al. 2012:11). 

What emerges from recent studies (e.g. Bierbaum et al. 2012 and Carmin et al. 2012b) is 

that a considerable number of cities worldwide and particularly in North America are taking 

actions to adapt to climate change and related extreme events (via planning or implementation) 

using a variety of qualitative and quantitative methodologies and tools (including case studies 

and analogue analyses, scenario analyses, and sensitivity analyses). Although, there is evidence 

of similarities in approaches (such as mainstreaming or integrating adaptation plans into existing 

planning and decision-making) there are no “one-size-fits-all” adaptation strategies emerging 

across scales and sectors, and thus cities are more likely to pursue no- and low-regrets strategies 

(Bierbaum et al. 2012).  

Numerous peer reviewed publications have shown that some barriers exist in adaptation 

planning process including lack of funding and investment, policy and institutional 

“bottlenecks,’ uncertainty in climate information and fragmented decision-making that have 

contributed to both limited or lacking implementation and evaluation of adaptation planning 

actions (Bierbaum et al. 2012; Biesbroek et al. 2013; Carmin et al. 2012b; Lehmann et al. 2012; 

Measham et al. 2011; Moser and Ekstrom, 2010; 2012). However, evidence to-date supports the 

notion that information sharing on best practices and learning are greatly aiding adaptation 

progress across scales and sectors (Preston et al. 2010).  
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 2.5 Drivers of adaptation planning initiatives  

Urban local governments manage a wide range of social systems and natural resources 

(land and water) that are particularly sensitive to the effects of changing climate such as sea-level 

rise and related extreme flooding events  (Poyar and Beller-Simms, 2010). As a result a number 

of projects have been initiated that minimize the impacts of sea-level rise and extreme flood 

events on urban social-ecological systems, ensuring that local communities have adaptation 

response measures and strategies such as flood defenses and early warning systems in place 

(Carmin et al. 2009).  

However, it is widely accepted that social, economic and political drivers, as well as local 

structures (such as access to decision-making and the structure of social networks and 

relationships) in most cases function across different scales to facilitate or constrain adaptation 

planning within urban contexts (Adger et al. 2009; Adger et al. 2005; Pelling et al. 2008; Pelling 

and High, 2005). The most commonly cited drivers of adaptation planning are strong institutions 

and networks, social learning, access to capital resources, perceived risks and capacity to adapt 

and diversification (Jain, 2012). 

Following the study of cities in the global south conducted by Carmin et al. (2009), it 

emerged that adaptation planning initiatives, were mainly driven by incentives, information and 

resources or capacity. In the same vein, Carmin et al. (2012a) argue that exogenous factors (e.g. 

extreme events, policy regulations and diffusion of information) are dominant motivation for 

adaptation planning in the long term while endogenous factors that may include local champions 

or entrepreneurs in addition to incentives, ideas and capacity are short term. Incentives may 

include perceived threats to natural resources management and conservation (Lehmann et al. 

2012), perceived threats to human or social systems (Damm, 2010; Lehmann et al. 2012), 

expectation of economic benefits (Adger et al. 2005; Carmin et al. 2009; Lehmann et al. 2012), 

funding, policy, and regulation concerns (Carmin et al. 2012a; Anguelovski and Carmin, 2011). 

Perceptions of risks to human and social systems (including residents, property, and 

transportation infrastructure), and the general economic and development goals of a city may 

create an incentive to engage in adaptation planning initiatives (Carmin et al. 2009). For 

instance, perceived risks of sea-level rise, extreme flooding events and disasters (such as 

Hurricane Sandy) have contributed to cities in North America engaging in climate action 
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planning (Bierbaum et al. 2012). This suggests that the desire to protect property and local 

populations is likely and important incentive for initiating adaptation planning (Carmin et al. 

2009). 

Perceptions about economic risks arising out of the potential consequences of changing 

climate such as sea-level rise and flooding events are among the factors motivating adaptation 

planning initiatives (Adger et al. 2005; 2009). According to Adger et al. (2009) the identification 

of potential social and economic benefits of climate change is significant for initiating adaptation 

planning, so that the communities can obtain maximum beneficial outcomes. Anticipation of 

economic benefits encourage engagement of urban communities in adaptation activities 

especially when they are expected to be widely shared among the community (Lehman et al. 

2010).   

Funding can directly support adaptation or indirectly be an incentive for engaging in 

urban adaptation planning initiatives (Carmin et al. 2009). For example Carmin et al. (2009) 

argues that funding from domestic and international sources have been used to directly support 

adaptation, both in the context of development (e.g. infrastructure) as well as directly for climate 

adaptation planning initiatives. Funding can also be an indirect force of change, particularly 

when a financial incentive contains provisions linked to adaptation-related initiatives (Carmin et 

al. 2009).  In addition, adaptation financing can stimulate untapped investment opportunities that 

may come with developing new markets for climate-friendly technologies (e.g. participation in 

the carbon farming, sequestration and abatement activities) in urban environments. Carmin et al. 

(2012a), argue that climate adaptation initiatives are motivated by endogenous factors and 

sustained as a consequence of local actors taking advantage of opportunities that arise and 

creatively weaving this emerging agenda into existing goals, plans, and programs.  

Evidence emerging from local experiences and scientific knowledge of the potential 

impacts of climate change has been an influential driver of adaptation planning in cities around 

the world. The experience of a natural disaster (often floods) frequently led to a perception that 

natural hazards are occurring with greater frequency and intensity, and that cities are at greater 

risk of damage from these (Heinrichs et al. 2013). For instance, after learning about climate 

impacts projected for the global south, and conducting a vulnerability assessment, it became 

clear that the city of Durban, South Africa and its inhabitants were at risk from climate impacts 
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and that initiating adaptation planning was a pressing issue in addition to reducing green-house 

gas emissions. Durban is not alone in making strides in advancing adaptation as other cities 

globally (New York City and Quito, Ecuador, are noteworthy) are also making significant 

progress in this arena, many without national level support for their work (Carmin et al. 2012a). 

Carmin et al. (2012a:19) argue that “with respect to climate adaptation, likely sources of 

incentives will be national climate regulations and plans as well as sector-based policies, such as 

coastal regulations”, as these may provide the framework for adaptation responses (e.g. building 

capacity to adapt) and encourage effective implementation of adaptation actions. For instance, 

local policies and regulations may use incentives to generate interest or impose requirements and 

use the threat of sanctions to foster compliance among organizations or individuals (Anguelovski 

and Carmin, 2011; Biesbroek et al. 2010; Carmin et al. 2009; Urwin and Jordan, 2008).  

Adaptation planning initiatives appears to be linked to information and knowledge about 

the benefits of adaptation and the implications of not adapting to changing climate and related 

extreme events (Anguelovski and Carmin, 2011; Carmin et al. 2009). The growing awareness 

and local knowledge of the benefits of adaptation and effects of changing climate risks and 

related extreme events seems to have catalyzed many local adaptation planning efforts 

(Heinrichs et al. 2013). For instance, risks and/or vulnerability assessment using downscaled 

climate models may generate institutional interest in understanding the risks of changing climate 

and their potential impacts on cities, and developing appropriate local adaptation response 

options (Heinrichs et al. 2013). Cities that consider climate change issues and adaptation as more 

important, and those with more information and knowledge about the benefits of adaptation and 

mitigation, are more likely to engage in adaptation planning initiatives (Carmin et al. 2012a).  

However, new information calls for a wider dialogue to enable adjustments of already 

initiated adaptation plans as well as providing the baseline knowledge for future initiatives 

(Heinrichs et al. 2013). Most existing adaptation strategies and plans consist of various 

interrelated and often overlapping elements and require periodic revision, allowing for the 

consideration of changing circumstances and the availability of new information and knowledge 

(Heinrichs et al. 2013). Moreover, decision-making systems can gain from being flexible enough 

to include new information and knowledge regarding changing environmental, social and 

political conditions (Ford et al. 2011).  
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Although recent studies such as Anguelovski and Carmin (2011), Biesbroek et al. (2010), 

and Carmin et al. (2012a) discuss general trends in relation to motivating factors, these studies 

fail to identify the specific primary factors driving cities to initiate adaptation planning projects 

across a variety of scales. Understanding how the driving factors of adaptation planning interact 

across multiple spatial scales of urban areas and how specific factors influence the selection of 

appropriate adaptation response options, is important to implementing adaptation actions that 

avoid significant tradeoffs or negative interactions with existing mitigation plans and broader 

development goals (Barclay et al. 2013).  

 2.6 Emerging adaptation response options 

The adaptation planning process involves identifying, assessing and selecting adaptation 

options for either responding to the existing and future changing climate risks and related 

extreme events across a wide range of spatial scales (Adger et al. 2007; Bierbaum et al. 2012; 

Moser and Ekstrom, 2010; Preston et al. 2010). Adaptation response options may take many 

forms such as: no regrets, low regrets, win-win and flexible adaptive options and vary depending 

on the spatial scale of planning and decision horizons (Smith et al. 2011).  

According to Smith et al. (2011) the no regrets options are those initiatives that deliver 

net socio-economic benefits with or without future changes (e.g. enhancing adaptive capacity of 

urban communities and avoiding building in flood plains). Low regrets are actions with low cost 

and maximum benefits such as restricting the type and extent of development in flood risk 

environments (Preston et al. 2010). Win-win options have the desired result of minimizing risk 

and exploiting potential opportunities but also have other social, environmental, or economic 

benefits. Win-win options include well-designed rain-gardens and green roofs that have multiple 

benefits across a range of scales while flexible or adaptive options involve incremental 

adaptation options over long temporal scales and seek to reduce the risk of maladaptation 

(occurring when adaptation strategies generate adverse effects) (Noble et al., 2014; UKCIP, 

2008). 

Assessment and selection of feasible adaptation options is context dependent and may 

need a range of planning and decision support tools to generate viable adaptation measures and 

strategies that can be implemented across a range of spatial scales (Wilby and Dessai, 2010). 
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Arnell (2010) reviewed case studies and found that local factors significantly affect the choice 

and feasibility of adaptation options and planning decision making.  

Despite increased attention to potential adaptation options, there is less understanding of 

the relationships with the primary factors driving adaptation planning initiatives, their 

effectiveness, and the likely extent of their actual implementation (Adger et al. 2007; Gregg et al. 

2012; U.S. National Climate Assessment, 2013). Some of the adaptation options emerging across 

a range of scales include enhancing adaptive capacity, conservation and management; 

infrastructure, planning, and development, and governance and policy (Gregg et al. 2012).  

Enhancing adaptive capacity may include institutional reforms to support resilience, 

locally appropriate regulations (e.g. land use zoning, storm-water management and building 

codes), vulnerability and impact assessments, new information and knowledge transfer, and 

development new tools and resources, among others in order to increase their ability to plan, 

develop, and implement adaptation actions (Gregg et al. 2012; Kettle and Dow, 2014).  

Natural resources management and conservation options includes incorporating climate-

smart guidelines into restoration; enhancing connected landscapes, climate-proofing local areas, 

and the reduction of non-climate stressors (e.g. water withdrawals, pollution) ) that are likely to 

be negatively impacted by climate change conditions (Gregg et al. 2012).  

Infrastructure, planning, and development options may include identification and 

assessment of vulnerabilities of urban water resources and communities to climate-related 

extreme events (such as increased flooding) and develop strategies and measures to protect 

infrastructure (such as improving existing or designing new infrastructure to withstand the 

effects of extreme flooding), as well as public health and safety (Gregg et al. 2012; Kettle and 

Dow, 2014).  

Governance and policy options may include strategies and measures such as creating new 

policies and/or enhancing existing policies and regulations, and supporting governance systems 

across geo-political scales to support adaptation action addressing transboundary effects of 

climate change issues. Traversing political and social boundaries requires coordinated policy and 

planning efforts (Gregg et al. 2012). 

Evidence from recent studies indicate that specific adaptation options in the urban 

settings can potentially interact (positively or negatively) with decision making beyond geo-



38 

 

 

 

political boundaries (Gregg et al. 2012). Because of these complex interactions, it is important to 

better understand the relationships between adaptation response options and driving factors 

motivating adaptation initiatives across a range of spatial scales. 

 2.7 Barriers to implementation of adaptation options 

Despite the realization of the potential value of urban climate adaptation planning, many 

barriers still exist that impede implementation of the emerging adaptation response options 

across spatial scales. Barriers are factors, conditions, and constraints that need to be overcome by 

planners and decision makers at varying scales from local to global (Moser and Ekstrom, 2010). 

Understanding the implementation barriers becomes critical in adaptation planning literature; and 

some recent studies (e.g. Adger et al. 2009; Bierbaum et al. 2012; Biesbroek et al. 2013; 

Lehmann et al. 2012; Measham et al. 2011; Moser and Ekstrom, 2010; 2012) attempt to answer 

‘why adaptation options are not implemented as much as expected despite great potential 

usefulness?’  

Moser and Ekstrom (2010) is one of the notable studies that have developed a framework 

that identifies barriers in three distinct phases and stages – namely the understanding, planning 

and managing phases of the adaptation process and decision-making (refer to Figure 2.7).  

According to Moser and Ekstrom (2010) the barriers include inability to detect the problem, 

difficulty gathering and using relevant information, and clearly defining the problem in the 

understanding phase; barriers to developing, assessing, and selecting options in the planning 

phase; and finally barriers to implementing selected options, monitoring outcomes, and 

evaluating effectiveness in the managing phase. Specifically, barriers to implementing adaptation 

options were identified to include actors’ intent to implement; resources (e.g. knowledge, skill, 

and finance); governance (including policies and regulations); social constraints (e.g. actor’s 

perception, behavior, and values) and the context of implementation which would include spatial 

scales (Moser and Ekstrom, 2010).  

An in-depth study by Moser and Ekstrom (2012) involved five case studies in 

California’s San Francisco Bay region revealing that although economic barriers are significant, 

institutional constraints and actors attitudes are the primary barriers to implementation of 

adaptation options.  
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Lehmann et al. (2012:2) also developed a simple analytical framework “to understand 

barriers and opportunities for adaptation planning in cities.” In this case they found that 

information, incentives, and resources were primary barriers to implementation of adaptation 

options. However, each of the barriers may be dependent upon the natural and socio-economic 

environment; actor’s perceptions, behavior, and values; and the institutional environment 

(Lehmann et al. 2012).  

Bierbaum et al. (2012) in their comprehensive review of climate adaptation in the U.S. 

also found that primary barriers to implementation of adaptation options included information 

uncertainties, lack of resources (e.g. human, social and finance), institutional constraints, 

governance issues (e.g. fragmented decision making), lack of political leadership, and divergent 

perception of risk, cultures and values.  

Evidence from adaptation literature so far indicate that a range of barriers to 

implementation of adaptation options are focused around deficiencies in information, 

institutions, inclusion, incentives and finance, and social networks (Biesbroek et al. 2013; 

Lehman et al. 2012; Measham et al. 2011; Moser and Ekstrom, 2012). 

Deficiencies (real or perceived) in local and scientific knowledge (information) as well as 

inability to access human, social and financial resources can and do constrain successful 

planning and implementation of adaptation options (Biesbroek et al. 2013; Lehman et al. 2012; 

Measham et al. 2011; Moser and Ekstrom, 2010).  

In the same vein institutional (public and private) weaknesses, lack of coordinated 

governance (including policies and regulations), divergent actors’ perceptions of risks, and 

certain cultural biases and values can constrain or impede implementation of adaptation options 

across geopolitical boundaries (Bierbaum et al. 2012; Biesbroek et al. 2013). 

Inclusion in decision making also plays critical role in the acceptance and ownership of 

emerging planning outcomes (Biesbroek et al. 2013). Thus, lack of involvement of public and 

private actors in the adaptation planning process can and do constrain effective implementation 

of adaptation options (Biesbroek et al. 2013).  

Incentives (e.g. insurance schemes), financing mechanisms, and social networks are also 

key determinants of adaptation planning initiatives (Lehman et al. 2012; Moser and Ekstrom, 

2010). Thus real or perceived disincentives and financial risks arising from the emerging 
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adaptation options can impede their implementation (Lehman et al. 2012; Moser and Ekstrom, 

2012).  

Since the IPCC fourth assessment report (AR4) (IPCC, 2007), it emerges that a growing 

body of literature has been developed (e.g. Anguelovski and Carmin, 2011; Carmin et al. 2009; 

Carmin et al. 2012b; Bierbaum et al. 2012; Biesbroek et al. 2013; Gregg et al. 2012; Heinrichs et 

al. 2013; Lehman et al. 2012; Measham et al. 2011; Moser and Ekstrom, 2010; Smith et al. 2011) 

that review of status of adaptation and provide guidance on how enabling conditions for 

adaptation can be developed to constraints and accelerate more widespread and successful 

adaptation planning outcomes. 
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Chapter 3 - Research design and methodology 

This chapter details the methods used to conduct this research—with a focus on the 

systematic review of adaptation planning case studies in the urban context. The systematic 

review approach provided a means to draw existing evidence from adaptation planning initiatives 

by subjecting these cases to (1) clearly formulated questions, (2) the use of explicit methods to 

identify and then critically appraise relevant documents, and (3) a synthesis of both qualitative 

and quantitative data derived from each individual cases to generate objective and generalizable 

findings (Berrang-Ford et al. 2011; Ford et al. 2011; Garg et al. 2008). 

Unlike traditional narrative reviews which provide limited details regarding the process 

and specific sources of information (e.g. databases searched and search terms used) systematic 

reviews are always guided by an explicit and well documented process (including methods and 

criteria for inclusion and exclusion of individual studies) that seeks to address explicitly 

articulated research questions (Brooks et al. 2013; Ford et al. 2011; Garg et al. 2008; Munroe et 

al. 2012). Since the systematic review process is normally specified in advance and documented, 

bias in the selection of individual studies is reduced and others can critically appraise the 

judgments made in case study selection, in the collection, analysis, and interpretation of results, 

and as necessary, in repeating or updating the research in question (EFSA, 2010; Garg et al. 

2008). In systematic reviews the relevant information are explicitly synthesized (from both the 

peer-reviewed and non-peer-reviewed/‘grey’ documents) to clarify the links between the original 

research and the reviewers’ conclusions; findings are fully reported, irrespective of the statistical 

significance of the results (Brooks et al. 2013; Ford et al. 2011; Garg et al. 2008; Munroe et al. 

2012). 

The main goal of this study was to assess whether there are recognizable relationships 

between primary drivers of adaptation planning initiatives and the selection of emerging 

adaptation response options related to urban flooding cases across spatial scales. The study 

hypothesized that there was evidence of association between (a) the primary drivers of 

adaptation planning initiatives, and (b) the selection of adaptation options. 
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The systematic review process provided a means for assessing individual adaptation 

planning case studies via the following four steps: (1) an explicit search of adaptation planning 

initiatives written in English between 2008 and 2013 from eight online databases, from Google 

scholar, government reports and Institutional Web portals, and from four bibliographic 

databases; (2) clear inclusion/exclusion criteria for the individual case studies identified; (3) 

extraction of information (e.g. geographic location, motivating drivers, emerging response 

options, funding sources, evaluation status, and project timeframe) from each individual case to 

create a dataset stored in MS Access database files and MS Excel worksheets; and (4) coding, 

interpretation, and synthesis of qualitative and quantitative data (as per Brooks et al. 2013; Ford 

et al. 2011; and Munroe et al. 2012). 

The DPSIR-SES framework was utilized to structure and organize information related to 

primary factors driving adaptation planning initiatives and the emerging adaptation response 

options for in-depth analysis using logistic regression (Rounsevell et al. 2010). Binary logistic 

regression is deemed to be suitable for this study since it applies logarithmic transformation of 

data to provide insight into the relationships between variables in the analysis (e.g. driving 

factors of adaptation planning and the selection of adaptation options) aimed at estimating the 

probability of the “absence or presence” of a variable instead of predicting the variable directly 

as in the case in multiple (linear) regression analysis (Field, 2009; Pallant, 2011).  

In this research “adaptation planning initiative” refers to the distinct project or 

intervention that was analyzed and reported on in a survey, research publication, and/or 

document while “case study” refers to the specific phenomenon (or case) described in the 

planning project (Brooks et al. 2013) 

 3.1 Search strategy 

Urban adaptation planning initiatives and case studies were found by searching 

information sources and electronic databases using the search strategies presented in Table 3.1. 

The searches encompassed adaptation survey reports, comprehensive reviews, technical 

documents, and relevant peer-reviewed research published in English between 2008 and 2013 as 

found in selected online and bibliographic databases and via Google Scholar. The 2008 to 2013 

publication timeframe was chosen to capture adaptation planning initiatives after the IPCC fourth 
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assessment report (AR4) (IPCC, 2007), but before the release of IPCC fifth assessment report 

(AR5) in 2014. 

The IPCC AR4 (2007) spurred significant interest in urban adaptation planning initiatives 

both qualitatively and quantitatively, including research and the development of National 

Adaptation Plans of Action (NAPAs) and climate change adaptation (CCA) strategies and plans 

from regional to local scales.  

 

Table 3.1 Sources for information search 

Strategy Source/ database(s) 

Keyword search 

 

Climate adaptation knowledge exchange (CAKE)  

EBM (Ecosystem-Based Management) Tools database  

FHWA (Federal Highway Administration) Planning Tools  

NOAA (National Oceanic & Atmospheric Association)  

U.S. Environmental Protection Agency (EPA) database 

IPCC, United Nations, and World Bank databases 

Specialist search 

 

Google Scholar (peer reviewed literature, and non-peer-reviewed or 

“grey” literature). 

Government reports (for example, the U.S. National Climate 

Assessment report, 2013).   

Institutional Web portals (U.S. university websites – with the list of 

relevant sources determined by selected study documents). 

Bibliographic search 

 

Scopus 

Web of Knowledge (WOK) 

ScienceDirect 

JSTOR 

Source: Author, 2014 

 

 3.1.1 Keyword search 

 All searches were conducted in English using the key terms shown in Table 3.2, selected 

to capture relevant research related to adaptation planning for climate change risks (sea-level 

rise) and related extreme flooding events in the urban context. An asterisk at the end of certain 

search terms was used to represent wildcard character that allows alternative word endings (e.g. 

Cit = city or cities) to be captured in the search process. The Boolean operators “AND” and 
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“OR” were used (as shown in Table 3.2) so that search terms could be accommodated 

simultaneously in the searched databases (e.g. Munroe et al. 2012; Brooks et al. 2013). 

 

Table 3.2: Key search terms 

Key search terms Climat* OR “Extreme events” OR Flood* OR “Sea-level rise” 

AND 

Adapt* OR “Adapt* plan*” OR Resilience  

AND 

Urban OR Cit* OR Local OR Community  

AND 

Initiative OR Project OR Intervention OR “Case study” 

Source: Author, 2014 

 

The search terms were either entered strategically in pairs or individually from each set of 

search words in Table 3.2 to maximize the search and ensure valuable results. In cases where 

databases did not accommodate Boolean operators, adaptation planning-related search terms 

were entered individually.  

 3.1.2 Specialist search  

 Searches for specific documents recommended from the databases were conducted 

mainly from Google scholar using limited range terms from the sets of search terms in Table 3.2. 

The emerging adaptation documents were compared with returns from databases (e.g. Munroe et 

al. 2012; Brooks et al. 2013). References returned by Google Scholar search, but not found in the 

adaptation databases were added to the reference list (e.g. Brooks et al. 2013).  

Including grey literature (e.g. non-peer reviewed reports and project documents) obtained 

from government documents (such as U.S. National Climate Assessment technical inputs) and 

U.S. universities Web portals was critical to understanding how urban adaptation planning is 

taking place. This was particularly so for those activities initiated at community and local scales 

that do not depend on peer-reviewed publications to share their findings (Brooks et al. 2013; 

Ford et al. 2011; Berrang-Ford et al. 2011; Garg et al. 2008).  
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 3.1.3 Bibliographic search  

The bibliographic databases that were searched for documents containing case studies 

recommended from the author’s specialist search include: 

 Scopus 

 Web of Knowledge (WOK) 

 ScienceDirect 

 JSTOR  

Previous studies and reviews (including Bierbaum et al. 2012; Carmin et al. 2012; Gregg 

et al. 2012; Heinz Center, 2007) were identified from the bibliographic searches.  Some of the 

studies contained more than one case study reported. Case studies that had been recommended 

from specialist searches were extracted and examined for inclusion in the final review. 

 3.2 Study inclusion and exclusion strategy 

 3.2.1 Primary inclusion/exclusion criteria 

 The cases identified and retrieved in the search process were assessed by their title and/or 

abstract and then the full text for relevance to the research question. Case studies were accepted 

for further review if they met the following primary inclusion / exclusion criteria: 

1. The adaptation planning case studies had to be located in North America (U.S. or 

Canada) and had to have been published (or the document released) after 2007 and before 

2014. This captured case studies published after the release of the inaugural IPCC AR4 

report (IPCC, 2007) and before the release of IPCC AR5 (IPCC, 2014) reports as per the 

method used by Ford et al. (2011).  

2. The study had to be published either in a recognized online database (e.g. climate 

adaptation knowledge exchange), climate adaptation survey report (government sector), 

technical inputs to the 2013 NCA report, or other highly-relevant source associated with 

either the primary or grey literature (but not secondary sources). Where more than one 

acceptable document or article referred to the same study, the most recent article was 

used while the older article was used to fill in any missing information, as per the 

approach articulated by Brooks et al. (2013). 
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3. The study provides information focused on specific climate adaptation planning 

initiatives, defined broadly as any planning or development or community-based project 

(internally or externally initiated) in which adaptation is the primary aim focused on 

reducing vulnerability or enhancing adaptive capacity to risks of flooding events in the 

urban environment.  

4. Sufficient information had to be provided about the case study, including a description of 

the geographical location, factors motivating or facilitating the initiative, details of the 

development and implementation of the initiative, as well as a discussion of the potential 

outcomes of the initiative. A study report where the required information was missing or 

that appeared to be simply an overview, guideline, or project description only was not 

used for the review (see Table 3.3). 

 

Studies that met the primary inclusion criteria were downloaded for further review, 

including studies that showed potential for inclusion but needed closer examination to ensure 

actual relevance. The author (primary reviewer) read the title and/or abstract, and then full 

articles carefully to determine whether a relevant climate adaptation planning initiative was 

reported or mentioned and assessed or discussed in some depth within the document at hand. 

Initiatives that were perceived to strengthen the knowledge base, share in-depth information, 

improve data gathering or surveillance/forecasting systems, and increase understandings of 

vulnerability, adaptive capacity, and resilience to climate change were also reviewed.  

The full text of the document had to include substantive reporting or discussion of one or 

more adaptation planning case(s), and was screened according to the secondary inclusion / 

exclusion criteria noted in Table 3.3—including relevance, study design or category, type(s) of 

intervention, and study outcome(s). 
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 3.2.2 Secondary inclusion/exclusion criteria 

The primary goal for conducting secondary inclusion and exclusion criteria was to assess 

the relevance of individual case studies, as well as the design, types of interventions addressed, 

and specific outcomes from the cases. 

 

Table 3.3: Secondary inclusion/exclusion criteria 

Criteria Inclusion Exclusion 

1. Relevant 

subjects(s) 

Urban flooding risks, flooding events 

(e.g. along rivers, drainage ways, and 

low-lying areas due to stormwater 

runoff), and sea/lake-level rise. 

 

Impacts on built environments, 

people, and sectors (e.g. business, 

agriculture, transport, water, forestry). 

Evidence not related to sea/lake-level rise, 

flooding risk and events (e.g. air pollution). 

Evidence focused exclusively on climate 

impact risks and uncertainty assessments 

(rather than on adaptation). 

Evidence focused only on sustainable 

development and mitigation of climate 

change (rather than adaptation). 

2. Study design Systematic reviews, comprehensive 

longitudinal studies, surveys, 

qualitative and quantitative case-

studies of adaptation initiatives.  

Articles focused on theories or conceptual 

frameworks and providing no indication 

that adaptations were in practice.  

 

3. Types of 

intervention 

Adaptation related regulations, policy 

or strategy, action plans, guidance 

document, incentive scheme, design 

strategy and education action. 

 

No substantial reference to urban 

communities, built environment, or urban 

natural resources. 

Evidence not focused on urban adaptation 

planning or design. 

4. Study 

outcomes 

Adaptation response options 

discussed, including measures and 

strategies for policy, practice, 

education, and behavior change. 

No outcomes specified. 

Source: Adapted from Brooks et al. (2013); Ford et al. (2011); and Munroe et al. (2012). 

 3.3 Data extraction and quality assessment 

Data extraction and quality assessment of individual case studies were undertaken by the 

primary reviewer and a sample double-checked by the author’s major advisor using a checklist 

that included information on the following:    

 Context — such as sector (development/conservation/transportation/water); geographic 

setting (country, city, region); and socio-political setting (urban, suburban).  
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 Case study type, sector, and design — type (academic peer-review, grey literature) and 

methods (qualitative, quantitative, both). 

 Content — evidence of information on driving factors (perceived risks/economic 

benefits/policy regulation); response options (enhancing adaptive capacity; management 

and conservation; infrastructure, planning, and development; policy and governance); and 

evaluation status (evaluated, not evaluated). 

Included studies were assessed in detail by the author for specific variables including: 

geographic location, boundary/jurisdiction, sociopolitical setting, sectors addressed, funding 

sources, motivating drivers, and information sources for vulnerability assessment and adaptation 

planning, response options, evaluation status, and project timeframe (see Table 3.4 and checklist 

shown in Appendix B). Data extracted from selected individual studies was stored in MS Access 

and MS Excel databases for ease of reference and further analysis.  

 

Table 3.4: Categories of information used in quality assessment and data extraction 

Information Variable Examples 

Project location Region/State/City/Neighborhood 

Boundary/Jurisdiction Regional/State/Community/ Locality 

Functional spatial scale Urban/Suburban 

Sector (s) Development/Conservation/Transportation/Water 

Funding sources Government/ Private/ Foundation 

Motivating drivers (driving factors 

motivating adaptation planning) 

Economic benefits; threats to human & social systems; 

threats to management and conservation; information & 

knowledge; policy regulation; other. 

Adaptation response options, measures, and 

strategies 

Enhancing adaptive capacity; conservation and 

management; infrastructure, planning, and development; 

governance & policy 

Information sources adaptation planning Peer reviewed papers; reports; expert knowledge. 

Project outcomes Success, failure, or other 

Evaluation status Evaluated, or not evaluated 

Project timeframe Years 

Source: Author, 2014 
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Quality assessment was based on relevance (external validity) with respect to the review 

questions and reliability (internal validity) in the selection of individual case studies (Pullin et al. 

2013; Wells and Littell, 2009). Following discussion with the Ph.D. committee in December 

2013, doubts about the relevance of certain cases were resolved by discussion and 

agreement with the author's Ph.D. committee chair (similar to Pullin et al. 2013). If data was 

missing in main publications, information was derived from other published articles reporting on 

follow up data on the specific study. 

To ensure validity of the case studies with respect to the review questions, case study 

reports for which more than approximately one-third of needed data were missing were 

discarded (Brooks et al. 2013). Since there was little variation in the quality of adaptation 

planning cases in the database, this study did not use a quality assessment ranking to weight the 

projects in the analysis. 

Reliability in this context concerns the extent to which selection of case studies for 

review are consistent over time, and thus minimize bias in the inclusion case studies in the final 

analysis (Wells and Littell, 2009). In keeping with Oremus et al. (2012), test-retest reliability was 

assessed by the primary reviewer using Cohen’s kappa (k)9 values to determine the level of 

consistency of the primary reviewer’s decisions regarding the selection (inclusion/exclusion) of 

individual case studies.  

The primary reviewer re-assessed the selected case studies at an interval of two (2) 

months after the first reliability screening to minimize the potential that the immediate recall of 

the author’s first inclusion/exclusion screening would influence the second screening. The 

Cohen’s kappa (k) values associated with the test-retest reliability assessment were calculated 

and interpreted as follows: >0.80 was very good, 0.61 - 0.80 was good, 0.41 - 0.60 was 

moderate, 0.2 - 0.40 was fair and <0.21 was poor (Oremus et al. 2012; Wells and Littell, 2009). 

                                                 

9 Cohen’s Kappa is a common technique for estimating independent rater agreement of raters screening titles during 

the process of completing a systematic review. Kappa is a coefficient that represents agreement obtained between 

two raters beyond expected by chance alone. A value of 1.0 represents perfect agreement. A value of 0.0 represents 

no agreement (Crewson, 2005). 
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  3.4 Variables of interest 

The two key categories of variables that were coded (see Appendix C) and marked for 

further analysis are adaptation response options (dependent variable) and driving factors for 

adaptation planning initiatives (independent variables) as shown in Table 3.5. The extracted case 

specific information was used to create a dataset stored in MS Excel worksheet (Appendix D).  

On the analysis table (please refer to a copy of the MS Excel worksheet in Appendix D) 

the presence or absence of a variable is presented by binary numbers ‘1’ and ‘0’—where “0” is 

the absence and “1” the presence of the corresponding variable. Each selected case study was 

examined in regards to the dependent and independent variables noted in Table 3.5 and discussed 

in sections 3.4.1 and 3.4.2 below. 

 

Table 3.5: Dependent and independent variables 

Dependent variables (Adaptation response 

options) 

Independent variables (Driving factors for 

adaptation planning projects) 

Enhancing adaptive capacity 

Natural resource management & conservation 

Infrastructure planning & development 

Governance & policy 

Access to new information or knowledge 

Anticipation of economic benefits 

Perceived threats to management & conservation 

Support to human or social systems 

Funding & other economic opportunities 

Evidence of climate change effects 

Policy and regulation concerns 

General concerns 

Source: Author, 2014 

 

 3.4.1 Independent variables: Primary factors driving adaptation planning initiatives  

 Access to new information and knowledge (NIK): Assessed if new knowledge, ideas, 

information, or innovations were the likely inducement for an adaptation planning initiative. In 

other words if adaptation planning initiatives were motivated by information and awareness 

(scientific or local knowledge) about the current or potential implications of changing climate 

(and related extreme events), and adaptation (Anguelovski and Carmin, 2011; Carmin et al. 
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2009; Heinrichs et al. 2013). According to Carmin et al. (2012b), several cities (e.g. New York 

City, U.S.; Durban, South Africa; and Quito, Ecuador) initiated adaptation planning projects 

after conducting vulnerability assessments and learning about their risks to projected climate 

impacts. 

 Anticipation of economic benefits (ECB): Assessed whether or not current or future 

economic benefits (e.g. energy efficiency) were the focus of an initiative. The identification of 

current or future economic benefits may strongly influence initiation of adaptation planning so 

that the urban communities can obtain maximum beneficial outcomes (Carmin et al. 2009; Foster 

et al. 2011). Anticipation of economic benefits often encourage engagement of urban 

communities in adaptation activities, especially when they are expected to be widely shared 

among the community (Tompkins and Adger, 2004; Lehman et al. 2010). 

 Perceived threats to management and conservation of natural resources (MAC): 

Assessed whether or not the perceived risks to management and conservation of urban natural 

resources (such as watersheds and freshwater resources, including water quality and availability) 

were the primary concerns driving adaptation planning initiatives. In other words, were the cities 

engaged in adaptation planning seeking to manage and preserve urban ecosystems as a means to 

minimize the impacts of natural disasters, ensure that local communities have flood defenses and 

early warning systems in place, and/or improve or provide reserves for food, water, and safety 

provisions (Tompkins and Adger, 2004; Carmin et al. 2009)? 

Support to human and social systems (HSS): Assessed if initiatives were driven by the 

need to protect human or social systems (e.g. quality of life, public health, and cultural values) 

and/or to promote the resilience of urban systems in relation to the existing or potential risks of 

changing climate and related flooding events, (Carmin et al. 2012a). In other words, this variable 

or area of concern assesses whether or not the perceptions of the presence of existing or future 

threats to residents, property, transportation infrastructure, and the general development goals of 

a city, or the expressed desire to protect property and local populations may have created an 

incentive for cities to engage in adaptation planning initiatives (Carmin et al. 2009).  

Funding and other economic opportunities (FEO): Assessed if funding and/or future 

investment opportunities were the incentive for adaptation planning efforts. This included 

projects initiated as a result of available or potential funding (direct or indirect) from domestic 
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and international sources. Funding can directly support adaptation or indirectly be an incentive 

for engaging in urban adaptation planning initiatives (Carmin et al. 2009). For example, funding 

from domestic and international sources have been used to directly support adaptation, both in 

the context of development (e.g. infrastructure creation) as well as directly for climate adaptation 

initiatives. In addition, as per Anguelovski and Carmin (2011) this variable also includes 

adaptation financing directed towards untapped investment opportunities (which may come when 

developing new markets for climate-friendly technologies such as participating in carbon 

sequestration and abatement activities in urban environments). 

 Evidence of climate change effects (ECE): Assessed if an initiative was the result of 

climate change effects such as sea-level rise, flooding, more intense hurricanes, heat waves, 

intense periods of drought, or other severe impacts. This included initiatives influenced by 

evidence from local experiences of the impacts of climate change (Carmin et al. 2012a).   

 Policy and regulation (PAR): Assessed if an initiative resulted from a policy change or 

regulation, or was focused on introducing policy change or regulations. Policy and regulations at 

global and national levels may inspire local policies, enable local authorities, fund local 

activities, or govern local policies by authority (Anguelovski and Carmin, 2011; Biesbroek et al. 

2010; Urwin and Jordan, 2008). Local policies and regulations may also impose requirements 

and use sanctions to foster compliance (or incentives to generate interest) among organizations 

or individuals to adapt (Carmin et al. 2009; Djordjevic, et al. 2011; Wise et al. 2014).  

 General concerns (GEN): Assessed whether or not an initiative was characterized by the 

growing general interest in climate variability and frequency of extreme events (e.g. flooding) 

issues and the need to build long term resilience of urban communities focusing on either “no-

regrets”10 or “low regrets”11 actions that would provide multiple benefits and would be good to 

do for reasons beyond climate adaptation (Poyar and Beller-Simms, 2010). 

                                                 

10 A “no regrets” action provides benefits in current and future climate conditions even if no climate change occurs. 

11 “Low regrets” preparedness actions provide import ant benefit s at relatively little additional cost or risk, again 

regardless of whether the projected climate change occurs.   
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 3.4.2 Dependent variables: Adaptation response options 

 Enhancing adaptive capacity (AC): Assessed if an initiative considered enhancing 

adaptive capacity as an option through institutional reforms to support resilience, locally 

appropriate regulations (e.g. land use zoning, stormwater management and building codes), 

vulnerability and impact assessments, new information and knowledge transfer, and develop new 

tools and resources, among others in order to increase their ability to plan, develop, and 

implement adaptation actions (Gregg et al. 2012; Kettle and Dow, 2014).  

 Natural resource management and conservation (MC): Assessed whether or not an 

initiative considered urban natural resource management and conservation as an option to 

decrease their vulnerability and increase resilience across spatial scales. This is deemed to be 

important since cities may incorporate “climate-smart” guidelines into restoration; enhance 

connected landscapes, seek to climate-proof local areas, and/or seek to reduce non-climate 

stressors (e.g. water withdrawals, pollution) that are likely to interact with climate change 

impacts (Tompkins and Adger, 2004; Gregg et al. 2012).  

Infrastructure, planning, and development (IPD): Assessed if an initiative considered 

infrastructure, planning and development as an option for addressing the effects of changing 

climate and the risks of flooding events. Relevant cases required identification and assessment of 

vulnerabilities of urban water resources and communities to climate-related extreme events (such 

as increased flooding) and developed strategies and measures to protect infrastructure (such as 

improving existing or designing new infrastructure to withstand the effects of extreme flooding), 

and public health and safety (Gregg et al. 2012; Kettle and Dow, 2014). 

Governance and policy (GP): Assessed if an initiative considered governance and policy 

as viable options to addressing transboundary effects of climate change issues that traverse 

political and social boundaries that required coordinated policy and planning efforts. In such 

cases response strategies included creating new and enhancing existing policies and regulations; 

and governance systems across geo-political scales for supporting adaptation actions (Gregg et 

al. 2012, Urwin and Jordan, 2008). 
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 3.5 Data synthesis and presentation 

This section provides details of descriptive (narrative) and quantitative synthesis of the 

evidence extracted from the individual included studies. Quantitative synthesis was conducted 

using descriptive statistics and bivariate and multivariate analyses supported by the statistical 

package for social scientists (SPSS 22.0) that explored the evidence base in relation to the 

guiding questions of the present study.   

 3.5.1 Descriptive statistical analysis 

Descriptive statistics were used to summarize characteristics of included studies provided 

in Table 3.6, trends and frequencies of articles reviewed, percentages of missing values, and 

quality and reliability assessments. Table 3.6 outlines the main categories of the data that were 

analyzed and subsequently summarized in graphs and charts to provide an overview of the status 

of adaptation planning initiatives in the United States and Canada, including the associated 

evidence of the characteristics of individual case studies eligible for review.  

 

Table 3.6: Categories of data to be included in the data analysis 

Category Specific data 

Projects background Funding sources 

Boundary/jurisdiction (spatial scale) 

Sector addressed 

Motivating or facilitating factors 

Emerging adaptation options 

Project implementation Timeframe 

Information sources for adaptation planning 

Project status (e.g. evaluated or not evaluated) 

General document 

information 

Document title 

Document type (e.g. survey or published research) 

Publication year 

Author and/or affiliation 

Geographic location (state/region/city) 

Source: Author, 2014 
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Data quality and reliability assessment relied on descriptive statistics in deriving Cohen’s kappa 

(k) values to determine the level of agreement and consistency of decisions regarding the 

selection (inclusion/exclusion) of individual case studies between the review time periods 

(Oremus et al. 2012). Likewise, multicollinearity (i.e. high intercorrelations among variables) 

tests also used descriptive statistics to determine which independent variables were highly 

correlated across case studies by calculating the variable inflation factors and tolerance statistics 

(Field, 2009; Pallant, 2011).  

 3.5.2 Bivariate analysis 

The purpose of bivariate analysis was to explore the significant associations between 

independent variables (driving factors motivating adaptation planning initiatives) and the 

dependent variables (emerging adaptation response options) in order to determine the key 

variables for logistic regression analysis (Brooks et al. 2013; Ford et al. 2011; Munroe et al. 

2012; Pallant, 2011).  

Bivariate analysis was performed using Chi-square (X2) statistics (Phi coefficient and 

Cramer’s V) analyses in order to signify the statistical strength of association between each the 

independent variables (primary factors driving adaptation planning initiatives) and the dependent 

variables (emerging adaptation response options) at 5 percent (p = 0.05) or 10 percent (p = 0.1) 

significance levels (Field, 2009; Pallant, 2011).  

The main feature of using Phi coefficient and Cramer’s V is that the correlation 

coefficient will almost certainly lie between 0 (no relationship between the two variables) and 1 

(a perfect relationship), whereas the closer the coefficient is to 1, the stronger the relationship, 

the closer it is to zero, the weaker the relationship as shown in Table 3.7 (Rae and Parker, 1992).  

The coefficient will be either positive or negative, indicating the direction of a 

relationship, while the significance level of 5 percent (p = 0.05) or 10 percent (p = 0.1) means 

that the findings have a chance of either 5 percent or 10 percent of not being true (Pallant, 2011). 

However, Cramer’s V was preferred for evidence of association as it provides the absolute value 

of Phi coefficient, in accordance with Rae and Parker (1992) conventions for describing the 

magnitude of association.  
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Table 3.7: Phi and Cramer’s V contingency table 

Value of Phi or Cramer’s V Description 

.00 and under .10 Very weak association 

.10 and under .20 Weak association 

.20 and under .40 Moderate association 

.40 and under .60 Relatively strong association 

.60 and under .80 Strong association 

.80 to 1.00 Very strong association 

Source: Rae and Parker, 1992 

 

Adaptation response options entered as dependent variables in the analysis included: 

enhancing adaptive capacity (AC), natural resources management and conservation (MC), 

infrastructure, planning, and development (IPD), and governance and policy (GP). Driving 

factors motivating adaptation planning initiatives entered as independent variables include: 

access to new information or knowledge (NIK), anticipation of economic benefits (ECB), 

perceived threats to natural resources management and conservation (MAC), support to human 

or social systems (HSS), perceived funding and other economic opportunities (FEO), evidence of 

climate change effects (ECE), policy and regulation (PAR), and general concerns (GEN).  

The data was then cross-tabulated and using Chi-square (X2) statistic (Phi coefficient and 

Cramer’s V) analyses significant association were computed between the primary factors driving 

adaptation planning initiatives (independent variables) and the emerging adaptation response 

options (dependent variables) at 5 percent (p = 0.05) or 10 percent (p = 0.1) significance levels 

(Field, 2009; Pallant, 2011). The Chi-square test, Phi and Cramer’s V coefficients results were 

interpreted concurrently to provide an indication of significant associations between the variables 

related to  primary factors driving adaptation planning initiatives and adaptation options in 

accordance with hypothesis that:   

H1: There is evidence of association between primary factors driving adaptation planning 

and the selection of adaptation response options across scales. Thus, knowledge of primary 

driving factors can be used to predict adaptation response option (s). 
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The Chi-square test, Phi coefficients and Cramer’s V analyses results were further 

supported by interpretation focused on Goodman and Kruskal’s Tau results that calculated the 

proportional reduction in error (PRE). The tau statistic is a measure (ranging from 0 to 1), where 

the number one (1) represents certainty of the extent that knowledge of the independent variable 

improves the prediction of the dependent variable. 

Multicollinearity (i.e. high intercorrelations among variables) tests were conducted 

utilizing the SPSS Collinearity diagnostics—tolerance and variance inflation factor (VIF)—to 

determine which independent variables are highly correlated across case studies (Field, 2009; 

Pallant, 2011). Ideally the independent variables will be strongly related to dependent variables 

but not strongly related to each other (Field, 2009; Pallant, 2011).  

Per Pallant: “Tolerance is an indicator of how much of the variability of the specified 

independent is not explained by the other independent variables in the model... and is calculated 

using the formula 1–R squared for each variable…. If this value is very small (less than .10) it 

indicates that the multiple correlation with other variables is high, suggesting the possibility of 

multicollinearity” (2011: 158). The VIF is the inverse of the tolerance value and measures the 

inflation of the variances of coefficients due to collinearity that may exist among independent 

(Field, 2009; Pallant, 2011). “VIF values above 10 would be a concern here, indicating 

multicollinearity” (Pallant, 2011: 158).  

 3.5.3 Multivariate analysis 

Multivariate analyses was performed using binary logistic regression since the dependent 

variables from the review of case studies are dichotomous (“Yes” or “No”) signifying their 

“presence” or “absence” and the independent variables are categorical (i.e. nominal or ordinal), 

invalidating the assumption of linearity and the use of linear regression (Brooks et al. 2013; Ford 

et al. 2011; Munroe et al. 2012; Pallant, 2011).  

Binary logistic regression was used to examine and understand the relationships that may 

exist between selected primary factors driving climate adaptation planning initiatives and the 

selection of emerging adaptation response options across spatial scales in the urban context 

(Brooks et al. 2013; Ford et al. 2011; Munroe et al. 2012; Pallant, 2011).  
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The evidence base on adaptation response options and driving factors emerging from a 

systematic review of adaptation planning initiatives were originally stored in MS excel database 

as categorical data that take two forms (i.e. presence or absence)—where the values “1 or 0” 

denotes presence or absence of variables respectively (Field, 2009; Pallant, 2011).  

Binary logistic regression is suitable for this study since it applies logarithmic 

transformation of data on categorical variables aimed at estimating the probability of the 

“absence or presence” of an outcome variable instead of predicting the variable directly as in the 

case in multiple (linear) regression analysis (Field, 2009; Pallant, 2011).  

The analysis assumes that ‘n’ independent variables (Xi, X2, X3… Xn) are associated with 

dependent variable (Y), and P is the probability that an event changes, so (1-P) is the probability 

of no change. The logistic transformation to P is represented as a logarithm of P/ (1-P) denoted 

as ln [P/ (1-P)] or logit (P).  

 

The logistic regression model is as follows:  

      [Equation 3.1] 

Also represented as: 

 

 

Where: P(Y) stand for the probability of presence of adaptation response option; Xi, X2, 

X3,…, Xn  are the primary factors driving adaptation planning initiatives; β0 is a constant term;  β1 

, β2 … βn are partial regression coefficients of the logistic regression, which represent the 

significance of X on Y or logit P(Y) (Pallant, 2011).  

A positive and statistically significant regression coefficient means that the occurrence 

rate of dependent variable ‘logit P(Y)’ rises with the increase of independent variable value 

while a remarkable negative regression coefficient means logit P(Y) occurrence reduces along 

with the increase of corresponding independent variable (Pallant, 2011).  
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The backward stepwise (likelihood ratio) regression models were used for examining the 

significant relationships between the four adaptation response options (namely enhancing 

adaptive capacity; management and conservation; and improving urban infrastructure, planning, 

and development) entered as categorical dependent variables and six primary factors driving 

adaptation planning initiatives (namely, anticipation of economic benefits; perceived threats to 

urban natural resources management and conservation; support to human or social systems; 

perceived funding and other economic opportunities; evidence of climate change effects; and 

improvement of policy and regulation) entered as independent (explanatory) variables (Field, 

2009). The backward stepwise method was chosen because it starts with all explanatory variables 

included in the model, then tests whether any of these variables can be removed from the model 

without having substantial effect on how well the model fits the observed data (Field, 2009). The 

approach is selected to avoid omission of important variables in the analysis of each dependent 

variable (Pallant, 2011). 

The model performance was assessed using the Omnibus test, a likelihood ratio chi-

square test, which measures how well the models describe the variables at particular significance 

levels (Pallant, 2011).  According to the Omnibus test, a well performing model is indicated by a 

highly significant value (p<0.05) (Pallant, 2011). To support the Omnibus test, the Hosmer & 

Lemeshaw (H-L) test was used to assess how well the models adjust to data (Field, 2009; Pallant, 

2011). A model that adjusts well to data is indicated by significance values greater than five (5) 

percent (p>0.05). The indication of any variations in the dependent variable that is explained by 

the models were provided by the Cox & Snell R Square and the Nagelkerke R Square values 

(also known as pseudo R square values that ranges between 0 and 1) suggesting the variability 

explained by the set of variables (Pallant, 2011).  

To provide more intuitive way of interpreting the results, this research estimates the odds 

ratio for each explanatory variable. The odds ratio indicates the change in the odds (or 

likelihood) of the dependent variable occurring (i.e. having initiated adaptation planning 

process), as a result of a unit change in the explanatory variable, ceteris paribus (Field, 2009; 

Pallant, 2011). In general odds ratio above one (1) indicates that, as the explanatory variable 

increases, the odds (or likelihood) of the dependent variable occurring also increase (Field, 
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2009). Conversely an odds ratio below one (1) indicates that, as the explanatory variable 

increases, the odds of the dependent variable occurring decrease (Field, 2009).  
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Chapter 4 - Results 

Chapter 4 presents the results of the synthesis of data obtained via the systematic review, 

and discusses these results in relation to the primary question guiding this study: What are the 

relationships between the primary factors driving adaptation planning initiatives and the 

selection of the specific adaptation options related to the risk of changing climate and urban 

flooding events across spatial scales?  

This chapter is organized with respect to the study objectives and hypothesis. First, the 

study sought to identify the primary factors driving climate adaptation planning initiatives related 

to risks of urban flooding events. The second objective was to identify emerging adaptation 

response options for urban flooding risks across a range of cases. The third objective was to 

explore the relationships between primary factors driving climate adaptation planning initiatives 

and the selection of adaptation response options related to urban flooding risks across spatial 

scales. The study hypothesized that there was evidence of association between primary factors 

driving adaptation planning and the selection of adaptation response options across scales. It was 

posited that an understanding of primary driving factors could be used to predict the selection of 

adaptation response options by cities, counties, or other entities. 

 4.1 Search results 

The primary search of adaptation projects databases revealed 405 case studies (Figure 

4.1) across urban spatial scales in North America and Canada. Databases used included the 

following: Climate adaptation knowledge exchange (CAKE); ICLEI (International Council for 

Local Environmental Initiatives); EBM (Ecosystem-Based Management) Tools database; FHWA 

(Federal Highway Administration) Planning Tools; NOAA (National Oceanic & Atmospheric 

Association); U.S. Environmental Protection Agency (EPA) projects database; and IPCC, United 

Nations, and World Bank databases and other relevant institutional databases. More specific or 

specialized searches from Google scholar and U.S. National Climate Assessments (NCA) 

technical inputs produced additional 159 cases for assessment. 
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The primary eligibility screening of titles and abstracts of case studies originally 

generated by keyword search resulted into inclusion of 121 project documents for secondary 

eligibility screening. Case studies subjected to secondary screening (refer to criteria discussed in 

the methods section) included 121 case studies from keyword search and 159 cases from 

specialized search. The secondary screening process generated 116 cases and 32 cases from 

keyword and specialized searches for inclusion in the final review and analysis. An additional 

104 case studies were extracted from previous reviews and survey reports (e.g. Bierbaum et al. 

2012; Carmin et al. 2012; Gregg et al. 2012; Heinz Center, 2007).  

 

Figure 4.1: Systematic review map of the search and inclusion process 

 

Source: Author, 2014 

 

In total 252 cases satisfied the primary and secondary inclusion criteria for final review 

and analysis (refer to Figure 4.1). After filtering for duplication the final sample from all 
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searches and previous reviews (including survey reports) was 121 case studies (N=121). A full 

list of the case studies included in the sample is provided in Appendix A. 

 4.2 Characteristics of included studies 

The number of adaptation planning initiatives focusing on sea-level rise and flooding risk 

in the urban context increased between 2007 and 2010 (Figure 4.2) at an average rate of 23 cases 

per year, with 69 percent of the cases reported in 2010. There was a decrease in the number of 

reported cases between 2011 and 2012, then cases reported began to increase again in 2013.  

 

Figure 4.2: Number of case studies by year started and reported 

 

Source: Author, 2014 

 

The adaptation planning initiatives in cities were spatially distributed across 27 states in 

the United States (N=102) and Canada (N=19) covering either single, cross or multiple 

boundaries and sectors. The geographic location of case studies is shown in Figure 4.3. Out of 

the sampled case studies in North America (N=102), approximately 25 percent were located in 

the Northeast region, nearly 24 percent in Southwest region, 20 percent in the Midwest and Great 
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Lakes region, 15 percent in the Southeast region, and the rest in Northwest (6 percent), Alaska (2 

percent), Gulf of Mexico (2 percent), Great Plains (1 percent) and Hawaii and U.S. Pacific 

Islands (1 percent). The remaining four (4) percent of the cases addressed adaptation planning in 

cities from a national perspective.  

 

Figure 4.3: Number of case studies by geographic location 

 

Source: Author, 2014 

 

Per Figure 4.4, distribution of urban adaptation planning initiatives by sectors addressed 

revealed that most of the case studies (58 percent) had a transportation/infrastructure perspective. 

57 percent addressed conservation and restoration, while development, land use planning, and 

water resources sectors were the focus of 43 percent, 41 percent, and 33 percent of adaptation 

planning cases respectively. Policy (17 percent) and public health (11 percent) were the least 
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addressed sectors by adaptation planning cases. This distribution of cases by sectors may suggest 

differing priorities of cities in adaptation planning financing or investment across urban sectors.  

 

Figure 4.4: Number of cases by sector(s) addressed 

 

Source: Author, 2014 

 

Government funding appears to be the main source of support for urban adaptation 

planning projects in North America and Canada (see Figure 4.5). This finding suggests a lack of 

private investment in an arena that should be of high importance. 

Adaptation planning processes for more than 50 percent of the projects examined were 

supported by scientific expert knowledge. Other information sources included local knowledge 

(31 percent), published data (26 percent), climate and socioecological models (26 percent), IPCC 
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reports (25 percent), agency and NGO reports (23 percent), peer reviewed literature (22 percent), 

and management plans (15.7 percent). 

 

Figure 4.5: Number of cases by sources of funding 

 

Source: Author, 2014 

 

 4.3 Data quality and reliability assessment 

Over 90 percent of the case studies were retrieved from online databases on climate 

adaptation research such as the Climate Adaptation Knowledge Exchange. Previous reviews (that 

included Bierbaum et al. 2012; Carmin et al. 2012; Gregg et al. 2012; Heinz Center, 2007) 

completed rigorous quality assessment and reporting processes. The type of study design and 

analysis employed by the researchers largely determined the quality of the cases, which means 

that other biases (such as publication and reporting bias) contributed less to the study quality. 

Since there was little variation in the quality of adaptation planning case studies in the database, 
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the present study did not use the quality assessment ranking to weight the projects in the 

analysis.  

As previously noted, with regard to reliability in the selection (inclusion / exclusion) of 

individual case studies, the primary reviewer re-assessed the selected case studies at an interval 

of two (2) months after the first reliability screening to minimize immediate recall and the 

potential for the first inclusion / exclusion screening to influence the second screening. The test-

retest reliability assessment using Cohen’s kappa (k) values, to determine the level of 

consistency of decisions regarding selection (inclusion/exclusion) of individual case studies 

returned a statistically significant high level of agreement and consistency (n= 121, k=0.712) 

between the primary reviewer and the researcher’s major advisor (see Table 4.1).  

The high level of agreement between the primary reviewer and the researcher’s major 

advisor was influenced by the clear and comprehensive information identified in the summary of 

case study reports and the primary and secondary inclusion/exclusion criteria discussed in the 

methodology chapter.   

 

Table 4.1: Test-retest reliability assessment 

ReviewT2 * ReviewT1 Cross tabulation 

Count   

 

ReviewT1 

Total Exclude Include 

ReviewT2 Exclude 12 5 17 

Include 3 101 104 

Total 15 106 121 

Symmetric Measures 

 Value 

Asymp. Std. 

Errora Approx. Tb Approx. Sig. 

Measure of Agreement Kappa .712 .096 7.853 .000 

N of Valid Cases 121    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 

Source: Author, 2014 
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 4.4 Primary factors driving urban adaptation planning initiatives 

This section provides a detailed synthesis of the results addressing the question: what are 

the primary factors driving climate adaptation planning initiatives related to risk of urban 

flooding events? The results of descriptive statistics (Figure 4.6) show that adaptation planning 

projects were mainly driven by perceived threats to human and social systems (56.2 percent), 

natural resources management and conservation (51.2 percent), and economic benefits (27.3 

percent).  

 

 Figure 4.6: Primary factors driving adaptation planning initiatives (percent) 

 

Source: Author, 2014 

 

Other driving factors include perceived funding and investment opportunities (19.8 

percent), evidence of climate change effects (17.4 percent), policy and regulations (15.7 percent), 

and access to information and knowledge (3.3 percent). It is important to note that general 

concerns (33.9 percent) also features significantly amongst the driving factors of the planning 
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initiatives, which may be attributed to the way some of the cities engage in the “no-regrets” 

initiatives that deliver net socio-economic benefits with or without future changes in climate or 

risks of flooding events.  

 4.5 Emerging adaptation response options 

This section provides a synthesis of the main review results addressing the question: what 

are the emerging adaptation response options related to the risk of urban flooding events across a 

range of spatial scales? The results of descriptive statistics (Figure 4.7) show that the emerging 

adaptation response options considered by adaptation planning initiatives across spatial scales 

were enhancing adaptive capacity (90 percent), governance and policy (50.4 percent), natural 

resource management/ conservation (44.6 percent), and infrastructure, planning, and 

development (41.3 percent).   

 

Figure 4.7: Categories of adaptation response options emerging across case studies 

 

Source: Author, 2014 
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These results indicate that most of the projects targeted “soft” measures of enhancing 

adaptative capacity rather than “hard” infrastructure planning and development (which may 

require high capital expenditures and structural changes). 

Descriptive analysis of associations between primary factors driving adaptation planning 

initiatives and the emerging adaptation response options (Figure 4.8) indicated that adaptation 

planning projects that reported enhancing adaptive capacity as response option were mainly 

motivated by perceived threats to human and social systems, management and conservation, and 

economic benefits. Natural resource management and conservation response options were 

associated with perceived threats to management and conservation, threats to human and social 

systems, and economic benefits. Projects that reported infrastructure, planning, and development 

as a response option were mainly motivated by perceived threats to human and social systems, 

management and conservation, and economic benefits. Governance and policy response options 

were reported in projects driven by perceived threats to human and social systems, management 

and conservation, and economic benefits. 

 

Figure 4.8:  Radar diagram for drivers-responses analysis results 

 

Source: Author, 2014 
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 4.6 Relationships between primary factors driving urban adaptation planning 

initiatives and the selection of adaptation options. 

Bivariate analysis was performed using Chi-square (X2) statistics (Phi coefficient and 

Cramer’s V) analyses in order to signify the statistical strength of association between each the 

independent variables (primary factors driving adaptation planning initiatives) and the dependent 

variables (emerging adaptation response options) at 5 percent (p = 0.05) or 10 percent (p = 0.1) 

significance levels (Field, 2009; Pallant, 2011). 

The results of Pearson Chi-square test, X2, (1, N=94), Phi and Cramer’s V coefficients 

summarized in Table 4.2 indicated evidence of very weak (Cramer’s V= 0.170) to moderate 

association (Cramer’s V= 0.245) between primary factors driving adaptation planning initiatives 

and selection of adaptation response options at 5 percent (p = 0.05) or 10 percent (p = 0.1) 

significance levels.  

The results on Table 4.2 indicate that perceived threats to management and conservation 

of natural resources was significantly associated with the choice of enhancing adaptive capacity 

(Cramer’s V=0.189; p=0.067), management and conservation (Cramer’s V=0.225, p=0.030) and, 

infrastructure, planning, and development (Cramer’s V=0.202, p=0.050) options. Perceived 

threats to human and social systems was only significantly associated with management and 

conservation (Cramer’s V=0.190, p=0.065).  Policy and regulation was significantly associated 

with management and conservation (Cramer’s V=0.185, p=0.072) and, infrastructure, planning, 

and development (Cramer’s V=0.191, p=0.064) options. Anticipation of economic benefits was 

significantly associated with management and conservation (Cramer’s V=0.245, p=0.017) while 

access to new information and knowledge was significantly associated with infrastructure, 

planning, and development (Cramer’s V=0.170, p=0.100) options.  
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Table 4.2 Pearson Chi-Square test and Phi/Cramer's V coefficients results (N=94) 

  NIK ECB MAC HSS FEO ECE PAR GEN 

AC Pearson Chi-

Square 

.497a2 1.121a1 3.358a1 2.791a1 1.420a1 .982a1 2.717a1 .060a1 

Asymp. Sig. 

(2-sided) 

.481 .290 .067 .095 .233 .322 .099 .807 

Fisher’s Exact 

Test 

1.000 .485 .084 .133 .443 .448 .113 1.000 

Phi/Cramer’s 

V coefficient 

.073 .109 .189 .172 .123 .102 .170 .025 

MC Pearson Chi-

Square 

.000a2 5.650a 4.738a 3.403a .895a .061a 3.232a .389a 

Asymp. Sig. 

(2-sided) 

1.000 .017 .030 .065 .344 .804 .072 .533 

Fisher’s Exact 

Test 

1.000 .030 .049 .106 .478 1.000 .122 .678 

Phi/Cramer’s 

V coefficient 

.000 .245 .225 .190 .098 .026 .185 .064 

IPD Pearson Chi-

Square 

2.712a2 .192a 3.850a 2.330a 1.403a .772a 3.427a .235a 

Asymp. Sig. 

(2-sided) 

.100 .662 .050 .127 .236 .379 .064 .628 

Fisher’s Exact 

Test 

.151 .825 .074 .160 .333 .450 .073 .675 

Phi/Cramer’s 

V coefficient 

.170 .045 .202 .157 .122 .091 .191 .050 

GP Pearson Chi-

Square 

1.334a2 .037a .198a .147a 1.122a .170a .003a .247a 

Asymp. Sig. 

(2-sided) 

.248 .847 .656 .701 .290 .680 .956 .619 

Fisher’s Exact 

Test 

.337 1.000 .670 .818 .347 .805 1.000 .680 

Phi/Cramer’s 

V coefficient 

.119 .020 .046 .040 .109 .042 .006 .051 

a. 0 cells (0.0%) have expected count less than 5. 

a1. 1 cells (25.0%) have expected count less than 5. 

a2. 2 cells (50.0%) have expected count less than 5. 

Source: Author, 2014 

 

In summary the results in Table 4.2 suggest the selection of enhancing adaptive capacity 

as an adaptation option for urban communities at risk of changing climate and extreme flooding 

events may be influenced by perceived threats to management and conservation of urban natural 

resources. In the same vein, anticipation of economic benefits, perceived threats to management 
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and conservation of urban natural resources, the support to human and social systems, and policy 

regulations may each influence the selection of urban natural resources management and 

conservation options. The selection of adaptation options related to infrastructure, planning and 

development may be influenced by access to information and knowledge, perceived threats to 

management and conservation of urban natural resources, and policy and regulations. 

The Chi-square test, Phi coefficients and Cramer’s V results were supported further by 

the interpretation of Goodman and Kruskal’s Tau results (Table 4.3). The tau statistic is a 

measure ranging from 0 to 1, where 1 represents certainty of the extent that knowledge of the 

independent variable improves the prediction of the dependent variable. 

 

Table 4.3: Goodman & Kruskal’s Tau 

  NIK ECB MAC HSS FEO ECE PAR GEN 

AC Tau .005 .012 .036 .030 .015 .010 .029 .001 

Asymp. Std.  

Errora 

.002 .019 .041 .040 .019 .016 .042 .005 

MC Tau .000 .060 .050 .036 .010 .001 .034 .004 

Asymp. Std.  

Errora 

.000 .048 .045 .038 .020 .005 .036 .013 

IPD Tau .029 .002 .041 .025 .015 .008 .036 .002 

Asymp. Std.  

Errora 

.006 .009 .042 .030 .024 .019 .040 .010 

GP Tau .014 .000 .002 .002 .012 .002 .000 .003 

Asymp. Std.  

Errora 

.021 .004 .009 .008 .022 .009 .001 .011 

a. Not assuming the null hypothesis. 

Source: Author, 2014 

 

The results of Goodman and Kruskal’s Tau in Table 4.3 indicate that by having 

knowledge of primary factors driving adaptation planning one would be making only up to five 

percent fewer errors when predicting the presence of adaptation options. This can be interpreted 

to mean weak certainty in prediction, but indicates that some relationship exists.  

The relationships of significantly associated variables were therefore examined further 

using multicollinearity test and multivariate analyses. Multicollinearity was assessed for all 
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independent variables and the results in Table 4.4, indicate tolerance values above 0.1 and VIF 

values less than 10. The results can be interpreted that multicollinearity was not an issue in this 

research. Normally, results indicating tolerance values less than 0.1 or VIF values greater than 10 

would certainly be an indication of multicollinearity (Field, 2009). 

 

Table 4.4: Collinearity statistics results of independent variables 

  NIK ECB MAC HSS FEO ECE PAR GEN 

NIK Tolerance 1.000        

VIF 1.000        

ECB Tolerance .940 1.000       

VIF 1.064 1.000       

MAC Tolerance .956 .888 1.000      

VIF 1.046 1.127 1.000      

HSS Tolerance .940 .883 .910 1.000     

VIF 1.064 1.133 1.099 1.000     

FEO Tolerance .940 .884 .909 .970 1.000    

VIF 1.064 1.131 1.100 1.031 1.000    

ECE Tolerance .940 .864 .913 .971 .960 1.000   

VIF 1.064 1.157 1.096 1.030 1.041 1.000   

PAR Tolerance .957 .890 .927 .970 .979 .968 1.000  

VIF 1.045 1.123 1.078 1.031 1.022 1.033 1.000  

GEN Tolerance .960 .892 .918 .974 .963 .987 .906 1.000 

VIF 1.042 1.121 1.089 1.027 1.039 1.013 1.104 1.000 

Source: Author, 2014 

 

Multivariate analyses was then performed using binary logistic regression to examine and 

understand the relationships between selected primary factors driving climate adaptation 

planning initiatives and single emerging adaptation response options. The resulting models show 

significant relationships between the primary factors driving urban adaptation planning 



75 

 

 

 

initiatives and the selection of specific adaptation response options for addressing the existing 

and potential impacts of changing climate and flooding events across spatial scales. 

Model result 1: Enhancing Adaptive Capacity (AC) options 

 The first model examined the relationships between the selected drivers of adaptation 

planning initiatives and the choice of enhancing adaptive capacity as an option to risks of urban 

flooding events. The results of Omnibus test, Homer and Lemeshow test, and model summary 

are presented in Figure 4.9. The Omnibus test indicate satisfactory model performance (X2 = 

7.431, 2df, p = 0.024). The Hosmer & Lemeshaw (H-L) test results (X2 = 0.681, 2df, p = 0.712) 

indicate that the goodness-of-fit is satisfactory. The Cox & Snell R Square and the Nagelkerke R 

Square values are 0.076 and 0.154 respectively suggesting that between 7.6 percent and 15.4 

percent of variation in the choice of enhancing adaptive capacity as a response option can be 

predicted by the model. 

 

Figure 4.9: Omnibus test, Homer and Lemeshow test, and Model summary 

 

Source: Author, 2014 
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Table 4.5 indicate the significant contribution of each of the selected drivers of adaptation 

planning initiatives to the decision of selecting enhancing adaptive capacity option. The results 

show that two variables (MAC, p = 0.032; PAR, p = 0.038) contribute significantly to the 

predictive ability of the model. The model results show that perceived threats to natural 

resources management and conservation (MAC) was significantly and positively related to the 

choice of enhancing adaptive capacity, whereas policy and regulations (PAR) was related 

negatively. The odds ratio suggests that urban adaptation planning initiatives driven by perceived 

threats to natural resources management and conservation were 5.4 (95 % confidence interval: 

1.2-25.5, p = 0.032) times likely, to consider enhancing adaptive capacity as an adaptation 

option. This implies that the presence of perceived threats to natural resources management and 

conservation as the primary factor driving cities to engage in adaptation planning may increase 

the likelihood for opting to enhance adaptive capacity.  

Similarly, the odds ratio suggests that cities driven by policy and regulations to engage in 

adaptation planning initiatives were 0.2 (95 % confidence interval: 0.0-1.0, p = 0.038) times 

likely to consider enhancing adaptive capacity as an adaptation option. This implies that the 

presence of policy and regulations as a primary factor may reduce the likelihood for opting to 

enhance adaptive capacity in relation to the risk of urban flooding events.  

These results suggest that planners, policy makers, and investors may be able to predict 

and make informed decisions about whether or not the choice of enhancing adaptive capacity 

would be the most viable response option, based on the assessment that particular adaptation 

planning initiatives were primarily driven by perceived threats to natural resources management 

and conservation and/or policy and regulations in relation to the risk of changing climate and 

related urban flooding events. For example, the San Francisco Bay, California project “Adapting 

to Rising Tides” (http://www.cakex.org/case-studies/case-studies/case-studies/2737) driven by 

the concerns about the potential impacts of sea-level rise on ecosystems, the economy, and 

infrastructure opted to engage local communities in vulnerability assessments to enhance their 

adaptive capacity in the implementation of relevant adaptation options. 

 

http://www.cakex.org/case-studies/case-studies/case-studies/2737
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Table 4.5: Variables in the equation (enhancing adaptive capacity options) 

 

Source: Author, 2014 
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Model result 2: Management and Conservation (MC) options 

 The second model examined the relationships between the selected drivers of adaptation 

planning initiatives and the selection of management and conservation options to urban flooding 

risk and events. The results of Omnibus test, Homer and Lemeshow test, and model summary are 

presented in Figure 4.10. The Omnibus test indicate satisfactory model performance (X2 = 

14.874, 3df, p = 0.002). The Hosmer & Lemeshaw (H-L) test results (X2 = 10.434, 5df, p = 

0.064) indicate that the goodness-of-fit is satisfactory. The Cox & Snell R Square and the 

Nagelkerke R Square values are 0.146 and 0.195 respectively suggesting that between 14.6 

percent and 19.5 percent of variation in the selection of management and conservation as a 

response option can be predicted by the model. 

 

Figure 4.10: Omnibus test, Homer and Lemeshow test, and Model summary  

 

Source: Author, 2014 

 

Table 4.6 indicate the significant contribution of each of the selected drivers of adaptation 

planning initiatives to the decision of considering management and conservation options. The 
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results indicate that three variables (ECB, p = 0.018; MAC, p = 0.058; HSS, p = 0.019) 

contribute significantly to the predictive ability of the model.  

 

Table 4.6: Variables in the equation (management and conservation options) 

 

Source: Author, 2014 
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The results in Table 4.6 show that anticipation of economic benefits (ECB) and perceived 

threats to natural resources management and conservation (MAC) were significantly and 

positively related to the selection of management and conservation options, whereas the need for 

support to human and social systems (HSS) was related negatively. The odds ratio suggests that 

urban adaptation planning initiatives driven by anticipation of economic benefits and perceived 

threats to natural resources management and conservation were 3.2 (95 % confidence interval: 

1.2-8.3, p = 0.018) and 2.5 (95 % confidence interval: 1.0-6.5, p = 0.058) times likely to consider 

selection of management and conservation options respectively. This implies that presence of 

anticipation of economic benefits and/or perceived threats to natural resources management and 

conservation as primary factors driving adaptation planning initiatives may increase the 

likelihood of selecting management and conservation options related to the risk of urban 

flooding events.  

Similarly, the odds ratio suggest that cities driven by the need for support to human and 

social systems were 0.3 (95 % confidence interval: 0.1-0.8, p = 0.019) times likely to select 

management and conservation options. This implies that the presence of the need for support to 

human and social systems as the primary factor driving adaptation planning initiatives may 

reduce the likelihood of selecting management and conservation options in relation to the risk of 

urban flooding events.  

These results suggest that planners, policy makers, and investors may be able to predict 

and make informed decisions about whether or not the choice of management and conservation 

options would be the most viable responses, based on the assessment that particular adaptation 

planning initiatives were primarily driven by the anticipation of economic benefits and/or 

perceived threats to natural resources management and conservation in relation to the risk of 

changing climate and related urban flooding events. For instance, the City of Chicago 

(http://www.chicagoclimateaction.org/pages/adaptation/11.php) and New York City 

(http://www.nyc.gov/html/dep/html/stormwater/nyc_green_infrastructure_plan.shtml) driven by 

perceived threats to urban natural resources management and conservation and economic 

benefits, initiated green infrastructure interventions (such as urban ecosystem restoration, 

naturalized stormwater management, green roofs, urban forestry, and urban agriculture) that 

would potentially provide long-term multiple benefits (e.g. reduced energy consumption, 

http://www.chicagoclimateaction.org/pages/adaptation/11.php
http://www.nyc.gov/html/dep/html/stormwater/nyc_green_infrastructure_plan.shtml
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decreased stormwater runoff, water capture and conservation, storm-surge protection, and 

defense against lake- or sea-level rise) critical for combating the impacts of urban flood events, 

creating healthy built environments, and improving quality of life of the urban communities 

(Armitage, 2005; Kirshen et al. 2008; Wilby and Keenan, 2012). 

Model result 3:  Infrastructure, planning, and development (IPD) options 

The third model examined the relationships between the selected driving factors 

motivating adaptation planning initiatives and the choice of infrastructure, planning, and 

development (IPD) options to urban flooding risk and events. The results of Omnibus test, 

Homer and Lemeshow test, and model summary are presented in Figure 4.11.  

 

Figure 4.11: Omnibus test, Homer and Lemeshow test, and Model summary  

 

Source: Author, 2014 
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The Omnibus test indicate satisfactory model performance (X2 = 12.293, 3df, p = 0.006). The 

Hosmer & Lemeshaw (H-L) test results (X2 = 0.099, 4df, p = 0.999) indicate that the goodness-

of-fit is satisfactory. The Cox & Snell R Square and the Nagelkerke R Square values are 0.123 

and 0.166 respectively suggesting that between 12.3 percent and 16.6 percent of variation in the 

selection of infrastructure, planning, and development (IPD) options can be predicted by the 

model. 

 Table 4.7 indicate the significant contribution of each of the selected drivers of adaptation 

planning initiatives to the decision of considering infrastructure, planning, and development 

(IPD) options. The results indicate that three variables (MAC, p = 0.013; HSS, p = 0.09; PAR, p 

= 0.021) contribute significantly to the predictive ability of the model. The results in Table 4.7 

show that the need for support to human and social systems (HSS) and policy and regulations 

(PAR) were significantly and positively related to the selection of infrastructure planning, and 

development options, whereas perceived threats to natural resources management and 

conservation (MAC) was related negatively. The odds ratio suggests that adaptation planning 

initiatives driven by the need for support to human and social systems and policy and regulations 

were 2.5 (95 % confidence interval: 0.9-7.3, p = 0.090) and 3.7 (95 % confidence interval: 1.2-

11.2, p = 0.021) times likely to consider the infrastructure, planning, and development options 

respectively. This implies that the presence of the need for support to human and social systems 

and/or policy and regulations as primary factors driving adaptation planning initiatives may 

increase the likelihood of selecting infrastructure, planning, and development options related to 

the risk of urban flooding events. Similarly, the odds ratio suggest that cities driven by perceived 

threats to natural resources management and conservation were 0.3 (95 % confidence interval: 

0.1-0.8, p = 0.013) times likely to consider infrastructure, planning, and development options. 

This implies that the presence of perceived threats to natural resources management and 

conservation as a primary driving factor may reduce the likelihood of selecting infrastructure, 

planning, and development options related to the risk of urban flooding events. 
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Table 4.7: Variables in the equation (infrastructure, planning, and development options) 

 

Source: Author, 2014 

 

These results suggest that planners, policy makers, and investors may be able to predict 

and make informed decisions about whether or not the choice of infrastructure, planning, and 

development options would be the most viable responses, based on the assessment that particular 
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adaptation planning initiatives were primarily driven by the need for support to human and social 

systems and/or policy and regulations and/or perceived threats to natural resources management 

and conservation in relation to the risk of changing climate and related urban flooding events. 

For instance, a number of case studies including PlaNYC and CLIMAID (in New York City), 

adapting to rising tides (in San Francisco), Halifax Climate SMART, green infrastructure 

(burgeoning in New York City, Seattle, Chicago, and many other cities), and green roofs and 

many other stormwater BMPs (likewise in New York, Seattle, and Chicago) were aimed at 

contributing to resilience of the built environment that works to support human and social 

systems and reduce vulnerabilities to urban flooding risks and extreme events (Hassler and 

Kohler, 2014).  

Model result 4: Governance and Policy (GP) options 

 The fourth model examined the relationships between the selected drivers of adaptation 

planning initiatives and the choice of governance and policy (GP) as a response option to the risk 

of changing climate and related flooding events in the urban context. The results of Omnibus 

test, Homer and Lemeshow test, and model summary are presented in Figure 4.12. The Omnibus 

test indicate unsatisfactory model performance (X2 = -1.133, 1df, p = 0.287) supported by the 

Hosmer & Lemeshaw (H-L) test results (X2 = 0.000, 0df, p = 0.000). The Cox & Snell R square 

and the Nagelkerke R square values were 0.000 suggesting that the model cannot predict choice 

of governance and policy (GP) as a response option. 
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Figure 4.12: Omnibus test, Homer and Lemeshow test, and Model summary 

 

Source: Author, 2014. 

 

The results in Table 4.8 indicate that none of the primary factors driving adaptation 

planning initiatives was significantly related to the choice of governance and policy options. This 

may imply that the primary factors driving cities to engage in particular adaptation planning 

initiatives had no influence on the selection of governance and policy options in relation to risks 

of changing climate and urban flooding events. These results may seem inconsistent with 

adaptation literature (e.g. Carmin et al. 2009; Djordjevic et al. 2011; Urwin and Jordan, 2008) 

that suggest policy and governance decisions may be taken by planners and policy makers, based 

on the assessment of primary factors (such as perceived threats management and conservation of 

urban natural resources, support to human and social systems, and economic benefits) driving 
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particular adaptation planning initiatives in relation to risks of changing climate (e.g. sea-level 

rise) and urban flooding events.  

 

Table 4.8: Variables in the equation (governance and policy options) 

 

Source: Author, 2014 
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 4.7 Implications of model results 

The binary regression model results revealed significant relationships between the four 

primary factors driving adaptation planning initiatives and the choice of three specific adaptation 

options related to the risk of changing climate (e.g. sea-level rise) and flooding events in the 

urban context, which partially supports the hypothesis of the current study. These results may 

have significant theoretical and practical implications on planning practice, policy making and 

investment decision making with regard to climate adaptation actions in cities.  

Theoretically, the model results presented may improve our understanding behind the 

relationships between the choice of specific adaptation options and the primary factors driving 

cities to engage in adaptation planning across spatial scales. The realities climate adaptation 

planning practices, policy and investment decision making across geo-spatial scales require 

better understanding of the primary factors driving the choices of specific adaptation options, 

which may improve the development, assessment, and selection of well-informed and viable 

adaptation options across spatial scales (Carmin et al. 2009; Wise et al. 2014). Further, knowing 

the significant relationships can guide initial reflection on the quality of adaptation plans; the 

timing of implementation (short term or long term), and decisions about the specific places 

where viable adaptation options might be implemented (Preston et al. 2010). From the policy and 

investment decision making perspectives, well-informed selection of adaptation options may 

further reduce the level of uncertainty related to their prioritization and the selection of 

appropriate adaptation approaches and strategies regarding implementation of effective 

adaptation actions (Carmin et al. 2009; Heinrichs et al. 2013; Preston et al. 2010).  

Overall, the four model results suggest that planners, policy, and investment decision 

makers in cities may be able to predict and make well informed decisions with some level of 

certainty about whether or not the choice of specific adaptation options would be the most viable, 

based on the assessment of the primary factors driving particular adaptation planning initiatives 

related to the risk of changing climate, including sea-level rise and urban flooding events across 

a range of spatial scales and regions.  
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Chapter 5 - Discussion, conclusions, and further research 

 5.1 Discussion 

This section provides discussion of the findings from case studies reviewed in relation to 

the guiding question of this research. First, the section provides a summary discussion on the 

sample distribution of cases across the United States and Canada. Second, the primary factors 

driving adaptation planning initiatives and the emerging adaptation response options are 

discussed. Third, this section focuses on the evidence of relationships between primary factors 

driving adaptation planning initiatives and the selection of adaptation options across scales in the 

urban context. Finally, the limitations emerging from the study are discussed. 

 5.1.1 Sample distribution of adaptation planning initiatives across U.S. and Canada 

Adaptation planning initiatives related to flooding risks and extreme events in the urban 

context have continued to grow in time and space. The results of this study show a remarkable 

increase of adaptation planning cases initiated and reported between 2007 and 2010, a fact that 

can be attributed to the release of IPCC AR4 report (IPCC, 2007) which reinforced the need for 

adaptation due to the realities of changing climate and potential effects of increasing frequency 

and magnitude of extreme events (e.g. sea-level rise and flooding risks) on cities across a range 

of regions. The fact that initiatives and reports decreased between 2011 and 2012 and only began 

to increase slightly in 2013 may be attributed to project timescales and their need for evaluation, 

however, this would need to be confirmed by further analysis. 

From the spatial perspective, cities across regions in the U.S. and Canada have designed 

and developed plans that provide adaptation response options, including strategies and measures 

for implementation. A majority of the plans in the U.S. are concentrated in the Northeast (e.g. 

New York, Massachusetts, Maine, and New Hampshire), Southwest (e.g. California), Midwest 

and Great Lakes (e.g. Illinois, and Michigan), and Southeast (Florida) regions, and are being 

supported by scientific (expert) and local knowledge, published data, climate and socioecological 

models, IPCC data and reports, agency and non-governmental organization (NGO) reports, peer-

reviewed literature, and management plans at varying scales. 
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The government seems to be the main financing entity for the adaptation planning 

initiatives, suggesting very limited private sector investment (and perhaps a lack of private sector 

interest in adaptation planning due to uncertainty related to federal policies), or possibly 

indicating that there is a reluctance to share results for one or more reasons (Bierbaum et al. 

2012; Biesbroek et al. 2010). Per the review of studies in this dissertation, most adaptation 

planning initiatives were concentrated in five key sectors (largely government-supported) that 

included transportation infrastructure (58 percent), conservation and restoration (57 percent), 

socio-economic development (43 percent), land use planning (41 percent), and water resources 

planning and management (33 percent).   

 5.1.2 Primary factors driving adaptation planning initiatives related to risks of 

changing climate and urban flooding events 

In this study the author examined how specific primary driving factors of adaptation 

planning initiatives are associated with the selection of emerging adaptation response options 

across spatial scales in the urban context. The primary question formulated to guide the study 

was: What are the relationships between the primary factors driving adaptation planning 

initiatives and the selection of the specific adaptation options related to the risk of changing 

climate and urban flooding events across spatial scales?  

The coupled DPSIR–SES framework was applied in this study to structure and organize 

information regarding driving factors of adaptation planning initiatives and the emerging 

adaptation options across a range of spatial scales in the urban context (Rounsevell et al. 2010). 

A systematic review methodology was used to draw knowledge from case studies on the primary 

factors driving urban adaptation planning initiatives and the emerging adaptation options related 

to risks of flooding events across various regions in the United States and Canada (e.g. Brooks et 

al. 2013; Berrang-Ford et al. 2011; Ford et al. 2011; Munroe et al. 2013).  

The present study results suggest that a majority of adaptation planning initiatives were 

primarily driven by either single or multiple factors across a range of regions and spatial scales. 

Notably a majority of adaptation planning initiatives were driven by the need to protect and 

support human and social systems (56 percent), perceived threats to management and 

conservation of urban natural resources (51 percent), and anticipation of economic benefits (27 
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percent). A smaller proportion of cases were driven by perceived funding and other economic 

opportunities (20 percent); evidence of climate change effects (17 percent); and improvement of 

policy and regulations (16 percent). Adaptation planning initiatives driven by access to new 

information and knowledge were negligible. Nevertheless, 34 percent of initiatives were driven 

by general concerns about the urban environments.  

These findings support recent studies in the U.S. and other developing countries in the 

global south that found adaptation planning initiatives to be primarily driven by incentives, 

information or knowledge, and resources (Carmin et al. 2009). In the same vein, Carmin et al. 

(2012a) argue that exogenous factors (including policy regulations and diffusion of information) 

are dominant motivation for adaptation planning in the long term, while endogenous factors such 

as local leadership or investors in addition to incentives, ideas or information and capacity are 

significant in the short term.  

Incentives in the case of adaptation planning may include perception of risks (to human 

and social systems, the quality of natural resources management and conservation), anticipation 

of economic benefits, perceived funding and investment opportunities, and policy and 

regulations. According to Carmin et al. (2009), perceived risks to people, property, transportation 

infrastructure, and general development of cities or urban communities may incentivize 

adaptation planning initiatives across a range of spatial scales. For instance, perceived risks of 

sea-level rise, extreme flooding events and disasters (as exemplified by hurricanes Katrina, Rita, 

and Sandy as well as other devastating hurricanes and superstorms) in coastal cities (e.g. New 

York City) have been attributed to climatic change, contributing to the decision by a number of 

cities in North America to engage in climate action planning (Bierbaum et al. 2012).  

Empirical support from the present study shows that 56 percent of urban adaptation 

planning cases reviewed were driven by the need to support human and social systems from the 

impacts of existing or future climate risks and related extreme flooding events. Likewise, 

perceived threats to the service provisioning urban natural resources (e.g. water and parks), their 

management and conservation drove 51 percent of planning cases in cities across U.S. and 

Canada (Lehmann et al. 2012). Notable case studies included PlaNYC and CLIMAID (in New 

York City), adapting to rising tides (in San Francisco), Halifax Climate SMART, green 
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infrastructure (burgeoning in New York City, Seattle, Chicago, and many other cities), and green 

roofs and many other stormwater BMPs (likewise in New York, Seattle, and Chicago).  

As per Carmin et al. (2009), adaptation planning initiatives that present potential multiple 

benefits such as green infrastructure planning (New York City, Seattle, Chicago, and many other 

cities) were more likely to be embraced, perhaps because the socio-economic benefits are more 

likely to be shared amongst a wider range of people in the community, sectors and regions.  

Funding and other investment opportunities can directly or indirectly support adaptation 

planning initiatives (20 percent of cases in the current review) either as an incentive or resource 

for engaging in urban adaptation planning process (Carmin et al. 2009). For example, both 

domestic and international funding have been used to directly support adaptation planning 

processes as well as indirectly when a financial incentive contains provisions linked to 

adaptation-related initiatives, particularly in infrastructure, planning, and development cases 

(Carmin et al. 2009). In addition, adaptation financing can stimulate untapped investment 

opportunities that may come with developing new markets for climate-friendly technologies (e.g. 

participation in the carbon sequestration and abatement activities) in urban environments.  

A number of studies have also found that policies at global, national and regional scales 

may inspire local policies and regulations related to adaptation, hence influencing adaptation 

planning initiatives aimed at improving existing policies and regulations (Anguelovski and 

Carmin, 2011; Biesbroek et al. 2010; Urwin and Jordan, 2008). For instance, policies and 

regulations may be improved to provide new frameworks, impose new requirements (e.g. energy 

efficient building) and use the threat of sanctions to foster compliance or incentives to generate 

interest among organizations or individuals (Carmin et al. 2009; Carmin et al. 2012). Empirical 

support from the present study indicate 16 percent of cases reviewed were driven by policy and 

regulations across spatial scales.  

Although the influence of access to new information and knowledge on adaptation 

planning initiatives was insignificant (3 percent) in the present study, 17 percent of cases 

reviewed were driven by the emerging evidence of climate change effects across scales. A 

number of previous studies also found local experiences and scientific knowledge of the 

potential impacts of climate change to be influential drivers of adaptation planning in cities 

around the world (see Anguelovski and Carmin, 2011; Carmin et al. 2009; Heinrichs et al. 2013). 
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Thus, cities that considered climate change issues and adaptation as more important, and those 

with more information and knowledge about the benefits of adaptation, were more likely to 

engage in adaptation planning initiatives (Carmin et al. 2012a). Growing awareness and 

recognition of climate change seemed itself to have catalyzed many local adaptation planning 

efforts since 2007 after the launch of IPCC AR4 report (Heinrichs et al. 2013; IPCC, 2007).  

General concerns emerged as a significant driving factor influencing 34 percent of urban 

adaptation planning initiatives in the present study. These concerns may be characterized by the 

growing interest in climate variability and frequency of extreme events (e.g. flooding) issues and 

the need to build long term resilience of urban communities focusing on either “no-regrets” or 

“low regrets” actions that provide multiple benefits and are good to do for reasons beyond 

climate adaptation—for example to reduce air and water pollution and to create more livable 

cities (Poyar and Beller-Simms, 2010). 

 5.1.3 The selection of emerging adaptation response options across spatial scales 

Cities across regions in the U.S. and Canada have designed and developed plans that 

provide single or multiple adaptation response options and their implementation (Preston et al. 

2010). Evidence from the case study review reported on in this dissertation show that majority of 

adaptation planning initiatives selected enhancing adaptive capacity, while approximately half of 

the cases opted for a combination of governance and policy, supporting effective natural resource 

management and conservation, and improving urban infrastructure, planning, and development. 

The findings associated with this and prior research support the view that most cities 

would opt for ‘soft’ or low-risk options such as enhancing adaptive capacity rather than ‘hard’ 

action-oriented options such as infrastructure, planning, and development that will likely require 

major capital expenditures and structural changes, as reported by Preston et al. (2010). Another 

argument is that there seems to be high demand for enhancing adaptive capacity as compared to 

improving urban infrastructure, planning, and development due to limited investment capabilities 

of most cities across U.S. and Canada (Preston et al. 2010). Similar to the findings by Wise et al. 

(2014) the case studies reviewed in this dissertation suggests that local scale factors significantly 

influenced the selection of specific adaptation options.  
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 5.1.4 Relationships between primary factors driving adaptation planning initiatives 

and the selection of adaptation options across spatial scales in the urban context. 

This study performed bivariate and multivariate analyses to explore the significant 

associations and relationships between the primary factors driving urban adaptation planning 

initiatives and the choice of adaptation response options related to the risk of changing and urban 

flooding events across spatial scales.  

The findings of bivariate analysis indicated evidence of “very weak” (Cramer’s V= 

0.170) to “moderate” association (Cramer’s V= 0.245) between the four primary driving factors 

of adaptation planning initiatives (anticipation of economic benefits; perceived threats to 

management and conservation of urban natural resources; support of human and social systems; 

and improvement of policy and regulations) and three emerging adaptation options (enhancing 

adaptive capacity; supporting effective natural resource management and conservation; and 

improving urban infrastructure, planning, and development) at five (5) percent (p = 0.05) or ten 

(10) percent (p = 0.1) significance levels. These findings support the hypothesis that there was 

evidence of association between primary factors driving adaptation planning initiatives and the 

selection of adaptation response options across spatial scales. Similarly, the findings were 

consistent with the IPCC AR4 synthesis report that many adaptation actions (or responses) have 

multiple drivers embedded within broader local to regional initiatives such as water resources 

and land use planning (IPCC, 2007; Kelble et al. 2013).  

The findings of binary logistic regression models summarized in Table 5.1 revealed 

significant relationships between four primary factors driving adaptation planning initiatives 

(namely, anticipation of economic benefits; perceived threats to management and conservation of 

urban natural resources; support of human and social systems; and improvement of policy and 

regulations) and the selection of specific adaptation options (namely enhancing adaptive 

capacity; management and conservation; and improving urban infrastructure, planning, and 

development). The following paragraphs summarize the specific findings on the significant 

relationships between the selected primary factors driving adaptation planning initiatives and 

specific adaptation response options related to the risk of changing climate and urban flooding 

events across scales.  
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Table 5.1: Summary of significant relationships between primary factors driving urban 

adaptation initiatives and selection of adaptation options across spatial scales 

Adaptation 

options 

Primary factors driving urban adaptation planning initiatives 

NIK ECB HSS MAC PAR FEC ECE GEN 

AC    + -    

MC  + - +     

IPD   + - +    

GP         

Source: Author, 2014 

 

First, the model findings suggest that increasing anticipation of economic benefits may 

increase the likelihood of selecting management and conservation options in adaptation planning 

initiatives related to the risk of changing climate and urban flooding events. These findings seem 

consistent with evidence from recent adaptation studies that demonstrate the value of investing in 

urban green infrastructure solutions (e.g. Foster et al. 2011) in tandem with efforts to safeguard 

urban economies and support human and social systems (Carmin et al. 2009; Tompkins and 

Adger, 2004) amid uncertainties of future sea-level rise and more frequent and pronounced urban 

flood events. For instance, the cities of Ann Arbor and Grand Rapids, Michigan 

(http://grcity.us/enterprise-services/officeofenergyandsustainability/Pages/default.aspx/), 

Wilmington, North Carolina, and Olympia, Washington (to name just four cities), have 

demonstrated the need for integrating future sea-level rise and/or flood-risk projections in their 

planning and decision-making to ensure that the economic, environmental, and social strategies 

embraced are appropriate for today as well as the future. In a similar vein, the San Francisco 

Bay, California project “Adapting to Rising Tides” (http://www.cakex.org/case-studies/case-

studies/case-studies/2737) is driven by the concerns about the potential impacts of sea-level rise 

http://grcity.us/enterprise-services/officeofenergyandsustainability/Pages/default.aspx/
http://www.cakex.org/case-studies/case-studies/case-studies/2737
http://www.cakex.org/case-studies/case-studies/case-studies/2737
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on ecosystems, the economy, and infrastructure leading to the engagement of local communities 

in vulnerability assessments and implementation of relevant adaptation options. 

Second, the model findings suggest that increasing perception of risks to management 

and conservation of urban natural resources (in or nearby urban landscapes) as the primary 

concerns of cities engaged in adaptation planning initiatives, may increase the likelihood of 

selecting options that seek to enhance adaptive capacity of urban communities and/or 

management and conservation options, while discouraging cities from selecting infrastructure, 

planning, and development options. These findings seem consistent with a number of studies 

(e.g. Armitage, 2005; Liao, 2012; Plummer et al. 2013; Tompkins and Adger, 2004) which argue 

that enhancing adaptive capacity is necessary for effective performance of urban natural 

resources (e.g. watersheds) in sustaining provision of ecosystem services (e.g. water quality and 

quantity).  

As noted below, a number of recent case studies have demonstrated that management and 

conservation options (e.g. urban stormwater management and green infrastructure interventions) 

can contribute greatly to resilience of urban natural resources (Armitage, 2005; Kirshen et al. 

2008). Examples of adaptation initiatives in the U.S. that have engaged management and 

conservation options include the following communities: Keene, New Hampshire; New York 

City, New York; Seattle (King County), Washington; and Chicago, Illinois. Each of these 

communities have developed climate adaptation strategies and are in the process of 

implementing adaptation measures such as ecologically based (natural or green) infrastructure 

that is predominantly decentralized and integrated with natural functions and settings (as in 

Keene), green infrastructure (burgeoning in New York City, Seattle, Chicago, and many other 

cities), and green roofs, rain-gardens, bio-swales, and many other stormwater BMPs (likewise in 

New York, Seattle, Chicago, etc.) as per Bierbaum et al. (2012).  

Notably, the green infrastructure interventions (such as urban ecosystem restoration, 

naturalized stormwater management, green roofs, urban forestry, and urban agriculture) in the 

City of Chicago (http://www.chicagoclimateaction.org/pages/adaptation/11.php) and New York 

City (http://www.nyc.gov/html/dep/html/stormwater/nyc_green_infrastructure_plan.shtml) have 

demonstrated potential to provide long-term multiple benefits (e.g. reduced energy consumption, 

decreased stormwater runoff, water capture and conservation, storm-surge protection, and 

http://www.chicagoclimateaction.org/pages/adaptation/11.php
http://www.nyc.gov/html/dep/html/stormwater/nyc_green_infrastructure_plan.shtml
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defense against lake- or sea-level rise) critical for combating the impacts of urban flood events, 

creating healthy built environments, and improving quality of life of the urban communities 

(Armitage, 2005; Kirshen et al. 2008; Wilby and Keenan, 2012). The greening of combined 

sewer infrastructure in the City of Philadelphia has enabled protection of streams and rivers, 

reduced greenhouse gas emissions and flooding impacts, improved air quality, and enhanced 

adaptation to a changing climate (http://www.phillywatersheds.org/ltcpu/). 

Third, the model findings suggest that increased need to support humans and social 

systems (that includes people, property and transportation infrastructure amongst others) in cities 

through adaptation planning initiatives, may increase the likelihood of selecting infrastructure, 

planning, and development options, while discouraging the selection of management and 

conservation options. These findings seems consistent with the findings of Carmin, et al. (2009) 

that indicate managing the potential impacts of sea-level rise may include improvement or 

redevelopment of infrastructure, in addition to development restriction and relocation of 

residents to accommodate the risk of urban flooding events. For instance, many emerging green 

and gray infrastructure planning and development cases (such as PlaNYC in New York City) are 

aimed at contributing to resilience of the built environment that works to support human and 

social systems and reduce vulnerabilities to urban flooding risks and extreme events (Hassler and 

Kohler, 2014). They seek to do this by involving communities in ecologically based (natural or 

green) infrastructure initiatives such as green roofs, rain-gardens, bio-swales, and many other 

stormwater BMPs (Bierbaum et al. 2012). 

Fourth, the model findings suggest that increasing policy and regulations as the primary 

concerns of adaptation planning initiatives in cities may increase the likelihood of selecting 

infrastructure, planning, and development options, while reducing the likelihood of selecting 

options that seek to enhance adaptive capacity. These findings seem to be at least partially 

consistent with recent studies (e.g. Djordjevic et al. 2011; Urwin and Jordan, 2008) and the 

outcomes of adaptation planning case studies such as PlaNYC, New York City 

(http://www.nyc.gov/html/dep/html/stormwater/nyc_green_infrastructure_plan.shtml) and the 

City of Keene, New Hampshire (http://www.ci.keene.nh.us/sites/default/files/CMPprint-final-

1027-fullversion_2.pdf). These studies suggest that policy-driven adaptation planning initiatives 

are likely to consider investments in critical urban infrastructure and land use planning and 

http://www.phillywatersheds.org/ltcpu/
http://www.nyc.gov/html/dep/html/stormwater/nyc_green_infrastructure_plan.shtml
http://www.ci.keene.nh.us/sites/default/files/CMPprint-final-1027-fullversion_2.pdf
http://www.ci.keene.nh.us/sites/default/files/CMPprint-final-1027-fullversion_2.pdf
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regulations that restrict developments in floodplains and at-risk coastal sites across geo-political 

scales in the long term, while in the short-term prefer climate risk awareness and early-warning-

system options in addition to other strategies that enhance adaptive capacity.  

 5.1.5 Limitations of the study 

Because climate adaptation planning research is relatively new, there is limited peer-

reviewed literature on adaptation cases or evaluation of adaptation planning process and 

outcomes (Bierbaum et al. 2012; Biesbroek et al. 2013; Carmin et al. 2012a; Rounsevell et al, 

2010). Much of the documentation that does exist is in “grey” (non-peer-reviewed) literature, 

such as government reports and planning documents, agency “white” or background papers, and 

“expressions of interest” reports officially submitted as part of the U.S National Climate 

Assessment report (Bierbaum et al. 2012).  

Although designed to be as comprehensive and transparent as possible, the systematic 

review methodology described in this dissertation has a number of limitations that need to be 

considered. The quality of the systematic review is mainly dependent on the quality and quantity 

of information and case study data that is available to the reviewer (Garg et al. 2008). Because 

much of the data associated with adaptation planning cases exists in “grey” (non-peer-reviewed) 

literature it is not readily accessible. Further research, including targeted inquiries, specific 

information and document requests, phone and e-mail interviews and conversations, and even 

visits to local communities could deepen the understanding of specific cases. In the future, in-

depth case studies could be completed by interested researchers.  

The methodological limitations included the search strategy, the synthesis methods, and 

the quality and reliability assessments. This study adapted search strategies from authors in other 

fields such as medical, environmental conservation, and ecology and developed a search strategy 

in consultation with major advisor and PhD committee. Also, the search strategy relied on cases 

reported in databases (e.g. Climate Adaptation Knowledge Exchange), specialist search, and 

previous surveys/reports. Therefore, any errors in the data sources during extraction might have 

been transferred resulting to errors in the extraction and data analysis in the present study. 

The North America-wide regional approach that was used in the search strategy may 

have caused limitations in capturing primary factors driving adaptation planning initiatives and 
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the emerging adaptation response options across different urban scales. Combining numerous 

studies across North America could have resulted in sampling errors arising from omission of 

cases and publication bias (Garg et al. 2008). The limitations of publication bias could have 

arisen from the differences in study designs, methods, and conflict of interest among others. In 

this dissertation, publication and reporting bias may have been minimized by using online 

databases (e.g. Climate Adaptation Knowledge Exchange) that had undergone rigorous quality 

assessment and reporting process.  

Also, a regional approach was very challenging as the researcher had to face major 

human resources and timeframe constraints, and required readily available data sets as well. 

Hence, the cases included in the analysis were certainly not exhaustive given limited available 

information. There are likely a number of recently initiated and completed studies not captured 

by this research effort.  

Finally, it is important to note that conducting the systematic review individually, as in 

this study, resulted in a number of limitations. Typically bias, especially in the search and 

selection of individual case studies, are rectified by engaging a second reviewer so that any 

differences in selections of cases are discussed and agreed upon. However, for this dissertation 

research, there was lack of a second reviewer and the author conducted a two stage review 

spaced between two months to reduce bias. A test-retest reliability assessment was conducted to 

determine the level of agreement and consistency of decision regarding selection 

(inclusion/exclusion) of individual case studies. Conducting the study individually in a limited 

amount of time may have led to some level of author bias/conflict of interest that resulted in 

some studies either not being included in the review or mistakenly included. 

 5.2 Conclusions 

This dissertation provided a detailed overview of the status and drivers of adaptation 

planning initiatives, planning support systems, emerging adaptation options, and barriers to 

implementation adaptation planning actions across the globe—with a particular focus on North 

America (e.g. Brooks et al. 2013; Berrang-Ford et al. 2011; Ford et al. 2011; Munroe et al. 

2013). In order to address the gap between plan-making and the implementation of adaptation 

actions there was need to: (1) understand the primary factors driving urban adaptation planning 
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initiatives and the emerging adaptation options across scales, and (2) explore the relationships 

between primary factors driving adaptation planning initiatives and the choice of adaptation 

options related to flooding risks and related extreme events across scales in the urban context.  

The present study used the modified DPSIR-SES framework and the systematic review 

approach to synthesize evidence from urban adaptation planning case studies with respect to the 

primary questions of this study in order to generate objective and generalizable findings across 

the U.S and Canada. The findings revealed a rapid growth in urban adaptation planning 

initiatives focusing on the risks of changing climate (e.g. sea-level rise) and flooding events 

across spatial scales. Most of the adaptation planning initiatives were primarily driven by either 

single or multiple factors that included perception of risks to the management and conservation 

of urban natural resources, need for support to humans and social systems, and anticipation of 

economic benefits related to the existing or potential impacts of changing climate and flooding 

events. Other factors driving cities in North America to engage in adaptation planning initiatives 

included, funding and investment opportunities, evidence of climate change effects, 

improvement of policy and regulations, and general concerns.  

These findings support previous studies by Anguelovski and Carmin (2011), Carmin et 

al. (2009) and Carmin et al. (2012a) that incentives, information, and resources (capacity) tend to 

motivate cities to engage in adaptation planning initiatives. However, access to new information 

and knowledge seemed to play a limited role as a driving factor for adaptation planning 

initiatives in the present study, which is contrary to the findings of previous studies (such as 

Carmin et al. 2009; Carmin et al. 2012a; Heinrichs et al. 2013) that linked improved information 

access and knowledge to engagement in adaptation planning.  

The main focus of the present study was to better understand the relationships between 

primary factors driving adaptation planning initiatives and the selection of the specific adaptation 

options related to the risk of changing climate and urban flooding events across spatial scales. 

The findings of binary logistic regression models suggest that the choice of specific adaptation 

options (namely enhancing adaptive capacity; management and conservation; and improving 

urban infrastructure, planning, and development) may be influenced by single or multiple 

primary factors driving adaptation planning initiatives (namely, anticipation of economic 

benefits; perceived threats to management and conservation of urban natural resources; support 
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of human and social systems; and improvement of policy and regulations) in relation to the risk 

of changing climate, including sea-level rise and urban flooding events. These findings do not 

imply that other primary factors (namely access to information and knowledge; perceived 

funding and economic opportunities; evidence of climate change effects; and general concerns) 

have no relationships with the selection of adaptation options, only that the review did not find 

evidence to support such claims. A good example is the Urban Boston case study 

(http://www.cakex.org/case-studies/5312) primarily driven by perceived funding and other 

economic opportunities and general concerns to perceived risks of urban communities to coastal 

flooding opted for enhancing adaptive capacity of urban communities to effectively respond the 

perceived risks of coastal flooding by increasing access to resources that: (1) promote adaptive 

capacity; (2) raise awareness of flood risks and potential adaptation options; (3) integrate 

existing knowledge and values in adaptation planning process; and (4) engage local communities 

in promoting collective community and/or regional partnering in adaptation actions (Gregg, 

2010; Kirshen et al. 2008). 

These findings may have significant implications in bridging various planning-

implementation gaps. For instance, planners and policy decision makers may begin to predict 

whether or not the choice of specific adaptation response options may be the most viable based 

on the assessment primary factors driving of adaptation planning initiatives, which may 

eliminate the trial-and-error approach to the design and development of quality adaptation plans, 

namely by well-informed choices in regards to robust adaptation options and by setting the stage 

for developing achievable implementation strategies and policies for effective adaptation actions 

(Preston et al. 2010). With this knowledge the city administrators, urban planners and policy 

decision makers in the U.S. and Canada may begin to re-evaluate their existing urban adaptation 

plans and make necessary adjustments where possible to improve their implementation and 

effectiveness across spatial scales.  

Flexible and robust adaptation options may greatly help in overcoming uncertainties to 

the implementation of adaptation actions, especially in resource-scarce regions where adaptation 

plans are weak or absent (Bierbaum et al. 2012; Plummer and Armitage, 2010). A good example 

are cities in Africa and Asia where climate adaptation plans are being developed fairly rapidly, 

with little evidence of adaptation actions being implemented to reduce the impacts of changing 

http://www.cakex.org/case-studies/5312
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climate and related extreme events (Carmin et al. 2012a; Carmin et al. 2009). The experiences of 

Carmin et al. (2012a) in Durban revealed the absence of planning guidelines and frameworks for 

monitoring and evaluating successes or failures of adaptation planning initiatives. Thus, the 

findings of the present study may offer support for the planning process (development, 

assessment, and selection of options) and future development of a framework for monitoring and 

evaluation of implemented adaptation actions to improve their effectiveness and success across a 

range of scales and regions (Preston et al. 2010; Tompkins et al. 2010). In addition, the findings 

may facilitate strategic development, replication, and mainstreaming of best practices and/or 

innovative actions by planners and policy decision makers in cities like Dar es Salaam, Tanzania; 

and Nairobi, Kenya; amongst others that have limited resources for adaptation planning.  

Nevertheless, this dissertation provides a foundation for development of planning and 

decision support tools that could be used for assessment of adaptation plans and implementation 

of robust adaptation options (as per IPCC, 2007). Better assessment of adaptation plans may 

overcome uncertainties and generate some consensus around best practices for cities already 

engaged or seeking to engage in adaptation planning initiatives and improve implementation of 

adaptation actions across a range of scales and regions (Carmin et al. 2009; Bierbaum et al. 2012; 

Preston et al. 2010). 

 5.3 Further research directions 

By examining the adaptation literature and assessing case examples of urban adaptation 

planning in the region, it becomes apparent that key knowledge gaps exist. Future research 

addressing the knowledge gaps may seek to undertake a synthesis of climate adaptation 

interventions currently being designed and implemented, building on adaptation planning 

initiatives already identified in this review to explore the extent to which these interventions have 

considered the linkages between what is driving the initiatives and the selection of adaptation 

options. Researchers considering to conduct systematic reviews in their synthesis of climate 

adaptation planning interventions may need to devote more time in the developing search 

strategies, especially for relevant grey literature and methods for data analysis (Garg et al. 2008). 

For instance, in using logistic regression analyses researchers may consider applying the Rasch 
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model to create scales that build variations among the factor variables to generate improved 

results.  

Finally, decision support tools that could be used for assessment of adaptation plans and 

implementation of specific adaptation options, need to be further developed and tested for 

applicability with a view to addressing the following important questions: 

 What are the successes and failures of the adaptation planning initiatives across different 

scales? What successes and failures are most common?  

 What determines success or failure of the adaptation planning initiatives? Do the 

associations or relationships between primary driving factors of the adaptation planning 

initiatives and the emerging adaptation options influence the success or failure of specific 

types of implementation actions? If so, why? If not, why not?  

 What differences exist in regards to successes or failures of adaptation planning in 

different nation states? How can nations in Africa and other countries with emerging 

economies and planning infrastructure constraints (particularly in regards to limitations 

related to technical aspects and personnel needs) most effectively approach the climate 

adaptation planning process?  
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Appendix A - Selected adaptation planning cases in U.S and Canada 

PID Project Name References 

1 A Climate Change Action Plan for the Florida Reef Tract (2010-2015)  Score, A. (2010) 

2 A Framework for Climate Change Adaptation in Hawaii Kershner, J. (2010) 

3 A Roadmap for Action_ The Chicago Climate Action Plan  Gregg, R. M. and 

Hitt, J. L. (2012) 

4 Adaptation Behavior on the Front Line of Climate Change and Accelerating Sea-

level rise in the Florida Keys  

Score, A. (2010) 

5 Adaptation to Climate Change Impacts on the Coastal Wetlands in the Gulf of 

Mexico  

Score, A. (2010) 

6 Adaptation to Sea-level rise in Florida  Noss, R. (2010) 

7 Adapting to Rising Tides in San Francisco Bay, California  Gregg, R.M. and 

Polgar, S. (2010) 

8 Adapting to Sea-level rise in Hayward, California  Kershner, J. (2010) 

9 Alabama’s Baldwin County Grasses in Classes Program  Gregg, R. M. (2010) 

10 Albemarle-Pamlico National Estuary Program's Climate Ready Estuaries Project  Gregg, R. M. (2010) 

11 Assessing Impacts and Developing Adaptation Strategies for Connecticut’s  

Natural and Built Environments  

Gregg, R. M. (2010) 

12 Assessing the Risk of 100-year Freshwater Floods in the Lamprey River 

Watershed of New Hampshire Resulting from Climate Change and Land Use  

Gregg, R. M. (2010) 

13 Atlantic Canada Climate Change Adaptation Strategy  Hitt, J. (2010) 

14 Atlantic Climate Adaptation Solutions (ACASA)  Hitt, J. (2010) 

15 Barnegat Bay Climate Change Adaptation Strategy Development  Gregg, R. M. (2010) 

16 Bay Area Ecosystems Climate Change Consortium  Gregg, R. M. (2010) 

17 British Columbia's Local Climate Change Visioning Project  Gregg, R. M. (2010) 

18 Broward County Climate Change Task Force and Climate Change Initiatives  Score, A. (2010) 

19 Building Capacity for Climate-Resilient Communities and Water Conservation in 

the Huron River Watershed  

Gregg, R. M. (2012) 

20 Building Climate Resiliency in the Lower Willamette Region of Western Oregon  Kershner, J. and 

Adams, S. (2011) 

21 California Department of Water Resources Adaptation Strategy  Feifel, K. (2010) 

22 California Energy Commission's Climate Change Research Program  Score, A. (2011) 

23 City of New Castle, Delaware Coastal Resiliency Action Plan  Gregg, R. M. (2010) 

24 ClimAID_ Developing a Climate Change Impacts and Adaptation Assessment 

for New York State  

Gregg, R. M. (2012) 

25 Climate Adaptation in the City of Ann Arbor, Michigan  Kershner, J. M. 

(2012) 

26 Climate Change Adaptation Guidelines for Sea Dikes and Coastal Flood Hazard 

Land Use in British Columbia 

 Neale, T. (2011) 

27 Climate Change Adaptation in Kimberley, British Columbia  Gregg, R. M. (2010) 

28 Climate Change Adaptation Planning at the State Level in Minnesota  Gregg, R. M. and 

Hitt, J. L. (2012) 
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29 Climate Change Adaptation Planning at the State Level in Pennsylvania Gregg, R. M. (2012) 

30 Climate Change Adaptation Planning in Fresno County, California  Koopman, M. and 

Meis, K. (2012) 

31 Climate Change Adaptation Planning in San Luis Obispo County  Kershner, J. (2010) 

32 Climate Change Adaptation Planning in the City of Chula Vista, California  Kershner, J. (2010). 

33 Climate Change Adaptations for Land Use Planners  Kershner, J. (2010)  

34 Climate Change and the Florida Keys   Score, A. (2010) 

35 Climate Change Mitigation and Adaptation Planning in Wisconsin’s Lake 

Michigan Coastal Communities  

 Gregg, R. M. (2012) 

36 Climate Change Vulnerability Assessment for Long Island Sound via Sentinel 

Monitoring  

 Gregg, R. M. (2010) 

37 Climate Change, Coastal Flooding, and Environmental Justice in Urban Boston 

Communities  

 Gregg, R.M. (2010) 

38 Coastal Adaptation Plan for the Town of Groton, Connecticut   Gregg, R.M. (2010) 

39 Coastal Resilience: Visualizing Climate Change Impacts and Coastal Hazards 

and Implementing Solutions in Long Island Sound 

 Gregg, R.M. (2010) 

40 Creating a Gulf Coast Community Handbook for Restoration and Adaptation   Gregg, R.M. (2010) 

41 Creating a More Resilient Yellowknife_ Climate Change Impacts and Municipal 

Decision Making  

 Hitt, J. (2010) 

42 Creating a National Adaptation Strategy for the United States_ The Interagency 

Climate Change Adaptation Task Force  

 Gregg, R. M. (2010) 

43 Dawson Community Climate Change Adaptation Plan   Feifel, K. (2010) 

44 Delaware Sea-level rise Adaptation Initiative   Gregg, R. M. (2010) 

45 Developing a Washington State Climate Change Impacts Response Strategy   Gregg, R. M. (2010) 

46 Developing Ontario’s Climate Change Adaptation Strategy and Action Plan  Gregg, R. M. (2012) 

47 Documenting Traditional Ecological Knowledge in Northwest Alaska   Feifel, K. (2010) 

48 Florida Planning Toolbox_ Climate Change Tools   Score, A. (2010) 

49 Fostering a Climate-Informed Community Perspective in the Great Lakes_ The 

Great Lakes Community Climate Program  

 Hitt, J. L. and  

Gregg, R. M. (2012) 

50 Great Lakes Adaptation Assessment for Cities   Gregg, R. M. (2012) 

51 Greater Vancouver’s Stormwater Management Program   Feifel, K. (2010) 

52 Halifax Climate SMART_ The Climate Sustainable Mitigation and Adaptation 

Risk Toolkit  

 Hitt, J. (2010) 

53 Homer, Alaska Climate Action Plan   Feifel, K. (2010) 

54 Identifying Opportunities for Climate Adaptation in the Delaware Estuary   Gregg, R. M. (2010) 

55 Implementation of Maryland’s Climate Action Plan  Feifel, K. (2010) 

56 Incorporating Climate Change Impacts into Activities in Charlotte Harbor, 

Florida   

 Gregg, R. M. (2010) 

57 Incorporating Climate Change into the Casco Bay Estuary Partnership   Gregg, R. M. (2009) 

58 Increasing Coastal Resilience through Restoration and Education in Narragansett 

Bay, Rhode Island  

 Gregg, R. M. (2010) 

59 Indian River Lagoon and City of Satellite Beach, Florida Adaptation Project   Gregg, R. M. (2010) 

60 Integrating Climate Change Adaptation Strategies into Maryland’s Coastal Land 

Conservation Targeting  

 Feifel, K. and 

Papiez, C. (2010) 

61 Integrating Climate Change into the U.S. National Estuarine Research Reserve 

System  

 Gregg, R. M. (2010) 
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62 Investigating the Impact of Climate Change on Combined and Separate Sewer 

Overflows in Milwaukee Watersheds 

 Gregg, R. M. (2012) 

63 Lake Tahoe Climate Change Adaptation Strategy Project   Score, A. (2011) 

64 London, Ontario’s Climate Change Adaptation Strategy  Feifel, K. M. (2012) 

65 Malibu Land Use and Local Implementation Plans_ Setbacks and Sea-level rise   Hitt, J. (2010) 

66 Managed Retreat at Surfer’s Point, California   Feifel, K. (2010) 

67 Maryland's Coast-Smart Communities Initiative   Hitt, J. (2010) 

68 Municipal Adaptations to Create Resilient Beach Communities in Southern 

Maine: The Coastal Hazard Resiliency Tools Project 

Gregg, R. M. (2010)  

69 New Jersey Climate Change Adaptation Using Community Plan Endorsements  Feifel, K. (2010)  

70 North Bay Climate Adaptation Initiative   Feifel, K. (2010) 

71 Oyster River Watershed Culvert Study   Gregg, R. M. (2010) 

72 Planning for Climate Change in the Province of Quebec  Gregg, R. M. (2012) 

73 Planning for Climate Change_ A Workshop for San Francisco Bay Area Planners   Gregg, R. M. (2010) 

74 Planning for Sea-level rise and Storm Surge in Worcester County, Maryland  Hitt, J. (2010)  

75 Planning for Sea-level rise in Olympia, Washington   Feifel, K. (2010) 

76 Planning for the Impacts of Sea-level rise and Climate Change in North Carolina  Kershner, J. (2010) 

77 PlaNYC_ A Comprehensive Sustainability Plan for New York City   Feifel, K. (2010) 

78 Preparing for a Changing Climate in Missoula County and Western Montana   Alban, J. and 

Rasker, R. (2012) 

79 Preparing for Climate Change and Sea-level rise in New Brunswick Kershner, J. (2010)  

80 Preparing for Climate Change in California’s East Bay Municipal Utility District   Gregg, R. M. (2010) 

81 Preparing for Climate Change in the Great Lakes Region   Feifel, K. (2010) 

82 Preparing for Climate Change in the Upper Willamette River Basin  Kershner, J. (2010) 

83 Preparing for Sea-level rise on Graham Island, British Columbia  Kershner, J. (2010) 

84 Preparing for the Changing Climate_ a Northeast-Focused Needs Assessment    Stephenson, R. 

(2011) 

85 Preparing for the Impacts of Sea-level rise on the California Coast   Kershner, J. (2010) 

86 Project Clean Lake: Updating Cleveland’s Sewer Systems to Reduce Stormwater 

Overflows 

 Feifel, K. M. (2012) 

87 Québec City’s Environmental Services Adaptation Plan  Feifel, K. M. (2012) 

88 Rein in the Runoff: Michigan’s Spring Lake Stormwater Management Project  Feifel, K. M. (2012) 

89 Restoration and Managed Retreat of Pacifica State Beach  Kershner, J. (2010) 

90 Sacramento County, California Climate Change Action Plan   Score, A. (2011) 

91 Salt Marsh Vulnerability Assessment and Adaptation Plan Development  in San 

Francisco Bay, California  

 Gregg, R. M. (2010) 

92 San Francisco Bay Conservation and Development Commission's Climate 

Change Planning Program   

 Feifel, K. (2010) 

93 Scenic Hudson Land Trust: Prioritizing Lands in Light of Sea-level rise  Feifel, K. (2010) 

94 Sea-level rise Adaptation Report for the City of Wilmington, North Carolina   Feifel, K. (2010) 

95 Sea-level rise Guidance for Somerset County, Maryland  Hitt, J. (2010) 

96 Sea-level rise in the Gulf of Mexico_ Awareness and Action Tools for the 

Climate Outreach Community of Practice  

 Gregg, R. M. (2010) 

97 South Bay Salt Pond Restoration Project   Kershner, J. (2010) 
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98 Southeast Florida Regional Climate Change Compact   Adams, S. and 

Gregg, R. M. (2010) 

99 Survey Says. . . Great Lakes Coastal Communities Choose Climate Adaptation!  Kahl, K. and Stirratt, 

H. (2012)  

100 Sustainable Development Initiatives in the Polar Town of Iqaluit, Canada   Feifel, K. (2010) 

101 The City of Toronto’s Climate Change Adaptation Strategy: From Development 

to Implementation 

 Feifel, K. M. (2012) 

102 The Climate Change Response Framework: Supporting Climate-Smart 

Conservation and Forest Management in the Great Lakes Region 

Kershner, J. M. 

(2012)  

103 The Michigan Climate Coalition: Enhancing Networking and Collaboration, 

Communication, and Action Around Climate Change in Michigan 

 Kershner, J. M. 

(2012) 

104 The National StormSmart Coasts Network_ Linking Coastal Decision Makers to 

Resources  

 Gregg, R. M. (2010) 

105 The Oregon Climate Change Adaptation Framework  Kershner, J. (2010) 

106 The San Diego Foundation's Climate Initiative Program   Feifel, K. (2010) 

107 The Sonoran Desert Conservation Plan_ A Landscape-scale Conservation 

Initiative in Pima County, Arizona  

 Powell, B. and R.M. 

Gregg (2010) 

108 U.S. Environmental Protection Agency’s Climate Ready Estuaries Program   Gregg, R. M. (2010) 

109 Understanding and Modeling the Impacts of Human Behavior and Climate 

Change on the Maumee River Watershed, Ohio 

 Kershner, J. M. 

(2012) 

110 Updating the Illinois Wildlife Action Plan_ Using a Climate Change 

Vulnerability Assessment to Inform Conservation Priorities  

 Kahl, K. et al. (2011) 

111 Using Ecosystem-Based Management as an Adaptation Strategy in the  Pacific 

Fishery Management Council  

 Gregg, R. M. (2010) 

112 Using Green Infrastructure to Prevent Sewage Overflows in Detroit  Kershner, J. M. 

(2012) 

113 Using Outreach to Catalyze Small Changes in Climate Change Adaptation on 

Bald Head Island, North Carolina  

 Feifel, K. and Gregg, 

R. M. (2010) 

114 Using Robust Decision-making as a Tool for Water Resources Planning  in 

Southern California   

Feifel, K. (2010)  

115 Vulnerability of King County, Washington Wastewater Treatment Facilities to 

Sea-level rise  

 Feifel, K. (2010) 

116 Vulnerable Mediterranean Climate Coastal Habitats in Bahía de San Quintín, 

Baja California, México  

 Score, A. (2010) 

117 Water Utility Climate Alliance     Feifel, K. and Gregg, 

R. M. (2010) 

118 Weather–Extreme Trends (WET): The Minnehaha Creek Watershed Stormwater 

Adaptation Study 

 Hitt, J. L. (2012) 

119 What Could Changing Great Lakes Water Levels Mean for our Coastal 

Communities? 

 Kahl, K. and Stirratt, 

H. (2012) 

120 Whitehorse Community Climate Change Adaptation Plan  Feifel, K. and Gregg, 

R.M. (2011)  

121 Wisconsin Initiative on Climate Change Impacts: A Bottom-Up Approach to 

Developing Climate Change Adaptation Strategies 

 Gregg, R. M. (2012) 
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Appendix C - Variable coding labels 

Code Variable label 

NIK Access to new information & knowledge 

ECB Anticipation of economic benefits 

MAC Perceived threats to resource management & conservation 

HSS Support to human or social systems 

FEO Perceived funding & other economic opportunities 

ECE Evidence of climate change effects 

GEN General concerns 

PAR Policy & regulations 

AC Enhancing adaptive capacity 

MC Natural resources management & conservation 

IPD Infrastructure planning & development 

GP Governance & policy 
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Appendix D - Binary data for analysis 

PID NIK ECB MAC HSS FEO ECE PAR GEN AC MC IPD GP 

1 0 1 0 0 1 0 0 0 1 1 0 1 

2 1 1 1 1 0 0 1 1 1 1 0 1 

3 0 0 0 0 0 0 1 0 1 1 1 1 

4 0 1 1 1 0 1 0 0 1 0 0 0 

5 0 0 1 0 0 1 0 0 1 1 0 1 

6 0 0 1 1 0 1 0 0 1 1 1 1 

7 0 0 1 1 0 0 0 1 1 0 0 0 

8 0 0 0 1 0 0 0 0 1 0 1 0 

9 0 0 0 0 0 0 0 1 1 0 0 0 

10 0 0 1 1 0 0 0 1 1 0 0 0 

11 0 0 1 1 1 0 1 1 1 0 0 0 

12 0 0 0 0 0 1 0 1 1 1 1 0 

13 0 0 1 1 1 1 0 1 1 1 0 1 

14 0 1 1 0 1 1 0 1 1 1 0 0 

15 0 1 1 1 1 0 0 0 1 1 0 1 

16 0 0 0 0 0 0 0 0 1 0 0 1 

17 0 0 1 1 0 0 0 1 1 0 0 0 

18 0 1 0 1 0 0 0 0 0 1 0 1 

19 NS NS NS NS NS NS NS NS 1 1 1 1 

20 0 1 1 1 0 1 0 1 1 1 0 0 

21 0 1 1 1 0 0 1 0 1 1 1 0 

22 NS NS NS NS NS NS NS NS 0 1 0 0 

23 0 0 0 1 0 0 0 0 1 0 0 1 

24 NS NS NS NS NS NS NS NS 1 0 0 1 

25 NS NS NS NS NS NS NS NS 1 0 1 1 

26 0 0 0 1 0 1 0 0 0 0 1 1 

27 0 1 0 1 1 0 0 1 1 0 0 0 

28 NS NS NS NS NS NS NS NS 1 1 1 1 

29 NS NS NS NS NS NS NS NS 1 0 0 1 

30 0 0 1 1 0 0 0 0 1 0 0 0 

31 0 1 0 1 1 0 0 0 1 1 1 0 

32 0 0 0 0 0 0 0 1 1 1 1 0 

33 0 1 0 1 1 0 0 1 1 1 1 1 

34 0 1 1 0 0 0 0 1 1 0 0 0 

35 0 0 0 1 0 0 0 0 1 0 1 0 
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36 0 0 1 0 1 0 1 0 0 1 0 0 

37 0 0 0 0 0 1 0 1 1 0 0 0 

38 0 0 1 0 1 0 0 0 1 0 0 1 

39 0 1 1 0 0 0 0 1 1 0 0 1 

40 0 0 1 0 1 0 0 0 1 1 0 0 

41 0 0 0 1 1 1 0 0 1 0 0 0 

42 0 1 1 1 0 0 1 0 1 0 0 1 

43 0 0 0 1 0 0 0 0 1 0 0 1 

44 0 0 1 1 0 0 0 0 1 0 0 1 

45 0 0 1 1 0 0 1 1 1 0 0 1 

46 NS NS NS NS NS NS NS NS 1 0 0 1 

47 0 0 1 1 0 0 0 0 1 1 0 0 

48 0 1 0 1 1 1 0 1 1 0 1 0 

49 NS NS NS NS NS NS NS NS 1 0 0 0 

50 NS NS NS NS NS NS NS NS 1 0 1 1 

51 0 0 1 1 0 0 0 0 1 0 1 1 

52 0 1 0 1 0 0 0 1 1 1 0 1 

53 0 1 1 1 0 0 1 1 1 1 1 1 

54 0 0 1 1 0 1 0 0 1 0 0 1 

55 0 1 1 1 0 1 1 0 1 0 1 0 

56 0 1 1 1 1 0 0 0 1 1 0 1 

57 0 1 1 1 1 0 0 0 1 1 0 0 

58 0 0 1 0 0 0 0 1 0 1 0 0 

59 0 0 1 1 1 0 0 0 1 0 0 1 

60 0 0 1 0 0 0 1 0 1 1 1 1 

61 0 0 1 1 0 0 0 1 1 1 0 0 

62 NS NS NS NS NS NS NS NS 1 0 1 1 

63 0 0 1 1 0 1 1 0 1 1 1 1 

64 NS NS NS NS NS NS NS NS 1 0 1 1 

65 0 1 1 1 0 0 1 0 0 1 1 0 

66 0 0 0 0 0 0 0 1 0 1 1 0 

67 0 1 1 1 0 1 1 1 1 0 1 0 

68 0 1 1 0 0 0 0 0 1 0 0 1 

69 NS NS NS NS NS NS NS NS 1 1 1 1 

70 0 0 1 1 0 0 0 1 1 1 0 0 

71 0 0 1 1 1 0 0 0 1 1 1 0 

72 NS NS NS NS NS NS NS NS 1 0 0 1 

73 0 0 1 1 1 0 0 0 1 0 1 0 

74 0 1 1 1 0 0 1 0 1 1 1 0 

75 0 0 0 1 0 0 0 1 0 0 1 0 
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76 NS NS NS NS NS NS NS NS 1 0 0 1 

77 0 0 0 1 0 0 1 0 0 0 1 0 

78 1 1 1 1 1 1 0 1 1 0 0 0 

79 0 0 0 1 1 0 0 1 1 0 0 1 

80 0 0 0 1 0 0 0 0 1 1 1 0 

81 0 0 1 0 0 0 0 0 1 0 0 0 

82 0 0 1 1 0 0 0 0 1 1 1 0 

83 0 0 0 1 1 0 0 1 1 0 0 1 

84 0 0 1 1 0 1 0 0 1 0 0 1 

85 0 0 1 1 0 1 0 1 1 1 1 0 

86 NS NS NS NS NS NS NS NS 0 1 1 1 

87 1 0 1 1 0 0 0 0 1 0 0 1 

88 NS NS NS NS NS NS NS NS 1 0 1 0 

89 0 0 1 1 1 0 0 0 1 1 1 0 

90 0 0 0 0 0 0 1 0 0 1 0 1 

91 0 0 1 1 0 0 0 0 1 0 0 1 

92 0 1 1 1 0 0 0 1 1 1 1 1 

93 0 0 1 0 1 0 0 0 1 1 0 0 

94 0 1 1 0 0 0 0 0 1 1 0 0 

95 0 1 1 1 1 1 1 1 1 1 1 0 

96 0 0 0 1 0 0 0 0 1 0 0 0 

97 NS NS NS NS NS NS NS NS 1 1 1 1 

98 0 1 1 1 0 1 0 1 1 1 1 1 

99 NS NS NS NS NS NS NS NS 1 0 0 0 

100 0 0 0 1 0 0 0 1 1 0 1 1 

101 NS NS NS NS NS NS NS NS 1 0 0 1 

102 NS NS NS NS NS NS NS NS 1 0 0 0 

103 NS NS NS NS NS NS NS NS 1 0 0 0 

104 0 1 1 1 0 0 0 0 1 0 0 0 

105 0 1 1 1 0 0 0 1 1 1 0 1 

106 NS NS NS NS NS NS NS NS 1 0 1 0 

107 0 0 1 0 0 0 0 1 0 1 1 1 

108 0 0 1 0 0 0 0 0 1 1 1 1 

109 NS NS NS NS NS NS NS NS 1 1 0 0 

110 1 0 1 0 0 0 1 1 1 1 0 1 

111 0 1 1 1 0 0 1 1 1 1 0 0 

112 NS NS NS NS NS NS NS NS 1 0 1 0 

113 0 0 1 1 0 0 0 0 1 0 0 0 

114 0 0 0 1 0 0 0 0 1 0 1 1 

115 0 0 0 1 0 0 0 0 1 0 1 0 
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116 0 1 1 1 0 0 0 1 1 1 0 1 

117 0 0 0 1 0 0 0 1 1 0 1 1 

118 NS NS NS NS NS NS NS NS 1 0 1 1 

119 NS NS NS NS NS NS NS NS 1 0 0 0 

120 0 0 0 0 0 1 0 1 1 0 0 1 

121 NS NS NS NS NS NS NS NS 1 0 0 1 

Notes: 

‘1’ = Presence 

‘0’ = Absence 

‘NS’ = Not Stated 
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Appendix E - Bivariate analysis – cross tabulation results  

This appendix provides the SPSS output on Chi-square (X2) statistics (Phi coefficient and 

Cramer’s V) analyses signifying the statistical strength of association between each the 

independent variables (driving factors motivating adaptation planning initiatives) and the 

dependent variables (emerging adaptation response options) at 5 percent (p = 0.05) or 10 percent 

(p = 0.1) significance levels. 

 

Crosstabs 

Notes 

Output Created 09-MAR-2014 18:11:59 

Comments  

Input Data C:\Users\phil\Desktop\CS_DataAnalysi

s\CSAanalysis\SPSS_data\CSA1.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data 

File 
121 

Missing Value Handling Definition of Missing User-defined missing values are treated 

as missing. 

Cases Used Statistics for each table are based on all 

the cases with valid data in the specified 

range(s) for all variables in each table. 

Syntax CROSSTABS 

  /TABLES=AC MC IPD GP BY NIK 

ECB MAC HSS FEO ECE PAR GEN 

  /FORMAT=AVALUE TABLES 

  /STATISTICS=CHISQ PHI 

LAMBDA 

  /CELLS=COUNT ROW COLUMN 

TOTAL SRESID 

  /COUNT ROUND CELL. 

Resources Processor Time 00:00:00.31 

Elapsed Time 00:00:05.65 

Dimensions Requested 2 

Cells Available 131029 
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Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

AC * NIK 94 77.7% 27 22.3% 121 100.0% 

AC * ECB 94 77.7% 27 22.3% 121 100.0% 

AC * MAC 94 77.7% 27 22.3% 121 100.0% 

AC * HSS 94 77.7% 27 22.3% 121 100.0% 

AC * FEO 94 77.7% 27 22.3% 121 100.0% 

AC * ECE 94 77.7% 27 22.3% 121 100.0% 

AC * PAR 94 77.7% 27 22.3% 121 100.0% 

AC * GEN 94 77.7% 27 22.3% 121 100.0% 

MC * NIK 94 77.7% 27 22.3% 121 100.0% 

MC * ECB 94 77.7% 27 22.3% 121 100.0% 

MC * MAC 94 77.7% 27 22.3% 121 100.0% 

MC * HSS 94 77.7% 27 22.3% 121 100.0% 

MC * FEO 94 77.7% 27 22.3% 121 100.0% 

MC * ECE 94 77.7% 27 22.3% 121 100.0% 

MC * PAR 94 77.7% 27 22.3% 121 100.0% 

MC * GEN 94 77.7% 27 22.3% 121 100.0% 

IPD * NIK 94 77.7% 27 22.3% 121 100.0% 

IPD * ECB 94 77.7% 27 22.3% 121 100.0% 

IPD * MAC 94 77.7% 27 22.3% 121 100.0% 

IPD * HSS 94 77.7% 27 22.3% 121 100.0% 

IPD * FEO 94 77.7% 27 22.3% 121 100.0% 

IPD * ECE 94 77.7% 27 22.3% 121 100.0% 

IPD * PAR 94 77.7% 27 22.3% 121 100.0% 

IPD * GEN 94 77.7% 27 22.3% 121 100.0% 

GP * NIK 94 77.7% 27 22.3% 121 100.0% 

GP * ECB 94 77.7% 27 22.3% 121 100.0% 

GP * MAC 94 77.7% 27 22.3% 121 100.0% 

GP * HSS 94 77.7% 27 22.3% 121 100.0% 

GP * FEO 94 77.7% 27 22.3% 121 100.0% 

GP * ECE 94 77.7% 27 22.3% 121 100.0% 

GP * PAR 94 77.7% 27 22.3% 121 100.0% 

GP * GEN 94 77.7% 27 22.3% 121 100.0% 
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AC * NIK 

 

Crosstab 

 

NIK 

Total Absence Presence 

AC Absence Count 10 0 10 

% within AC 100.0% 0.0% 100.0% 

% within NIK 11.1% 0.0% 10.6% 

% of Total 10.6% 0.0% 10.6% 

Std. Residual .1 -.7  

Presence Count 80 4 84 

% within AC 95.2% 4.8% 100.0% 

% within NIK 88.9% 100.0% 89.4% 

% of Total 85.1% 4.3% 89.4% 

Std. Residual .0 .2  

Total Count 90 4 94 

% within AC 95.7% 4.3% 100.0% 

% within NIK 100.0% 100.0% 100.0% 

% of Total 95.7% 4.3% 100.0% 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square .497a 1 .481   

Continuity Correctionb .000 1 1.000   

Likelihood Ratio .921 1 .337   

Fisher's Exact Test    1.000 .633 

Linear-by-Linear Association .492 1 .483   

N of Valid Cases 94     

 

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .43. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

AC Dependent .000 .000 

NIK Dependent .000 .000 

Goodman and Kruskal tau AC Dependent .005 .002 

NIK Dependent .005 .003 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

AC Dependent .b .b 

NIK Dependent .b .b 

Goodman and Kruskal tau AC Dependent  .483c 

NIK Dependent  .483c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .073 .481 

Cramer's V .073 .481 

N of Valid Cases 94  
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AC * ECB 

 

Crosstab 

 

ECB 

Total Absence Presence 

AC Absence Count 8 2 10 

% within AC 80.0% 20.0% 100.0% 

% within ECB 13.1% 6.1% 10.6% 

% of Total 8.5% 2.1% 10.6% 

Std. Residual .6 -.8  

Presence Count 53 31 84 

% within AC 63.1% 36.9% 100.0% 

% within ECB 86.9% 93.9% 89.4% 

% of Total 56.4% 33.0% 89.4% 

Std. Residual -.2 .3  

Total Count 61 33 94 

% within AC 64.9% 35.1% 100.0% 

% within ECB 100.0% 100.0% 100.0% 

% of Total 64.9% 35.1% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 1.121a 1 .290   

Continuity Correctionb .502 1 .479   

Likelihood Ratio 1.216 1 .270   

Fisher's Exact Test    .485 .245 

Linear-by-Linear Association 1.109 1 .292   

N of Valid Cases 94     

 

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 3.51. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

AC Dependent .000 .000 

ECB Dependent .000 .000 

Goodman and Kruskal tau AC Dependent .012 .019 

ECB Dependent .012 .019 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

AC Dependent .b .b 

ECB Dependent .b .b 

Goodman and Kruskal tau AC Dependent  .292c 

ECB Dependent  .292c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .109 .290 

Cramer's V .109 .290 

N of Valid Cases 94  
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AC * MAC 

 

 

Crosstab 

 

MAC 

Total Absence Presence 

AC Absence Count 6 4 10 

% within AC 60.0% 40.0% 100.0% 

% within MAC 18.8% 6.5% 10.6% 

% of Total 6.4% 4.3% 10.6% 

Std. Residual 1.4 -1.0  

Presence Count 26 58 84 

% within AC 31.0% 69.0% 100.0% 

% within MAC 81.3% 93.5% 89.4% 

% of Total 27.7% 61.7% 89.4% 

Std. Residual -.5 .3  

Total Count 32 62 94 

% within AC 34.0% 66.0% 100.0% 

% within MAC 100.0% 100.0% 100.0% 

% of Total 34.0% 66.0% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 3.358a 1 .067   

Continuity Correctionb 2.189 1 .139   

Likelihood Ratio 3.163 1 .075   

Fisher's Exact Test    .084 .072 

Linear-by-Linear Association 3.322 1 .068   

N of Valid Cases 94     

 

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 3.40. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .048 .073 

AC Dependent .000 .000 

MAC Dependent .063 .096 

Goodman and Kruskal tau AC Dependent .036 .041 

MAC Dependent .036 .040 

 

Directional Measures 

 Approx. Tb Approx. Sig. 

Nominal by Nominal Lambda Symmetric .634 .526 

AC Dependent .c .c 

MAC Dependent .634 .526 

Goodman and Kruskal tau AC Dependent  .068d 

MAC Dependent  .068d 

 

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 

c. Cannot be computed because the asymptotic standard error equals zero. 

d. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .189 .067 

Cramer's V .189 .067 

N of Valid Cases 94  
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AC * HSS 

 

 

Crosstab 

 

HSS 

Total Absence Presence 

AC Absence Count 5 5 10 

% within AC 50.0% 50.0% 100.0% 

% within HSS 19.2% 7.4% 10.6% 

% of Total 5.3% 5.3% 10.6% 

Std. Residual 1.3 -.8  

Presence Count 21 63 84 

% within AC 25.0% 75.0% 100.0% 

% within HSS 80.8% 92.6% 89.4% 

% of Total 22.3% 67.0% 89.4% 

Std. Residual -.5 .3  

Total Count 26 68 94 

% within AC 27.7% 72.3% 100.0% 

% within HSS 100.0% 100.0% 100.0% 

% of Total 27.7% 72.3% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 2.791a 1 .095   

Continuity Correctionb 1.682 1 .195   

Likelihood Ratio 2.530 1 .112   

Fisher's Exact Test    .133 .101 

Linear-by-Linear Association 2.762 1 .097   

N of Valid Cases 94     

 

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 2.77. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .088 

AC Dependent .000 .000 

HSS Dependent .000 .122 

Goodman and Kruskal tau AC Dependent .030 .040 

HSS Dependent .030 .039 

 

Directional Measures 

 Approx. Tb Approx. Sig. 

Nominal by Nominal Lambda Symmetric .000 1.000 

AC Dependent .c .c 

HSS Dependent .000 1.000 

Goodman and Kruskal tau AC Dependent  .097d 

HSS Dependent  .097d 

 

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 

c. Cannot be computed because the asymptotic standard error equals zero. 

d. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .172 .095 

Cramer's V .172 .095 

N of Valid Cases 94  
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AC * FEO 

 

 

Crosstab 

 

FEO 

Total Absence Presence 

AC Absence Count 9 1 10 

% within AC 90.0% 10.0% 100.0% 

% within FEO 12.9% 4.2% 10.6% 

% of Total 9.6% 1.1% 10.6% 

Std. Residual .6 -1.0  

Presence Count 61 23 84 

% within AC 72.6% 27.4% 100.0% 

% within FEO 87.1% 95.8% 89.4% 

% of Total 64.9% 24.5% 89.4% 

Std. Residual -.2 .3  

Total Count 70 24 94 

% within AC 74.5% 25.5% 100.0% 

% within FEO 100.0% 100.0% 100.0% 

% of Total 74.5% 25.5% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 1.420a 1 .233   

Continuity Correctionb .653 1 .419   

Likelihood Ratio 1.684 1 .194   

Fisher's Exact Test    .443 .217 

Linear-by-Linear Association 1.405 1 .236   

N of Valid Cases 94     

 

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 2.55. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

AC Dependent .000 .000 

FEO Dependent .000 .000 

Goodman and Kruskal tau AC Dependent .015 .019 

FEO Dependent .015 .018 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

AC Dependent .b .b 

FEO Dependent .b .b 

Goodman and Kruskal tau AC Dependent  .236c 

FEO Dependent  .236c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .123 .233 

Cramer's V .123 .233 

N of Valid Cases 94  
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AC * ECE 

 

 

Crosstab 

 

ECE 

Total Absence Presence 

AC Absence Count 9 1 10 

% within AC 90.0% 10.0% 100.0% 

% within ECE 12.3% 4.8% 10.6% 

% of Total 9.6% 1.1% 10.6% 

Std. Residual .4 -.8  

Presence Count 64 20 84 

% within AC 76.2% 23.8% 100.0% 

% within ECE 87.7% 95.2% 89.4% 

% of Total 68.1% 21.3% 89.4% 

Std. Residual -.2 .3  

Total Count 73 21 94 

% within AC 77.7% 22.3% 100.0% 

% within ECE 100.0% 100.0% 100.0% 

% of Total 77.7% 22.3% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square .982a 1 .322   

Continuity Correctionb .348 1 .556   

Likelihood Ratio 1.150 1 .284   

Fisher's Exact Test    .448 .294 

Linear-by-Linear Association .972 1 .324   

N of Valid Cases 94     

 

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 2.23. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

AC Dependent .000 .000 

ECE Dependent .000 .000 

Goodman and Kruskal tau AC Dependent .010 .016 

ECE Dependent .010 .016 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

AC Dependent .b .b 

ECE Dependent .b .b 

Goodman and Kruskal tau AC Dependent  .324c 

ECE Dependent  .324c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .102 .322 

Cramer's V .102 .322 

N of Valid Cases 94  
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AC * PAR 

 

 

Crosstab 

 

PAR 

Total Absence Presence 

AC Absence Count 6 4 10 

% within AC 60.0% 40.0% 100.0% 

% within PAR 8.0% 21.1% 10.6% 

% of Total 6.4% 4.3% 10.6% 

Std. Residual -.7 1.4  

Presence Count 69 15 84 

% within AC 82.1% 17.9% 100.0% 

% within PAR 92.0% 78.9% 89.4% 

% of Total 73.4% 16.0% 89.4% 

Std. Residual .2 -.5  

Total Count 75 19 94 

% within AC 79.8% 20.2% 100.0% 

% within PAR 100.0% 100.0% 100.0% 

% of Total 79.8% 20.2% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 2.717a 1 .099   

Continuity Correctionb 1.517 1 .218   

Likelihood Ratio 2.338 1 .126   

Fisher's Exact Test    .113 .113 

Linear-by-Linear Association 2.688 1 .101   

N of Valid Cases 94     

 

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 2.02. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

AC Dependent .000 .000 

PAR Dependent .000 .000 

Goodman and Kruskal tau AC Dependent .029 .042 

PAR Dependent .029 .041 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

AC Dependent .b .b 

PAR Dependent .b .b 

Goodman and Kruskal tau AC Dependent  .101c 

PAR Dependent  .101c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi -.170 .099 

Cramer's V .170 .099 

N of Valid Cases 94  
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AC * GEN 

 

 

Crosstab 

 

GEN 

Total Absence Presence 

AC Absence Count 6 4 10 

% within AC 60.0% 40.0% 100.0% 

% within GEN 11.3% 9.8% 10.6% 

% of Total 6.4% 4.3% 10.6% 

Std. Residual .2 -.2  

Presence Count 47 37 84 

% within AC 56.0% 44.0% 100.0% 

% within GEN 88.7% 90.2% 89.4% 

% of Total 50.0% 39.4% 89.4% 

Std. Residual -.1 .1  

Total Count 53 41 94 

% within AC 56.4% 43.6% 100.0% 

% within GEN 100.0% 100.0% 100.0% 

% of Total 56.4% 43.6% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square .060a 1 .807   

Continuity Correctionb .000 1 1.000   

Likelihood Ratio .060 1 .807   

Fisher's Exact Test    1.000 .542 

Linear-by-Linear Association .059 1 .808   

N of Valid Cases 94     

 

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 4.36. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

AC Dependent .000 .000 

GEN Dependent .000 .000 

Goodman and Kruskal tau AC Dependent .001 .005 

GEN Dependent .001 .005 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

AC Dependent .b .b 

GEN Dependent .b .b 

Goodman and Kruskal tau AC Dependent  .808c 

GEN Dependent  .808c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .025 .807 

Cramer's V .025 .807 

N of Valid Cases 94  
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MC * NIK 

 

 

Crosstab 

 

NIK 

Total Absence Presence 

MC Absence Count 45 2 47 

% within MC 95.7% 4.3% 100.0% 

% within NIK 50.0% 50.0% 50.0% 

% of Total 47.9% 2.1% 50.0% 

Std. Residual .0 .0  

Presence Count 45 2 47 

% within MC 95.7% 4.3% 100.0% 

% within NIK 50.0% 50.0% 50.0% 

% of Total 47.9% 2.1% 50.0% 

Std. Residual .0 .0  

Total Count 90 4 94 

% within MC 95.7% 4.3% 100.0% 

% within NIK 100.0% 100.0% 100.0% 

% of Total 95.7% 4.3% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square .000a 1 1.000   

Continuity Correctionb .000 1 1.000   

Likelihood Ratio .000 1 1.000   

Fisher's Exact Test    1.000 .692 

Linear-by-Linear Association .000 1 1.000   

N of Valid Cases 94     

 

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.00. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

MC Dependent .000 .000 

NIK Dependent .000 .000 

Goodman and Kruskal tau MC Dependent .000 .000 

NIK Dependent .000 .000 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

MC Dependent .b .b 

NIK Dependent .b .b 

Goodman and Kruskal tau MC Dependent  1.000c 

NIK Dependent  1.000c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .000 1.000 

Cramer's V .000 1.000 

N of Valid Cases 94  
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MC * ECB 

 

 

Crosstab 

 

ECB 

Total Absence Presence 

MC Absence Count 36 11 47 

% within MC 76.6% 23.4% 100.0% 

% within ECB 59.0% 33.3% 50.0% 

% of Total 38.3% 11.7% 50.0% 

Std. Residual 1.0 -1.4  

Presence Count 25 22 47 

% within MC 53.2% 46.8% 100.0% 

% within ECB 41.0% 66.7% 50.0% 

% of Total 26.6% 23.4% 50.0% 

Std. Residual -1.0 1.4  

Total Count 61 33 94 

% within MC 64.9% 35.1% 100.0% 

% within ECB 100.0% 100.0% 100.0% 

% of Total 64.9% 35.1% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 5.650a 1 .017   

Continuity Correctionb 4.670 1 .031   

Likelihood Ratio 5.732 1 .017   

Fisher's Exact Test    .030 .015 

Linear-by-Linear Association 5.590 1 .018   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 16.50. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .138 .064 

MC Dependent .234 .107 

ECB Dependent .000 .000 

Goodman and Kruskal tau MC Dependent .060 .048 

ECB Dependent .060 .049 

 

Directional Measures 

 Approx. Tb Approx. Sig. 

Nominal by Nominal Lambda Symmetric 1.953 .051 

MC Dependent 1.953 .051 

ECB Dependent .c .c 

Goodman and Kruskal tau MC Dependent  .018d 

ECB Dependent  .018d 

 

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 

c. Cannot be computed because the asymptotic standard error equals zero. 

d. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .245 .017 

Cramer's V .245 .017 

N of Valid Cases 94  
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MC * MAC 

 

 

Crosstab 

 

MAC 

Total Absence Presence 

MC Absence Count 21 26 47 

% within MC 44.7% 55.3% 100.0% 

% within MAC 65.6% 41.9% 50.0% 

% of Total 22.3% 27.7% 50.0% 

Std. Residual 1.3 -.9  

Presence Count 11 36 47 

% within MC 23.4% 76.6% 100.0% 

% within MAC 34.4% 58.1% 50.0% 

% of Total 11.7% 38.3% 50.0% 

Std. Residual -1.3 .9  

Total Count 32 62 94 

% within MC 34.0% 66.0% 100.0% 

% within MAC 100.0% 100.0% 100.0% 

% of Total 34.0% 66.0% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 4.738a 1 .030   

Continuity Correctionb 3.838 1 .050   

Likelihood Ratio 4.798 1 .028   

Fisher's Exact Test    .049 .025 

Linear-by-Linear Association 4.688 1 .030   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 16.00. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .127 .093 

MC Dependent .213 .149 

MAC Dependent .000 .000 

Goodman and Kruskal tau MC Dependent .050 .045 

MAC Dependent .050 .045 

 

Directional Measures 

 Approx. Tb Approx. Sig. 

Nominal by Nominal Lambda Symmetric 1.281 .200 

MC Dependent 1.281 .200 

MAC Dependent .c .c 

Goodman and Kruskal tau MC Dependent  .030d 

MAC Dependent  .030d 

 

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 

c. Cannot be computed because the asymptotic standard error equals zero. 

d. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .225 .030 

Cramer's V .225 .030 

N of Valid Cases 94  
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MC * HSS 

 

 

 

Crosstab 

 

HSS 

Total Absence Presence 

MC Absence Count 9 38 47 

% within MC 19.1% 80.9% 100.0% 

% within HSS 34.6% 55.9% 50.0% 

% of Total 9.6% 40.4% 50.0% 

Std. Residual -1.1 .7  

Presence Count 17 30 47 

% within MC 36.2% 63.8% 100.0% 

% within HSS 65.4% 44.1% 50.0% 

% of Total 18.1% 31.9% 50.0% 

Std. Residual 1.1 -.7  

Total Count 26 68 94 

% within MC 27.7% 72.3% 100.0% 

% within HSS 100.0% 100.0% 100.0% 

% of Total 27.7% 72.3% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 3.403a 1 .065   

Continuity Correctionb 2.605 1 .107   

Likelihood Ratio 3.445 1 .063   

Fisher's Exact Test    .106 .053 

Linear-by-Linear Association 3.367 1 .067   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 13.00. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .110 .064 

MC Dependent .170 .099 

HSS Dependent .000 .000 

Goodman and Kruskal tau MC Dependent .036 .038 

HSS Dependent .036 .038 

 

Directional Measures 

 Approx. Tb Approx. Sig. 

Nominal by Nominal Lambda Symmetric 1.590 .112 

MC Dependent 1.590 .112 

HSS Dependent .c .c 

Goodman and Kruskal tau MC Dependent  .067d 

HSS Dependent  .067d 

 

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 

c. Cannot be computed because the asymptotic standard error equals zero. 

d. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi -.190 .065 

Cramer's V .190 .065 

N of Valid Cases 94  
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MC * FEO 

 

 

 

Crosstab 

 

FEO 

Total Absence Presence 

MC Absence Count 37 10 47 

% within MC 78.7% 21.3% 100.0% 

% within FEO 52.9% 41.7% 50.0% 

% of Total 39.4% 10.6% 50.0% 

Std. Residual .3 -.6  

Presence Count 33 14 47 

% within MC 70.2% 29.8% 100.0% 

% within FEO 47.1% 58.3% 50.0% 

% of Total 35.1% 14.9% 50.0% 

Std. Residual -.3 .6  

Total Count 70 24 94 

% within MC 74.5% 25.5% 100.0% 

% within FEO 100.0% 100.0% 100.0% 

% of Total 74.5% 25.5% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square .895a 1 .344   

Continuity Correctionb .504 1 .478   

Likelihood Ratio .898 1 .343   

Fisher's Exact Test    .478 .239 

Linear-by-Linear Association .886 1 .347   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 12.00. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .056 .066 

MC Dependent .085 .100 

FEO Dependent .000 .000 

Goodman and Kruskal tau MC Dependent .010 .020 

FEO Dependent .010 .020 

 

Directional Measures 

 Approx. Tb Approx. Sig. 

Nominal by Nominal Lambda Symmetric .819 .413 

MC Dependent .819 .413 

FEO Dependent .c .c 

Goodman and Kruskal tau MC Dependent  .347d 

FEO Dependent  .347d 

 

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 

c. Cannot be computed because the asymptotic standard error equals zero. 

d. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .098 .344 

Cramer's V .098 .344 

N of Valid Cases 94  
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MC * ECE 

 

 

 

Crosstab 

 

ECE 

Total Absence Presence 

MC Absence Count 36 11 47 

% within MC 76.6% 23.4% 100.0% 

% within ECE 49.3% 52.4% 50.0% 

% of Total 38.3% 11.7% 50.0% 

Std. Residual -.1 .2  

Presence Count 37 10 47 

% within MC 78.7% 21.3% 100.0% 

% within ECE 50.7% 47.6% 50.0% 

% of Total 39.4% 10.6% 50.0% 

Std. Residual .1 -.2  

Total Count 73 21 94 

% within MC 77.7% 22.3% 100.0% 

% within ECE 100.0% 100.0% 100.0% 

% of Total 77.7% 22.3% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square .061a 1 .804   

Continuity Correctionb .000 1 1.000   

Likelihood Ratio .061 1 .804   

Fisher's Exact Test    1.000 .500 

Linear-by-Linear Association .061 1 .805   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 10.50. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .015 .125 

MC Dependent .021 .180 

ECE Dependent .000 .000 

Goodman and Kruskal tau MC Dependent .001 .005 

ECE Dependent .001 .005 

 

Directional Measures 

 Approx. Tb Approx. Sig. 

Nominal by Nominal Lambda Symmetric .117 .907 

MC Dependent .117 .907 

ECE Dependent .c .c 

Goodman and Kruskal tau MC Dependent  .805d 

ECE Dependent  .805d 

 

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 

c. Cannot be computed because the asymptotic standard error equals zero. 

d. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi -.026 .804 

Cramer's V .026 .804 

N of Valid Cases 94  
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MC * PAR 

 

 

 

Crosstab 

 

PAR 

Total Absence Presence 

MC Absence Count 41 6 47 

% within MC 87.2% 12.8% 100.0% 

% within PAR 54.7% 31.6% 50.0% 

% of Total 43.6% 6.4% 50.0% 

Std. Residual .6 -1.1  

Presence Count 34 13 47 

% within MC 72.3% 27.7% 100.0% 

% within PAR 45.3% 68.4% 50.0% 

% of Total 36.2% 13.8% 50.0% 

Std. Residual -.6 1.1  

Total Count 75 19 94 

% within MC 79.8% 20.2% 100.0% 

% within PAR 100.0% 100.0% 100.0% 

% of Total 79.8% 20.2% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 3.232a 1 .072   

Continuity Correctionb 2.375 1 .123   

Likelihood Ratio 3.295 1 .069   

Fisher's Exact Test    .122 .061 

Linear-by-Linear Association 3.198 1 .074   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 9.50. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .106 .060 

MC Dependent .149 .086 

PAR Dependent .000 .000 

Goodman and Kruskal tau MC Dependent .034 .036 

PAR Dependent .034 .036 

 

Directional Measures 

 Approx. Tb Approx. Sig. 

Nominal by Nominal Lambda Symmetric 1.628 .103 

MC Dependent 1.628 .103 

PAR Dependent .c .c 

Goodman and Kruskal tau MC Dependent  .074d 

PAR Dependent  .074d 

 

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 

c. Cannot be computed because the asymptotic standard error equals zero. 

d. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .185 .072 

Cramer's V .185 .072 

N of Valid Cases 94  
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MC * GEN 

 

 

 

Crosstab 

 

GEN 

Total Absence Presence 

MC Absence Count 28 19 47 

% within MC 59.6% 40.4% 100.0% 

% within GEN 52.8% 46.3% 50.0% 

% of Total 29.8% 20.2% 50.0% 

Std. Residual .3 -.3  

Presence Count 25 22 47 

% within MC 53.2% 46.8% 100.0% 

% within GEN 47.2% 53.7% 50.0% 

% of Total 26.6% 23.4% 50.0% 

Std. Residual -.3 .3  

Total Count 53 41 94 

% within MC 56.4% 43.6% 100.0% 

% within GEN 100.0% 100.0% 100.0% 

% of Total 56.4% 43.6% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square .389a 1 .533   

Continuity Correctionb .173 1 .677   

Likelihood Ratio .390 1 .533   

Fisher's Exact Test    .678 .339 

Linear-by-Linear Association .385 1 .535   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 20.50. 

b. Computed only for a 2x2 table 



159 

 

 

 

 

Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .034 .071 

MC Dependent .064 .132 

GEN Dependent .000 .000 

Goodman and Kruskal tau MC Dependent .004 .013 

GEN Dependent .004 .013 

 

Directional Measures 

 Approx. Tb Approx. Sig. 

Nominal by Nominal Lambda Symmetric .469 .639 

MC Dependent .469 .639 

GEN Dependent .c .c 

Goodman and Kruskal tau MC Dependent  .535d 

GEN Dependent  .535d 

 

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 

c. Cannot be computed because the asymptotic standard error equals zero. 

d. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .064 .533 

Cramer's V .064 .533 

N of Valid Cases 94  
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IPD * NIK 

 

 

 

Crosstab 

 

NIK 

Total Absence Presence 

IPD Absence Count 53 4 57 

% within IPD 93.0% 7.0% 100.0% 

% within NIK 58.9% 100.0% 60.6% 

% of Total 56.4% 4.3% 60.6% 

Std. Residual -.2 1.0  

Presence Count 37 0 37 

% within IPD 100.0% 0.0% 100.0% 

% within NIK 41.1% 0.0% 39.4% 

% of Total 39.4% 0.0% 39.4% 

Std. Residual .3 -1.3  

Total Count 90 4 94 

% within IPD 95.7% 4.3% 100.0% 

% within NIK 100.0% 100.0% 100.0% 

% of Total 95.7% 4.3% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 2.712a 1 .100   

Continuity Correctionb 1.263 1 .261   

Likelihood Ratio 4.117 1 .042   

Fisher's Exact Test    .151 .130 

Linear-by-Linear Association 2.683 1 .101   

N of Valid Cases 94     

 

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.57. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

IPD Dependent .000 .000 

NIK Dependent .000 .000 

Goodman and Kruskal tau IPD Dependent .029 .006 

NIK Dependent .029 .015 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

IPD Dependent .b .b 

NIK Dependent .b .b 

Goodman and Kruskal tau IPD Dependent  .101c 

NIK Dependent  .101c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi -.170 .100 

Cramer's V .170 .100 

N of Valid Cases 94  
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IPD * ECB 

 

 

 

Crosstab 

 

ECB 

Total Absence Presence 

IPD Absence Count 36 21 57 

% within IPD 63.2% 36.8% 100.0% 

% within ECB 59.0% 63.6% 60.6% 

% of Total 38.3% 22.3% 60.6% 

Std. Residual -.2 .2  

Presence Count 25 12 37 

% within IPD 67.6% 32.4% 100.0% 

% within ECB 41.0% 36.4% 39.4% 

% of Total 26.6% 12.8% 39.4% 

Std. Residual .2 -.3  

Total Count 61 33 94 

% within IPD 64.9% 35.1% 100.0% 

% within ECB 100.0% 100.0% 100.0% 

% of Total 64.9% 35.1% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square .192a 1 .662   

Continuity Correctionb .047 1 .829   

Likelihood Ratio .192 1 .661   

Fisher's Exact Test    .825 .416 

Linear-by-Linear Association .189 1 .663   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 12.99. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

IPD Dependent .000 .000 

ECB Dependent .000 .000 

Goodman and Kruskal tau IPD Dependent .002 .009 

ECB Dependent .002 .009 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

IPD Dependent .b .b 

ECB Dependent .b .b 

Goodman and Kruskal tau IPD Dependent  .663c 

ECB Dependent  .663c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi -.045 .662 

Cramer's V .045 .662 

N of Valid Cases 94  
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IPD * MAC 

 

 

 

Crosstab 

 

MAC 

Total Absence Presence 

IPD Absence Count 15 42 57 

% within IPD 26.3% 73.7% 100.0% 

% within MAC 46.9% 67.7% 60.6% 

% of Total 16.0% 44.7% 60.6% 

Std. Residual -1.0 .7  

Presence Count 17 20 37 

% within IPD 45.9% 54.1% 100.0% 

% within MAC 53.1% 32.3% 39.4% 

% of Total 18.1% 21.3% 39.4% 

Std. Residual 1.2 -.9  

Total Count 32 62 94 

% within IPD 34.0% 66.0% 100.0% 

% within MAC 100.0% 100.0% 100.0% 

% of Total 34.0% 66.0% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 3.850a 1 .050   

Continuity Correctionb 3.026 1 .082   

Likelihood Ratio 3.816 1 .051   

Fisher's Exact Test    .074 .041 

Linear-by-Linear Association 3.809 1 .051   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 12.60. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .029 .081 

IPD Dependent .054 .149 

MAC Dependent .000 .000 

Goodman and Kruskal tau IPD Dependent .041 .042 

MAC Dependent .041 .042 

 

Directional Measures 

 Approx. Tb Approx. Sig. 

Nominal by Nominal Lambda Symmetric .354 .723 

IPD Dependent .354 .723 

MAC Dependent .c .c 

Goodman and Kruskal tau IPD Dependent  .051d 

MAC Dependent  .051d 

 

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 

c. Cannot be computed because the asymptotic standard error equals zero. 

d. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi -.202 .050 

Cramer's V .202 .050 

N of Valid Cases 94  
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IPD * HSS 

 

 

 

Crosstab 

 

HSS 

Total Absence Presence 

IPD Absence Count 19 38 57 

% within IPD 33.3% 66.7% 100.0% 

% within HSS 73.1% 55.9% 60.6% 

% of Total 20.2% 40.4% 60.6% 

Std. Residual .8 -.5  

Presence Count 7 30 37 

% within IPD 18.9% 81.1% 100.0% 

% within HSS 26.9% 44.1% 39.4% 

% of Total 7.4% 31.9% 39.4% 

Std. Residual -1.0 .6  

Total Count 26 68 94 

% within IPD 27.7% 72.3% 100.0% 

% within HSS 100.0% 100.0% 100.0% 

% of Total 27.7% 72.3% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 2.330a 1 .127   

Continuity Correctionb 1.665 1 .197   

Likelihood Ratio 2.409 1 .121   

Fisher's Exact Test    .160 .097 

Linear-by-Linear Association 2.305 1 .129   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 10.23. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

IPD Dependent .000 .000 

HSS Dependent .000 .000 

Goodman and Kruskal tau IPD Dependent .025 .030 

HSS Dependent .025 .030 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

IPD Dependent .b .b 

HSS Dependent .b .b 

Goodman and Kruskal tau IPD Dependent  .129c 

HSS Dependent  .129c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .157 .127 

Cramer's V .157 .127 

N of Valid Cases 94  
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IPD * FEO 

 

 

 

Crosstab 

 

FEO 

Total Absence Presence 

IPD Absence Count 40 17 57 

% within IPD 70.2% 29.8% 100.0% 

% within FEO 57.1% 70.8% 60.6% 

% of Total 42.6% 18.1% 60.6% 

Std. Residual -.4 .6  

Presence Count 30 7 37 

% within IPD 81.1% 18.9% 100.0% 

% within FEO 42.9% 29.2% 39.4% 

% of Total 31.9% 7.4% 39.4% 

Std. Residual .5 -.8  

Total Count 70 24 94 

% within IPD 74.5% 25.5% 100.0% 

% within FEO 100.0% 100.0% 100.0% 

% of Total 74.5% 25.5% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 1.403a 1 .236   

Continuity Correctionb .888 1 .346   

Likelihood Ratio 1.442 1 .230   

Fisher's Exact Test    .333 .173 

Linear-by-Linear Association 1.389 1 .239   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 9.45. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

IPD Dependent .000 .000 

FEO Dependent .000 .000 

Goodman and Kruskal tau IPD Dependent .015 .024 

FEO Dependent .015 .024 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

IPD Dependent .b .b 

FEO Dependent .b .b 

Goodman and Kruskal tau IPD Dependent  .239c 

FEO Dependent  .239c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi -.122 .236 

Cramer's V .122 .236 

N of Valid Cases 94  
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IPD * ECE 

 

 

 

Crosstab 

 

ECE 

Total Absence Presence 

IPD Absence Count 46 11 57 

% within IPD 80.7% 19.3% 100.0% 

% within ECE 63.0% 52.4% 60.6% 

% of Total 48.9% 11.7% 60.6% 

Std. Residual .3 -.5  

Presence Count 27 10 37 

% within IPD 73.0% 27.0% 100.0% 

% within ECE 37.0% 47.6% 39.4% 

% of Total 28.7% 10.6% 39.4% 

Std. Residual -.3 .6  

Total Count 73 21 94 

% within IPD 77.7% 22.3% 100.0% 

% within ECE 100.0% 100.0% 100.0% 

% of Total 77.7% 22.3% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square .772a 1 .379   

Continuity Correctionb .391 1 .532   

Likelihood Ratio .762 1 .383   

Fisher's Exact Test    .450 .264 

Linear-by-Linear Association .764 1 .382   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 8.27. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

IPD Dependent .000 .000 

ECE Dependent .000 .000 

Goodman and Kruskal tau IPD Dependent .008 .019 

ECE Dependent .008 .019 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

IPD Dependent .b .b 

ECE Dependent .b .b 

Goodman and Kruskal tau IPD Dependent  .382c 

ECE Dependent  .382c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .091 .379 

Cramer's V .091 .379 

N of Valid Cases 94  
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IPD * PAR 

 

 

 

Crosstab 

 

PAR 

Total Absence Presence 

IPD Absence Count 49 8 57 

% within IPD 86.0% 14.0% 100.0% 

% within PAR 65.3% 42.1% 60.6% 

% of Total 52.1% 8.5% 60.6% 

Std. Residual .5 -1.0  

Presence Count 26 11 37 

% within IPD 70.3% 29.7% 100.0% 

% within PAR 34.7% 57.9% 39.4% 

% of Total 27.7% 11.7% 39.4% 

Std. Residual -.6 1.3  

Total Count 75 19 94 

% within IPD 79.8% 20.2% 100.0% 

% within PAR 100.0% 100.0% 100.0% 

% of Total 79.8% 20.2% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 3.427a 1 .064   

Continuity Correctionb 2.523 1 .112   

Likelihood Ratio 3.356 1 .067   

Fisher's Exact Test    .073 .057 

Linear-by-Linear Association 3.390 1 .066   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 7.48. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .054 .075 

IPD Dependent .081 .113 

PAR Dependent .000 .000 

Goodman and Kruskal tau IPD Dependent .036 .040 

PAR Dependent .036 .040 

 

Directional Measures 

 Approx. Tb Approx. Sig. 

Nominal by Nominal Lambda Symmetric .690 .490 

IPD Dependent .690 .490 

PAR Dependent .c .c 

Goodman and Kruskal tau IPD Dependent  .066d 

PAR Dependent  .066d 

 

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 

c. Cannot be computed because the asymptotic standard error equals zero. 

d. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .191 .064 

Cramer's V .191 .064 

N of Valid Cases 94  
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IPD * GEN 

 

 

 

Crosstab 

 

GEN 

Total Absence Presence 

IPD Absence Count 31 26 57 

% within IPD 54.4% 45.6% 100.0% 

% within GEN 58.5% 63.4% 60.6% 

% of Total 33.0% 27.7% 60.6% 

Std. Residual -.2 .2  

Presence Count 22 15 37 

% within IPD 59.5% 40.5% 100.0% 

% within GEN 41.5% 36.6% 39.4% 

% of Total 23.4% 16.0% 39.4% 

Std. Residual .2 -.3  

Total Count 53 41 94 

% within IPD 56.4% 43.6% 100.0% 

% within GEN 100.0% 100.0% 100.0% 

% of Total 56.4% 43.6% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square .235a 1 .628   

Continuity Correctionb .074 1 .786   

Likelihood Ratio .235 1 .628   

Fisher's Exact Test    .675 .394 

Linear-by-Linear Association .232 1 .630   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 16.14. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

IPD Dependent .000 .000 

GEN Dependent .000 .000 

Goodman and Kruskal tau IPD Dependent .002 .010 

GEN Dependent .002 .010 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

IPD Dependent .b .b 

GEN Dependent .b .b 

Goodman and Kruskal tau IPD Dependent  .630c 

GEN Dependent  .630c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi -.050 .628 

Cramer's V .050 .628 

N of Valid Cases 94  
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GP * NIK 

 

 

 

Crosstab 

 

NIK 

Total Absence Presence 

GP Absence Count 49 1 50 

% within GP 98.0% 2.0% 100.0% 

% within NIK 54.4% 25.0% 53.2% 

% of Total 52.1% 1.1% 53.2% 

Std. Residual .2 -.8  

Presence Count 41 3 44 

% within GP 93.2% 6.8% 100.0% 

% within NIK 45.6% 75.0% 46.8% 

% of Total 43.6% 3.2% 46.8% 

Std. Residual -.2 .8  

Total Count 90 4 94 

% within GP 95.7% 4.3% 100.0% 

% within NIK 100.0% 100.0% 100.0% 

% of Total 95.7% 4.3% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 1.334a 1 .248   

Continuity Correctionb .413 1 .520   

Likelihood Ratio 1.375 1 .241   

Fisher's Exact Test    .337 .262 

Linear-by-Linear Association 1.319 1 .251   

N of Valid Cases 94     

 

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.87. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .042 .040 

GP Dependent .045 .044 

NIK Dependent .000 .000 

Goodman and Kruskal tau GP Dependent .014 .021 

NIK Dependent .014 .022 

 

Directional Measures 

 Approx. Tb Approx. Sig. 

Nominal by Nominal Lambda Symmetric 1.005 .315 

GP Dependent 1.005 .315 

NIK Dependent .c .c 

Goodman and Kruskal tau GP Dependent  .251d 

NIK Dependent  .251d 

 

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 

c. Cannot be computed because the asymptotic standard error equals zero. 

d. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .119 .248 

Cramer's V .119 .248 

N of Valid Cases 94  
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GP * ECB 

 

 

 

Crosstab 

 

ECB 

Total Absence Presence 

GP Absence Count 32 18 50 

% within GP 64.0% 36.0% 100.0% 

% within ECB 52.5% 54.5% 53.2% 

% of Total 34.0% 19.1% 53.2% 

Std. Residual -.1 .1  

Presence Count 29 15 44 

% within GP 65.9% 34.1% 100.0% 

% within ECB 47.5% 45.5% 46.8% 

% of Total 30.9% 16.0% 46.8% 

Std. Residual .1 -.1  

Total Count 61 33 94 

% within GP 64.9% 35.1% 100.0% 

% within ECB 100.0% 100.0% 100.0% 

% of Total 64.9% 35.1% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square .037a 1 .847   

Continuity Correctionb .000 1 1.000   

Likelihood Ratio .037 1 .847   

Fisher's Exact Test    1.000 .510 

Linear-by-Linear Association .037 1 .847   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 15.45. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

GP Dependent .000 .000 

ECB Dependent .000 .000 

Goodman and Kruskal tau GP Dependent .000 .004 

ECB Dependent .000 .004 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

GP Dependent .b .b 

ECB Dependent .b .b 

Goodman and Kruskal tau GP Dependent  .847c 

ECB Dependent  .847c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi -.020 .847 

Cramer's V .020 .847 

N of Valid Cases 94  
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GP * MAC 

 

 

 

Crosstab 

 

MAC 

Total Absence Presence 

GP Absence Count 16 34 50 

% within GP 32.0% 68.0% 100.0% 

% within MAC 50.0% 54.8% 53.2% 

% of Total 17.0% 36.2% 53.2% 

Std. Residual -.2 .2  

Presence Count 16 28 44 

% within GP 36.4% 63.6% 100.0% 

% within MAC 50.0% 45.2% 46.8% 

% of Total 17.0% 29.8% 46.8% 

Std. Residual .3 -.2  

Total Count 32 62 94 

% within GP 34.0% 66.0% 100.0% 

% within MAC 100.0% 100.0% 100.0% 

% of Total 34.0% 66.0% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square .198a 1 .656   

Continuity Correctionb .052 1 .820   

Likelihood Ratio .198 1 .656   

Fisher's Exact Test    .670 .410 

Linear-by-Linear Association .196 1 .658   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 14.98. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

GP Dependent .000 .000 

MAC Dependent .000 .000 

Goodman and Kruskal tau GP Dependent .002 .009 

MAC Dependent .002 .009 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

GP Dependent .b .b 

MAC Dependent .b .b 

Goodman and Kruskal tau GP Dependent  .658c 

MAC Dependent  .658c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi -.046 .656 

Cramer's V .046 .656 

N of Valid Cases 94  
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GP * HSS 

 

 

 

Crosstab 

 

HSS 

Total Absence Presence 

GP Absence Count 13 37 50 

% within GP 26.0% 74.0% 100.0% 

% within HSS 50.0% 54.4% 53.2% 

% of Total 13.8% 39.4% 53.2% 

Std. Residual -.2 .1  

Presence Count 13 31 44 

% within GP 29.5% 70.5% 100.0% 

% within HSS 50.0% 45.6% 46.8% 

% of Total 13.8% 33.0% 46.8% 

Std. Residual .2 -.1  

Total Count 26 68 94 

% within GP 27.7% 72.3% 100.0% 

% within HSS 100.0% 100.0% 100.0% 

% of Total 27.7% 72.3% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square .147a 1 .701   

Continuity Correctionb .023 1 .879   

Likelihood Ratio .147 1 .702   

Fisher's Exact Test    .818 .439 

Linear-by-Linear Association .145 1 .703   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 12.17. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

GP Dependent .000 .000 

HSS Dependent .000 .000 

Goodman and Kruskal tau GP Dependent .002 .008 

HSS Dependent .002 .008 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

GP Dependent .b .b 

HSS Dependent .b .b 

Goodman and Kruskal tau GP Dependent  .703c 

HSS Dependent  .703c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi -.040 .701 

Cramer's V .040 .701 

N of Valid Cases 94  
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GP * FEO 

 

 

 

Crosstab 

 

FEO 

Total Absence Presence 

GP Absence Count 35 15 50 

% within GP 70.0% 30.0% 100.0% 

% within FEO 50.0% 62.5% 53.2% 

% of Total 37.2% 16.0% 53.2% 

Std. Residual -.4 .6  

Presence Count 35 9 44 

% within GP 79.5% 20.5% 100.0% 

% within FEO 50.0% 37.5% 46.8% 

% of Total 37.2% 9.6% 46.8% 

Std. Residual .4 -.7  

Total Count 70 24 94 

% within GP 74.5% 25.5% 100.0% 

% within FEO 100.0% 100.0% 100.0% 

% of Total 74.5% 25.5% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 1.122a 1 .290   

Continuity Correctionb .676 1 .411   

Likelihood Ratio 1.133 1 .287   

Fisher's Exact Test    .347 .206 

Linear-by-Linear Association 1.110 1 .292   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 11.23. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

GP Dependent .000 .000 

FEO Dependent .000 .000 

Goodman and Kruskal tau GP Dependent .012 .022 

FEO Dependent .012 .022 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

GP Dependent .b .b 

FEO Dependent .b .b 

Goodman and Kruskal tau GP Dependent  .292c 

FEO Dependent  .292c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi -.109 .290 

Cramer's V .109 .290 

N of Valid Cases 94  
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GP * ECE 

 

 

 

Crosstab 

 

ECE 

Total Absence Presence 

GP Absence Count 38 12 50 

% within GP 76.0% 24.0% 100.0% 

% within ECE 52.1% 57.1% 53.2% 

% of Total 40.4% 12.8% 53.2% 

Std. Residual -.1 .2  

Presence Count 35 9 44 

% within GP 79.5% 20.5% 100.0% 

% within ECE 47.9% 42.9% 46.8% 

% of Total 37.2% 9.6% 46.8% 

Std. Residual .1 -.3  

Total Count 73 21 94 

% within GP 77.7% 22.3% 100.0% 

% within ECE 100.0% 100.0% 100.0% 

% of Total 77.7% 22.3% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square .170a 1 .680   

Continuity Correctionb .027 1 .870   

Likelihood Ratio .170 1 .680   

Fisher's Exact Test    .805 .436 

Linear-by-Linear Association .168 1 .682   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 9.83. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

GP Dependent .000 .000 

ECE Dependent .000 .000 

Goodman and Kruskal tau GP Dependent .002 .009 

ECE Dependent .002 .009 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

GP Dependent .b .b 

ECE Dependent .b .b 

Goodman and Kruskal tau GP Dependent  .682c 

ECE Dependent  .682c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi -.042 .680 

Cramer's V .042 .680 

N of Valid Cases 94  
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GP * PAR 

 

 

 

Crosstab 

 

PAR 

Total Absence Presence 

GP Absence Count 40 10 50 

% within GP 80.0% 20.0% 100.0% 

% within PAR 53.3% 52.6% 53.2% 

% of Total 42.6% 10.6% 53.2% 

Std. Residual .0 .0  

Presence Count 35 9 44 

% within GP 79.5% 20.5% 100.0% 

% within PAR 46.7% 47.4% 46.8% 

% of Total 37.2% 9.6% 46.8% 

Std. Residual .0 .0  

Total Count 75 19 94 

% within GP 79.8% 20.2% 100.0% 

% within PAR 100.0% 100.0% 100.0% 

% of Total 79.8% 20.2% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square .003a 1 .956   

Continuity Correctionb .000 1 1.000   

Likelihood Ratio .003 1 .956   

Fisher's Exact Test    1.000 .579 

Linear-by-Linear Association .003 1 .957   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 8.89. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

GP Dependent .000 .000 

PAR Dependent .000 .000 

Goodman and Kruskal tau GP Dependent .000 .001 

PAR Dependent .000 .001 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

GP Dependent .b .b 

PAR Dependent .b .b 

Goodman and Kruskal tau GP Dependent  .957c 

PAR Dependent  .957c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi .006 .956 

Cramer's V .006 .956 

N of Valid Cases 94  
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GP * GEN 

 

 

 

Crosstab 

 

GEN 

Total Absence Presence 

GP Absence Count 27 23 50 

% within GP 54.0% 46.0% 100.0% 

% within GEN 50.9% 56.1% 53.2% 

% of Total 28.7% 24.5% 53.2% 

Std. Residual -.2 .3  

Presence Count 26 18 44 

% within GP 59.1% 40.9% 100.0% 

% within GEN 49.1% 43.9% 46.8% 

% of Total 27.7% 19.1% 46.8% 

Std. Residual .2 -.3  

Total Count 53 41 94 

% within GP 56.4% 43.6% 100.0% 

% within GEN 100.0% 100.0% 100.0% 

% of Total 56.4% 43.6% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square .247a 1 .619   

Continuity Correctionb .083 1 .773   

Likelihood Ratio .247 1 .619   

Fisher's Exact Test    .680 .387 

Linear-by-Linear Association .244 1 .621   

N of Valid Cases 94     

 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 19.19. 

b. Computed only for a 2x2 table 
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Directional Measures 

 Value 

Asymp. Std. 

Errora 

Nominal by Nominal Lambda Symmetric .000 .000 

GP Dependent .000 .000 

GEN Dependent .000 .000 

Goodman and Kruskal tau GP Dependent .003 .011 

GEN Dependent .003 .011 

 

Directional Measures 

 Approx. T Approx. Sig. 

Nominal by Nominal Lambda Symmetric .b .b 

GP Dependent .b .b 

GEN Dependent .b .b 

Goodman and Kruskal tau GP Dependent  .621c 

GEN Dependent  .621c 

 

a. Not assuming the null hypothesis. 

b. Cannot be computed because the asymptotic standard error equals zero. 

c. Based on chi-square approximation 

 

 

Symmetric Measures 

 Value Approx. Sig. 

Nominal by Nominal Phi -.051 .619 

Cramer's V .051 .619 

N of Valid Cases 94  
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Appendix F - Bivariate analysis – collinearity diagnostics results  

This appendix provides the SPSS Collinearity diagnostics output--tolerance and variance 

inflation factor (VIF)--to determine which independent variables are highly correlated across 

case studies. 

 

Regression 

 

Notes 

Output Created 10-MAR-2014 01:22:45 

Comments  

Input Data C:\Users\phil\Desktop\CS_DataAnalysi

s\CSAanalysis\SPSS_data\CSA1.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data 

File 
121 

Missing Value Handling Definition of Missing User-defined missing values are treated 

as missing. 

Cases Used Statistics are based on cases with no 

missing values for any variable used. 

Syntax REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COLLIN TOL 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN 

  /DEPENDENT NIK 

  /METHOD=ENTER ECB MAC HSS 

FEO ECE PAR GEN. 

Resources Processor Time 00:00:00.02 

Elapsed Time 00:00:00.05 

Memory Required 6544 bytes 

Additional Memory Required 

for Residual Plots 
0 bytes 
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Variables Entered/Removeda 

Model 

Variables 

Entered 

Variables 

Removed Method 

1 GEN, PAR, 

HSS, FEO, ECE, 

MAC, ECBb 

. Enter 

a. Dependent Variable: NIK 

b. All requested variables entered. 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 ECB .863 1.159 

MAC .925 1.081 

HSS .970 1.031 

FEO .960 1.042 

ECE .968 1.033 

PAR .919 1.088 

GEN .941 1.062 

a. Dependent Variable: NIK 

 

Collinearity Diagnosticsa 

Model Dimension Eigenvalue 

Condition 

Index 

Variance Proportions 

(Constant) ECB MAC HSS FEO ECE PAR GEN 

1 1 4.400 1.000 .01 .02 .01 .01 .01 .01 .01 .01 

2 .885 2.230 .00 .01 .00 .00 .22 .08 .49 .01 

3 .756 2.413 .00 .02 .00 .00 .34 .54 .00 .05 

4 .592 2.727 .00 .00 .00 .01 .19 .36 .20 .32 

5 .516 2.921 .03 .63 .07 .07 .01 .01 .01 .06 

6 .461 3.091 .00 .30 .04 .04 .19 .00 .25 .39 

7 .285 3.931 .00 .00 .62 .40 .00 .00 .03 .01 

8 .106 6.433 .96 .02 .26 .48 .04 .00 .01 .14 

a. Dependent Variable: NIK 
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Regression 

 

 

Notes 

Output Created 10-MAR-2014 01:25:27 

Comments  

Input Data C:\Users\phil\Desktop\CS_DataAnalysi

s\CSAanalysis\SPSS_data\CSA1.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data 

File 
121 

Missing Value Handling Definition of Missing User-defined missing values are treated 

as missing. 

Cases Used Statistics are based on cases with no 

missing values for any variable used. 

Syntax REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COLLIN TOL 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN 

  /DEPENDENT ECB 

  /METHOD=ENTER MAC HSS FEO 

ECE PAR GEN NIK. 

Resources Processor Time 00:00:00.02 

Elapsed Time 00:00:00.03 

Memory Required 6544 bytes 

Additional Memory Required 

for Residual Plots 
0 bytes 
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Variables Entered/Removeda 

Model 

Variables 

Entered 

Variables 

Removed Method 

1 NIK, FEO, HSS, 

ECE, MAC, 

GEN, PARb 

. Enter 

a. Dependent Variable: ECB 

b. All requested variables entered. 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 MAC .935 1.069 

HSS .992 1.008 

FEO .983 1.017 

ECE .969 1.032 

PAR .932 1.073 

GEN .953 1.050 

NIK .940 1.064 

a. Dependent Variable: ECB 

 

Collinearity Diagnosticsa 

Model Dimension Eigenvalue 

Condition 

Index 

Variance Proportions 

(Constant) MAC HSS FEO ECE PAR GEN NIK 

1 1 3.993 1.000 .01 .01 .01 .02 .02 .01 .02 .01 

2 1.013 1.985 .00 .00 .00 .09 .04 .16 .00 .52 

3 .797 2.239 .00 .01 .00 .14 .02 .37 .02 .41 

4 .749 2.308 .00 .00 .00 .35 .54 .01 .05 .00 

5 .590 2.602 .01 .00 .02 .21 .37 .18 .30 .01 

6 .470 2.916 .01 .11 .08 .16 .00 .24 .47 .03 

7 .281 3.768 .00 .61 .42 .00 .00 .02 .02 .02 

8 .107 6.110 .97 .25 .46 .03 .00 .01 .13 .01 

a. Dependent Variable: ECB 
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Regression 

 

 

Notes 

Output Created 10-MAR-2014 01:26:43 

Comments  

Input Data C:\Users\phil\Desktop\CS_DataAnalysi

s\CSAanalysis\SPSS_data\CSA1.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data 

File 
121 

Missing Value Handling Definition of Missing User-defined missing values are treated 

as missing. 

Cases Used Statistics are based on cases with no 

missing values for any variable used. 

Syntax REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COLLIN TOL 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN 

  /DEPENDENT MAC 

  /METHOD=ENTER HSS FEO ECE 

PAR GEN NIK ECB. 

Resources Processor Time 00:00:00.02 

Elapsed Time 00:00:00.02 

Memory Required 6544 bytes 

Additional Memory Required 

for Residual Plots 
0 bytes 
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Variables Entered/Removeda 

Model 

Variables 

Entered 

Variables 

Removed Method 

1 ECB, NIK, ECE, 

FEO, HSS, 

GEN, PARb 

. Enter 

a. Dependent Variable: MAC 

b. All requested variables entered. 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 HSS .970 1.031 

FEO .960 1.042 

ECE .971 1.030 

PAR .921 1.086 

GEN .931 1.075 

NIK .956 1.046 

ECB .888 1.127 

a. Dependent Variable: MAC 

 

Collinearity Diagnosticsa 

Model Dimension Eigenvalue 

Condition 

Index 

Variance Proportions 

(Constant) HSS FEO ECE PAR GEN NIK ECB 

1 1 3.802 1.000 .01 .01 .02 .02 .02 .02 .01 .02 

2 1.012 1.938 .00 .00 .09 .03 .15 .00 .55 .00 

3 .798 2.183 .00 .00 .11 .04 .39 .01 .39 .03 

4 .753 2.247 .00 .00 .36 .53 .00 .04 .00 .02 

5 .590 2.538 .01 .01 .20 .36 .18 .31 .01 .01 

6 .492 2.779 .04 .06 .00 .02 .04 .00 .00 .87 

7 .425 2.989 .02 .19 .18 .00 .17 .49 .04 .05 

8 .127 5.464 .93 .71 .04 .00 .04 .13 .00 .00 

a. Dependent Variable: MAC 
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Regression 

 

 

Notes 

Output Created 10-MAR-2014 01:27:27 

Comments  

Input Data C:\Users\phil\Desktop\CS_DataAnalysi

s\CSAanalysis\SPSS_data\CSA1.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data 

File 
121 

Missing Value Handling Definition of Missing User-defined missing values are treated 

as missing. 

Cases Used Statistics are based on cases with no 

missing values for any variable used. 

Syntax REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COLLIN TOL 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN 

  /DEPENDENT HSS 

  /METHOD=ENTER FEO ECE PAR 

GEN NIK ECB MAC. 

Resources Processor Time 00:00:00.03 

Elapsed Time 00:00:00.04 

Memory Required 6544 bytes 

Additional Memory Required 

for Residual Plots 
0 bytes 
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Variables Entered/Removeda 

Model 

Variables 

Entered 

Variables 

Removed Method 

1 MAC, FEO, 

GEN, ECE, 

NIK, PAR, 

ECBb 

. Enter 

a. Dependent Variable: HSS 

b. All requested variables entered. 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 FEO .960 1.042 

ECE .969 1.032 

PAR .903 1.107 

GEN .925 1.081 

NIK .940 1.064 

ECB .883 1.133 

MAC .910 1.099 

a. Dependent Variable: HSS 

 

Collinearity Diagnosticsa 

Model Dimension Eigenvalue 

Condition 

Index 

Variance Proportions 

(Constant) FEO ECE PAR GEN NIK ECB MAC 

1 1 3.796 1.000 .01 .02 .02 .02 .02 .01 .02 .02 

2 1.004 1.945 .00 .11 .05 .15 .00 .50 .00 .00 

3 .802 2.175 .00 .09 .04 .35 .02 .43 .02 .01 

4 .753 2.245 .00 .39 .50 .00 .04 .00 .02 .00 

5 .584 2.550 .00 .15 .34 .14 .38 .01 .05 .00 

6 .483 2.804 .05 .01 .04 .02 .04 .02 .87 .05 

7 .426 2.985 .03 .17 .01 .31 .30 .01 .01 .29 

8 .152 5.000 .91 .06 .00 .01 .20 .02 .01 .64 

a. Dependent Variable: HSS 
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Regression 

 

 

Notes 

Output Created 10-MAR-2014 01:28:08 

Comments  

Input Data C:\Users\phil\Desktop\CS_DataAnalysi

s\CSAanalysis\SPSS_data\CSA1.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data 

File 
121 

Missing Value Handling Definition of Missing User-defined missing values are treated 

as missing. 

Cases Used Statistics are based on cases with no 

missing values for any variable used. 

Syntax REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COLLIN TOL 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN 

  /DEPENDENT FEO 

  /METHOD=ENTER ECE PAR GEN 

NIK ECB MAC HSS. 

Resources Processor Time 00:00:00.03 

Elapsed Time 00:00:00.03 

Memory Required 6544 bytes 

Additional Memory Required 

for Residual Plots 
0 bytes 
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Variables Entered/Removeda 

Model 

Variables 

Entered 

Variables 

Removed Method 

1 HSS, NIK, ECE, 

PAR, GEN, 

MAC, ECBb 

. Enter 

a. Dependent Variable: FEO 

b. All requested variables entered. 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 ECE .968 1.033 

PAR .921 1.086 

GEN .924 1.082 

NIK .940 1.064 

ECB .884 1.131 

MAC .909 1.100 

HSS .970 1.031 

a. Dependent Variable: FEO 

 

Collinearity Diagnosticsa 

Model Dimension Eigenvalue 

Condition 

Index 

Variance Proportions 

(Constant) ECE PAR GEN NIK ECB MAC HSS 

1 1 4.207 1.000 .01 .01 .01 .02 .01 .02 .01 .01 

2 .972 2.080 .00 .08 .10 .00 .67 .00 .00 .01 

3 .795 2.300 .00 .27 .33 .06 .24 .03 .01 .00 

4 .637 2.571 .01 .61 .35 .07 .00 .02 .00 .02 

5 .518 2.850 .02 .00 .01 .18 .01 .54 .07 .07 

6 .481 2.957 .00 .02 .17 .52 .05 .39 .02 .01 

7 .281 3.868 .00 .00 .02 .02 .02 .00 .61 .40 

8 .109 6.222 .96 .00 .00 .14 .01 .01 .28 .49 

a. Dependent Variable: FEO 
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Regression 

 

 

Notes 

Output Created 10-MAR-2014 01:29:02 

Comments  

Input Data C:\Users\phil\Desktop\CS_DataAnalysi

s\CSAanalysis\SPSS_data\CSA1.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data 

File 
121 

Missing Value Handling Definition of Missing User-defined missing values are treated 

as missing. 

Cases Used Statistics are based on cases with no 

missing values for any variable used. 

Syntax REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COLLIN TOL 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN 

  /DEPENDENT ECE 

  /METHOD=ENTER PAR GEN NIK 

ECB MAC HSS FEO. 

Resources Processor Time 00:00:00.02 

Elapsed Time 00:00:00.05 

Memory Required 6544 bytes 

Additional Memory Required 

for Residual Plots 
0 bytes 
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Variables Entered/Removeda 

Model 

Variables 

Entered 

Variables 

Removed Method 

1 FEO, NIK, HSS, 

GEN, MAC, 

PAR, ECBb 

. Enter 

a. Dependent Variable: ECE 

b. All requested variables entered. 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 PAR .903 1.107 

GEN .940 1.064 

NIK .940 1.064 

ECB .864 1.157 

MAC .913 1.096 

HSS .971 1.030 

FEO .960 1.041 

a. Dependent Variable: ECE 

 

Collinearity Diagnosticsa 

Model 

Dimensio

n Eigenvalue 

Condition 

Index 

Variance Proportions 

(Constant

) PAR GEN NIK ECB MAC HSS FEO 

1 1 4.202 1.000 .01 .01 .02 .01 .02 .01 .01 .01 

2 .997 2.053 .00 .13 .00 .56 .00 .00 .01 .12 

3 .800 2.293 .00 .34 .01 .37 .01 .00 .00 .22 

4 .644 2.554 .00 .19 .34 .01 .00 .00 .01 .42 

5 .516 2.853 .02 .00 .07 .00 .68 .06 .06 .01 

6 .454 3.043 .00 .29 .39 .03 .27 .05 .03 .18 

7 .281 3.866 .00 .02 .02 .02 .00 .60 .41 .00 

8 .105 6.313 .96 .01 .15 .01 .02 .27 .47 .04 

a. Dependent Variable: ECE 
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Regression 

 

 

Notes 

Output Created 10-MAR-2014 01:29:50 

Comments  

Input Data C:\Users\phil\Desktop\CS_DataAnalysi

s\CSAanalysis\SPSS_data\CSA1.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data 

File 
121 

Missing Value Handling Definition of Missing User-defined missing values are treated 

as missing. 

Cases Used Statistics are based on cases with no 

missing values for any variable used. 

Syntax REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COLLIN TOL 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN 

  /DEPENDENT PAR 

  /METHOD=ENTER GEN NIK ECB 

MAC HSS FEO ECE. 

Resources Processor Time 00:00:00.02 

Elapsed Time 00:00:00.03 

Memory Required 6544 bytes 

Additional Memory Required 

for Residual Plots 
0 bytes 
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Variables Entered/Removeda 

Model 

Variables 

Entered 

Variables 

Removed Method 

1 ECE, NIK, FEO, 

HSS, MAC, 

GEN, ECBb 

. Enter 

a. Dependent Variable: PAR 

b. All requested variables entered. 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 GEN .924 1.082 

NIK .957 1.045 

ECB .890 1.123 

MAC .927 1.078 

HSS .970 1.031 

FEO .979 1.022 

ECE .968 1.033 

a. Dependent Variable: PAR 

 

Collinearity Diagnosticsa 

Model 

Dimensio

n Eigenvalue 

Condition 

Index 

Variance Proportions 

(Constant

) GEN NIK ECB MAC HSS FEO ECE 

1 1 4.227 1.000 .01 .02 .00 .02 .01 .01 .01 .01 

2 .951 2.108 .00 .00 .88 .00 .00 .00 .04 .01 

3 .755 2.367 .00 .04 .01 .01 .00 .00 .37 .52 

4 .657 2.537 .01 .02 .06 .05 .02 .02 .48 .37 

5 .518 2.857 .02 .30 .00 .38 .10 .06 .02 .00 

6 .502 2.902 .01 .45 .01 .51 .01 .00 .03 .07 

7 .284 3.858 .00 .03 .03 .01 .56 .44 .01 .00 

8 .106 6.308 .96 .14 .01 .01 .29 .47 .03 .00 

a. Dependent Variable: PAR 
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Regression 

 

 

Notes 

Output Created 10-MAR-2014 01:30:34 

Comments  

Input Data C:\Users\phil\Desktop\CS_DataAnalysi

s\CSAanalysis\SPSS_data\CSA1.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data 

File 
121 

Missing Value Handling Definition of Missing User-defined missing values are treated 

as missing. 

Cases Used Statistics are based on cases with no 

missing values for any variable used. 

Syntax REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COLLIN TOL 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN 

  /DEPENDENT GEN 

  /METHOD=ENTER NIK ECB MAC 

HSS FEO ECE PAR. 

Resources Processor Time 00:00:00.03 

Elapsed Time 00:00:00.05 

Memory Required 6544 bytes 

Additional Memory Required 

for Residual Plots 
0 bytes 

 

 

 

 

 

 



207 

 

 

 

 

Variables Entered/Removeda 

Model 

Variables 

Entered 

Variables 

Removed Method 

1 PAR, HSS, 

ECE, FEO, NIK, 

MAC, ECBb 

. Enter 

a. Dependent Variable: GEN 

b. All requested variables entered. 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 NIK .960 1.042 

ECB .892 1.121 

MAC .918 1.089 

HSS .974 1.027 

FEO .963 1.039 

ECE .987 1.013 

PAR .906 1.104 

a. Dependent Variable: GEN 

 

Collinearity Diagnosticsa 

Model 

Dimensio

n Eigenvalue 

Condition 

Index 

Variance Proportions 

(Constant) NIK ECB MAC HSS FEO ECE PAR 

1 1 4.013 1.000 .01 .01 .02 .01 .01 .02 .02 .01 

2 1.013 1.990 .00 .53 .00 .00 .00 .09 .04 .15 

3 .797 2.244 .00 .43 .01 .00 .00 .22 .02 .30 

4 .737 2.333 .00 .00 .02 .00 .00 .21 .78 .00 

5 .538 2.732 .03 .00 .07 .05 .09 .32 .13 .32 

6 .500 2.834 .01 .01 .87 .00 .00 .12 .00 .18 

7 .284 3.760 .00 .01 .00 .67 .36 .00 .00 .03 

8 .119 5.805 .95 .00 .00 .26 .53 .03 .01 .01 

a. Dependent Variable: GEN 
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Appendix G - Binary logistic regression analysis results 

This appendix provides the SPSS output of the backward stepwise (likelihood ratio) 

method of binary logistic regression used to examine the relationships between the dependent 

(adaptation response option) variables and the independent (driving factor) variables. 

 

 

Notes 

Output Created 14-MAR-2014 04:41:28 

Comments  

Input Data C:\Users\phil\Desktop\CS_DataAnalysi

s\CSAanalysis\SPSS_data\CSA1.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data 

File 
121 

Missing Value Handling Definition of Missing User-defined missing values are treated 

as missing 

Syntax LOGISTIC REGRESSION 

VARIABLES AC 

  /METHOD=BSTEP(LR) ECB MAC 

HSS FEO ECE PAR 

  /CONTRAST (ECB)=Indicator(1) 

  /CONTRAST (MAC)=Indicator(1) 

  /CONTRAST (HSS)=Indicator(1) 

  /CONTRAST (FEO)=Indicator(1) 

  /CONTRAST (ECE)=Indicator(1) 

  /CONTRAST (PAR)=Indicator(1) 

  /SAVE=PRED ZRESID 

  /CLASSPLOT 

  /CASEWISE OUTLIER(2) 

  /PRINT=GOODFIT CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) 

ITERATE(20) CUT(0.5). 

Resources Processor Time 00:00:00.08 

Elapsed Time 00:00:00.07 

Variables Created or 

Modified 

PRE_1 Predicted probability 

ZRE_1 Normalized residual 
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Case Processing Summary 

Unweighted Casesa N Percent 

Selected Cases Included in Analysis 94 77.7 

Missing Cases 27 22.3 

Total 121 100.0 

Unselected Cases 0 .0 

Total 121 100.0 

a. If weight is in effect, see classification table for the total number 

of cases. 

 

 

Dependent Variable Encoding 

Original Value Internal Value 

Absence 0 

Presence 1 

 

 

Categorical Variables Codings 

 Frequency 

Parameter 

coding 

(1) 

PAR Absence 75 .000 

Presence 19 1.000 

MAC Absence 32 .000 

Presence 62 1.000 

HSS Absence 26 .000 

Presence 68 1.000 

FEO Absence 70 .000 

Presence 24 1.000 

ECE Absence 73 .000 

Presence 21 1.000 

ECB Absence 61 .000 

Presence 33 1.000 
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Block 0: Beginning Block 

 

Classification Tablea,b 

 

Observed 

Predicted 

 AC Percentage 

Correct  Absence Presence 

Step 0 AC Absence 0 10 .0 

Presence 0 84 100.0 

Overall Percentage   89.4 

a. Constant is included in the model. 

b. The cut value is .500 

 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant 2.128 .335 40.475 1 .000 8.400 

 

 

Variables not in the Equation 

 Score df Sig. 

Step 0 Variables ECB(1) 1.121 1 .290 

MAC(1) 3.358 1 .067 

HSS(1) 2.791 1 .095 

FEO(1) 1.420 1 .233 

ECE(1) .982 1 .322 

PAR(1) 2.717 1 .099 

Overall Statistics 11.728 6 .068 
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Block 1: Method = Backward Stepwise (Likelihood Ratio) 

 

Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 Step 11.195 6 .083 

Block 11.195 6 .083 

Model 11.195 6 .083 

Step 2a Step -.170 1 .680 

Block 11.025 5 .051 

Model 11.025 5 .051 

Step 3a Step -.737 1 .391 

Block 10.288 4 .036 

Model 10.288 4 .036 

Step 4a Step -.879 1 .348 

Block 9.408 3 .024 

Model 9.408 3 .024 

Step 5a Step -1.977 1 .160 

Block 7.431 2 .024 

Model 7.431 2 .024 

a. A negative Chi-squares value indicates that the Chi-

squares value has decreased from the previous step. 

 

Model Summary 

Step 

-2 Log 

likelihood 

Cox & Snell R 

Square 

Nagelkerke R 

Square 

1 52.515a .112 .228 

2 52.686a .111 .225 

3 53.423a .104 .211 

4 54.302a .095 .193 

5 56.279a .076 .154 

a. Estimation terminated at iteration number 6 because 

parameter estimates changed by less than .001. 

 

 

 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 4.580 8 .801 

2 8.319 8 .403 

3 5.584 6 .471 

4 3.794 4 .435 

5 .681 2 .712 

 



212 

 

 

 

 

Contingency Table for Hosmer and Lemeshow Test 

 

AC = Absence AC = Presence 

Total Observed Expected Observed Expected 

Step 1 1 3 3.774 6 5.226 9 

2 1 .833 4 4.167 5 

3 1 1.690 10 9.310 11 

4 2 1.196 8 8.804 10 

5 2 .862 8 9.138 10 

6 1 .509 8 8.491 9 

7 0 .136 3 2.864 3 

8 0 .560 13 12.440 13 

9 0 .266 11 10.734 11 

10 0 .174 13 12.826 13 

Step 2 1 3 3.696 6 5.304 9 

2 1 .793 4 4.207 5 

3 2 1.878 11 11.122 13 

4 1 1.150 7 6.850 8 

5 3 .828 6 8.172 9 

6 0 .561 9 8.439 9 

7 0 .159 4 3.841 4 

8 0 .620 17 16.380 17 

9 0 .202 11 10.798 11 

10 0 .113 9 8.887 9 

Step 3 1 3 4.285 9 7.715 12 

2 2 1.725 11 11.275 13 

3 3 1.789 11 12.211 14 

4 2 .722 7 8.278 9 

5 0 .487 9 8.513 9 

6 0 .131 4 3.869 4 

7 0 .749 24 23.251 24 

8 0 .111 9 8.889 9 

Step 4 1 3 2.485 3 3.515 6 

2 1 2.043 7 5.957 8 

3 1 1.515 12 11.485 13 

4 3 2.283 18 18.717 21 

5 2 .861 11 12.139 13 

6 0 .812 33 32.188 33 

Step 5 1 2 1.503 1 1.497 3 

2 2 2.497 14 13.503 16 

3 4 4.497 25 24.503 29 

4 2 1.503 44 44.497 46 

 



213 

 

 

 

 

Classification Tablea 

 

Observed 

Predicted 

 AC Percentage 

Correct  Absence Presence 

Step 1 AC Absence 1 9 10.0 

Presence 1 83 98.8 

Overall Percentage   89.4 

Step 2 AC Absence 1 9 10.0 

Presence 1 83 98.8 

Overall Percentage   89.4 

Step 3 AC Absence 1 9 10.0 

Presence 1 83 98.8 

Overall Percentage   89.4 

Step 4 AC Absence 1 9 10.0 

Presence 1 83 98.8 

Overall Percentage   89.4 

Step 5 AC Absence 2 8 20.0 

Presence 1 83 98.8 

Overall Percentage   90.4 

a. The cut value is .500 

 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a ECB(1) .382 .939 .165 1 .684 1.465 .233 9.225 

MAC(1) 1.395 .818 2.908 1 .088 4.036 .812 20.061 

HSS(1) .942 .762 1.528 1 .216 2.566 .576 11.431 

FEO(1) .891 1.124 .628 1 .428 2.437 .269 22.046 

ECE(1) .881 1.131 .607 1 .436 2.413 .263 22.126 

PAR(1) -1.518 .844 3.236 1 .072 .219 .042 1.145 

Constant .764 .695 1.208 1 .272 2.147   

Step 2a MAC(1) 1.495 .787 3.603 1 .058 4.458 .953 20.866 

HSS(1) 1.024 .736 1.940 1 .164 2.786 .659 11.777 

FEO(1) .950 1.117 .723 1 .395 2.585 .290 23.062 

ECE(1) .889 1.129 .620 1 .431 2.433 .266 22.237 

PAR(1) -1.489 .840 3.144 1 .076 .226 .044 1.170 

Constant .755 .688 1.201 1 .273 2.127   

Step 3a MAC(1) 1.514 .791 3.666 1 .056 4.547 .965 21.427 

HSS(1) .996 .734 1.842 1 .175 2.707 .643 11.402 

FEO(1) .948 1.111 .728 1 .393 2.582 .292 22.802 

PAR(1) -1.553 .833 3.472 1 .062 .212 .041 1.084 

Constant .925 .646 2.047 1 .153 2.521   

Step 4a MAC(1) 1.576 .788 3.996 1 .046 4.835 1.031 22.667 

HSS(1) 1.034 .725 2.031 1 .154 2.812 .679 11.650 

PAR(1) -1.654 .829 3.984 1 .046 .191 .038 .971 

Constant 1.070 .634 2.853 1 .091 2.915   
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Variables in the Equation (continued) 

Step 5a MAC(1) 1.692 .789 4.596 1 .032 5.432 1.156 25.521 

PAR(1) -1.700 .820 4.296 1 .038 .183 .037 .912 

Constant 1.695 .488 12.074 1 .001 5.449   

a. Variable(s) entered on step 1: ECB, MAC, HSS, FEO, ECE, PAR. 

 

Model if Term Removed 

Variable 

Model Log 

Likelihood 

Change in -2 

Log Likelihood df 

Sig. of the 

Change 

Step 1 ECB -26.343 .170 1 .680 

MAC -27.820 3.124 1 .077 

HSS -27.003 1.492 1 .222 

FEO -26.630 .745 1 .388 

ECE -26.617 .720 1 .396 

PAR -27.868 3.220 1 .073 

Step 2 MAC -28.291 3.897 1 .048 

HSS -27.289 1.893 1 .169 

FEO -26.778 .871 1 .351 

ECE -26.711 .737 1 .391 

PAR -27.910 3.133 1 .077 

Step 3 MAC -28.695 3.966 1 .046 

HSS -27.609 1.794 1 .180 

FEO -27.151 .879 1 .348 

PAR -28.445 3.468 1 .063 

Step 4 MAC -29.333 4.364 1 .037 

HSS -28.140 1.977 1 .160 

PAR -29.132 3.962 1 .047 

Step 5 MAC -30.686 5.093 1 .024 

PAR -30.274 4.269 1 .039 

 

Variables not in the Equation 

 Score df Sig. 

Step 2a Variables ECB(1) .166 1 .683 

Overall Statistics .166 1 .683 

Step 3b Variables ECB(1) .184 1 .668 

ECE(1) .653 1 .419 

Overall Statistics .822 2 .663 

Step 4c Variables ECB(1) .331 1 .565 

FEO(1) .776 1 .378 

ECE(1) .658 1 .417 

Overall Statistics 1.548 3 .671 

Step 5d Variables ECB(1) .845 1 .358 

HSS(1) 2.136 1 .144 

FEO(1) .926 1 .336 

ECE(1) .642 1 .423 

Overall Statistics 3.527 4 .474 

a. Variable(s) removed on step 2: ECB. 

b. Variable(s) removed on step 3: ECE. 

c. Variable(s) removed on step 4: FEO. 
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d. Variable(s) removed on step 5: HSS. 

 

Casewise Listb 

Case Selected Statusa 

Observed 

Predicted Predicted Group 

Temporary Variable 

AC Resid ZResid 

58 S A** .967 P -.967 -5.441 

107 S A** .967 P -.967 -5.441 

a. S = Selected, U = Unselected cases, and ** = Misclassified cases. 

b. Cases with studentized residuals greater than 2.000 are listed. 
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Logistic Regression 

 

 

Notes 

Output Created 14-MAR-2014 04:41:49 

Comments  

Input Data C:\Users\phil\Desktop\CS_DataAnalysi

s\CSAanalysis\SPSS_data\CSA1.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data 

File 
121 

Missing Value Handling Definition of Missing User-defined missing values are treated 

as missing 

Syntax LOGISTIC REGRESSION 

VARIABLES MC 

  /METHOD=BSTEP(LR) ECB MAC 

HSS FEO ECE PAR 

  /CONTRAST (ECB)=Indicator(1) 

  /CONTRAST (MAC)=Indicator(1) 

  /CONTRAST (HSS)=Indicator(1) 

  /CONTRAST (FEO)=Indicator(1) 

  /CONTRAST (ECE)=Indicator(1) 

  /CONTRAST (PAR)=Indicator(1) 

  /SAVE=PRED ZRESID 

  /CLASSPLOT 

  /CASEWISE OUTLIER(2) 

  /PRINT=GOODFIT CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) 

ITERATE(20) CUT(0.5). 

Resources Processor Time 00:00:00.05 

Elapsed Time 00:00:00.09 

Variables Created or 

Modified 

PRE_2 Predicted probability 

ZRE_2 Normalized residual 
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Case Processing Summary 

Unweighted Casesa N Percent 

Selected Cases Included in Analysis 94 77.7 

Missing Cases 27 22.3 

Total 121 100.0 

Unselected Cases 0 .0 

Total 121 100.0 

a. If weight is in effect, see classification table for the total number 

of cases. 

 

 

Dependent Variable Encoding 

Original Value Internal Value 

Absence 0 

Presence 1 

 

 

Categorical Variables Codings 

 Frequency 

Parameter 

coding 

(1) 

PAR Absence 75 .000 

Presence 19 1.000 

MAC Absence 32 .000 

Presence 62 1.000 

HSS Absence 26 .000 

Presence 68 1.000 

FEO Absence 70 .000 

Presence 24 1.000 

ECE Absence 73 .000 

Presence 21 1.000 

ECB Absence 61 .000 

Presence 33 1.000 
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Block 0: Beginning Block 

 

 

 

Classification Tablea,b 

 

Observed 

Predicted 

 MC Percentage 

Correct  Absence Presence 

Step 0 MC Absence 0 47 .0 

Presence 0 47 100.0 

Overall Percentage   50.0 

a. Constant is included in the model. 

b. The cut value is .500 

 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant .000 .206 .000 1 1.000 1.000 

 

 

Variables not in the Equation 

 Score df Sig. 

Step 0 Variables ECB(1) 5.650 1 .017 

MAC(1) 4.738 1 .030 

HSS(1) 3.403 1 .065 

FEO(1) .895 1 .344 

ECE(1) .061 1 .804 

PAR(1) 3.232 1 .072 

Overall Statistics 16.004 6 .014 
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Block 1: Method = Backward Stepwise (Likelihood Ratio) 

 

Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 Step 17.032 6 .009 

Block 17.032 6 .009 

Model 17.032 6 .009 

Step 2a Step -.192 1 .662 

Block 16.840 5 .005 

Model 16.840 5 .005 

Step 3a Step -.847 1 .357 

Block 15.993 4 .003 

Model 15.993 4 .003 

Step 4a Step -1.119 1 .290 

Block 14.874 3 .002 

Model 14.874 3 .002 

a. A negative Chi-squares value indicates that the Chi-

squares value has decreased from the previous step. 

 

Model Summary 

Step 

-2 Log 

likelihood 

Cox & Snell R 

Square 

Nagelkerke R 

Square 

1 113.280a .166 .221 

2 113.472a .164 .219 

3 114.319a .156 .209 

4 115.438a .146 .195 

a. Estimation terminated at iteration number 4 because 

parameter estimates changed by less than .001. 

 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 6.443 7 .489 

2 5.162 7 .640 

3 8.014 7 .331 

4 10.434 5 .064 
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Contingency Table for Hosmer and Lemeshow Test 

 

MC = Absence MC = Presence 

Total Observed Expected Observed Expected 

Step 1 1 11 9.771 1 2.229 12 

2 6 5.708 2 2.292 8 

3 9 8.420 4 4.580 13 

4 4 5.887 6 4.113 10 

5 4 4.689 5 4.311 9 

6 3 3.857 6 5.143 9 

7 5 3.489 5 6.511 10 

8 1 2.638 9 7.362 10 

9 4 2.540 9 10.460 13 

Step 2 1 11 9.823 1 2.177 12 

2 4 2.899 0 1.101 4 

3 11 11.227 6 5.773 17 

4 4 5.231 5 3.769 9 

5 4 4.745 5 4.255 9 

6 3 3.906 6 5.094 9 

7 2 2.985 6 5.015 8 

8 4 3.597 9 9.403 13 

9 4 2.588 9 10.412 13 

Step 3 1 14 11.984 1 3.016 15 

2 1 .683 0 .317 1 

3 13 13.920 9 8.080 22 

4 2 3.457 4 2.543 6 

5 6 5.252 4 4.748 10 

6 3 4.864 10 8.136 13 

7 2 3.009 7 5.991 9 

8 3 2.425 7 7.575 10 

9 3 1.405 5 6.595 8 

Step 4 1 15 12.710 1 3.290 16 

2 15 15.161 10 9.839 25 

3 2 3.287 4 2.713 6 

4 4 4.744 5 4.256 9 

5 6 6.842 15 14.158 21 

6 2 3.385 9 7.615 11 

7 3 .871 3 5.129 6 
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Classification Tablea 

 

Observed 

Predicted 

 MC Percentage 

Correct  Absence Presence 

Step 1 MC Absence 33 14 70.2 

Presence 16 31 66.0 

Overall Percentage   68.1 

Step 2 MC Absence 34 13 72.3 

Presence 17 30 63.8 

Overall Percentage   68.1 

Step 3 MC Absence 34 13 72.3 

Presence 17 30 63.8 

Overall Percentage   68.1 

Step 4 MC Absence 36 11 76.6 

Presence 20 27 57.4 

Overall Percentage   67.0 

a. The cut value is .500 

 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a ECB(1) 1.017 .505 4.060 1 .044 2.765 1.028 7.435 

MAC(1) .851 .496 2.940 1 .086 2.341 .885 6.190 

HSS(1) -1.225 .534 5.271 1 .022 .294 .103 .836 

FEO(1) .481 .531 .822 1 .365 1.618 .572 4.582 

ECE(1) -.236 .540 .191 1 .662 .790 .274 2.278 

PAR(1) .680 .593 1.313 1 .252 1.974 .617 6.315 

Constant -.234 .541 .188 1 .665 .791   

Step 2a ECB(1) 1.001 .502 3.978 1 .046 2.720 1.017 7.273 

MAC(1) .842 .495 2.887 1 .089 2.320 .879 6.125 

HSS(1) -1.229 .532 5.347 1 .021 .293 .103 .829 

FEO(1) .485 .530 .838 1 .360 1.625 .575 4.594 

PAR(1) .691 .592 1.361 1 .243 1.995 .625 6.369 

Constant -.278 .530 .275 1 .600 .757   

Step 3a ECB(1) 1.073 .496 4.678 1 .031 2.923 1.106 7.726 

MAC(1) .836 .492 2.888 1 .089 2.307 .880 6.049 

HSS(1) -1.207 .526 5.269 1 .022 .299 .107 .838 

PAR(1) .610 .584 1.092 1 .296 1.841 .586 5.780 

Constant -.173 .513 .113 1 .737 .842   

Step 4a ECB(1) 1.160 .490 5.598 1 .018 3.188 1.220 8.332 

MAC(1) .919 .485 3.585 1 .058 2.507 .968 6.492 

HSS(1) -1.243 .530 5.511 1 .019 .289 .102 .814 

Constant -.108 .509 .045 1 .831 .897   

a. Variable(s) entered on step 1: ECB, MAC, HSS, FEO, ECE, PAR. 
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Model if Term Removed 

Variable 

Model Log 

Likelihood 

Change in -2 

Log Likelihood df 

Sig. of the 

Change 

Step 1 ECB -58.742 4.203 1 .040 

MAC -58.151 3.022 1 .082 

HSS -59.480 5.681 1 .017 

FEO -57.056 .831 1 .362 

ECE -56.736 .192 1 .662 

PAR -57.315 1.350 1 .245 

Step 2 ECB -58.790 4.107 1 .043 

MAC -58.219 2.967 1 .085 

HSS -59.620 5.768 1 .016 

FEO -57.160 .847 1 .357 

PAR -57.435 1.399 1 .237 

Step 3 ECB -59.591 4.863 1 .027 

MAC -58.645 2.970 1 .085 

HSS -59.988 5.656 1 .017 

PAR -57.719 1.119 1 .290 

Step 4 ECB -60.662 5.885 1 .015 

MAC -59.574 3.710 1 .054 

HSS -60.689 5.940 1 .015 

 

 

Variables not in the Equation 

 Score df Sig. 

Step 2a Variables ECE(1) .191 1 .662 

Overall Statistics .191 1 .662 

Step 3b Variables FEO(1) .845 1 .358 

ECE(1) .208 1 .649 

Overall Statistics 1.034 2 .596 

Step 4c Variables FEO(1) .566 1 .452 

ECE(1) .247 1 .619 

PAR(1) 1.108 1 .293 

Overall Statistics 2.143 3 .543 

a. Variable(s) removed on step 2: ECE. 

b. Variable(s) removed on step 3: FEO. 

c. Variable(s) removed on step 4: PAR. 

 

 

Casewise Listb 

Case Selected Statusa 

Observed 

Predicted Predicted Group 

Temporary Variable 

MC Resid ZResid 

34 S A** .878 P -.878 -2.678 

39 S A** .878 P -.878 -2.678 

68 S A** .878 P -.878 -2.678 

a. S = Selected, U = Unselected cases, and ** = Misclassified cases. 

b. Cases with studentized residuals greater than 2.000 are listed. 
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Logistic Regression 

 

 

Notes 

Output Created 14-MAR-2014 04:42:13 

Comments  

Input Data C:\Users\phil\Desktop\CS_DataAnalysi

s\CSAanalysis\SPSS_data\CSA1.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data 

File 
121 

Missing Value Handling Definition of Missing User-defined missing values are treated 

as missing 

Syntax LOGISTIC REGRESSION 

VARIABLES IPD 

  /METHOD=BSTEP(LR) ECB MAC 

HSS FEO ECE PAR 

  /CONTRAST (ECB)=Indicator(1) 

  /CONTRAST (MAC)=Indicator(1) 

  /CONTRAST (HSS)=Indicator(1) 

  /CONTRAST (FEO)=Indicator(1) 

  /CONTRAST (ECE)=Indicator(1) 

  /CONTRAST (PAR)=Indicator(1) 

  /SAVE=PRED ZRESID 

  /CLASSPLOT 

  /CASEWISE OUTLIER(2) 

  /PRINT=GOODFIT CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) 

ITERATE(20) CUT(0.5). 

Resources Processor Time 00:00:00.08 

Elapsed Time 00:00:00.07 

Variables Created or 

Modified 

PRE_3 Predicted probability 

ZRE_3 Normalized residual 
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Case Processing Summary 

Unweighted Casesa N Percent 

Selected Cases Included in Analysis 94 77.7 

Missing Cases 27 22.3 

Total 121 100.0 

Unselected Cases 0 .0 

Total 121 100.0 

a. If weight is in effect, see classification table for the total number 

of cases. 

 

 

Dependent Variable Encoding 

Original Value Internal Value 

Absence 0 

Presence 1 

 

 

Categorical Variables Codings 

 Frequency 

Parameter 

coding 

(1) 

PAR Absence 75 .000 

Presence 19 1.000 

MAC Absence 32 .000 

Presence 62 1.000 

HSS Absence 26 .000 

Presence 68 1.000 

FEO Absence 70 .000 

Presence 24 1.000 

ECE Absence 73 .000 

Presence 21 1.000 

ECB Absence 61 .000 

Presence 33 1.000 
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Block 0: Beginning Block 

 

 

 

Classification Tablea,b 

 

Observed 

Predicted 

 IPD Percentage 

Correct  Absence Presence 

Step 0 IPD Absence 57 0 100.0 

Presence 37 0 .0 

Overall Percentage   60.6 

a. Constant is included in the model. 

b. The cut value is .500 

 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant -.432 .211 4.190 1 .041 .649 

 

 

Variables not in the Equation 

 Score df Sig. 

Step 0 Variables ECB(1) .192 1 .662 

MAC(1) 3.850 1 .050 

HSS(1) 2.330 1 .127 

FEO(1) 1.403 1 .236 

ECE(1) .772 1 .379 

PAR(1) 3.427 1 .064 

Overall Statistics 14.030 6 .029 
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Block 1: Method = Backward Stepwise (Likelihood Ratio) 

 

Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 Step 15.186 6 .019 

Block 15.186 6 .019 

Model 15.186 6 .019 

Step 2a Step -.464 1 .496 

Block 14.721 5 .012 

Model 14.721 5 .012 

Step 3a Step -1.247 1 .264 

Block 13.475 4 .009 

Model 13.475 4 .009 

Step 4a Step -1.181 1 .277 

Block 12.293 3 .006 

Model 12.293 3 .006 

a. A negative Chi-squares value indicates that the Chi-

squares value has decreased from the previous step. 

 

Model Summary 

Step 

-2 Log 

likelihood 

Cox & Snell R 

Square 

Nagelkerke R 

Square 

1 110.838a .149 .202 

2 111.302a .145 .196 

3 112.549a .134 .181 

4 113.730a .123 .166 

a. Estimation terminated at iteration number 4 because 

parameter estimates changed by less than .001. 

 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 8.557 8 .381 

2 5.412 8 .713 

3 2.292 7 .942 

4 .099 4 .999 



227 

 

 

 

 

Contingency Table for Hosmer and Lemeshow Test 

 

IPD = Absence IPD = Presence 

Total Observed Expected Observed Expected 

Step 1 1 8 7.251 0 .749 8 

2 6 6.824 2 1.176 8 

3 5 7.010 4 1.990 9 

4 13 10.498 2 4.502 15 

5 6 6.403 4 3.597 10 

6 5 5.088 4 3.912 9 

7 5 3.409 2 3.591 7 

8 3 3.563 5 4.437 8 

9 3 4.351 8 6.649 11 

10 3 2.604 6 6.396 9 

Step 2 1 10 10.600 2 1.400 12 

2 6 7.319 3 1.681 9 

3 3 2.206 0 .794 3 

4 14 12.194 3 4.806 17 

5 3 3.891 3 2.109 6 

6 4 4.063 3 2.937 7 

7 6 4.885 3 4.115 9 

8 6 6.194 9 8.806 15 

9 4 3.705 5 5.295 9 

10 1 1.943 6 5.057 7 

Step 3 1 9 9.702 2 1.298 11 

2 2 1.613 0 .387 2 

3 18 17.955 6 6.045 24 

4 5 5.364 3 2.636 8 

5 6 5.614 3 3.386 9 

6 2 1.615 1 1.385 3 

7 8 8.169 10 9.831 18 

8 5 3.927 4 5.073 9 

9 2 3.041 8 6.959 10 

Step 4 1 11 11.225 2 1.775 13 

2 24 23.614 9 9.386 33 

3 5 5.210 3 2.790 8 

4 2 1.894 1 1.106 3 

5 9 8.951 12 12.049 21 

6 6 6.106 10 9.894 16 
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Classification Tablea 

 

Observed 

Predicted 

 IPD Percentage 

Correct  Absence Presence 

Step 1 IPD Absence 43 14 75.4 

Presence 16 21 56.8 

Overall Percentage   68.1 

Step 2 IPD Absence 46 11 80.7 

Presence 17 20 54.1 

Overall Percentage   70.2 

Step 3 IPD Absence 42 15 73.7 

Presence 15 22 59.5 

Overall Percentage   68.1 

Step 4 IPD Absence 42 15 73.7 

Presence 15 22 59.5 

Overall Percentage   68.1 

a. The cut value is .500 

 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a ECB(1) -.357 .528 .458 1 .499 .700 .249 1.969 

MAC(1) -1.241 .505 6.037 1 .014 .289 .107 .778 

HSS(1) 1.044 .577 3.275 1 .070 2.839 .917 8.790 

FEO(1) -.540 .561 .928 1 .335 .583 .194 1.748 

ECE(1) .635 .541 1.374 1 .241 1.887 .653 5.451 

PAR(1) 1.382 .598 5.339 1 .021 3.982 1.233 12.856 

Constant -.619 .563 1.211 1 .271 .538   

Step 2a MAC(1) -1.283 .499 6.607 1 .010 .277 .104 .737 

HSS(1) .966 .558 3.000 1 .083 2.628 .881 7.844 

FEO(1) -.607 .553 1.203 1 .273 .545 .184 1.612 

ECE(1) .607 .538 1.272 1 .259 1.835 .639 5.265 

PAR(1) 1.288 .578 4.960 1 .026 3.626 1.167 11.268 

Constant -.614 .557 1.217 1 .270 .541   

Step 3a MAC(1) -1.274 .495 6.620 1 .010 .280 .106 .738 

HSS(1) .923 .549 2.825 1 .093 2.516 .858 7.378 

ECE(1) .583 .537 1.180 1 .277 1.792 .626 5.130 

PAR(1) 1.345 .572 5.529 1 .019 3.836 1.251 11.766 

Constant -.737 .544 1.838 1 .175 .478   

Step 4a MAC(1) -1.220 .489 6.225 1 .013 .295 .113 .770 

HSS(1) .922 .544 2.872 1 .090 2.513 .866 7.297 

PAR(1) 1.307 .565 5.354 1 .021 3.694 1.221 11.171 

Constant -.624 .531 1.382 1 .240 .536   

a. Variable(s) entered on step 1: ECB, MAC, HSS, FEO, ECE, PAR. 
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Model if Term Removed 

Variable 

Model Log 

Likelihood 

Change in -2 

Log Likelihood df 

Sig. of the 

Change 

Step 1 ECB -55.651 .464 1 .496 

MAC -58.583 6.328 1 .012 

HSS -57.211 3.584 1 .058 

FEO -55.897 .956 1 .328 

ECE -56.108 1.379 1 .240 

PAR -58.222 5.606 1 .018 

Step 2 MAC -59.143 6.984 1 .008 

HSS -57.270 3.238 1 .072 

FEO -56.275 1.247 1 .264 

ECE -56.288 1.275 1 .259 

PAR -58.233 5.165 1 .023 

Step 3 MAC -59.767 6.985 1 .008 

HSS -57.790 3.031 1 .082 

ECE -56.865 1.181 1 .277 

PAR -59.163 5.777 1 .016 

Step 4 MAC -60.128 6.527 1 .011 

HSS -58.407 3.083 1 .079 

PAR -59.648 5.565 1 .018 

 

Variables not in the Equation 

 Score df Sig. 

Step 2a Variables ECB(1) .460 1 .498 

Overall Statistics .460 1 .498 

Step 3b Variables ECB(1) .745 1 .388 

FEO(1) 1.219 1 .269 

Overall Statistics 1.676 2 .433 

Step 4c Variables ECB(1) .600 1 .439 

FEO(1) 1.130 1 .288 

ECE(1) 1.195 1 .274 

Overall Statistics 2.863 3 .413 

a. Variable(s) removed on step 2: ECB. 

b. Variable(s) removed on step 3: FEO. 

c. Variable(s) removed on step 4: ECE. 

 

 

 

Casewise Listb 

Case Selected Statusa 

Observed 

Predicted Predicted Group 

Temporary Variable 

IPD Resid ZResid 

107 S P** .137 A .863 2.515 

108 S P** .137 A .863 2.515 

a. S = Selected, U = Unselected cases, and ** = Misclassified cases. 

b. Cases with studentized residuals greater than 2.000 are listed. 
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Logistic Regression 

 

 

Notes 

Output Created 14-MAR-2014 04:42:33 

Comments  

Input Data C:\Users\phil\Desktop\CS_DataAnalysi

s\CSAanalysis\SPSS_data\CSA1.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data 

File 
121 

Missing Value Handling Definition of Missing User-defined missing values are treated 

as missing 

Syntax LOGISTIC REGRESSION 

VARIABLES GP 

  /METHOD=BSTEP(LR) ECB MAC 

HSS FEO ECE PAR 

  /CONTRAST (ECB)=Indicator(1) 

  /CONTRAST (MAC)=Indicator(1) 

  /CONTRAST (HSS)=Indicator(1) 

  /CONTRAST (FEO)=Indicator(1) 

  /CONTRAST (ECE)=Indicator(1) 

  /CONTRAST (PAR)=Indicator(1) 

  /SAVE=PRED ZRESID 

  /CLASSPLOT 

  /CASEWISE OUTLIER(2) 

  /PRINT=GOODFIT CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) 

ITERATE(20) CUT(0.5). 

Resources Processor Time 00:00:00.11 

Elapsed Time 00:00:00.09 

Variables Created or 

Modified 

PRE_4 Predicted probability 

ZRE_4 Normalized residual 
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Case Processing Summary 

Unweighted Casesa N Percent 

Selected Cases Included in Analysis 94 77.7 

Missing Cases 27 22.3 

Total 121 100.0 

Unselected Cases 0 .0 

Total 121 100.0 

a. If weight is in effect, see classification table for the total number 

of cases. 

 

 

Dependent Variable Encoding 

Original Value Internal Value 

Absence 0 

Presence 1 

 

 

Categorical Variables Codings 

 Frequency 

Parameter 

coding 

(1) 

PAR Absence 75 .000 

Presence 19 1.000 

MAC Absence 32 .000 

Presence 62 1.000 

HSS Absence 26 .000 

Presence 68 1.000 

FEO Absence 70 .000 

Presence 24 1.000 

ECE Absence 73 .000 

Presence 21 1.000 

ECB Absence 61 .000 

Presence 33 1.000 
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Block 0: Beginning Block 

 

 

Classification Tablea,b 

 

Observed 

Predicted 

 GP Percentage 

Correct  Absence Presence 

Step 0 GP Absence 50 0 100.0 

Presence 44 0 .0 

Overall Percentage   53.2 

a. Constant is included in the model. 

b. The cut value is .500 

 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant -.128 .207 .382 1 .536 .880 

 

 

Variables not in the Equation 

 Score df Sig. 

Step 0 Variables ECB(1) .037 1 .847 

MAC(1) .198 1 .656 

HSS(1) .147 1 .701 

FEO(1) 1.122 1 .290 

ECE(1) .170 1 .680 

PAR(1) .003 1 .956 

Overall Statistics 1.537 6 .957 
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Block 1: Method = Backward Stepwise (Likelihood Ratio) 

 

Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 Step 1.554 6 .956 

Block 1.554 6 .956 

Model 1.554 6 .956 

Step 2a Step .000 1 .997 

Block 1.554 5 .907 

Model 1.554 5 .907 

Step 3a Step -.011 1 .917 

Block 1.543 4 .819 

Model 1.543 4 .819 

Step 4a Step -.096 1 .757 

Block 1.447 3 .695 

Model 1.447 3 .695 

Step 5a Step -.122 1 .727 

Block 1.325 2 .516 

Model 1.325 2 .516 

Step 6a Step -.192 1 .661 

Block 1.133 1 .287 

Model 1.133 1 .287 

Step 7a Step -1.133 1 .287 

a. A negative Chi-squares value indicates that the Chi-

squares value has decreased from the previous step. 

 

Model Summary 

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 128.375a .016 .022 

2 128.375a .016 .022 

3 128.386a .016 .022 

4 128.481a .015 .020 

5 128.603a .014 .019 

6 128.796a .012 .016 

7 129.928b .000 .000 

a. Estimation terminated at iteration number 3 because parameter estimates 

changed by less than .001. 

b. Estimation terminated at iteration number 2 because parameter estimates 

changed by less than .001. 

 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 8.428 8 .393 

2 5.817 7 .561 

3 3.026 7 .883 

4 1.036 5 .960 

5 .600 2 .741 

6 .000 0 . 

7 .000 0 . 
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Contingency Table for Hosmer and Lemeshow Test 

 

GP = Absence GP = Presence 

Total Observed Expected Observed Expected 

Step 1 1 7 5.885 2 3.115 9 

2 6 5.597 3 3.403 9 

3 3 5.786 7 4.214 10 

4 4 4.360 4 3.640 8 

5 9 6.773 4 6.227 13 

6 4 4.084 4 3.916 8 

7 3 4.936 7 5.064 10 

8 3 1.916 1 2.084 4 

9 6 5.225 5 5.775 11 

10 5 5.437 7 6.563 12 

Step 2 1 7 5.884 2 3.116 9 

2 6 5.598 3 3.402 9 

3 3 5.786 7 4.214 10 

4 4 3.839 3 3.161 7 

5 9 7.295 5 6.705 14 

6 5 6.119 7 5.881 12 

7 4 4.341 5 4.659 9 

8 7 5.700 5 6.300 12 

9 5 5.437 7 6.563 12 

Step 3 1 8 7.771 4 4.229 12 

2 7 6.668 4 4.332 11 

3 5 6.144 6 4.856 11 

4 0 .523 1 .477 1 

5 14 12.906 11 12.094 25 

6 4 5.317 7 5.683 11 

7 2 1.436 1 1.564 3 

8 7 6.614 7 7.386 14 

9 3 2.620 3 3.380 6 

Step 4 1 3 2.677 1 1.323 4 

2 8 7.553 4 4.447 12 

3 4 4.770 4 3.230 8 

4 5 6.050 6 4.950 11 

5 18 17.720 17 17.280 35 

6 2 2.018 2 1.982 4 

7 10 9.212 10 10.788 20 

Step 5 1 11 10.242 5 5.758 16 

2 4 4.758 4 3.242 8 

3 23 23.758 23 22.242 46 

4 12 11.242 12 12.758 24 

Step 6 1 15 15.000 9 9.000 24 

2 35 35.000 35 35.000 70 

Step 7 1 50 50.000 44 44.000 94 
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Classification Tablea 

 

Observed 

Predicted 

 GP Percentage 

Correct  Absence Presence 

Step 1 GP Absence 34 16 68.0 

Presence 27 17 38.6 

Overall Percentage   54.3 

Step 2 GP Absence 34 16 68.0 

Presence 27 17 38.6 

Overall Percentage   54.3 

Step 3 GP Absence 34 16 68.0 

Presence 27 17 38.6 

Overall Percentage   54.3 

Step 4 GP Absence 40 10 80.0 

Presence 34 10 22.7 

Overall Percentage   53.2 

Step 5 GP Absence 38 12 76.0 

Presence 32 12 27.3 

Overall Percentage   53.2 

Step 6 GP Absence 15 35 30.0 

Presence 9 35 79.5 

Overall Percentage   53.2 

Step 7 GP Absence 50 0 100.0 

Presence 44 0 .0 

Overall Percentage   53.2 

a. The cut value is .500 

 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a ECB(1) .048 .463 .011 1 .917 1.049 .423 2.600 

MAC(1) -.184 .455 .164 1 .686 .832 .341 2.031 

HSS(1) -.151 .471 .103 1 .748 .860 .341 2.165 

FEO(1) -.507 .495 1.048 1 .306 .603 .228 1.589 

ECE(1) -.173 .506 .117 1 .733 .841 .312 2.268 

PAR(1) -.002 .541 .000 1 .997 .998 .346 2.880 

Constant .251 .502 .251 1 .616 1.286   

Step 2a ECB(1) .048 .456 .011 1 .917 1.049 .429 2.563 

MAC(1) -.184 .449 .169 1 .681 .832 .345 2.006 

HSS(1) -.151 .471 .103 1 .748 .860 .341 2.165 

FEO(1) -.506 .490 1.067 1 .302 .603 .231 1.575 

ECE(1) -.173 .506 .117 1 .733 .841 .312 2.266 

Constant .251 .498 .254 1 .614 1.286   
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Variables in the Equation (continued) 

Step 3a MAC(1) -.175 .441 .158 1 .691 .839 .354 1.991 

HSS(1) -.144 .466 .096 1 .757 .866 .347 2.160 

FEO(1) -.500 .486 1.058 1 .304 .607 .234 1.573 

ECE(1) -.169 .505 .113 1 .737 .844 .314 2.270 

Constant .255 .497 .262 1 .609 1.290   

Step 4a MAC(1) -.183 .440 .173 1 .677 .833 .352 1.972 

FEO(1) -.504 .486 1.079 1 .299 .604 .233 1.564 

ECE(1) -.175 .504 .121 1 .728 .839 .313 2.252 

Constant .158 .386 .167 1 .682 1.171   

Step 5a MAC(1) -.192 .439 .192 1 .661 .825 .349 1.949 

FEO(1) -.510 .485 1.105 1 .293 .600 .232 1.554 

Constant .126 .375 .114 1 .736 1.135   

Step 6a FEO(1) -.511 .485 1.111 1 .292 .600 .232 1.551 

Constant .000 .239 .000 1 1.000 1.000   

Step 7a Constant -.128 .207 .382 1 .536 .880   

a. Variable(s) entered on step 1: ECB, MAC, HSS, FEO, ECE, PAR. 

 

 

Model if Term Removed 

Variable 

Model Log 

Likelihood 

Change in -2 

Log Likelihood df 

Sig. of the 

Change 

Step 1 ECB -64.193 .011 1 .917 

MAC -64.269 .164 1 .686 

HSS -64.239 .103 1 .748 

FEO -64.721 1.068 1 .301 

ECE -64.246 .117 1 .732 

PAR -64.187 .000 1 .997 

Step 2 ECB -64.193 .011 1 .917 

MAC -64.272 .168 1 .681 

HSS -64.239 .103 1 .748 

FEO -64.731 1.088 1 .297 

ECE -64.246 .117 1 .732 

Step 3 MAC -64.272 .158 1 .691 

HSS -64.241 .096 1 .757 

FEO -64.732 1.078 1 .299 

ECE -64.249 .113 1 .737 

Step 4 MAC -64.327 .173 1 .677 

FEO -64.791 1.100 1 .294 

ECE -64.302 .122 1 .727 

Step 5 MAC -64.398 .192 1 .661 

FEO -64.865 1.127 1 .288 

Step 6 FEO -64.964 1.133 1 .287 
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Variables not in the Equation 

 Score df Sig. 

Step 2a Variables PAR(1) .000 1 .997 

Overall Statistics .000 1 .997 

Step 3b Variables ECB(1) .011 1 .917 

PAR(1) .000 1 .988 

Overall Statistics .011 2 .995 

Step 4c Variables ECB(1) .004 1 .952 

HSS(1) .096 1 .757 

PAR(1) .000 1 .990 

Overall Statistics .107 3 .991 

Step 5d Variables ECB(1) .001 1 .971 

HSS(1) .104 1 .747 

ECE(1) .121 1 .727 

PAR(1) .000 1 .983 

Overall Statistics .228 4 .994 

Step 6e Variables ECB(1) .003 1 .956 

MAC(1) .193 1 .661 

HSS(1) .122 1 .727 

ECE(1) .141 1 .708 

PAR(1) .004 1 .948 

Overall Statistics .420 5 .995 

Step 7f Variables ECB(1) .037 1 .847 

MAC(1) .198 1 .656 

HSS(1) .147 1 .701 

FEO(1) 1.122 1 .290 

ECE(1) .170 1 .680 

PAR(1) .003 1 .956 

Overall Statistics 1.537 6 .957 

a. Variable(s) removed on step 2: PAR. 

b. Variable(s) removed on step 3: ECB. 

c. Variable(s) removed on step 4: HSS. 

d. Variable(s) removed on step 5: ECE. 

e. Variable(s) removed on step 6: MAC. 

f. Variable(s) removed on step 7: FEO. 

 

 

Casewise Lista 

 

a. The casewise plot is not produced because no outliers were found. 

 


