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CHAPTER 1

FUNDAMENTAL CCNCEPTS

1.1 INTRODUCTION

A large class cof simulation and mathematical mcdels are
often used in analyzing problems in engineering, science and
industries. Most models are of parametric type iﬁ which
parameters used in deriving the governing equation are not
directly measurable and have to be determined from historical
records. Frequently, they involve differential equaticns of
two-point or multipoint boundary value type. In these problems,
the boundary conditions ars specified at two points or multi-
points. To complicate the matter, the governing differential
eguationg for a majority of such problems are nonlinear and
cannot be solved analytically. The solutions must be obtained
by numerical methods. Numerically, the difficulties are caused
by the fact that not all the conditions are given at one point.

Methods for the numerical solution of such problems can be
gseparated into two groups, the iterative and the non-iterative
methods. Among such methods, quasilinearization and invariant
imbedding, classified into the iterative and The non-iterative
method, respectively, are presented. Quasilinearization is an
iterative approach allied with linear approximation while
invariant imbedding represents a completely different formula-
tion of the original problem.

The purpose of this study is to use these two methods for



estimating unknown paramsters by obtaining numerical solutions
of the problem of boundary value type in the groundwater aguifer
and stream interaction system. Emphasis is therefore placed on
the computational instead of the mathematical aspects of the
methods. Most discussions are concerned with the computational
requirements and the actual convergence rates. No detailed
discussions concerning the groundwater aquifer and stream inter-
action system are given. Computational procedures are discussed
in detail together with the numerical results.

The purpose of this chapter is to introduce the basic con-
cepts used throughout the study. The parameter estimation
proolem 1s defined and explained briefly. The general concepts
of quasilinearization and invariant imbedding are also introduced.
More detailed explanations and applications about guasilineariza-
tion and invariant imbedding appear in later chapters.

Chapter 2 is devoted to the descripiion and the analytical
formulation of a problem concerning the groundwater aquifer and
stream interaction system. Previous studies about the aguifer
parameter estimation are reviewed. Hydroleogical background and
simple definitions are also explained briefly.

The quasilinearization technique is detailed in Chapter 3
and applied to the parameter estimation problem in the ground-
water aquifer system.

In Chapter L4, the estimation problem is treated by the
concept of invariant imbedding. The nonlinear filtering theory
is also discussed briefly.

An ITEL AS/5 computer was used throughout this work.



1.2 PARAMETER ESTIMATION

The parameter estimation problem, which is frequently
called an inverse problem or a history matching problem,
is a combination of experimental work with the mathematical
aspects. In other words, it is the determination from experi-
mental data of a set of unknown parameters in a mathematical
model of a physical system, such that over a desired range of
operating conditions the model outputs are close tc the system
outputs when the two are subject tc analogous inputs. Parameters
are defined as functions or constants, other than the dependent
varliables, which appear explicitly in the mathematical model.
A distributed system, encountered freguently in groundwater
systems, 1s defined as a system where the variables of importance
are related by transformations or mappings which depend on local
spatial variations as well as time.

In order to implement effective system contrel strategies,
accurate system models are required. Usually, the parameters
or coefficients used in deriving the governing equation cannot
be measured directly; the measurable variables are the dependent
variables of the differential equations. Thus, 1t is easily
shown that to ildentify these parameters is not a simple matter.
Much of classical and modern science and engineering has been
concerned with this fundamental problem. Laboratory and experi-
mental determination of chemical reaction rate constants, heat
transfer ccefficients, gas properties, diffusion constants,
elagtic moduli, transmissivities, etc. 1s an ongoing effort

throughout the scientific world.



The steps involved in the parameter estimation can be the
following (26):

1) Write the mathemzftical description, containing unknown
parameters, of the system under consideration.

2) Choose a method to solve the mathematical description of
the system.

3) Decide on measurement location(s) in the spatial domain.

4) Choose a criterion of performance.

5) Perform a sensitivity analysis.

6) Choose an optimization scheme.

7) Perform an error analysis.

By considering the step by step procedures involved in
solving the parameter estimation problem, it is shown that such
problems may be converted into standard optimization problems
where any one of a number of optimization techniques may be used.
In this way, not only the known structural configuration of the
model but also the approximated values of the parameters are

utilized.

1.3 QUASILINEARIZATIOCN

The guasilinearization technigue, which is often referred
to as a generalized Newton-Raphson method for functional equa-
tions, involves decoupling the nonlinear differential equation
by linearization into a series of linear differential equations
that may be iteratively solved in such a way that their solu-

tions converge to the solutions of the original problem. Thus,



this algorithm is an itfterative and indirect computaticnal
approach which usually requires a good initial approximation

in order to converge. The main advantage of this technique is
that 1T converges gquadratically to the solution of the original
problem if it converges at all.

The linearized equation is obtained gimply by a Taylor's
series expansion ¢f the original nonlinear equation; only the
linear terms are maintained.

Since linear differential equations of the boundary value
type with variable coefficients can be sclved easily on modern
high speed computers by the principle of superposition {(in this
work, Tthe method of complementary function), an efficient re-

cursive formula has been developed (38).

1.4 INVARIANT IMBEDDING

Invariant imbedding is only a concept, which enables the
transformation of boundary value problems into initial value
problems by introducing new state variables and imbedding the
original problem in a new family of similar problems. Although
the actual application of the imbedding is relatively straight-
forward, the exact form of the imbedding to be used normally
must be determined for each new problem.

In its basic concept, the approach invoclves generating a
family of problems by means of a single parameter, where the
basic properties of the system remain invariant. The new family
then provides a means of advancing from one member to the solu-

tion of the original problem.



This concept can be applied to the various fields of
science and engineering., Many problems of classical anaysis
can also be viewed as an imbedding, where the imbedding is
almost always either pesition in a fixed interval or time.
Frequently, invariant imbedding gives new insights to the same
problems treated by the classical anaysis because of its

completely different approach.



CHAPTER 2

PROBLEM DESCRIPTION AND
ANATYTICAL FORMULATION

2.1 INTRODUCTICN

The problem of parameter estimation from a limited number
of observations is of considerable interest and importance in
hydrology. By late 1960's, hydrologists had been in a quandary
owing to the lack of a systematic procedure for parameter iden-
tification, and most existing methods had required graphical
matching.

In recent years, a great number of simulation and mathemat-
ical models are often used in analyzing the groundwater system.
Most models are of parametric type in which the parameters or
coefficients are not simply measurable from the physical point
of view. However, these parameters can be ildentified by using
concurrent input and output observations on the dependent vari-
able of the governing equation along with appropriate initial
and boundary conditions. These models are then used conjunc-
tively with the surface water system for prediction and manage-
ment of the integrated basin. Optimum development and manage-
ment are achieved in most cases when pumping of ground water
is balanced by replenishment.

The problem of parameter estimation in the groundwater
agquifer system has been reported by numerous researchers.

A survey of parameter identification in distributed systems



governed by partial differential egquations was reported by
Kubrusly (35). Proposed methods may be classified into two
groups: the direct approach and the indirect approach. The in-
direct methods depend upon the division of the inhomogenecus
aguifer system into several approximately homogeneous subreglons
for which prior information can be used for the initial esti-
mates of the parameters. These initial estimates are then
improved iteratively until the model response is sufficiently
close to that of the field cbservations. As a result, the in-
direct method is an optimization preocedure in which the objective
is usually the minimization of a norm of the differences beliween
ocbserved and calculated groundwater levels at the specified
observation points.

Vemuri and Karplus (63) solved the inverse problem by using
the maximum principle in conjunction with the steepest descent
algorithm on a hybrid computer. The other developed methods in
line with gradient techniques include those by Jacquard and Jane
(30), Seinfeld (57,58), Chen and Seinfeld (16), Chen et al. (17),
and Bruch et al. (13). Yeh and Tauxe (72) used guasilineariza-
tion allied with the finite difference scheme in order to solve
the inverse problem. The other articles concerned with guasi-
linearization include Yeh (67,68), Marino and Yeh (43), and
Lin and Yeh (41). Linear programming was used by Slater and

Durrer (60), Yeh and Becker (71), and Coats et al. (18). Yeh
(70) and Chang and Yeh (15) solved the problem by quadratic

programming with a quadratic performance criterion subject to



lower and upper bounds on parameters to be identified. Yeh (&%)
made a comparative study using five different approaches: guasi-
linearization, maximum principle, gradient method, influence
coefficient method and linear programming. The finite element
ideas were used by Distefano and Rath (22). Yoon and Yeh (74)
proposed the modified Gauss-Newton method allied with the finite
elements. The mixed explicit-implicit Galerkin finite element
method was used by Neuman and Narasimhan (50) and Narasimhan et
al. (47),

The direct methods, such as those of Nelson (48) and
Emsellem and de Marsily (23), are available if the groundwater
levels can be specified on a regular mesh of grid points cover-
ing the area of interest. The direct apprcach treats the model
parameters asg dependent variables in a formal inverse boundary
value problem. Frind and Pinder (24) used Galerkin's method
for steady flow., A multiple objective decision process was used
by Neuman (49). In actual field practice, observation wells are
sparsely located in random fashion rather than regularly located;
and only a limited number of wells are available. Sagar et al.
(55) proposed the method of spline interpolation to fit the
discrete data of observations; but the method still requires a
sufficilent number of the observation points to properly approxi-
mate the whole flow potential surface in the region under con-
sideration.

In dealing with noisy data, Wilson et al. (65) proposed an

approach based on the notion of a Kalman filter to permit utili-
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zation of prior information about the parameters. A ncnlinear
least squares method for estimating parameters in two dimension-
2l or radial steady state groundwater motion was used by Cooley
(19,20). This approach promises as an aid to esTablishing
gpproximate reliasbility of computed parameters and predicted
head distribution. The role of statistics in the determination
of optimum parameter dimension with respect to modeling error
was studied in considerable depth by Shah et al. (59). Neuman
and Yakowitz (50) and Neuman et al. (52) used a Bayesian type

of approach for estimating spatially varying aquifer trans-
missivities on the basis of steady state and nolisy water level
data utilizing a priori statistics of the aguifer system.
Recently, Yeh and Yoon (73) presented a parameter identification
procedure using a modified Gauss-Newton algorithm for parameter
optimization and covariance analysis for estimating the reliabil-

ity of the estimated parameters.

2.2 HYDROLOGICAL BACKGROUND

Water 1s an essential commodity to mankind, and the largest
avallable sources of fresh water lies underground. Increased
demands for water have stimulated development of underground
water supplies.

'The problem under congideration is that of an unsteady
flow of water in an unconfined aquifer stream interaction system.
Groundwater occurs in permeable geoleogic formulations known as

aquifers, that is, formations having structures that permit
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appreciable water to move through them under ordinary field
conditions. The word aguifer, which can be traced to its Latin
origin, is a combining form ¢f agua, meaning water, and ferre,
to bear. Hence, an aguifer, literally, is a water bearer.

The subsurface occurrence of groundwater may be divided inte
zones of gaturation and aeration. Over most of the land masses
of the earth a single zone of aeration overlies a single zZone of
saturation and extends upward tec the ground surface, as shown in
Figure 1. The saturated zone is bounded at the top by elther a
limiting surface of saturation or overlying impermeable strata,
and extends down to underlying impermeable strata such as clay
beds or bedrock. In the absence of overlying impermeable strata,

the upper surface of the zone of saturation 1s the water table.

This is defined as the surface of atmospheric pressure and
would be revealed by the level at which water stands in a well
penetrating the aquifer. Water occurring in the zone cf satura-

tion is commonly referred to simply as groundwater.

Aquifers may be classed as unconfined or confined, depending

upon the presence or absence of a water table. An unconfined

aguifer is one in which a water table serve as the upper surface
of the zone of saturation. Rises and falls in the water table
correspond to changes in the volume of water in storage within
an aguifer. TFlgure 1 ig an idealized section through an un-

confined aguifer.

2.3 MATHEMATICAL MODEL

A one dimensional simplified but typical inverse problemn,



THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.



_—,_.—--——.—d-—--_.n—.r——.——-f e e e g™

Zone of
Aeration
Zone of

Saturation

s — S St — —

Figure 1.

Ground Surface

Soil Water

Pellicular & Gravitational

Water

Capillary water

“\\\\\\\““~VVater Table

Ground Water

Bedrock

Division of subsurface water

[AS]



13

governed by nonlinear partial differential equations, is ana-
lyzed. The problem under consideration ls that of an unsteady
flow in an unconfined aguifer gtream interaction system.
Figure 2 shows schematically the flow configuration of an un-
confined aquifer and stream interaction system. If the curvature
of the free water table is small; the Dupuit-Forchheimer concepis
may be assumed to be valid. It is also assumed that the un-
confined aquifer 1s homogeneous and lsoiropic.

In 1856, Henry Darcy, a French hydraulic engineer, reported

a simple empirical relation based on his experiments, namely,
v = K 2h/dx (2.1)

where v is the velocity of flow, K is the hydraulic permeabil-
ity of the unconfined aquifer, x is space variable, and In/ox

is the hydraulic gradient. Equation (2.1), commonly called
Darcy's law, demonstrates a linear dependency between the hydrau-
lic gradient and the velocity of flow v. Then, the flow Q

through a unit width at a distance x and with a head h is
Q = Av = Kh Jh/0x (2.2)

where A 1s the saturated area, which has a unit width, perpen-
dicular to the flow; and h is the head in aguifer, a function
of x and t.

The rate of change of Q with respect to x is

2Q/2x = K( 2/2x ){ h 2h/2x ). (2.3)
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Another expresslion for Q may be written in terms of the
change in storage of water beyond x, with respect tc time, as

follows:

G = j:du S'{ Z2h/Jt ) (2.4)

in which S' is the specific storage of the aquifer and t is time.
The specific storage S'(dimensionless) 1s the drainable volume
in the aguifer expressed as a ratio to the gross volume. In
cther words, S' i1s the volume of fluid instantanecusly released
from storage per unit bulk volume of porous medium when h is
lowered by one unit.

In terms of the change of flow with respect to x, Equation

(2.4) may be written as:
9Q/2x = 3'( 2h/ot ). (2.5)

By combining Equations (2.3) and (2.5), the following non-

é ”
linear differential equation is obtalned
K( 2/0x )( h 2h/ox ) = S'( 2h/at ) {2.5)

subject to the following initial and boundary conditions:

hi{x, 0) h(x)
n(o, t) = ho(t) (2.7)

| _

S

where X, h, %, S', and t are as previously defined;

h(x) = given initial condition;



ho(t) = given boundary condition;
L = maximum distance from the river to the water divide;

|

oh/ox J(L ;) = no flow condition at x = I, equal to O.
] 2

2.4 ANALYTICAL FORMULATION

By rearranging Equation (2.6), the governing equation can

be expressed as:
an/2t = (K/s')( 2/2x )( h dh/dx ). (2.8)

Equation (2.8) delineates a distributed system in which the
parameters are constant. To make the head and the space variable

dimensionlessg, the fellowing changes in variables are introduced:
b = n/H y = x/L 7= (3/1°)t (2.9)

where H is the maximum water table height. Substituting Equa-

tion (2.9) into Equation (2.8) yields

a0/97 = D( 3/2y Y(§20/ay ) (2.10)
subject to
B(y, 0) = h(x)/H
8(0, 7) = ny{t)/H (2.11)
29/57 | (1, 7y = O

where diffusivity D = K/S°'.

The inverse problem being considered is the one of deter-



mining the aguifer diffusivity, D. It is assumed that obser-
vations on § are avallable at an observation well within the
system. The objective 1s to uncover this unknown parameter
along with these given observations and appropriate initial and
boundary conditions.

Equation (2.10) characterizes a distributed system and can
be transformed to a lumped system via a spatial discretization
scheme., Tc¢ minimize the truncation error introduced by the
finite difference approximations, the central difference scheme
is used. The goal of finite difference method is to tfansform
the distributed equations into a set of difference equations.

The space variable y of Eguation (2.10) is discretized into
n eqgual intervals, where i =1, 2, ..., n while the time vari-
able 7 is Dbeing kept continucus. The finite difference approx-
imation of Equation (2.10) becomes

9. 9. +0, 8. -8

§%95 9. Y57% 9 L
e ) - (=) T ﬂ! (2.12)

Bia1*0s ) Fiar-
2

| rf
d@/d’T=D'1&yLL

j— = l] 2, " ey (1’1"1)
After simplification, it reduces to

: 2 2 2
bl AL E R A S %

i = .1’ 2, LI I I ) (1’1"1)

(2.13)

where Bi = d@i/dv'. Figure 3 shows the discretized configu-

ration.
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CHAFPTER 3

PARAMETER ESTIMATION

BY QUASILINEARIZATION

3.1 INTRODUCTION

The quasilinearization technique which can be classified
into the indirect method is introduced in this chapter. Emphasis
is placed on the numerical aspects of estimaticn process con-
cerning its application to the groundwater aguifer system rather
than theoretical derivations.

The quasilinearization technique is essentially a general-
ized Newton-Raphson method for functional eguations. The
quasilinearization technique not only linearizes the nonlinear
equation but alsoc provides a sequence of functions which con-
verges gquadratically to the solution of the original nonlinear
equation.

Yeh's study (72) will be verified by using the same guessed
initial value of aquifer diffusivity. The technique will be
further tested by using different value of diffusivity. The
computational aspects of parameter estimation procedure is
discussed in detail.

Generally, the indirect approach ié an optimization proce-
dure in which the objective ig the minimization of a norm of
the differences between observed value and calculated one., For

the objective function, the least squares approach is introduced.
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3.2 TLEAST SQUARES APPROACH

Suppose that cbservations are made at an observation well
at some distance between 0 and 1, say, at the e discretized
point on the dimensionless scale, where 1=m=(n-1). Thus,
the dimensionless head at this point obgerved for various values

of T(time), say 74, Tp1 +++s Tp» defined as

* i ; th .
em(7ﬁ) = observed dimensionless head at the m— discre-

tized point at time 73, 3% 3 25 wwmsw T

The objective is to uncover the unknown parameter D such
that the solution of the nonlinear governing Equation (2.10) is
in closest agreement with the observations @;(73). When the
classical least squares criterion is used, the objective func-
tion is the minimization of the weighted sum of the squares of

the deviations:

2
j =1, 2, s

where wj represents the weight to be assigned to each of the

observations and E:(WJ/T) = 15 3 =1 83 win; T
J
The solutions of Gm(75) are obtained by direct numerical
integration of Equation (2.13) subject to (2.11) when some

considered value is used for the parameter D.



3.3 QUASILINEARIZATICHN

Quasilinearization 1s a technique which involves solving
a series of linear initial value problems such that the sequence
of solutions converges to the solution of the original problem.
The linearized equations serve as a means to identify the un-

known parameter D.

53.3.1 LINEARIZATION

The nonlinear term in Egquation (2.13) can be linearized

by the use of the following expression:

= ¥ - £ 5
EUypqr Vigag) = T0ue v F (0 = wy) £,00, )

Ty - V) T, V) (3.2)

which is obtained from Taylor's series with second and higher
order terms neglected. The term fu(uk, ka and fv(uk’ vk)
represent partial differentiations of f(uk, vk) with respect

to u, and v, , respectively. If we assume Uy, and Vi are the

k
known values and Uy and Vi 4q are the unknovnsg, the right-hand

side of Equation (3.2) will always be linear.

Equation {2.13) now becomes

2 2 2

‘k+1 _ k1, .k K e
O T D g (O T 20 TRy
Jxk+1 .k | DF e ]



Z2

r k 7
+ (6 - 8D | P (x5
1 Lz(‘ly)a E J
r k
K+l Ak D K ]2
. 2 2 2 7
k+1 ky | 1 k k k |
+ (D - D%) (6 Bl gs )1 | Be3)
2(Ay)2 e':L+1 i i-1 | <
L = 1: 2: 31 Ve (I’l-—l)
8 =0 for 1 =1
=1 for i # 1
subject to
3%y, 0) = n(x)/H
55" (0, 7 = ny(v)/m (3.4)
6f§+1=9r}§fi y=1,7 >0

in which the superscript k+1 represents the new apprcximation

and x denotes the previous approximation.

N\

3.3.2 METHOD OF COMPLEMENTARY FUNCTION

The method of complementary function is used to obtain
the general solution of Equation (3.3) and requires only the
previous estimates of p¥ and solutions of G?.

Consider a general first order differential equation

Ti * PRY = EF(x) 4 Ry (x) (3.5)
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where Kl and k2 are constants; P, Fl, and F2 are gll defined on

the same real domain. Let p be a particular solution of

4y 4+ p

4+ p(x)y = Fy(x) (3.6)

Let ¢ be a particular sclution of

ay 4 P(x)y = F

dx x)

o (3.7)

Then k,p + k,q ig also a solution of Eguation (3.5).

The general solution is used to obtain the new estimate
k

of D and is formed by the linear combination of the particular

solutions of Equation (3.3).
Rearranging Equation (3.3), one gets

. roAk .
gert gt BT 5 gk ]
* P L2 (ay) J
k i |
UD ) (ot 8?)\
L 2(ay) :

k+1
- Qi




i = 1: 2| 3! L] ] (I'l-l)
O =0 for 1 =1
O =1 for i#1

- Thus the right-hand side of Equation (3.8) can be expressed as

k+1

D F, + F,.

1 2
obtained:

subject to

and

Then, the following two particular equations are

.

<y
Praz| Grag2 2 Ois)]

k ]
¥ Pi[jgzg“““ (-4 ei)J

ﬂy)z
k .
D k i
) pl“l[z(i\.y)z (2814 0
1 2 2
® 5 e}i(ﬂ 2 Gf * eik-l)

Cn
1]

I._A

'._{J

(@]

o]

+

“H

H

(3.9)

(3.10)
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subject to

+

=

.

O
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r k
k D k!

- k N
; 2 ko] (3.11)
(q3.1 - 91_1).{5;2335-(2 ei_1>j O

1, 2, 31 «vsy (n-1)

=0 for i=1

a0
o«
o
n n
o -
O T
—~
-t g
‘1__/\
N
o

(3.12)

Note that the initial conditions in Egquations (3.10) and

(3.12) are chosen in such a way that the general sclutions of

Equation (3.3) satisfy the given initial conditions of Equation

(3.4) at 7 = 0.

Now, the general solution of Equation (3.3) 1s represented

by the linear combination of these particular equations when

multiplied by the appropriate constant to give

el{"'l _ ~k+1
3

=D""'p; *a; (3.13)

i=1, 2y 35 seas (1’1—1)

3.4 PARAMETER ESTIMATICN

The general solution of the mEQ discretized point, where

observations are made, is obtained from Equation (3.13)



k+1 _ _k+1
m Py * dp (3.14)

k+1

The new egtimate of D is gtill unknown. It is determined by

substituting Equation (3.14) into Equation (3.1) and minimizing

the resultant function,

2
[ oy +ay) - o) | (3.15)
1

ey
I
ra

1l

J
Equation (3.15) is actually the linearized form of Equation (3.1),
using the linearized general solution for Gm' It serves as a

means of ldentifying the unknown.

The new estimate of Dk+1 is found.by equating the derivative
of J with respect to Dk+1 to zero:
2 - L
I, J o+l #, 7
S T 2 L :[(D Pp * ) - Op(7y) jw; Fm |
3=1"
=0 (3,16)
Then, the solution of Dk+1 is
T r
*
Z:Lem(‘Tj) Pm - qm pm] Wj
+ =1
D™t = - (3.17)
L Lon ¥
_m WJ
1=l

The governing Equation (2.13) is now integrated by using

this new value of Dk+1. The result of this integration is

checked with the observations by using the objective function,
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Equation (3.1). If I lies below the prescribed convergence
criterion €, the parameter estimation problem is completed.
Otherwise the linearized form of the governing Equation (3.3)
is numerically integrated by using the new estimates of D and
Gi. The second cycle is started by incrementing k and returning
to the reevaluation of the particular solutions of Egquations
(3.9) and (3.11). This procedure may be repeated until satis-
factory convergence is obtained.

It 1s now possible to present the exact procedure of the
quasilinearization technique. The following basic steps are
involved:

{The basic cycle starts at iteration 0, i.e., k = 0.)
STEP 1: Linearize the governing Egquation (2.13) by the use of

Taylor's series expanslion with maintaining only the
linear terms.

STEP 2: Assume a reasonable initial value of the parameter (DO).

STEP 3: Integrate the nonlinear governing Egquation (2.13)

subject to Equation (3.4) by using §Y,

STEP 4: Integrate the particular Egquations (3.9) and (3.11)

using the results (@g) from STEP 3.

STEP 5: Solve Equation (3.17) for the new estimate of parameter
2
D™ using <The newly obtained particular solutions from
STEP 4 and the observation data at the m:t-£1~ discretized

point.
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STEP 6: Integrate the governing Equation (2.13) by using D1
in order to estimate the new 9;.

STEP 7: Evaluate J. by using Equation (3.1) and compare with

0
the prescribed convergence criterion €.

STEP 8: If Jy,< £, the parameter estimation problem is com-
pleted. Otherwise, integrate the linearized governing

Equation (3.3) by using Dl. Then, go to STEP 4.

Note that the best available 1nitial estimate of parameter D
should be used for STEP 2. Figure 4 shows the flow chart of
computer program for the quasilinearization algorithm,

The initial parameter estimation can affect the convergence,
depending on the sensitivity of the solution to that parameter.
If this initial approximation is too far from the correct
solution of the problem, the iteration procedure may not converge.
In order to converge, this initial approximation value must be
within a certain interval, which is referred to as the interval
of convergence. The best remedy is to attempt another estimate

of the parameter.

3.5 NUMERICAL RESULTS

To illustrate the applicability of the technigque, the aquifer
diffusivity D is estimated. Also of importance is the ability

to calculate Gi.

EXAMPLE 1

As a verification of Yeh's study (72), the inverse problem
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is solved and compared with Yeh's result for the following

initial and boundary conditions:

Gi(oj = 1,0
Bo(a;—) = G (3.18)
8.6 = Gmliﬂ

In additicn, the following values are also assumed:

H/I® = 1 ’
N (3.19)

The observation data ei@T) are generated by intezrating
Equation (2.13) subject to Equation (3.18) with D = 1. Ten
intervals on the space varliable y were used; i. e., Ay = 0.1,
The Runge-Kutia integration scheme was used with step size of
At = 0,002, The generated observed values of the dimensionless
head at the fifth discretized point are shown in Table 1. These
values are used as observations in order to test the guasiline-
arization algorithm.

In order to test the procedure, a value of DO = 0.1 was
used as the initial estimate of the aquifer diffusivity. This
initial estimate is different from D = 1 by a factor of 10.
Convergence criterion was set at € = 10“6. Convergence was
obtained in only four iterations. Comparison of the present

results of successive gpproximations with Yeh's results is shown

in Table 2. The objective function I is alsc compared by



Table 1. Obsgerved wvalues of ﬁhe dimensionless head at the

fifth discretized point for D = 1.0

0,( T;)
! 73 Yeh's G Present Work
1 ¢ .00000 1.00000
2 0.1 .90518 0.90489
3 0.2 .82802 0.82796
b 0.3 s 7215 0. 77211
5 0.b .72803 0.72799
6 045 69229 0.69225
7 0.6 66296 0.66293
8 Qa7 .63867 0.63866
9 0.8 61842 0.61840
10 0.9 60142 0.60140
11 L0 « FBF0Y 0.58706

@ YEh, ‘N- W"’Gl ]

7(4), 955,

197.1..

and Tauxe, &,

31

W., Water Resources Research,
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Table 2. Comparison of the numerical results of successive
approximations at the final iteration for D = 1.0
Yekh's @ Present Work
Final(fourth) Observations Final(fourth) Observations
D 1.00102 1.00000 1.+00020 1.00000
65(0) 1.00000 1.,00000 1.00000 1.00000
95(0.1) 0.905C6 0.90518 0.90487 0.50489
@5(0.2) 0.82789 0.82802 0.82793 0.82796
95(0-3) 0.77200 0.77215 0.77207 0.77211
95(0-4) 0.72787 0.72803 0.72795 0.72799
@5(0 5) 0.69213 0.69229 0.69222 0.69225
@5(0.6) 0.66280 0.66296 0.66290 0.66293
65(0.?) 0.63852 0.63867 0.63862 0.63866
95(0.8) 0.61827 0.61842 0.61837 0.51840
@5(0.9) 0.60127 0.60142 0.60137 0.60140
85(1.0) 0.58694 0.58707 0.58703 0.58706
Jq 2.2010 x 1077 1.1632 x 1070

@ Yeh, W. W-G.,
7(4), 955,

1971.

and Tauxe,

G. W., Water Resgources Research,
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plotting it in Figure 3.

EXAMPLE 2

For further confirmation, D = 0.1 was attempted. The same
initial and boundary conditions, H/L2 =1, and &y = 0.1 of
EXAMPLE 1 were used. The Runge-Kutta method was used again with
At = 0,002, Table 3 shows the generated observation data of the
dimensionless head.

The procedure 1s tested with the initial estimates of the
0

aquifer diffusivity D 0.03 and 0.3, respectively. Convergence

It

criterion was set at € 1077, Convergence wag obtained within

only three iterations in both cases. Tables 4 and 5 show the
results of successive approximations corresponding to DO = 0,03
and 0.3, respectively. The J, functions are plotted in Figure 6.

It is shown that the quadratic convergence is obvious.

3.6 DISCUSSION

The technique of gquasilinearization has been successfully
applied to parameter estimation in an unconfined aquifer system.
The observation data were generated using the assumed value of
aquifer diffusivity. Yeh's study (72) was then verified by
using the same initial estimate of diffusivity. The technique
was further tested by choosing different value and different
initial estimates of diffusivity. In every case, the parameter
converged in less than five iterations. The least squares
criterion was used for the objective function. In general, it

can be said that as long as the initial approximations are
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Table 4. = 0,03
for D = 0.1
Zero First Second Third Observations

D 0.03000 0.11564 0.10167 0.10002 0.10000
65(0) 1.00000 1,00000 1,00000 1.00000 1.00000
eg(O-l) 1.00000 0.99893 0.99932 0.99935 0.99935
95(0-2) 0.99991 0.99149 0.99391 0.99417 0.99%418
@5(0-3) 0.99956 0.97891 0.98381 0.98437 0.98437
95(o.u) 0.99877 0.96459 0.97158 0.97239 0.97241
95(0-5) 0.99747 0.95028 0.95887 0.9598% 0.95990
65(0 6) 0.99564 0.93664 0.9464L 0.94762 0.94764
95(0-?) 0.99334 0.92385 0.93460 0.93591 €.93593
GE(O.S) 0.99064 0.91192 0.9234k4 0.92485 0.92487
95(0.9) 0.98762 0.90076 0.91293 0.91442 0.9 1444
95(1,0) 0.98435 0.89028 0.90302 0.90458 0.90461

J 2.4011x10™% 1.0183x1077 1.2216x1075 2.4707x1077 -
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Table 5. Results of successive approximations with D = 0.3
for b = 0.4
Zero First Second Third Observations

D 0.30000 . 04306 0.09874 0.10000 0.10000
65(0) 1.00000 .00000 1.00000 1.00000 1.00000
65(0-1) 0.984k45 99998 0.99938 0.99935 0.99935
65(0.2) 0.94772 99963 0.99437 0.99418 0.99418
95(0 3) 0.91451 .99843 0.98480 0.98437 0.98437
@5(0.4) 0.88654 .99617 0.97303 0.97241 0.97241
@5(0-5) 0.86239 99290 0.96069 0.95990 0.95990
@5(0.6) 0.84095 .98883 0.94885 0.94764 0.94764
65(0.7) 0.82154 L98420 0.93694 0.93593 0.93593
@5(0.8) 0.80374 97918 0.92596 0.52487 0.92487
65(0.9) 0.78728 .97393 0.91560 0.91440 C.9144u
65(1.0) 0.77199 96857 0.90532 0.90461 0.90461

T, 9.7036x107% 1.6488x107% 7.0846x107° 3.3920x107 11



1C10-LIf

1072

10”7

10‘lo

-11
10 I 1
0 1 2 3

Number of Iterations

Figure 6. Jy VS. number of iterations for D = Q.1



bl

within the interval of convergence, the initial estimates con-
verge to the assumed value of parameter within three to seven
iterations.

No disturbances on the observation data have been intro-
duced. However, observations are usually corrupted by instru-
mentation or human errors in actual field measurement. It will
be an interesting problem to find this effect on parameter
estimation as well as the ability of the pfocedure in seeking

to uncover the unknowns.
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CHAPTER 4

STATE AND PARAMETER ESTIMATION
BY INVARIANT IMBEDDING

4,1 INTRODUCTION

The real birth of the method of invariant imbedding, origi-
nated in the work of Ambarzumian (1,2) and Chandrasekhar (14),
started with the paper of Bellman and Kalaba (5) in 1955. In
fact, it was Bellman who coined the present name of "the princi-
ple of invariant imbedding".

This method has been found extremely useful in various
fields of physics and engineering. Chief among them are appli-
cations in neutron transport theory (10,66), radiative transfer
(9,10,14), random walk and scattering (6), wave propagation
(6,7), rarefied gas dynamics (3), Hamilton's equation of motion
(8), and the flow in chemical reactors (38). A fairly complete
bibliography can be found in the books by Lee (38), Meyer (4i4),
and Scott (56).

The theory of invariant imbedding enables the transformation
of boundary value problems into initial value problems by intro-
ducing new state variable and imbedding a particular problem in
a family of analogous problems.

In this chapter, emphasis will be placed on the use of the
concept of invariant imbedding as a computational tool. More
theoretical formulationg andanalytical applications will not be

discussed because of its thorough coverage in the books mentioned
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and in the large number of works reported in the literature.

In essence, the sequential estimation of system parameters
is nothing more or less than a problem of nonlinear filtering.
The method of invariant imbedding is developed and applied to

the two-point boundary wvalue problem of parameter estimation.

4.2 NONLINEAR FILTERING AND ESTIMATION

The concept of invariant imbedding can be applied to derive
some useful results in the theory of nonlinear filtering and
estimation. The problem treated in the present work is essen-
tially an extension of the well-known linear prediction problem
which was discussed by Kalman and Bucy (33).

Since the invariant imbedding approach is different from
the usual classical one, several advantages can be obtained (38).
Pirst, this approach is applicable to a variety of nonlinear
proolems. Second, in contrast to the nonsequential estimation
scheme resulting from the usual classical approach, the estimator
equations obtained by invariant imbedding are sequential estima-
tors. In the nonseguential case, each time additional output
data are received, the entire algorithm must be repeated from
time t = 0 to the value of tf to which the final data point
corresponds. In the sequential case, it is desirable to contin-
ually update the state estimates from measurements or observa-
tions, and real time implementation necessitates a sequential
scheme.

No statistical assumptions are made concerning the disturb-
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ances or measurement errors. For most practical problems, the
determination of wvallid statistical data concerning these dis-
turbances is a difficult problem in itself. The generally used
least squares criterion is used to obtain the optimal estimates.
If valid statistic data concerning the disturbances are
avallable, then this criterion will not necessarily be the best

one.

%.2.1 ESTIMATION PROBLEM

In general, there are two kinds of estimation problem
concerning noises or disturbances involved in the experimental
observations. They are;

1. The estimation of state wvarlables and parameters with
measurement errors only,

2. The same problem with both measurement errors and unknown
disturbance inputs.

In the present work, the case of 'measurement errors only' is

discussed.

Consider a distributed parameter system whose dynamic
behavior can be represented by the nonlinear vector equation

dx

ah:E:nf»(ES’ "t) (4.1)

where X and f, known function, are N-dimensional vectors with

compcnents Xis Xps owees Xy and fl, fz, A respectively.

N!
The problem now 1s to estimate state variables of the gystem, X.

Because of the presence of disturbances or measurement errors,
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the observed states z of the system do not represent the true

states. Let
z(t) :,g(t) + (observation or measurement errors) (4.2)

In actual situations, i1t is assumed that not all the state
functions can be measured and some of the state functions can
be measured only in certain combinations with other wvariables.

Thus

z(t) =‘E(§, t) + (observation or measurement errors) (4.3)

where z and h are n-dimensiocnal vectors with components Zqr Zo

cens 2y and hl’ h2, Wb hn' respectively. The number n

represents the number of measurable gquantities and n = N.
When the classical least squares criterion is introduced,

the actual problem now is to estimate the current states of the

gystem at tf, such that the following integral is minimized

e 2
]

[zj(t) - hy(x, t) | dt (L.4)

il

1

il

J

where tf denotes the present time and Zj are the measured or

observed functions with 0 = % Eitf. In other words, based on
the observation z(t), 0 =t =< Tes estimate the N conditions
x(tp) = ¢ (4.5)

for Equation (4.1) such that Equation (4.4) is minimized. The

components of vector c are Cqys Cps wnny C Functions hj are

Nl
evaluated on the interval 0 =t = t- Dy using the values of X
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obtained from Egquation (&4.1).

4,2.2 INVARIANT IMBEDDING

Let us define a new variable, y{(%t),

T
n 2
(1) =£ j;l[zj(t) - ny(x) %) | at (4.5)

The integral Equation (4.4) can be written as

12
[zjm - h.(x, t) (4.7)

i 2 ]

y(te) =4 (4.8)

The differential equations to be considered now are Equations
(4.1) and (4.7). If the final condition (4.5) is considered as
a known condition, the missing final condition 1is y(tf).

Consider the family of problems with final points, a:
x(a) = ¢ (4.9)

with 0 =t = a. In other words, the missing final condition,
y(tf), igs to be obtained by considering a family of processes

with different final points, a. If we define

r(c, a) = the missing final condition for the system

represented by Equations (4.1), (4.7), and

(4.9) where the process ends at t = a with

x(a) = ¢
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then

y(a) = r(c, a) (4.10)

Now, the invariant imbedding equation for the missing final

condition can be obtained:

£ (¢, a)(@/0c;) [r(g, a)J

e

(2/9a) [r(g, a)] +

i=1
h 2
= §: [ zj(a) - hj(g, a) ] (4.11)

i=1

4,2.3 ESTIMATOR EQUATION

By introducing E(a) as the optimal estimate of ¢ and manip-
ulating the invariant imbedding Equation (4.11), the following

sequential estimator equations are obtained:

T

d
E% = £(e, a) + q(a) [gg(g. a) } [g(a) - h(e, a)} (4.12)
dg _ + T
= F ,i,‘ﬂ(,e,, a) q(a) + gq(a) [,ijg(g-:;, a) J

+ gq(a) {Lxee(g. a) [g(a) - h(e, a)}} q(a)

T
- g(a) [ (e, a) | n(e, a) g(a) (4.13)
in which

a = final value of independent variable t,
¢ = optimal estimates of ¢,
he(er a) = (2/2¢) [ n(e, a),
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re

h_ (e, a) = (2/2e). h_(e, ai,

“BE R
g = weighting functions. (4.14)
' m
The symbol [Qe(g, a)] Y refers to the transpose of the matrix
Be(e. a). Note that Equation (4.12) represents N differential
- 2

equations and Equation (4.13) represents N° differential

egquations.

The above estimator equations were originally obtained by
Bellman et al. (11), and by Detchmendy and Sridhar (21) except
for one additional term. The detalled derivation of these

estimator equations can be found in Lee (38).

4.3 ESTIMATION OF STATE AND PARAMETER

In crder ro illustrate the nonlinear filtering and estima-
tion with invariant imbedding approach, the Example 2 solved in
Section 3.5 is considered again. In the nonlinear governing
Equation (2.13) with the initial and boundary conditions (2.11),
both of the state Gi and the parameter D are to be estimated.

In addition to Equation (2.13), we can establish the following
differential equation for D by considering D as a dependent

variable and as a function of 3

dD
e = .
= (4.15)
Now, the estimation of state @i and parameter D can be approach-
ed by the theory of nonlinear filtering and estimation which

nas been presented in Section 4.2.

The generated observed values of Table 3 are used again
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as measurements. For simplicity, i1t is assumed that no noises
are involed.

The system of equations corresponding to Equation (4.1) are
Equations (2.13) and (4.15) with N = 10 and n = 9. The unknown
parameter D can be considered as part of the state of the system;
and the estimator equations can be obtained from Equations (4.12)

and (4.13) with

Fel T
B
e(a) = . (4,16a)
| ©10 | 10x1,
r— 1 —
2 2 2
e e - 2e + e )
10 2(Ay)2 2 1 0
1
2 2
e ( es” - 2e, +e,7 )
10 2(Ay)2 3 2 1
(e, a) = : (4.16Db)
1
2 2
e - e + e )
10 3 (ay)2 9 8
i 0 10x1,
-el_
€2
h(e, a) = . (4.16¢)
eg_ 9x1,
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- . -
9,(a)
3
0, (a)
z{a) = . (4.164)
3%
§
i 9(3-)’{ 9X1,
and
993 92 * + * 9110 }
gy Sgz + 9210
q{a) = . . . (&.16e)
9101 %102 - -+ - q_;_l___J 10x10,
where
ey = optimal estimate of @O which is determined from
the initial and boundary conditions,
e, = optimal estimate of @1,
e, = optimal estimate of 92,
ey = optimal estimate of 99,
€10 = optimal estimate of D.

The degired estimator equations are:
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where Q represents the null matrix and q(a) is a 10x10 dimension-
al matrix. Equations (4#.17a) and (4.17b) represent 110 simulta-
rneous differential equations. They can be integrated to obtain
the best estimates of &, 0,, ..., 99,
assumed initial condiftions. In addition, it is also an interest-

and D with a set of

ing problem to investigate the influence of the weighting

function g(a) with various different initial values.

4.4 NUMERICAL RESULTS

In order to test the effectiveness of the estimator Equa-
tions (4.17a) and (4.17b), numerical experiments were carried
out. The Runge-Kutia integration scheme with time stepat = 0.002
was used throughout this work. The same observation data for

D =0.1 in Table 3 were used.

EXAMPLE 1

The initial conditions assumed are

e(0) = | (b.18a)




s o : 0 d}
o s . 0 o
a(0) =| . . : :J  (4.18v)
© 0 . . . S 0
00 . . . 0§

I
where S = 600 and Gi(O) represent the measurements at 7 = 0.

Note that e, (0) is the initial estimate of D. The following

10

various different wvalues for elO(O) were used.
e;q(0) = (0.01), (0.1), (0.5), (0.8), (1.0) (4.19)

Numerical integrations were performed for each eiO(O) of (4.19)
with the other g{(0) components unchanged. The results of the
estimated state at the fifth grid point @5@7) and the estimated
agulfer diffusivity D are shown in Figure 7 and 8, respectively.
It is shown that the closer values to D = 0.1 give faster con-

vergence rate and better accuracy.

EXAMPLE 2
The following initial guesses with Equations (4.18a) and
(4.18b) were used in order to find the effect of the diagonal

terms of q(0)

€10

0) = (0.01), (4.202a)

S = (10), (100), (400), (800) (4.20D)
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in which the other elements of Equations (4.18a) and (4.18b) re-
main the same. The results of the estimated 95(70 and D are shown
in Pigures 9 and 10, respectively. It 1s observed that the
estimated values of 950T) and D approach the correct values

more rapidly as the guessed value of the diagonal terms of %(O)

increases. However, when S = 900, the solutions diverged.

EXAMPLE 3
In order to test further the influence of q(0), the follow-

ing initial values in Equaticns (4.18a) and (4.180b) were used
e0(0) = (0.5}, (4.21a)
S = (10), (100), (400), (700) (4.21b)

while the other components were unchanged. Numerical integrations
were performed again for each S value. Figures 11 and 12 show

the results of the estimated Qsﬁr) and D, respectively. As can

be seen that the convergence rates are much improved with the
higher values of the diagonal terms of %(O). However, when the
values of the diagonal terms were too high such as S = 800, the

solutions diverged.

EXAMPLE 4
For further investigation of the influence of the diagonal

terms of q(0), the initial conditions used were

elO(O) = LTy (4.222)

S = (10), (100), (400), (5600) (4.220)
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where the other elements of Equations (4.18a) and (4.18b) remain-
ed the same. Figures 13 and 14 show the results of the estimated
65GT) and D, respectively. It is also shown that the convergence
rates are improved with heavy weights on S. However, too heavy

weights such as S = 700 made the solutions diverge.

4.5 DISCUSSION

The concept of invariant imbedding has been used to solve
the estimation problem for both of state and parameter in an un-
confined aguifer stream interaction system. Four numerical
examples are solved. The latter three examples are related to
finding the influence of the diagcnal terms in the weighting
function.

The numerical experiments seem to indicate the following.
First, this approach appears to be an effective tocl to estimate
the state and the parameter in an unconfined aguifer stream
interaction system as long as a proper weighting function 1is
given., Second, the higher values of the diagonal terms of the
weighting function give more accurate convergence values and
faster convergence rates in this particular problem. However,
too high values make the solutions diverge.

In this work, no noise on the cbservatioms hasg been
assumed. Only the influence of the diagonal terms of the weight-
ing function has been considered. It can also be one of the
interesting problems to observe the effect of disturbances on

the measurements and the effect of the non-diagonal terms of the
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weighting function. In order to find a more general rule
related to the weighting function and investigate the effect of
nolse on the observation data, more computational work and

research are needed.
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CHAPTER 5

SUMMARY AND CONCLUSION

In an unconfined aguifer and stream interaction system,
the governing equation is a second order nonlinear partial
differential equation subject to the time varying boundary
conditions for which no solution of closed form exists. The
problem of interest is an inverse one; i.e., the observation data
are given and the aquifer parameters imbedded in the governing
equation are unknown. In this work, the observation data were
generated using assumed values of parameters.

The technique of finite difference approximation has been
used in order to replace the governing partial differential equa-
tion by a system of nonlinear ordinary differential equations.
The gquasilinearization technique and the concept of invariant
imbedding have been applied to solve the aguifer parameter
egstimation problem. As has been shown in the numerical examples,
the parameter estimation problems are effectively solved by two
different approaches.

The most attractive property of the guasilinearization
technique ig its rapid convergence nature. Numerical results of
the examples in this work indicate:

1. It converges very rapidly {(within five iterations) to the
correct answer even with very rough initial approximations.
2. High accuracy is obtained ( five digit accuracy).

3. In general, 1t converges to the correct solution within
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three to sgeven iteratlions as long as the initial approxima-
tions are within the interval of convergence.
No noiges on the observation data have been assumed. In order
to find the effect of noises on the estimation, more researches

are needed.

Since the problem under consideration is essentially a two-
point boundary value problem, 1t can also be solved by the
invariant imbedding approach. By using invariant imbedding,
the optimal sequential estimator esguations have been cbtained.
These estimator equations, which are a system of crdinary
differential equations of initial type, can be solved easily on
computers. Numerical results indicate:

1. The estimated results are less accurate than those of quasi-
linearization. However, these results are still accurate
enough for practical purpose.

2. The higher values of the diagonal terms of the weighting
function give more accurate and faster convergence in this
problem. However, too high values make the solutions diverge.

No disturbances con the obgervation data have been introduced.

Only the influence of diagonal terms of the weighting function

has been considered. It can be interesting to find the effect

of noises on the observation data. It can also be one cf the
interesting problems to investigate the effect of non-diagonal
terms of the welighting function. In order to find the effect of
noises on the observation data and the effect of non-diagonal

terms of the weighting function, more computational work and



research are needed. The aquifer parameter has been considered

as a pure constant. However, it ig seen that the invariant
imbedding approach can be extended to an estimation problem of

aquifer parameter which is & function of space variable.
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OGO OO
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¥ MAIN PRUGRAM *
s e oo ok ok ok ok ook

IMPLICIT REAL*8(A-H,C-2)
DIMENSION 7Z(114501),P{11,501}),Q{11+5CG1},T1(11,501),
1 Y{1C)+CY(1Q),F(80)

1 FORMAT(1H1)

2 FORMAT(313,2D12.3)

3 FORMATU///449X22911H*%) /3 49X, 1 (1H¥*) 27X 41(1H*) 4/,
149X5s1(1H*)," CBSERVATION [DATA = Z(Ied) "431{1H%),/,
249X gL LIHF) 427X LU1H%) 5/ 349X 29{1LL*) /7 /)

4 FORMAT{1X,11D12.5)

5 FORMAT(///)

6 FORMATHI1X,' D = '"4,D12.5)

T FORMAT(1X,' S0 = '4012.5)

8 FORMAT(//39Xs50(1H*) 3/ ,39X,5001H%) ,/,39%X,2(1H*),
146X211H* )y /939X,
2%%%¥x OPTIMAL IDENTIFICATIGN OF AQUIFER PARAMETERS ¥x¢t,
3/+39%,

4 ¥ ek USING CGUASI-LINEARIZATIGN *kt,
5/7939Xy 20 LH*) 346X, 2(1H*) 3/ 439Xs50(1k%* ),/ 335X, 50({1H#))
346Xe2C1H*) e/ 339Xy EQU1E%®) 4 /335X 5C{1H¥*) )

9 FORMAT(3D12.3)

WRITE(é&:1)

WRITE(64+48)

READ(S5:2) NPTS,N,IMAX,DELT,DIV
READ{(5,9) EPSI,DELY,C(C

Dl1=0.

e R RS EELEE LSS EREEEERES R

¥ DUMMY VALUES FGR T1U(I.J) *
g e el e skl dolok o bk K R ko ¥

DO 712 I=1,NPTS

DO 713 J=1,IMAX

T1(I,J)=0.C0
713 CONTINUE

e e e e s e s sk e e e s o ook ok o ok o skl sl e skl e seabookeate sk dkagodokoR ok b kol ok
* TO GET OBSERVATICN DATA(Z{A))s INTEGRATE THE GOVERNING

* EQUATION SUBJECT TC INITIAL & BOUNCARY CONDITIONS sk
e ke e et o o e af e o el kel 3 el e el et e sde e e ek etk s sk ek el 3k ok

NA=1
DO 702 I=1.N
¥Y(I)=1.D0
702 CONTINUE
0O 703 Kk=1, IMAX
CALL RKGUKKsDELTyNsYsFoLsMpJsNA,CIV,C1,0ELY,T1)
DG 704 I=24NPTS
Z{I+KK)=Y(I-1)
704 CONTINUE
IF(KK.EQa1l) Z{1:KK)}=1.0C0
IF(KKeNE«1) Z(1,KK)=C.5D0
703 CONTINUE

e gk afefe s ok ok ok
¥ PRINT CUT Z{1,J) *
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WRITE(6,3]
DO 700 I=1,IMAX,5C
WRITE(&94) (Z(JgI)ad=1,NPTS)

700 CONTINUE

81

e 3 3 s e 2l 3fe e e e e e ole A e o ofe e ode e obe 3 of 3 o Ay 3 ek e sde oo e sl ol e s eodooke e e offe abe sl o o R ok ok

* INTEGRATE NCN-LINEAR CIFFERENTIAL EQUATICN USING LO *
ateade ol e 3 sk b ool sk ok ok ok ok ok ok 3 kbl akgok ok ok bk ko ko dok ok okkok

710

712

7i1

720

T2l

e 3 e 3 g 3 sfeoje ok e ok e e e ofe e oo e o s e e v ok e e e ook s ofe s e ool ook

* INTEGRATE PARTICULAR EGQUATIONS TC CGET NEW D1 *
e s e e el e e e e el e o e o e o st o o s o e e ook ok ek stk ol kool ok

111

NA=1

CO 7i0 I=1,.N
Y(I)=1.D¢
CONTINUE

DO 711 KK=1,IMAX

CALL RKG(KKsDELTsNyY FoloMyd NA,CCyD1,DELY,T1)

DO 712 I=2,NPTS
TL(IsKK)=Y(I~1)

CONTINUE

IF(KK.EQ.1) T1(1,KK}=1.D0
IFIKKNE«1) T1{1,KK)=C.50C
CONTINUE

WRITE(€Es5)

WRITE(6,6) OO

WRITE(&,45)

O 720 I=1,IMAX,5¢C

KRITE(6,4) (T1l{(Js1},yJ=1,NFTS)
CONTINUE

SSUM=0.

DO 721 J=1,IMAX,5C
SSUM=SSUMHIT L6 )-2(€Epd ) )&%
CONTINLE

WRITE(6,7) SSUM

WRITE(G45])

CONTINLE

e ook e ol heofeosfook ke ek ok ok b A F Ak

* PARTICULAR EQUATICN ——— P *
e 3 sl ok ook o of ook kel e ol ook p bk ko dk

NA=2
DO 21 I=1,N
Y(I}=0.D0
21 COGNTINUE
0O 22 KkK=1,IMAX

CALL RKG(KKsDELTsNsY yFolsMsd o NA,DG,01,CELY,T1)

DO 23 I=2,NPTS
P{I KK)=Y(I-1)
23 CONTINUE
IF(KK.EQel) P(LyKKI=C.CO
IF(KKuNE«1) P(1,KK)}=G.5D0

22 CONTINUE

o3 e e e 3 3l S s s sfe el s ek ok dhafeok sk e ok
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* PARTICULAR SOLUTICN ——— Q *
e oot e ok s ootk ddokok dokkok ok ok
NA=3
DO 21 I=1l,A
Y{I)=1.0CO

31 CONTINUE
D0 32 KK=1,IMAX
CALL RKG{KKyDELTyNyYyFysLyMyJoNA,CQO,D1,CELY,T1)
DO 33 I=2,NPTS
ClI«KK)=Y(I-1)
33 CONTINUE
IF(KK.EQel) Q(1lsKK}=1.D0
IF(KKeNE«1) Q(1l,KK)=0.5C0
32 CONTINUE

et deofe e e Aol e ool e e ateade ool ok kol sk ok ke okl ok ok ok ok R okadok
* FIND D1 AT THE 5TF DISCRETIZED POINT-ASSUME UNIFORM #*
¥ WJ OF 1 FokskskaksdoaoRopofok g ok ook 8ok 3 % 3 f ok bk e dkkolobok dkakk
et e et A e e e e e e e sl ok e ook e skt ook ok s ootk ok skl skl b kokokok

ASUM=(C.
BSUM=0.
00 41 J=1.,IMAX
ASUM=ASUM+(Z(69J)¥P(64J)-C(6,J) %P (64d))
BSUM=BSUM+(P(&5,J)3P(€4J))

41 CONTINLE
D1=ASUM/B SUM

Sk 2 e e 3 e e B e e e e e e e ke o 3 3 s e e e o afeok 3 s ofe e ol o ofe e ok o ke Al

* INTEGRATE THE GOVERNING EQUATION LSING NEW D1 *
e s e e e e ol e e e e e ook oo e e o ko o ook ootk %ok ok o ok kb ok kakokok

NA=1
00 8C I=1.N
Y(I)=1.D0

80 CONTINUE
DO 82 KK=1,IMAX
CALL RKG{KKyDELTyNyY sFol sMydyNA,C150C,DELY,T1)
DO 83 I=2,NPTS
P(IsKK)=Y(I-1)
83 CONTINUE
IF(KK.EQ.1l) P(1,KK)=1.00
IF(KKoNE.1) P(1,KKJ)=0.5D0
82 CONTINUE
WRITE(&,45)
WRITE(&46) D1
WRITE(é€45)
0O 85 I=1,IMAX,50
WRITE(644) (PUJ,yI),J=1,NPTS)
85 CONTINUE

e e 2003 oo e e dfeafe e oo A A ek e ool o Aokl ok

* LEAST SQUARES CRITERICN *
e et e sk ool deokgodede ok ok Aok f B dkok

SSUM=0.

DO 55 J=1,IMAX,50

SSUM=SSUM+(P(6sd)— Z(E€4d))%%k2
55 CONTINUE
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WRITE(6s7) SSUM
WRITE{(6,5])
IF(SSUM.LE.EPSI) GC TC SS9

83

e e e v o4 e dfe s s afe o she dfe e e e e zfe sfe a3 o ok e e e e e e e e sk o o 3 ok e o e e Aol e Ak kg

* INTEGRATE THE LINEARIZED EQUATIGN LSING DG

ClL

& TL =

% TO GET NEW T dokokaskok b obobaaddokaieskosak o ob oo o ok o ko ook ook ok ek
ek e ek ok ok sk skaleok o oskok e Stk ok g ok ok ok ok ok op bk el o o kb Kook b kR ok

53

12

71

999

NA=4

DO 53 I=1sN
Y(I)}=1.D00
CONTINLE

DO 71 KK=1,IMAX

CALL RKG{KKyDELT¢NeYsFsl oMsJsNAyCO,L1,0ELY,T1)

DO 72 I=24NPTS
TI{I.KK)=Y(I-1)

CONTINUE

IF(KK+EQel) T1(1sKK}=1.DC
IF{KKeNES1l) T1{(l,KK)=C.5C0
CONTINUE

£0=01

GG TO 111

CONTINUE

WRITE(641)

sSTQOP

END



oGO0 oo

SUBROUTINE RKGUKK yDTyNsYsFsL sMyJsNA,CC,C1,DELY,TA)

el ffeokok b of ook ookl e okl b b ok ek bk kb okok ok

% RUNGE-KUTTA FCURTFE CRLCER NMETEHCD *
ek il e sp ool ool B Ak ok g bk bk otk

IMPLICIT REAL*8(A-H,C-1)
DIMENSION Y(10)},0Y(10Q),F(ECQ),TA(11,5C1)
T=(KK-1)*OT
IF (KK,.GT.1) GO TC 7CC
340 L=3
M=0
700 CONTINUE
GG TO (10041104300),1
100 60 T0 (1C1,110),1C

101 =1
L =2
DO 106 K = 14N
K1 = K+3*N
K2 = K1+Nh
K3 = N + K
F(K1} = Y(K)
F(K3) = F(K1)
106 F(K2) = DY(K)
GC TO 40é&
110 CO 140 K=14N
KL = K
K2 = K+5%N
K3 = K2+N
K4 = K + N

GO TO (111,112,112,114),J
111 F(K1) = DY(K)*DT
Y(K) = F{K4)+.5%F (K1)
GO TC 140
112 F(K2) = DY(K)*DT
GO TO 124
113 F(K3) = DY(K)*DT
GO TO 134
114 Y{K} F{K4) +{FIKL)42.%(F(K2)+F(K3})+CY(KI*DT)/6.
GO TO 140
124 Y(K) «S5*F(K2)
Y(K) Y(K)+F (K4)
GO TO 140
134 Y(K) = F{K4)}+F (K3}
140 CONTINUE
GO TO {1704+180,17C+18C)yJ

"

inn

170 T = T + .5%D7
180 J = J+1
IF (J-4)4C4 44044259
259 M=1
GO TO 406
340 IG =1
GO TO 405
404 1G=2
405 L=1

406 CUNTINUE
IF(M-1) 71G,31G,71C

84
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590

999

GO TO (50C,999+99S)sL

CALL FCT(KK,Y ;DY NA,LC,CL,CELY,TA)
GO 70 700

RETURN

END

85
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SUBROUTINE FCT(JKsYs LY NUMBER OC+C14sCELYTA)

ER SRR RS EE R EEELERERES S LSS

* SELECTICN CF PROPER ECUATICN *
e ootk sk skodo ok fokok ok b b dkokdolalor R

IMPLICIT REAL*8(A-H,C~Z}
DIMENSION Y{1G),DY(10),TA(11,501)
J=JK
DEL=2%DELY*DELY
GO TO (1052043054 C)sNLMBER

10 CONTINUE

e Ao ol ekl e p ek dokdok e AR R AR e Aok kb op R kk bk

* THE GOVERNING (NCMLIMEAR) EGQUATICN *
et ool fe el o oo el o ok o ok o ek ok ok Ak sk el o

IF(J.EG.1} GG TC 1C1
DY{1)=DO*{Y(2)%%2-2%Y (1) %*¥2+(C.5DCI**2) /DEL
GC TC 102
101 CONTINUE
DY (1)=00%*(Y(2)*%2-22Y(1)**2+1.0CC)/CEL
102 CUONTINUE
CO 102 I=2,9
DY(I)=DO*(Y(I+1)*42-24Y (] )**x2+Y(]-1}242)/LEL
103 CONTINUE
CY(10)=CY(9)
RETURN
20 CONTINUE

e e e e e A oo eokok ok Aokok

* THE ECUATION FOR P *
Fegedordok dokokkogokkdkok ko Fk

OY{1l)=Y(1)*(DO*(—4*TA(Z2,J))/DEL}+Y(2)*{DO*(2%TA(3,J})
1/DEL} +(( TA(3 g J)*x42-2% TA(2,J) %32+ TA(L,J ) %32}
2/DEL)

DO 201 I=2,9

DY({I)=Y(I)*(DO*(~4%* TA{I+1,J))/0EL)+

1 Y{I41)*(DO*(2% TA(I+24J))/CEL)+
2 YOI-1)*(DO* (2% TA(I.J))/CEL)+
3 ({ TACT4+2, Y ¥32-2%TACT+1 JP¥F2+TA( T4 J)#%%2) /DEL)

201 CONTINUE
BY{10)=DY(S)
RETURN

30 CONTINLE

Sk B ok b Aok e koo kb ok 3 3 %
* THE EQUATICN FCR ¢ *
e e e el ab o ok kol Bk okok Ak ok
DY(1)=(¥(1)- TA(2,J))* (LO*(-4% TAE(2,J))/CEL)+
1 {vy{(z2)- TAL3,J3)*(00*( 2% TA(3,4J))1/DEL)

DO 301 I=2,9

DY(I)=(Y(1)- TA(I+1+J) ) ¥ (DO*(-4* TA(I+1,J))}/CEL)+
1 (Y(I+1)- TA(TI#42,J))*(DO*( 2% TA{I+2,J))/CEL)}
2 +{Y{I-1)- TA(IsJd) }*{DO* (2% TA(I.J))/DEL)
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301 CONTINUE
DY(10)=DY(9)
RETURN
40 CONTINUE

e e e e e e o e e s e e sdeafe e sl el e o ofe e s kel e ek de ko A ok

* THE LINEARIZED EQUATICN FOR THETA *
ek e koo ok dok Bk kAR R F A KA FHE XD F

DY (1)=D0*( TA(34J)332-23TA(2,J)2%¥24TA(1,J)*%2) JCEL+

1 (v(1)- TA(2,J))*(00%(-4% TA(Z2,4))/DEL}+
2 (v(2)- TA(Z4J) )*(DC*( 2% TA(34J)) /OEL)+
3 (D1-DO)Xx{(TA(3sJ )1 ¥*2-2%TA(2,J)*%24TA(1,J)**2)/DEL)

DO 401 I=2+49
CY(I)=00%(TA( 142, J)}#%2-2%TA(J+1,J)%324+4TA{1,J)**2) /DEL

1 +H{Y(1)- TA(I+1 4J) )% (00*(~4% TA(I+1,J))/0EL)+
2 (Y(I+1)- TA(I+Z29J) }*(DO*( 2% TA(I+2,J) ) /DEL}+
3 (Y(I-1)- TA(I,d) )2 (D0O*(2% TA(I,J))/DEL)+

4 (D1-DOY=*(( TA(I+24d)%¥2-2% TA(I+1,J)%%2+

5 TA(I,J)%*%2)/DEL)

9 DEL)

401 CONTINUE
DY(10}=DY (9}
RETURN
END
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COMPUTER PROGRAM FOR THE INVARIANT IMBEDDING APPROACH
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e e e e e e e o e e ek N

* MAIN PRCOGRAN *
Fddokdhd R HHohkd

IMPLICIT REAL*8(A-H,(-Z)
CIMENSION E(150)s 20114501 )sH{11,11)eFTE11,11),
1 CG{ll+11),FT(1C50)

1 FORMAT(1E1l)

2 FORMAT(313,2D12.3)

3 FORMAT(//7/7,49X%X029(1H*) /s 49X 1 (1E*),2TXs1(1E*)},/,
149X41(1H*),

2% CBSERVATICON CAT2 = Z(I1,5d) "s1{1t#),/,49X,1(1k*),271X,
B1(1H*) g /24SXe 29(1F*) 4, //1)

4 FORMAT(1X,11D12.%)

5 FORMATU/ /7 044XslT01H*]} o/ 944X LILH*) 415X, 1{1H¥) 4/ 944X,
1'% MATRIX HI{EsA) #',/,
244X gL (1H%) p18 X1 (1H* ) of 244X 1T7{1E%),//)

& FORMAT(1X,11iD10.2)

T FORMATU(// y40X oLlB(1F* )9/ 940X 1ULlR*¥) 16Xy 1(1F*)y/14CX,
1'% MATRIX HUELA)T #*9,/540X91(1H*) 416Xl {1E*) o/ 140X,
218(1E*)e//)

8 FORMATI(// 339X 3500 1H*) o/ 339X35001LF%) 3/ 439X 42 (1LH%) 46X,
L201H*) 4/ 336X,

2%%% OPTIMAL ICENTIFICATICN OF AQUIFER PARAMETERS *%x1,
3745 39X,
4V %k USING INVARIANT IMBELDING 0,
57939X3201H*) 346X g2 (LE*) 3/ 335Xs50(1F%) 4/ 33SX:s50(1F%))
11 FORMAT(I545Xs7C1Ca3)
12 FORMAT(///413CUI1E*) 37/ 91X 914 (ik%) 4/ 31X 1(1EX) 12X,
11(1H*)e /41X,
2% TRIAL DATA #0,/ 31X g1 (1F%)412X91(1F*)y/91Xslal1F*))
13 FORMAT(// 45X 'Ef{l)=eeae=E{S)= ?13D01Ca333X"E(10)=D= 1,
1C10.3)
14 FORMAT(///s5Xs"TRIAL NC= ¥ ,13,3X,'CUI#d) = ",010.3,3X,
1'QUi=Jd) = "4wD1GC.3,//)
WRITE(E,41)
WRITE(é58)
READ(532) NPTSyNs IMAXSCELT,D1V
NM1i=N-1
AN=N¥*N
NODE=KN+N
DELY=C.1DC

et oo ek e e ok sk ofe ool deotolok Dok o kb dalok ok b b o A ob ok dkokokk ok Ak Rk
* TO0 GET GBSERVATICMN DATA(Z(A)), INTEGRATE THE GUVERNING

* EQUATICN SUBJECT TC IMITIAL & BOUNLARY CONLCITIONS #¥%#%
3 el ok e ot ol ofeofoateoke kot e ook ok ot e kol ko ok ko ok o sl etk ook

CALL CBS{NFTSIMAX CELT,Z,81IV,DELY)

LR RS EEEEREEE R

* PRINT OUT Z(I,J) *
e e R R SRR ST R L

WRITE(E,2)
CO 700 I=1,IMAX,5C
WRITE(E,4) (Z(J,1)4J=1,NFT5)

700 CONTINUE
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OC OO0

oo o e

###**##*#*####**#####11#1*##************#

* INPUT CATA OF H(E,A) 5 (N-1)*N MATRIX #*
ol oot ok b sl ook kR A R ok Ak kR Aok R R H 4 ¥

CO 701 I=1,MNM1

DO 701 J=1,NM1
F{IsJ)=0.

IF(I.ECedJ) H(I,J)=1l.

701 CONTINUE

CO 702 I=1,NM1
H{IsN)=0.

7102 CONTINUE

e e e afe e ofe 3 e e e o e e ol koo ekl okok

% ECHC CFECK GF KF(E,A) #
e oofe ok e ek e deote ek bk ok ok ok R b

WRITE(&,5)
DO 7C3 I=1,NM1
WRITE(646) (H(I,J)sJd=14N)

703 CONTINUE

R ER RS RS EEEEEEEARERREEE R R EE LS

¥ CONSTRUCT HT = TRANSFUSE LF k *
ddokodk ko ok Aokk ok kok Rk Rk dhokkdk

CALL TRANSP{H AM1 4N,FT)

ek ok R ok d AR A%

¥ ECHO CHECK CF H{E,A)T %
e R R R e R SR L R L

WRITE(€E47)
L0 710 I=1,N
WRITE(E,6) (HT(I,J) 4d=1,NN1)

710 CONTINUE

WRITE(€,12)

3 e e e Aok de A o ok ekl ol e 3 o saledk ook skeak o o ook sk sk ok b ok

¥ INITIALIZE E 3 E{N)=L——-CIFFUSIVITY #
e g ook Ak Aok e ke b ok p gk ok kR Aok Rk A

606 CCNTINLUE

READ(5411) ITRLESENE,EEQ
IF(ITRLE.EC.GS59) (C TC 5S¢
WRITE(6,13) EMNE,EEQ

555 CONTINUE

DO 7C5 I=1,.N
IF(I.NEo.N) E{I)=ENE
IF{I.EC.N) E(I)=EEQ

705 CCNTINLE

PSR E S RS EEEE R ESSERE R R S R

* INITIALIZE Q(A) =C{I,J) *
Gk ol sk ko Bk pdeokdkop A AR A A A d

READ(5,11) ITRLQsCNE,CEQ
IF(ITRLQ.EQ.99) GC TC €¢€¢€

90
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91
WRITE(Es14) ITRLG,CNESCEC
OC 704 I=1,4N
DO 704 J=1,N
Q(I,J)=QNE
CONTINLE

EE 22 E R E LSRR EEEEREEEESEEES LSRR R RRR SRS R ERE R 2R

*

CONVERT Q{IsJ) TC E(N+1),E(N+2) s eaesE(NN-1),E(NN) *

Bede oo ook e e o dodotok sk oRokok kb B B Ik F FRok b ok op B ook op ok od ok ok kR

706

KA=N+1

CO 706 I=1,4N

DO 7C€ J=1,N
EC(KA)=C(I4J)
KA=KA+1

CONTINUE

T=0.

TMAX=1.

IRUN=1

CALL CLTPUTI(N+T,E)

LR LS SEEEE LRSS ERRE RS RS2 LR RERERSRREREE S L LR SRS EEEE

*
*

INTEGRATE THE ESTIMATCR EQUATICN USINC THE RUNGE-KUTTA
METHOD %ok o sk obabeab of ook ok o oo ook aoob ok feaie s ke ool b ok ookl R S bk b ok

ERER RS R 2 S T

111

222

999

CONTINUE

CALL RKT(IRUNgNyNCCESLELYsCELT by bT 22 EsFT,LToMT,JT)
IF(IRUN.EQ.51) GC TC zz22
IF(IRUN.EC.101) CC TC cz2
IF{IRUNsEC.151) CGC TC 222
IF(IRUN.EQ.2C01) GC TC zzz
IF(IRUN.EL.251) GC TC 222
IF(IRUN.EC.301) GC TC 222
IF(IRUN.EG.351) CGC TC 222
IF{IRUN-EQ.4Cl) GC TC 222
IFUIRUN.EQ.451) GC TC z22
IF(IRUNLEG.501) €C TC 222
GO 10 3332

CCNT INUE
T=0FLCAT{IRUN-1)*[ELT
CALL CQUTPLTIN,T,E)
CONTINUE

IRUN=TRUN+1
IF(IRUNGTLIMAX) CC TC 5EE
GG TC 111

CONTINLE

WRITE(641)

STCP

END



132

104

703

SUBROUTINE OBSINPTSy IMAX,CELT9Z4CIV,CELY])

IMPLICIT REAL#8(A-F+C0-L1)

DIMENSICN Y(1C) ,CY(1C)sF{70),2(11,501)
N=NPTS-1

LC 702 I=1,N

Y(I)=1.D0C

CCNTINUE

DO 702 KK=]1,IMAX

CALL CRKG(KKyDELTsNgYsFsL MyJyDIV4CELY)
DO 704 I1=2,NPTS

Z{I,KK)}=Y(I-1])

CONT INUE

IF(KKJEQa1l) Z{1,KK)=1.LO

IF(KK «NE«1) Z{1l,KK}=CL.EDC

CONTINUE

RETURN

END

92
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310
700

100
101

111

112
Il3
114
124
124
140

170
180

299
300
404
405
406

10
500

Qa9

SUBRCUTINE DRKG(KKyDTyN,YFyL,M,J,04,DL)

IMPLICIT REAL*8(A-H,0-1)
DIMENSICN Y(10),DY(10).F(T0)
T=(KK-1)*%DT

IF (KK.GT.1l) GO TQ 700

L=3

M=0

CONTINUE

GO 10O (100,110,300),L

GO TO (1014110),16G

J=1

L =2

DO 106 K = 14N
K1 = K+2*N

K2 = K1+N

K2 = N + K
FIK1) = Y(K)
FIK3) = F(K1l}
F(K2) = DY(K)
GC TO 406

DO 140 K=1,N
K1 = K

K2 = K+5*N
K3 = K2+N

K& = K + N

GO TO (1114112,113,114}),J
FIK1) = DY(K)*DT

Y(K) = F(K&)+.5%F (K1)

GO TD 149

F{K2) = DY(K)1*DT

GO TO 124

FIK3) = DY(K)*DT

GO TO 134

Y(K)
GO TO 140

Y{K) = 5%F(K2)

Y{K) = Y(K)+F({K4%)

GO TO 140

Y{K) FIK4)+F(K3)
CONTINUE

GO TC (170,180,1704180),J
T =T + .5%D7

J = J+1

IF (J-4)404,404,299

M=1

GO TO 406

1G =1

GO TO 405

1G=2

L=1

CONTINUE

IF{M-1) 710,310,710

GO TO (500,999,999),L
CALL FCTO(KKsY,DYsDA,DL)
GO TC 70O

RETURN

END

]

FIK&) +(FIK1)+2.*%(F(K2)+F(K3))}+DY(K)*DT)}/6.

93
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20

70

SUBRCUTINE FCTO(JK,YLY,LIV,CELY)

IMPLICIT REAL*8{A-K,C-Z)

DIMENSION Y(1Q),DY(1C)

DEL=1./(2.,*%0ELY*%*2)

IF{JK.EQ.1} GC TC 10

DY(1)= DELEDIVH(Y(2)¥%2-2,%Y(1)#22+(0.50C)*%2)
GO0 TG 20

CONTINUE

DY(1)= DEL*DIV*{Y¥(2)#¥2-2.%Y(1)%42+1.0DC)
CONTINUE

0O 70 I=2,9

DY{I)= DEL*DIVHIY(I+1)*%*¥2-2%Y(T)¥¥2+Y(I-1)3%2)
CONTINUE

CY(10)=CY (9]

RETURN

END

ok



310

700

100
101

106

110

13

112

113

114

124

134

140

170
180

300
404
405
496

710
500

999

1

25

SUBROUTINE RKTI(KK yNF N, DELYyDTsHyHT»Z Y FaLyM,yJ)

IMPLICIT REAL*8(A-H,0-1)

DIMENSION Y(150}),0Y(150),F(1050),H(11,11)4HT(11,11),
Z(11,501)

T={(KK-1)*DT

IF (KK.GT.1) GO TC 700

L=3

M=0

CONTINUE

GO TO (100,110,300),L

GO TO (101,110),1G

J=1

L =2

DO 106 K = 1,N
K1 = K+3%N

K2 = K1+N

K3 = N + K
FI(K1) = Y(K)
F{K3) = F(K1}
FIK2) = DY(K)
GO TO 406

DC 140 K=14N
K1 = K

K2 = K+5%N
K3 = K2+N

K4 = K + N

G0 70 (111,112,113,114),J

F(K1)} = DY(K)}*DT

Y(K) = FIK4 +.5%F (K1)

GO 7O 140

F(K2) = DY(K)*DT

GO TO 124

F{K3) = DY(K)*DT

GO0 TO 134

Y (K} FIK&) +(FIK1)+2.%(F(K2)+F(K3))+DY(K)*DT) /6.
GO TO 1490

Y{K) «5%F(K2)

Y({K) Y(K)I+F(K4)

GO TO 140

Y(K) = F(K4)+F(K3)

CONTINUE

G0 TO (170,180,170,180),J

T T + 5%D7

J J+1

IF (J-4)404,404,299
M=1

GO TO 406

16 =1

GC 7O 405

15=2

L=1

CONTINUE

IF(M-1) 710,210,710
GO TO (5004999,999),1L
CALL FCT(KKsNFyNyDELY,OT,HyHT,Y,DY,Z)
GO TO 700

RETURN

END

Hon
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SUBROUTINE FCT(KTIMEsNyNCLCEy LY+ DTy HEAZy HEATSESF,2)

IMPLICIT REAL#8(A-E,C~2)
DIMENSICN FEA(L11) +E(150)+2E(11)+2(11+501)+hEA(LL1s11),

1 Q(11,11),C{(11,11),COE{11,1),EA(LLl:s1),F(15C},
2 FEAG(1l,11) ,GFET(11,11) ,FEEAT{11,11),
2 FEEA{11,11),C1(11+411)sC2(11,11),C30(11,11}),
4 HEAT(11,11)+51(11,11)0+52(11,11)
NM1=N~1

CEL=E(N)/ (2. %CY**2)

R R R L R R R ISR EE LRSS S

* CONSTRUCT MATRIX F(E,2) *
Feadodokdokagod ddok ok kR Aok b dok ok ok

8U0

801

802

803

700

DO 700 I=1,N

IF(l1.ECel«AND.KTIFE.EGa1l) GO TC ECO
IF(I.EGel .AND.KTIMELNELL) GG TO £C1
IF{I.EG.NM1) GC TC 8CZ

IF(I.EQ.N) GO TO €G=2
FEA(I)=DEL*(E(I+1)*%2-2 ¥E(])#¥2+E(]-1)3*%2)
GG 10O 1¢C

CONTINUE

FEA(I)=DEL*{E(I+1)%*2~-2 #%E(I)}*%2+]1,0C0)
GO T0 700

CCNTINUE
FEA(I)=DEL*(E(I+1)%%2-2,%E(])}3%2+4(,53%2)
GC TO 700

CONTINLE

FEA(I)=DEL¥{(-E(L)*32+4E(I-1)%*%2)

GO TC 700

CONTINUE

FEA(I)=0.CO

CONTINLE

deookdokokokod Aok Rk ek Ak d A

* MATRIX (Z(A)-H(E,2)) #
Fddokdhd A Ak SRk kb Akt R

DO 7C€1 I=1,NM1
ZE(I)=Z(1+41,KTIME)}-E(I)

701 CONTINLUE

sk e e e i e o M3 e

* MATRIX Q(A) =
ok R B R R RRR R

K@=N+1
DO 702 I=14N
DO 702 J=14NK
Q{I.JI=E(KQ)
KG=KG+1

702 CONTINLE

3 e e e e 3 e e Jesde e e fe sk e A Al Ak ok B o o o b ob b e st ol o oo oo ol sk b ok ook b o ok Aok e ook

* EVALUATE DE/DA=F(E,A)+G(AIXHE(E s A)T#(Z(A)-KH(ELA)) *
ok oo ok dokodord Rk dok bk R F AR AR A py b R ko dokdk
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(1) MULTIPLY G(A)F(HE(E,A)T)
CALL MATMPY(@Q¢NsNsHEATSNM1,C)
(2) MULTIPLY (1)*({Z(A)-H(E,A))
CALL MATMFY(CsNyNN1,2E41,CCE)

(3) ACC FLE,A)+(2)
CALL MATACS(FEA,N,1,CCEs1,EA)
0O 703 I=1.N

F(I)=EA(I,1)
CONTINUE

)

e EEEEEEEEEEES SRR EEREREEEL LR LSS REEEEE S RS R L SR SRR TS S

* EVALUATE CQ/DA=FE(E 2 )*C(A)+C{A)R(FE(ELA)T)-GLA)F(HE( -
¥ EqA)TIHHE(E A )XQUA) %3 adokdk ook ool adoade oo b ok ok oo el e e ok e s

104

600

500

705

{1} MATRIX FE(E,A)

DO 7C4 I=1,N

CO 704 J=14N

FEEA(I,J)=0.

CONTINLUE

LO 705 I=1,NM1

IF(l.ECel) GG TC €CC
IF(I.EQ.NM1) GO TC E5(C
FEEA(I yI)=—4.*E(T)*CEL
FEEA(I,I-1)=2.*%E(I-1)*CEL
FEEA(I,I+1)=2 *%E(I+1)3CEL
GG TG 705

CCNTINUE

FEEA(I sI)=—4.*E(I)*[EL
FEEA(I,I+1)=2.%E(I+1)}*CEL
CC TC 705

CONTINLE
FEEA{I+1)=-2.%E(I)*DEL
FEEA(I s1-1)=2.*E(I-1)#CEL
CONTINLE

CO 706 I=1,4N

FEEA(I N)=FEA(I)/E(N)
CONTINLUE

(2) MULTIPLY FE(E,A)*C(A)

CALL NATMFY{FEEA M sNyCyNoFEAQ)
{3) TRANSPCSE FE(E,A)

CALL TRANSP(FEEAsNsN,FEEAT)

{4) MULTIPLY Q(A)*(2)

CALL MATMPFY(QeNsNFEEAT4N,GFET)

{6) CONSTRUCT QUAI*FE(E,AIT
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CALL MATMPY{QsNeNsHEAT,NM1,C1)
(7) MULTIPLY (6)*FE(E,A)

CALL MATMPY{C1sNsNM1,FEA;N,C2)
(8) MULTIPLY (7)*C(A)

CALL MATNPY(C24,NyhyCyNy(C3)

(9) ACC (2)+(4)

CALL MATADS(FEAQsNyNsCFETs1,451)
{10) SUBTRACT (9)-(8)

CALL MATACS(S14NsMN,C3,2,52)
KQ=N+1

DO 707 I=14N

DC 707 J=1,N

FIKQ)=S2(1,sJ)

KQ=KG+1

CONTINLUE

RETURN
END

98
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SUBROUTINE TRANSP{A,N,VN,E)

IMPLICIT REAL*8B(A-H,C-Z)
DIMENSION A(11511),B(11,11)
DO 10 I=1,4N

DO 10 J=1,¥

BlJ,I)=A(1,J)

CONTINUE

RETURN

END

99
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SUBROUTINE MATMPY(AsNsMsB,sL,C)

IMPLICIT REAL*8(A-tH,(-2)

DIMENSION A(11,11)}+B(11,11),C(11,11)
DO 5 I=1,N

DO 5 J=1,L

C(Isd)=0a

DO 5 K=l,¥
ClIsJ)=CUIyJIHA(IsKI*E(KyJ)

CONTINUE

RETURN

END
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SUBRGUTINE MATADS(Ash,M,B,L,C)

IMPLICIT REAL*8(A-H,C-2)
DIMENSION A(11411)sB(11,11),4C(11,11)

10

30

20

40

GG TC (1C,20)L
CONTINUE

CO 30 I=1,N

DO 3C J=1.¥
C{I,J)=A(1,J)+B(1,J)
CONTINLE

RETURN

CONTINUE

DO 40 I=1.N

LO 40 J=1,M
CLlIJ)=A(1,J)-B(I,J)}
CONTINUE

RETURN

END
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SUBROLTINE OUTPUTIN,T,E!

IMPLICIT REAL*8{A-H,(-1)
CIMENSION E(150)QC(11+11)
10 FORMAT(2XD012.592X9"2%42X,11010.3)
50 FORMAT(/7/)
51 FORMAT(2X323{LlH*¥) ¢/ +2Xs1{1k*)s " TIME = ', F12.5+1X,
1101H*) o/ 42X323(1H#*) 4/)
52 FORMAT(7Xs"E(I)"5 50Xy 'G(1sJ)*y//)
KK=N+1
DO 200 I=1.N
CO 200 J=1,N
Q(I,J)=E(KK)
KK=KK+1
200 CONTINUE
WRITE(€55C)
WRITE(6,451) T
WRITE(€,52)
CO 210 I=1,4N
WRITE(6,1C) E(I)(Q(I4d)sd=1,N)
210 CONTINUE
RETURN
END
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Estimation of states and parameters in a mathematical
model used in analyzing the system behaviour, is a frequent
problem encountered in engineering, science and industries.

Once a conceptual model is wvalidated through experimental data,
the model could be used to implement effective system contrel
strategies.

Systematic procedures are presented to solve the estimation
problem of aquifer diffusivity in an unconfined aguifer and
stream interaction system. The fluctuation of the aguifer head
is used as observationsg. The governing nonlinear partial differ-
ential equation is replaced by a system of nonlinear ordinary
differential equations for which the technigue of quasilineariza-
tion and the concept of invariant imbedding are applied.

The technique of quasilinearization is used to estimate the
aquifer diffusivity. Numerical experiments are presented and
compared with the published numerical results. The least squares
criterion is used for the objective function. It is shown that
only three to four iterations are needed to obtain five digit
accuracy with very approximate initial guesses for the unknown
parameter. The procedure is stralghtforward and converges
gquadratically.

The invariant imbedding apprcach is also used to estimate
the aquifer heads and the diffusivity. In this approach, a
sequential estimatiocn scheme is obtained. By use of this sequén-
tial scheme, only current data are needed *to estimate the current
or future values of states and parameters. The classical least

squares criterion is used to obtain the optimal estimates. It



is seen that this approach appears to be an effective tool as
long as a proper weighting function is given. The higher values
of the diagonal terms of welghting function give more accurate
convergence values and faster convergence rates. However, tco

high values make the soluticns diverge,



