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Abstract

High precision cosmological observations in last decade suggest that about 70% of our

universe’s energy density is in so called “Dark Energy” (DE). Observations show that DE

has negative effective pressure and therefore unlike conventional energy sources accelerates

the cosmic expansion instead of decelerating it. DE is highly uniform and has become a

dominant component only recently.

The simplest candidate for DE is the time-independent cosmological constant Λ. Al-

though successful in fitting available data, the cosmological constant model has a number

of theoretical shortcomings and because of that alternative models of DE are considered. In

one such scenario a cosmological scalar field that slowly rolls down its potential acts like a

time-dependent cosmological constant.

I have used different independent cosmological data sets to constrain the time dependence

of DE’s energy density in the framework of the slowly-rolling cosmological scalar field model.

Present data favors a time-independent cosmological constant, but the time-dependent DE

can not be ruled out at high confidence level. Ongoing and planned cosmological probes and

surveys will provide more and better quality data over the next decade. When the new data

sets are available we will be able to either detect the time dependence of DE or constrain it

to a very small physically uninteresting value.
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Chapter 1

Introduction

1.1 Short overview of relevant topics from theoretical

cosmology

Observations suggest that our Universe started evolving from an extremely hot and dense

state 13 to 14 Gyr ago. Since light travels at finite speed, the distance to which we can

see is fundamentally limited. The observable Universe today has a Hubble radius of about

4000 Mpc, beyond which we can not see. Astronomical observations show that, on average,

our Universe is homogeneous and isotropic on large scales. Observational evidence for

isotropy includes the measurement of cosmic microwave background radiation anisotropies

[1], shown in Fig. 1.1, that is very isotropic.

Large-scale structure observations confirm that the galaxy distribution becomes homo-

geneous beyond about 100 Mpc, but even on the largest observed scales inhomogeneities in

galaxy density are on the order of a few percent [2].

Homogeneous and isotropic four dimensional space-times are described by the metric

ds2 = gµνdx
µdxν = −dt2 + a(t)γijdx

idxj, (1.1)

where t is cosmic time and γij is the metric of the three-space which can be flat, spherical,

or hyperbolic. a(t) is called a scale factor and describes how the spatial separation between

two noninteracting test particles changes with time. In an expanding Universe the scale

factor is an increasing function of cosmic time.
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Figure 1.1: Map of cosmic microwave background anisotropies as measured by the Wilkin-
son microwave anisotropy probe (WMAP). Red areas correspond to hotter spots on the sky,
while blue areas correspond to colder than average spots. The amplitude of fluctuations
relative to the background is less than 10−4. Source: http://map.gsfc.nasa.gov/.

In general relativity (GR), the metric obeys Einstein’s equations

Rµν +
1

2
gµνR

λ
λ =

8πG

3
Tµν , (1.2)

where G is Newton’s gravitational constant, Rµν is the Ricci tensor,

Rµν =
∂Γλµν
∂xλ

−
∂Γλλµ
∂xν

+ ΓλλκΓ
κ
µν − ΓλµκΓ

κ
λν , (1.3)

and the Christoffel symbols Γλµν are given by

Γλµν =
1

2
gλκ
(
∂gκµ
∂xν

+
∂gκν
∂xµ

− ∂gµν
∂xκ

)
. (1.4)

Tµν in Eq. (1.2) is the energy-momentum tensor of the matter components that fill space.

The Ricci tensor satisfies the Bianchi identity Rµ
ν;µ − 1/2Rµ

µ;ν = 0, where the semicolon

denotes a covariant derivative, and consequently the energy-momentum tensor satisfies the

energy conservation equation

T µν;µ = 0. (1.5)

Three-dimensional homogeneous and isotropic space can be flat, positively curved (sur-

face of a 3-dimensional “sphere”), or negatively curved (surface of a 3-dimensional “saddle”);

2



two dimensional analogs are shown in Fig. 1.2.

Figure 1.2: Examples of 2 dimensional flat, closed, and open spaces. Source:
http://www.lcsd.gov.hk/.

The metric γij of homogeneous and isotropic space can be written in Cartesian coordi-

nates as

γijdx
idxj =

δijdx
idxj(

1 + 1
4
Kρ2

)2 , (1.6)

and in spherical coordinates as

γij = dr2 + χ2(r)(dθ2 + sin2(θ)dφ2). (1.7)

Here δij is the Kroneker delta function and ρ2 =
∑

δijx
ixj. K describes the geometry

of three-space. For K < 0 the space is negatively curved (open), for K > 0 the space is

positively curved (closed), and for K = 0 the space is flat. The variable χ is given by

χ(r) =


1√
K

sin
√
Kr if K > 0,

r if K = 0,
1√
−K sinh

√
−Kr if K < 0.

(1.8)

The numerical value of K depends on the normalization of the scale factor. In open and

closed Universes a is usually normalized in such a way that K = ±1. In the spatially-flat

Universe the scale factor is often normalized so that it’s current value a0 is equal to 1.

3



If the metric is given by Eqs. (1.1) and (1.7) than Eq. (1.2) forces the energy-momentum

tensor to have the form

Tµν =


ρ(t)g00 0 0 0

0
0 P (t)gij
0

 (1.9)

where ρ is the mass energy density of matter and P is pressure.

For barotropic fluids pressure depends only on the local value of energy density, P =

P (ρ). Very often the equation of state P = ωρ is used, where ω is called the equation of

state parameter. For an ultrarelativistic gas (radiation) ωr = 1/3, for nonrelativistic matter

ωm = 0, and for a cosmological constant ωΛ = −1.

Energy conservation, Eq. (1.5), in the expanding Universe gives

ρ̇ = −3(1 + ω)ρ
ȧ

a
. (1.10)

For a general barotropic fluid Eq. (1.10) can be solved and yields

ρ = ρ0

(a0

a

)3(1+ω)

(1.11)

which for ω = −1 becomes

ρ = ρ0 (ω = −1), (1.12)

where ρ0 is the current energy density of the fluid.

The combination H = ȧ/a is known as the Hubble parameter, where an overdot denotes

a derivative with respect to cosmic time t. It shows how fast the Universe is expanding. Its

current value H0 is called the Hubble constant and is often quoted in terms of a dimensionless

parameter h = H/(100 km s−1 Mpc−1).

In the Universe described by Eqs. (1.1) and (1.7) and dominated by a single barotropic

fluid, Eq. (1.2) reduce to two independent equations for the scale factor(
ȧ

a

)2

=
8πG

3
ρ− K

a2
, (1.13)

ä

a
= −4πG

3
(1 + 3ω)ρ. (1.14)
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Equation (1.10) follows from Eqs. (1.13) and (1.14). In the Universe dominated by a single

barotropic fluid, Eqs. (1.13) and (1.14) give

a = a0

(
t

t0

)2/3(1+ω)

(ω 6= −1). (1.15)

Equation (1.13) shows that if ρ = ρcr ≡ 3H2/8πG the curvature is zero. This time-dependent

energy density that makes the Universe spatially-flat is called the critical density. Current

energy densities of matter components are often given in terms of dimensionless density

parameter, Ωi = ρi/ρcr.

In a curved space with radiation, nonrelativistic matter, and cosmological constant

Eq. (1.13) can be rewritten as

H = H0

√
Ωm

a3
+

Ωr

a4
+ ΩΛ +

ΩK

a2
, (1.16)

where Ωm, Ωr, ΩΛ, and ΩK are respectively the density parameters of nonrelativistic matter,

radiation, cosmological constant, and curvature, and the scale factor is normalized so that

a0 = 1.

1.2 Distance and time measurements in cosmology

Distances can be measured directly, using the parallax method, only to astronomical objects

that are close to us (less than 100 pc). For objects that are farther away indirect methods

of distance determination must be used.

When a distant object emits a photon with a wavelength λem at time tem, since light

travels at finite speed, we will detect the photon at a later time tnow. As the Universe

expands, the photon will “redshift” and we will detect it at a longer wavelength

λo =
ao

aem

λem, (1.17)

where aem and ao are respectively scale factors at the moment of emission and detection

(now) of the photon. Redshift of an astronomical object is defined as

zobj =
a0

aobj

− 1 (1.18)

5



where aobj is the value of the scale factor at the moment when the light that reached us

from that body was emitted.

If the cosmological expansion history a(t) is known, redshift can be uniquely related to

the distance to the object and the time of light’s emission. Distances and times in cosmology

are often quoted in terms of redshifts. Two most frequently used distance measures in

cosmology are the luminosity distance and the angular distance.

1.2.1 Measuring time intervals

Light travels on null geodesics ds2 = 0. When we detect a photon that was emitted at

redshift z it has traveled for time ∆T = D/c, where D is the distance and c is speed of

light. Let’s set up the coordinate system so that the photon travels in the radial direction.

Then from Eqs. (1.1) and (1.7) the total elapsed time can be expressed as

∆T =

∫ t(z)

t(0)

dt =

∫ a(z)

a0

aχ(a)da. (1.19)

Using Eq. (1.16) and the identities a = a0/(1 + z) and da = −dza0/(1 + z)2, we can rewrite

Eq. (1.19) as

∆T = t(z)− t0 =
1

a0H0

∫ z

0

dz√
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ + ΩK(1 + z)2

. (1.20)

In a given cosmological model Eq. (1.20) uniquely relates redshift to time.

1.2.2 Luminosity distance

Let’s say we have a source of known luminosity (power) L at a redshift z. The source emits

energy Ldt in a time interval dt and this energy redshifts by a/a0 = 1/(1 + z) before it

reaches us. The energy is distributed over a spherical surface with radius a0χ(t0− t), where

χ(t0 − t) is the distance that a photon travels before detection. The flux that we measure

in unit time interval dt0 = (a0/a)dt is given by

F =
La2

4πa4
0χ

2(t0 − t)
. (1.21)

6



Luminosity distance is defined as

dL =

(
L

4πF

)2

=
a2

0

a(z)
χ(t0 − tz). (1.22)

By substituting t0 − tz from Eq. (1.20), the luminosity distance can be rewritten as

dL = (1 + z)χ

(
1

H0

∫ z

0

dz√
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ + ΩK(1 + z)2

)
. (1.23)

Luminosities of some astronomical objects can be determined by indirect measurements.

Supernovae Type Ia (SNeIa), for example, have very small dispersion in total luminosity.

Gamma-ray bursts (GRBs) could be well calibrated in the future with their luminosity

determined to high accuracy. We can measure the flux of these and other “standardizable

candles” at different redshifts to determine cosmological parameters from Eq. (1.23).

1.2.3 Angular diameter distance

Let’s say an astronomical body at a distance d from us has a physical size D, then the

observed angle subtended by that body is θ = D/d. The angular diameter distance is

defined as

dA =
D

θ
. (1.24)

If the object is at redshift z it will span the angle θ = a(z)χ(z). Using arguments of

Section 1.2.2 we can express the angular diameter distance through cosmological parameters

as

dA =
1

1 + z
χ

(
1

a0H0

∫ z

0

dz√
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ + ΩK(1 + z)2

)
. (1.25)

Similarly to standard candles, “standard rulers”, such as FRII radio galaxies, have small

dispersion in physical size. Equation (1.25) then can be used to determine cosmological

parameters from the redshifts and apparent angular sizes of those standard rulers.
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1.3 Short overview of relevant topics from observa-

tional cosmology

In last decade the quality and quantity of astronomical observations relevant to cosmology

have greatly improved. SNeIa can map the expansion of the Universe up to the redshift

of 1.7 (see Fig. 1.3). While the power spectra of CMB anisotropies (see Fig. 1.4) and the

galaxy distribution (see Fig. 1.5) have been measured to a high precision.

Figure 1.3: Hubble diagram of SNeIa detected by ESA-WFI. Black dots represent SNeIa
with measured absolute magnitude at different redshifts. Source: http://www.sci.esa.int/.

The combination of SNeIa absolute magnitude versus redshift data [3, 4], measurements

of CMB anisotropy [5], cluster gas mass fraction versus redshift data [6], measurements of

the baryon acoustic peak [7, 8], and other large-scale structure measurements [9] can be

used to determine cosmological parameters with high precision.

Currently available cosmological data strongly indicate that:

• The Universe is highly isotropic and homogeneous.

• The Universe is expanding and distance between gravitationally unbound objects are

increasing.

8



Figure 1.4: CMB temperature anisotropy power spectrum. Black dots with error bars denote
different measurements, red line shows predictions of the best-fit theoretical model. Source:
http://cosmos.astro.uiuc.edu/.

• The cosmic expansion started accelerating at a redshift near z = 0.5, if the dark energy

is a cosmological constant.

• The spatial curvature of the Universe is very close to zero, if the dark energy is

cosmological constant.

The accelerated expansion of the Universe can be understood if we assume that around

75% of the current cosmological energy budget is made of dark energy (DE). Parameterized

as a fluid, DE has a negative equation of state parameter ωDE < −1/3 and is spatially

uniform.

About the other matter components we know that:

• The Universe is filled with CMB photons. The CMB has an accurately Plankian

spectrum with a temperature of T = 2.73 K. Radiation today makes a negligible

contribution to the total energy density.

• Baryons make up less than 5% of critical density. About 75% of baryonic matter is

Hydrogen, 25% Helium. Contribution of heavier elements to the total baryonic energy

9



Figure 1.5: Power spectrum of giant red galaxies as measured by Sloan Digital Sky Survey.
Black dots with error bars denote measurements, different colored lines show theoretical
predictions. The baryon acoustic peak is zoomed in on in the upper right corner insert.
Source: http://www.sdss3.org/.

density is small. The entropy of the Universe is high, around 109 photons per baryon.

• Nonrelativistic, cold dark matter (CDM) contributes around 25% of the critical den-

sity. CDM is not baryonic and does not significantly emit, absorb, or scatter light.

A joint analysis of current CMB anisotropy measurements, SNeIa data, and BAO peak

measurements results in the following 1σ ranges for key cosmological parameters [10]:

• h = 0.71± 0.013.

• Ωb = 0.0462± 0.0015.

• ΩDM = 0.233± 0.013.

• ΩΛ = 0.721± 0.15.

• Age of the Universe = 13.73± 0.12 Gyr.

This chapter provides only a concise overview of topics relevant to the rest of this thesis.

Detailed, in depth treatments of theoretical and observational cosmology can be found in

10



various textbooks [11–15].
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Chapter 2

Dark Energy

2.1 Observational evidence for dark energy

The first direct evidence of accelerated expansion was provided by SNeIa absolute magnitude

versus redshift data [16, 17]. Accelerated expansion is very difficult to explain in GR with

only conventional matter. Equation (1.14) implies that the expansion can be accelerating

only if the Universe is dominated by a component with negative pressure P < −ρ/3. The

initial SNeIa measurements were followed by ground-based and space surveys, such as the

Hubble Space Telescope (HST) survey [18], the supernova legacy survey (SNLS) [19], and

the ESSENCE survey [20]. Current SNeIa data extends to z = 1.7 and provides more than

5σ evidence for accelerated expansion.

Positions and amplitudes of acoustic peaks in the CMB anisotropy show that the Uni-

verse is very close to spatially flat if DE does not evolve in time. When CMB anisotropy

results are combined with an independent measurement of the Hubble constant they in-

dicate that nonrelativistic matter makes up only about a quarter of the critical density,

while the energy density of radiation is negligible. This implies that about three quarters of

our Universe’s energy budget is made of something different than ordinary or dark matter

and radiation. This extra component must be uniform on cosmological scales and became

dominant recently, in order not to adversely effect large-scale structure formation and big

bang nucleosynthesis.
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The presence of DE also effects CMB anisotropies directly through the integrated Sachs-

Wolf (ISW) effect. In a Universe dominated by DE gravitational wells decay on large dis-

tance scales. This affects the large-angle CMB spectrum, since photons that travel through

decaying gravitational potentials gain energy. If the Universe is dominated by DE there

should be cross-correlation between CMB anisotropies and low-redshift matter distribution.

Several groups reported detection of the ISW effect in cross-correlations of the CMB with

galaxy and radio-source catalogs [21–23].

These results, combined with the BAO peak measurements, LSS tests, and galaxy cluster

data, provide fairly overwhelming evidence that about 70% of the current Universe’s budget

is in spatially uniform DE with negative pressure.

2.2 ΛCDM model

All currently available cosmological data is quite consistent with a Universe that is spatially-

flat, is dominated by a cosmological constant Λ with ΩΛ ∼ 0.7, with the rest of the energy

density being in nonrelativistic cold dark matter with Ωm ∼ 0.25 and nonrelativistic baryonic

matter with Ωb ∼ 0.05. A cosmological constant has ωΛ = −1 and according to Eq. (1.10)

it’s energy density does not change in time. This model is referred to as the “standard

model” or the spatially-flat ΛCDM model.

In the spatially-flat ΛCDM model the background expansion of the Universe at late

times is described by

H = H0

√
Ωm(1 + z)3 + ΩΛ. (2.1)

Although the ΛCDM model is a good fit, the data is not yet tightly constraining and does

not yet require a constant Λ. To account for the possibility of a time-varying cosmological

constant the equation of state of DE is sometimes modeled as P = ωxρ, where ωx is a negative

parameter. This, so called, XCDM parametrization lacks physical motivation. XCDM is

usually used as an ansatz in data analysis for the purposes of quantifying time-dependence

of DE.
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2.3 Problems of ΛCDM

Although successful in fitting most data, the ΛCDM model has a number of theoretical

shortcomings. A cosmological constant is difficult to motivate from fundamental physics.

The most plausible candidate for a cosmological constant is vacuum energy.

Since all Lorentz observers should see the same vacuum, it’s energy-momentum tensor

must be proportional to the metric tensor T vac
µν = Λgvac

µν . The vacuum therefore has the

required equation of state P vac = ρvac. It’s very difficult however, to explain the small value

of DE energy density based on the vacuum energy model.

In the quantum field theory the zero point energy of the vacuum is divergent

ρvac ∝
∫ ∞

0

k3dk. (2.2)

Quantum field theory is expected to break down at the Planck scale of around 1019 Gev.

If we use this as upper integration limit in Eq. (2.2) (instead of ∞) we get a huge number

that exceeds the observed dark energy density by 120 orders of magnitude.

In a supersymmetric model every boson has a fermion of equal mass as a supersymmet-

ric partner and the vacuum energies of these partners cancel. Supersymmetry (SUSY), if

existent, is believed to be broken at an energy of roughly 1 TeV or so. If we cut off the upper

integration limit in Eq. (2.2) at the energy of SUSY breaking we will still get a difference

of around 60 orders of magnitude. This discrepancy between the small measured value of

cosmological constant and the much larger theoretically “expected” values of vacuum energy

is known as the “smallness” problem [24].

One possible explanation of the “smallness” problem is based on anthropic arguments. In

string theory, multiple vacuum states with all possible values of vacuum energy are possible.

Different causally disconnected patches of the Universe spontaneously choose vacuum states

that are independent of each other. If the Universe is infinite there will always be parts of it

that have a given value, no matter how unlikely, of the vacuum energy and we just happen

to live in one of those regions with a very small value of vacuum energy density [25, 26].
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Another interesting fact that’s difficult to explain in the ΛCDM model is that today both

nonrelativistic matter and DE have comparable energy densities. This is surprising since the

matter and DE components scale with redshift differently. For radiation it is Ωr ∼ (1 + z)4,

for CDM and baryons Ωm ∼ (1 + z)3, and for a cosmological constant ΩΛ ∼ const.

At the beginning of cosmic evolution the Universe was radiation dominated, today ra-

diation contributes less than 1% of the total energy density. The contribution of DE was

negligible in the past, it has become a dominant component only recently, and in the future

will be the only component driving cosmic expansion as shown in Fig. 2.1.
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Figure 2.1: The time evolution of energy densities of cold dark matter (green line), radia-
tion (red line), and cosmological constant (black line).

There is only a short period of time when the energy densities of matter and cosmological

constant are comparable. It is unclear why we happen to live in this narrow window of time.

This is called the “coincidence” problem and like the “smallness” problem can be addressed

by the anthropic arguments.

Besides the two problems mentioned above there are other observational facts that ap-

pear to conflict with the predictions of the ΛCDM model, at possibly more then 2σ confi-

dence level. These are

• High redshift SNeIa data are consistent with spatially-flat ΛCDM. It favors however
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models with ωDE < −1. Initially, this was thought to be a statistical fluke that would

go away as more data accumulated. This discrepancy however still persists even as

larger data sets become available. The discrepancy is caused by high (z > 1) redshift

SNeIa which are systematically brighter than what we would expect in the ΛCDM

model [3]. This could be due to an unknown systematic effects, possibly associated

with high-redshift SNeIa evolution, or a statistical effect that will go away with more

data. If the discrepancy persists, it would mean that the Universe in the past was

decelerating faster than the ΛCDM model predicts.

• Large-scale velocity flows have amplitude of 400 km/s, larger than what is expected

in a ΛCDM model [27–31]. Velocity flows extend to z = 0.2 and could be as large

as 1600 km/s. In ΛCDM the probability of having velocity flows with such a large

amplitude is less then 1%. The explanation for this could be that it is just a big

statistical fluctuation or there could be some physical reason, such as time-dependent

Newton’s constant, presence of noninflationary perturbations, or a giant void at a

distance of few Gpc.

• Cosmological simulations based on the ΛCDM model predict that large voids should be

filled with many dwarf dark matter halos. This turns out to be true for very large voids

(larger than 10 Mpc). Smaller voids however are observed to be surprisingly empty

of dark matter halos [32]. For example, based on ΛCDM we would expect to observe

on average 10 dwarf galaxies in our local void, but there are none. Possible resolution

of this problem could be related to the incompleteness of observational sample, or

incorrect bias model that fails to account for specific environmental properties.

At the moment these discrepancies between observations and theoretical predictions do

not have big weight in the overall picture. The ΛCDM model is in general a good statistical

fit to the combined data. These inconsistencies might go away when new high-quality data

become available.
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2.4 Alternative dark energy models

At the moment, ΛCDM is a good fit to available cosmological data, however, because of

the observational issues mentioned in Sec. 2.3 and its inability to naturally account for the

small observed energy density of DE, a number of alternative models have been proposed

over the years.

One approach is to not introduce a new exotic DE component, but to modify the equa-

tions of GR and consequently Eq. (1.2), [33–37]. In this set of models gravity is usually

weaker on larger scales and the accelerated expansion is just a gravitational effect. At very

early times modified gravity should act like GR predicts, in order not to conflict with pre-

dictions of CMB anisotropy and BBN. In f(R) and scalar-tensor theories, the equivalents

of Eq. (1.2) include up to forth order derivatives of the metric tensor. Gravity is not a

spin-2 transverse and traceless field anymore. It is also carried by spin-0 (scalar) and spin-1

(vector) particles.

Another possibility is that the Universe is not as homogeneous as we thought and the

accelerated expansion is an effect of averaging nonlinear spatial inhomogeneities over cos-

mological scales [38–41]. It is not yet clear if the backreaction of structure formation on

the background evolution can be strong enough to mimic accelerated expansion and at the

same time be consistent with all other available data.

A third option is to introduce a DE fluid that is close to spatially uniform but unlike a

cosmological constant slowly varies in time. This is usually achieved by introducing a scalar

field that is slowly rolling down it’s almost flat potential [42, 43]. In the minimal model,

the scalar field is coupled to the rest of the matter only gravitationally, but other couplings

have also been considered [44–47].

In Chapter 3 I will elaborate more on the scalar field dark energy models. More detailed

discussion of DE theory and the observational situation can be found in recent reviews

[48–51].
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Chapter 3

Cosmological Scalar Field

3.1 Scalar field in the expanding universe

Let’s assume that a self-interacting scalar field φ minimally coupled to gravity is present on

cosmological scales. This scalar field is described by the lagrangian density

L =
1

2
∂µφ∂

µφ− V (φ), (3.1)

where V (φ) is the potential energy density. The energy momentum tensor of this scalar

field is given by

T µν =
∂φ

∂xµ

∂φ

∂xν
− gµν

(
1

2

∂φ

∂xα

∂φ

∂xα
+ V (φ)

)
. (3.2)

If the scalar field is close to spatially uniform on cosmological scales we can neglect its

spatial derivatives φ,i compared to time derivatives φ̇ and the individual components of the

homogeneous part of the energy momentum tensor can be written as

T 0
i = 0, (3.3)

T ij = 0 (i 6= j), (3.4)

T 0
0 ≡ ρ =

1

2
φ̇2 + V (φ), (3.5)

T ii ≡ P =
1

2
φ̇2 − V (φ). (3.6)

By looking at Eqs. (3.5) and (3.6) we can see that the equation of state parameter

ω =
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
(3.7)
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can become negative if the scalar field evolves slowly in time. The equation of state pa-

rameter is always greater than −1 and in the limit of the scalar field “at rest” (φ̇ = 0) we

effectively get a cosmological constant with ω = −1.

The time evolution of the scalar field (and consequently the time evolution of the equation

of state parameter) is determined by the Klein-Gordon equation. For the metric given by

Eq. (1.1) the Klein-Gordon equation is

φ̈+ 3
ȧ

a
φ̇+

∂V (φ)

∂φ
= 0. (3.8)

If the scalar field energy density makes nonnegligible contribution to the total energy budget

of the Universe it will affect the evolution of the scale factor and Eq. (1.16) should be

rewritten as

H = H0

√
Ωm

a3
+

Ωr

a4
+ Ωφ(a) +

ΩK

a2
, (3.9)

where Ωφ is now the time-dependent energy density parameter of the scalar field.

To make specific predictions about how the scalar field affects the Universe’s evolution

we have to specify the form of the potential V (φ). Since the underlying physics is not

known at the moment, it’s impossible to pick a specific functional form for V (φ) based on

the considerations of fundamental physics only.

The only fundamental scalar field in the standard model of particle physics is the Higgs

field. Rest mass of the Higgs boson is larger than about 100 GeV and at low energies it

decays into W bosons, H → W+W−, therefore Higgs bosons can not be present in large

quantities in the late universe. In the theories that go beyond the standard model, such as

string theory, minimal supersymmetric theory, etc., fundamental scalar fields arise naturally

and we have a large number of candidates. The particle physics at very high energies is not

well constrained experimentally yet and different theoretical scenarios are possible; because

of this uncertainty its impossible to motivate one choice of potential based on fundamental

considerations and a number of different models have been proposed over the years. An

incomplete list of possible scalar field potentials is shown in Table 3.1.

19



Potential V (φ) Reference
φ−α, α > 0 [42]
exp(−λφ) [43]
λφ4 [52]
exp(−λφ)/φα, α > 0 [53]
exp(λ/φ)− 1 [54]
(cosh(λφ)− 1)n, n > 0 [55]
((φ− C1)λ + C2) exp(−κφ) [56]

Table 3.1: List of proposed self-interaction potentials for the cosmological scalar field.

In this work I will concentrate on the inverse-power law potential first proposed in

Ref. [42]. In this model the potential is assumed to be inversely proportional to a power of

the scalar field, V ∝ 1/φα, where α is a positive constant.

3.2 Inverse-power law potential

If we take scalar fields self-interaction potential to be inversely proportional to a power of

φ,

V (φ) =
κ

2G
φ−α, (3.10)

where κ and α are nonnegative parameters, Eqs. (3.9) and (3.8) can be rewritten as(
ȧ

a

)2

=
8πG

3
(ρm + ρφ), (3.11)

φ̈+ 3
ȧ

a
φ̇− κ

G

α

φα+1
= 0, (3.12)

where we have set spatial curvature to zero and neglected radiation, and the energy density

of the scalar field is given by

ρφ =
1

2

(
φ̇2 +

κ

Gφα

)
. (3.13)

Parameter α describes the steepness of the scalar field potential. Larger values of α cor-

respond to faster evolution of the scalar field and vice versa. α = 0 corresponds to the

time-independent cosmological constant. Parameter κ sets the mass scale M of the scalar
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particle,

M ∼
( κ

2G

)−(α+4)

. (3.14)

In the distant past, when the energy density of the scalar field is much less than the

energy density of other components ρφ � ρcdm , Eq. (3.12) accepts a solution

φ ∝ a3(1+ωcdm)/(α+2), (3.15)

and the equation of state parameter of the scalar field is

ωφ =
αωcdm − 2

α + 2
. (3.16)

For positive α, ρφ redshifts less rapidly than the dominant component of energy and at some

point eventually starts to dominate. The redshift when cosmic acceleration starts is given

by

zφ =
Ωφ

Ωm

(2+α)/6

− 1. (3.17)

As we approach zφ, the fractional energy density of the scalar field increases and the ap-

proximation ρφ � ρcdm breaks down. Evolution of the scalar field does not follow Eq. (3.15)

anymore and to solve for φ(a) now the set of coupled differential equations (3.11) and (3.12)

must be solved numerically.

A nice property of Eq. (3.15) is that it is an attractor. A wide range of initial conditions

on φ result in solutions that converge to the solution of Eq. (3.15) at some point. Figure 3.1

shows the evolution of the scalar field for different initial conditions. Although initial con-

ditions on ρφ span some 70 orders of magnitude, the late-time evolution of the scalar field

is similar in all intermediate cases.

In the scalar field scenario the “smallness” and “coincidence” problems mentioned in

Sec. 2 are partially solved. The scalar field can start from a very high energy state, roll

down the inverse power law potential, and naturally lead to a ρφ that evolves to the very

small measured value. Figure 3.1 shows that the scalar field “tracks” the evolution of

the dominant component once it joins the solution of Eq. (3.15). The energy densities
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Figure 3.1: Evolution of energy densities of nonrelativistic matter (green line), radiation
(red line), and scalar field with different initial energies (black lines). Scalar fields that start
off from different energies have very similar late-time evolution.

of nonrelativistic matter and scalar field are comparable for a longer period of time, and

current time becomes less special.

The scalar field in this model does not cluster on scales much smaller than the Hubble

radius 1/H0 as required by CMB and large-scale structure data.

3.3 φCDM model of dark energy

In our analysis we will assume that the only two constituents affecting the late-time evolu-

tion of the Universe are nonrelativistic cold dark matter and baryons with energy density

parameter Ωm and a scalar field with inverse power law self-interaction potential V ∝ φ−α.

We will also assume that the Universe is spatially-flat which implies Ωm + Ωφ = 1.

In this model the background expansion is fully described by two parameters, Ωm and

α. The evolution of the scale factor and scalar field are governed by

ȧ

a
= H0

√
Ωm

a3
+ Ωφ, (3.18)

φ̈+ 3
ȧ

a
φ̇+

∂V (φ)

∂φ
= 0. (3.19)
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For α = 0 the φCDM model reduces to the spatially-flat ΛCDM with ΩΛ = Ωφ. For

nonzero α predictions of φCDM and ΛCDM differ, for example the scalar field model predicts

lower values of luminosity and angular diameter distances for the same value of Hubble

parameter and nonrelativistic matter density. An example of a C++ function that solves

Eqs. (3.18) and (3.19) is presented in Appendix A.

Different cosmological tests have been used in the past to constrain the parameters of the

φCDM model, including counts of galaxies [57], angular sizes of radio sources and quazars

[58, 59], galaxy cluster gas mass fraction data [60], strong gravitational lensing [61] and

SNeIa absolute magnitude versus redshift data [62–64]. In next chapters I will discuss the

constraints on φCDM model from some current data sets.

For an in depth review of scalar field dark energy see, e.g., Refs. [42, 43, 65, 66].
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Chapter 4

Data Analysis Techniques

We are interested in observable quantities Xobs
i measured at redshifts zi (or in redshift bins

of width ∆zi). X
obs
i could be, e.g., luminosity distance, angular diameter distance, Hubble

parameter, or quantities that implicitly depend on them. First I will assume that evolution

of the Universe is described by the φCDM model, as presented in Chapter 3, with unknown

values of parameters α and Ωm. For given values of model parameters we can compute the

theoretical expectations Xth
i for the observed quantities. We will find the best-fit parameters

α∗ and Ω∗m, for which the theoretical predictions Xth
i are the closest match to the results

of observations Xobs
i by some measure. We will also construct the confidence level intervals

that are likely to cover the true values of parameters with a specified probability.

We will compare the predictions of φCDM model to the ones of ΛCDM and see which

ones fit the observations best. In the end we will see if data favors one model over the other,

and quantify the degree of discrepancy between the two models.

4.1 χ2 and likelihood functions

Let’s say we have N measurements Xobs
i at redshifts zi with measurement errors σi, and the

φCDM model predicts Xth
i (α,Ωm). The χ2 function,

χ2(α,Ωm) =
∑

i

[Xobs(zi)−Xth(zi, α,Ωm)]2

σ2
i

, (4.1)
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quantifies the discrepancy between theoretical predictions and observations. Small values of

χ2 indicate a good fit. The parameters α∗ and Ω∗m that minimize χ2 are called the best-fit

parameters. The likelihood function,

L(α,Ωm) = exp
(
−χ2(α,Ωm)/2

)
, (4.2)

has a local maximum LML at (α∗, Ω∗m). If the measurements are independent and Gaussian

distributed with mean Xobs
i and variance σi, then the best-fit values of parameters are

unbiased estimators of their true values. Values of parameters that result in high values of

the likelihood function are more likely to be the true parameters.

1, 2, and 3σ confidence level contours are defined as the pairs of parameters (α̂, Ω̂m) for

which −2 lnL(α̂, Ω̂m) is less by 2.30, 6.18, and 11.83 respectively compared to LML. If the

likelihood function had an exact two dimensional Gaussian profile,

L ∝ e−(C1(α−α∗)2+C2(Ωm−Ωm)2)/(2σ2), (4.3)

Nσ contours would correspond to the range of parameters (α∗ ± Nσ,Ω∗m ± Nσ). In that

case the 3σ contour would enclose 99.73% of integrated likelihood and the parameter values

outside that range would be 0.27% or less likely to be the true parameters. This is not true

for an arbitrary L, however, when it is a sharply peaked function, parameter values outside

3σ are usually less than 1% likely.

4.2 Nuisance parameters

Very often Xth(zi) will depend on parameters other than α and Ωm. These “nuisance”

parameters ν can be determined from the data but are of no interest to us. Examples of

nuisance parameters in dark energy parameter estimation are the Hubble constant H0 and

baryonic energy density parameter Ωb. In this case the likelihood function L(α, ωm,ν) will

also depend on ν. If we have some idea from other observations about what the values of

ν are, we can summarize this information in the form of probability distribution function
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(p.d.f.) P (ν). P (ν) is normalized to one and is usually taken to be a Gaussian peaked at

the best-fit value of ν∗ determined from other independent data sets. If we do not want

this implicit use of information from other data sets, we can use the conservative flat prior

P (ν) = 1/(ν2 − ν1) over the range (ν1,ν2). We then integrate the likelihood function,

L′(α,Ωm) =

∫
L(α,Ωm,ν)P (ν)dν. (4.4)

and determine the best fit values and confidence level contours from L′ as in Sec. 4.1.

Two most frequently used priors on the Hubble constant are the measurement of Hub-

ble Space Telescope (HST) team [67] H0 = (72± 8) km s−1 Mpc−1 and the result from the

Wilkinson Microwave Anisotropy Mission (WMAP) 5-year data [68]H0 = (73±3) km s−1 Mpc−1.

The WMAP measurement has less dispersion but is model dependent, unlike the HST mea-

surement which measured H0 directly based on the recessional speeds of distant objects.

The most conservative option is to integrate over H0 with a flat, noninformative prior. The

baryonic matter energy density is also well constrained by a number of independent tests.

Big bang nucleosynthesis gives the value Ωbh
2 = 0.0205 ± 0.018 [69] and the WMAP data

results in Ωbh
2 = 0.0223± 0.0008.

4.3 Constraints on individual cosmological parameters

One-dimensional confidence level contours and best-fit values can be computed for individual

cosmological parameters α and Ωm. We take the two-dimensional likelihood function from

Eq. (4.4) and integrate it with respect to the other parameter with a flat prior.

Lα =

∫
L′(α,Ωm)dΩm, (4.5)

Lm =

∫
L′(α,Ωm)dα. (4.6)

(4.7)

For each parameter we find the best-fit value that maximizes the corresponding one-

dimensional likelihood function. We define 1, 2, and 3σ confidence level intervals (α1, α2)
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and (Ωm1,Ωm2) so that

s =

∫ α2

α1

Lαdα
/∫

all α

Lαdα, (4.8)

s =

∫ Ωm2

Ωm1

LΩmdΩm

/∫
all Ωm

LΩmdΩm, (4.9)

and s equals to 68.27, 95.45, and 99.73 respectively. We will choose lower and upper limits

on parameter values so that the likelihood is higher everywhere inside the interval than

outside.

Parameter α should always be positive. Since the best-fit values are usually close to the

α = 0 line, α1 in Eq. (4.8) will often be equal to zero.
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Chapter 5

Constraints on φCDM from Hubble
Parameter Measurements

This chapter is based on Refs. [70–72].

5.1 Hubble parameter measurements

The Hubble parameter in spatially flat φCDM is given by

H = H0

√
Ωm + Ωφ(α) (5.1)

and is a function of redshift z and cosmological parameters Ωm and α. In practice, it can be

measured indirectly at different redshifts and thus used to constrain cosmological parameters

of interest.

First of all let’s note that since a ∼ (1 + z)−1, the Hubble parameter can be rewritten as

H =
ȧ

a
= − 1

1 + z

dz

dt
. (5.2)

Equation 5.2 shows that the Hubble parameter can be determined from the measurement

of dz/dt. dz/dt itself can be determined from a survey that measures redshifts of galaxies

with high precision. The basic idea is that if we have two galaxies very close in redshift

space and we can determine their ages with good accuracy, then dz/dt can be approximated

by reasonably well with ∆z/∆T , where ∆z is the difference in their redshift and ∆T is the

difference in their age. The most difficult part is to accurately determine ages of galaxies.
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In passively evolving galaxies the star formation rate is low and their ages can be deter-

mined with better accuracy. These galaxies are dominated by the light from old red main

sequence stars. The evolution of those stars is a well understood process and metallicity

can be simulated on computers. The spectra of galaxies depends mainly on metallicity and

age. A computed spectrum can be compared to the observed one and the galaxy age can be

determined. Stars in galaxies, of course, do not have the same metallicities and this spread

in metallicity introduces a statistical error of about 0.1 Gyr. For a detailed description of

this and other relevant issues and methods see Refs. [73].

5.2 Constraints from Hubble parameter data

Reference [74] used Gemini Deep Deep Survey [75] and archival data [76–80] to estimate ages

of 32 passively evolving galaxies. From these age measurements they were able to compute

the differential age dz/dt at 9 different redshifts in the redshift range 0.09 < z < 1.75. The

age measurements are shown in Appendix B, while the Hubble parameter estimates from

Ref. [74] are shown in Appendix C. These H(z) measurements are independent and the

errors are Gaussian distributed. The χ2 function is

χ2 =
9∑
i=1

(Hth(zi,Ωm, α,H0)−Hobs)
2

σ2
i

(5.3)

where Hth is the theoretical value of Hubble parameter computed from Eq. (5.1), and

Hobs(zi) and σi are the observed values and one sigma uncertainties. In our analysis we

assume 12% uncertainties on age measurements in Appendix B [81].

The Hubble constant (the Hubble parameter now, at zero redshift) is a nuisance param-

eter and can be integrated over to get a two dimensional likelihood function of cosmological

parameters

L(Ωm, α) =

∫
exp(−χ2(Ωm, α,H0)/2)P (H0)dH0 (5.4)

where P (H0) is a prior probability distribution function for H0. We integrate over H0 with

a Gaussian WMAP prior with H0 = (73± 3) km s−1 Mpc−1.
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The 1, 2, and 3σ contours on φCDM are shown in Fig. 5.1. Data constrain the non-

relativistic matter density parameter to be less than 0.4 at about 3σ confidence level. The

likelihood in the direction of α is almost flat. The one dimensional likelihood functions on

individual dark energy parameters are shown in Figure 5.2. α is poorly constrained while the

nonrelativistic matter density parameter is constrained to be in the range 0.09 < Ωm < 0.26

at 1σ.
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Figure 5.1: 1, 2, and 3σ confidence level contours on φCDM model parameters from Hubble
parameter versus redshift data.

30



0 2 4 6 8 10

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

α

L

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ω
m

L

Figure 5.2: One dimensional likelihood functions of individual cosmological parameters
from Hubble parameter versus redshift data. The maximum likelihood values are normalized
to one.

5.3 Lookback time

The data in Appendix B can be used to directly constrain dark energy parameters using the

lookback time versus redshift relation [45, 82–89]. Lookback time at redshift z is defined as

the difference between the current age of the Universe and it’s age at redshift z. In φCDM
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the lookback time is given by

tlb(z) =
1

H0

∫ z

0

dz

(1 + z)
√

Ωm(1 + z)3 + Ωφ(z)
. (5.5)

For an object at redshift z it’s age is the difference between the Universe’s age at z and the

one when the object was formed at redshift zf .

tage(z) =
1

H0

∫ zf

z

dz

(1 + z)
√

Ωm(1 + z)3 + Ωφ(z)
= tlb(zf)− tlb(z). (5.6)

From Eqs. (5.5) and (5.6) the observed lookback time is defined as

tobs
lb (z) = tobs

0 − tage(z)− τ, (5.7)

where tobs
0 is observed total age of the Universe, t(z) is the objects age at redshift z, and

τ = tobs
0 − tlbzf is a “delay factor” that encodes our ignorance of zf . The “delay factor”

τ is different for each object in the sample. From CMB experiments the total age of the

Universe is estimated to be tobs
0 = (13.7± 0.2) Gyr [68].

We construct the χ2 function

χ2(α,Ωm, H0, τ) =
32∑
i=1

(tlb(zi, α,Ωm, H0)− tobs
lb (zi))

2

σ2
ti

+
(t0(α,Ωm, H0)− tobs

0 )2

σ2
t0

, (5.8)

and compute the likelihood function

L(α,Ωm, τ) ∝ exp(−χ2(α,Ωm, τ)/2). (5.9)

We account for our ignorance of τ by marginalizing over it by integrating the likelihood

function in Eq. (5.9) analytically over τ with a flat prior.

L′(α,Ωm, H0) =

∫
Ldτ =

√
π

2C
erfc

(
B

2C

)
exp

(
B2 − AC −DC

2C

)
. (5.10)
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where

A =
32∑
i=1

(tlb(zi)− tobs
lb (zi))

2

σ2
ti

, (5.11)

B =
32∑
i=1

(tlb(zi)− tobs
lb (zi))

σ2
ti

, (5.12)

C =
32∑
i=1

1

σ2
ti

, (5.13)

D =
(t0 − tobs

0 )2

σ2
t0

, (5.14)

and erfc(x) is the complementary error function. Finally we integrate over the Hubble

constant with a Gaussian WMAP prior with H0 = (73 ± 3) km s−1 Mpc−1 to get the

constraints on φCDM model parameters α and Ωm.

5.4 Constraints from lookback time versus redshift data

The constraints on φCDM from the lookback time method are shown in Fig. 5.3.

Lookback time versus redshift data constrains the nonrelativistic matter density to be

less than Ωm = 0.35 at about 3σ confidence level. The α parameter is not well constrained

and values as large as α = 10 are allowed at 1σ confidence level. The best fit parameters

from the two dimensional likelihood function are Ω∗m = 0.09 and α∗ = 6.60.

The one-dimensional likelihoods of individual cosmological parameters are shown in

Fig. 5.4. The best fit values are α∗ = 2.3 and Ω∗m = 0.06. The 1σ intervals are 0.3 < α < 8.9

and 0.04 < Ωm < 0.14.

At the moment lookback time versus redshift and Hubble parameter versus redshift

measurements can not provide strong constraints on cosmological parameters. Both data

sets are expected to improve significantly in the near future [81]. The updated data sets

in combination with other measurements might prove to be very useful in constraining

cosmological parameters.
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Figure 5.3: 1, 2, and 3σ confidence level contours on φCDM model parameters lookback
time versus redshift data. Cross denotes the best-fit parameters at Ω∗m = 0.09 and α∗ = 0.60
with χ2 = 20.54 for 30 degrees of freedom.
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Figure 5.4: One dimensional likelihood functions of individual cosmological parameters
from lookback time versus redshift data. The maximum likelihood values are normalized to
one.
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Chapter 6

Constraints on φCDM from SNeIa
and GRB Data

This chapter is based on Ref. [90, 91].

6.1 Supernova Type Ia as standard candles

Supernovae (SNe) are highly luminous objects. At the peak of their activity SNe can be

as bright as an average galaxy. They reach maximum brightness shortly after the stellar

explosion and then slowly fade away in several weeks. The shock wave from explosion

pushes a spherical shell of gas and dust into the interstellar medium and leaves behind a

visible SNe remnant. SNe are classified based on the absorption lines of chemical elements

in their spectra. SNe that do not have hydrogen atom Balmer lines in their spectra are

classified as Type I, while those that have Balmer lines belong to type II. SN can be farther

divided into subtypes. SNe type Ia (SNeIa) for example lack hydrogen lines but have a

singly ionized silicon (Si II) line at 615 nm. SNeIa are the most useful for cosmological

parameter estimation. First of all, they are astonishingly bright and can be seen at large

distances. Secondly, they are very homogeneous in spectra, light-curve shapes, and peak

absolute magnitude and can be easily calibrated and used as standard candles.

SNeIa are believed to be carbon-oxygen white dwarfs in a binary system. The white

dwarf accretes matter from its companion until it reaches the Chandrasekhar mass limit
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of 1.4 solar masses. As the density and temperature inside the star increases, the mass

in the core undergoes nuclear fusion, which results in a SNeIa explosion. The masses of

white dwarfs at the time of explosion are very similar and this could explain why SNeIa

have similar absolute magnitudes. The inhomogeneities in absolute magnitude of SNeIa are

correlated with other observables. For example, brighter SNeIa tend to fade slower. This

relationship can be used to further reduce the dispersion in absolute magnitude of SNeIa

and make them a highly accurate standardizable candle.

The measurement of absolute magnitudes of high-redshift SNeIa gave the first direct

evidence of the accelerated expansion of the Universe (see Refs. [16, 17]). They were followed

by more high-quality observations of SNeIa (see, e.g., Refs. [18–20, 92–94]). We now have

more than 400 well calibrated, high-redshift SNeIa, going up to redshift of 1.7, that can be

used to determine cosmological parameters.

Ref. [3] used results of several new and old observations to compile a new SNeIa data set.

They used a single, consistent analysis on all subsamples and implemented a new procedure

to reject outliers. This compiled “Union” data set includes 307 SNeIa in the redshift range

of z = 0.015 to 1.551. This data is consistent with the spatially-flat ΛCDM model and gives

best-fit value ΩΛ = 0.731+0.027
−0.029(stat)+0.036

−0.039(sys) in this model. The union data by themselves

give more than 5σ evidence for the accelerated expansion of the Universe. It has been also

used to constrain parameters of other dark energy and modified gravity models (see, e.g.,

[4]).

6.2 Constraints on φCDM from Supernova Type Ia

data

In astronomy, for historical reasons, flux (power per unit area) is usually given as apparent

magnitude

m(z) = −2.5 log

(
φ

φ0

)
, (6.1)
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where m(z) is the apparent magnitude of an object at redshift z, φ is its flux, and φ0 is

some arbitrarily chosen reference flux. Absolute magnitude M measures the objects intrinsic

brightness and can be computed from apparent magnitude if the distance to the object is

known. In cosmology fluxes are normalized so that the absolute magnitude of a SNeIa is

equal to the apparent magnitude it would have if it were at a distance of 100 Kpc. Apparent

magnitude then can be expressed through luminosity distance as

m(z) = M + 25 + 5 log(dL(z)). (6.2)

Redshifts, distance moduli µ = m−M , and measurement errors for SNeIa in the Union

data set are given in Appendix D. We can compute luminosity distance at different redshifts

in the φCDM model and compare theoretical predictions with the measurements. The

luminosity distance depends on the parameter α, the nonrelativistic matter energy density

Ωm, and the Hubble constant H0. H0 can be determined from the data by minimizing the

χ2 function, or it can be marginalized over with a prior probability distribution function

P (H0).

Constraints from SNeIa data on the φCDM model are shown in Fig. 6.1. SNeIa data

constrains the nonrelativistic matter density parameter to be less than 0.4 at about 3σ

confidence level. The α parameter is constrained to be less than 4.5 at about 3σ confidence

level.

The one dimensional likelihood functions for individual cosmological parameters are

shown in Fig. 6.2. The best fit values are α∗ = 0 and Ω∗m = 0.25. The 1σ intervals are

0 < α < 1.1 and 0 < Ωm < 0.29.

6.3 GRB as standard candles

One way of improving our understanding of how dark energy behaves is to study the evolu-

tion of the Universe at redshifts higher than those probed by SNeIa. This requires standard

candles that are visible at greater distances. Gamma-ray bursts (GRBs) could in principle
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Figure 6.1: 1, 2, and 3σ confidence level contours on φCDM model parameters from SNeIa
absolute magnitude versus redshift data. Cross denotes the best-fit value at Ω∗m = 0.29 and
α∗ = 0 with χ2 = 320 for 305 degrees of freedom.

serve as such high redshift standardizable candles. They are the most luminous events in

the Universe today and can be seen to beyond z = 8. If it is definitely established that

GRBs are standardizable candles, their visibility at high redshift should prove to be very

useful in discriminating between ΛCDM and time-varying dark energy models.

With the intention of getting cosmological constraints from GRB observations a number

of GRB calibrations have been used so far [95]. One that gives least scatter and therefore
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Figure 6.2: One dimensional likelihood functions of individual cosmological parameters
from SNeIa absolute magnitude versus redshift data. The maximum likelihood values are
normalized to one.

most information is

log

(
Eγ

1 erg

)
= A1 +B1 log

(
Epeak(1 + z)

300 keV

)
, (6.3)

a relation that connects the total burst energy of the GRB (Eγ) to the peak energy of the

GRB spectrum (Epeak) [96]. Regrettably, we do not yet have a model-independent way of

computing the coefficients A1 and B1. A better understanding of physical processes that

result in the burst, or observations of nearby GRBs (to which distances can be measured
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independently), could in principle help us to calibrate the Eγ-Epeak relation without any prior

assumptions. Until recently the only way to extract cosmological information from GRBs

was to recalibrate them for every dark energy model considered (at each set of parameter

values). This is time consuming and also results in large statistical uncertainties and hence

GRB cosmological constraints that are poor.

Recently, two methods of calibrating GRBs in cosmology-independent manners have been

proposed and used to constrain some dark energy models. One method externally calibrates

GRBs, by using SNeIa measurements [97–100], while the other uses GRB measurements

alone [101]. While externally calibrating GRBs results in tighter cosmological constraints,

internally calibrated GRB data may be straightforwardly combined with other data when

deriving cosmological constraints. The resulting cosmological constraints are still loose,

but in the future when more high precision GRB observations become available this could

provide a strong test of dark energy.

Reference [101] recently used data of 69 GRBs [95] to construct a model-independent

distance measure that can be used to constrain cosmological models. When this method is

used to constrain ΛCDM the GRB data favor lower values of both cosmological constant

energy density (ΩΛ) and nonrelativistic matter energy density (Ωm) than do the SNeIa data.

The GRB data by themself are unable to strongly constrain cosmological parameters, for

example in spatially-flat ΛCDM the GRB data require Ωm = 0.25+0.12
−0.11 at 1σ confidence

[101].

For early discussions of the use of GRBs as a cosmology probe see, e.g., Refs. [96, 102–

105]. More recent studies may be traced back through Refs. [106–109]. For a review of GRB

physics see, e.g., Ref. [110].

6.4 Constraints from GRB data

Besides the Epeak-Eγ relation, Eq. (6.3), four other calibrations for GRBs are used in

Ref. [101]. Reference [101] placed each of the 69 GRBs in the redshift range z = 0.17
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to z = 6.6 at a luminosity distance that minimized a combined χ2 that took weighted ac-

count of all five calibration relations. From this [101] computed the cosmology-independent

distance measure

r̄p =
rp(z)

rp(0.17)
, (6.4)

where

rp(z) =
H0

hc

1

z(1 + z)1/2
dL(z), (6.5)

and dL(z) is the luminosity distance at redshift z, and c is the speed of light. The ratio in

Eq. (6.4) does not depend on the Hubble constant and does not require information about

the absolute calibration of GRBs (which are unknown).

Reference [101] computed the cosmology-independent distance measure r̄p in six redshift

bins r̄p(zi), i = 1, 2, . . . 6. The values of r̄p(zi) are shown in Appendix E and the normalized

covariance matrix is

S =


1.0000 0.7056 0.7965 0.6928 0.5941 0.5169
0.7056 1.0000 0.5653 0.6449 0.4601 0.4376
0.7965 0.5653 1.0000 0.5521 0.5526 0.4153
0.6928 0.6449 0.5521 1.0000 0.4271 0.4242
0.5941 0.4601 0.5526 0.4271 1.0000 0.2999
0.5169 0.4376 0.4153 0.4242 0.2999 1.0000

 (6.6)

For currently viable cosmological models, these r̄p(zi) are almost completely independent of

the cosmological model and so provide a useful summary of current GRB data [101]. This

information can be used to constrain any dark energy model and the resulting GRB data

constraints can be straightforwardly combined with other constraints.

We compute the difference between the theoretical prediction and the measured value

at each of the 6 redshifts,

∆(zi) = r̄data
p (zi)− r̄theory

p (zi), (6.7)

and the χ2 function

χ2(Ωm, p) = ∆(zi)σi(S
−1)ijσj∆(zj), (6.8)
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where Sij is the normalized covariance matrix given by Eq. (6.6) and summation over re-

peated indexes is assumed. Here σi is σ+
i if ∆(zi) > 0 and σ−i if ∆(zi) < 0, see Appendix E.

The constraints on φCDM from GRB data are shown in Fig. 6.3. Current GRB data can

not constrain cosmological parameters well and a wide range of values are at 3σ confidence

level. The best-fit parameter values are α∗ = 10.2 and Ω∗m = 0.0 with χ2 = 1.39 for 4

degrees of freedom.
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Figure 6.3: 1, 2, and 3σ confidence level contours on φCDM model parameters from GRB
data. Cross denotes the best-fit value at Ω∗m = 0.29 and α∗ = 0.
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The one dimensional likelihood functions for individual parameters are shown in Fig. 6.4.

The best fit parameter values are α∗ = 2.3 and Ω∗m = 0. One standard deviation intervals

are 0 < α < 12.3 and 0 < Ωm < 0.17.
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Figure 6.4: One dimensional likelihood functions of individual cosmological parameters
from GRB data. The maximum likelihood values are normalized to one.

GRB data by themselves do not provide tight constraints on cosmological parameters.

Moreover, while not greatly significant, current GRB data favor cosmological parameter

values that are at odds with what other data favor. When used in combination with some

of the highest quality current data (e.g., SNeIa and BAO peak measurements) current GRB
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data only slightly change the results. This is mainly because in the absence of an absolute

calibration of GRBs they, as standard candles, have big measurement uncertainties. This

is however quite likely to change as more and better-quality GRB measurements become

available and with improvements in how to calibrate GRBs. GRBs could potentially provide

a very strong test of the time variation of dark energy as they can be observed up to redshifts

beyond 8, at distances where other standard candles cannot be detected.
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Chapter 7

Constraints from Cluster Gas Mass
Fraction Data

This chapter is based on Ref. [111].

7.1 Using galaxy clusters as cosmological probes

Galaxy clusters are the biggest gravitationally bound objects in the Universe. Old, relaxed,

rich ones should provide a fair sample of the matter content of the Universe. The ratio

of baryonic mass to total nonrelativistic mass in the clusters should be close to the ratio

of cosmological parameters Ωb/Ωm, the baryonic fraction f . More than 80% of clusters’

baryonic mass is in hot X-ray emitting intergalactic gas. Estimates of gas mass fraction in

clusters can be combined with the priors on Ωb from WMAP or BBN to get tight constrains

on nonrelativistic matter density. During cosmic evolution the ratio Ωb/Ωm should remain

the same, but clusters are observed at different redshifts and since the reconstructed fgas

depends on the assumed distance to the cluster, this data can be used to constrain cosmic

evolution and hence the dark energy.

To get a good estimate of fgas, the gas mass fraction, large, relaxed clusters in thermal

equilibrium should be used. Clusters with high core temperature (kT > 5 keV) are better

for the analysis, because in computer simulations and observations they have less systematic

scatter in gas mass fraction compared to “cold” clusters.
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The gas mass fraction is given by [6]

fgas(z) =
KAγb(z)

1 + s(z)

Ωb

Ωm

(
dref

A (z)

dA(z)

)1.5

. (7.1)

Here K is a calibration constant that accounts for effects, such as accuracy of instrument

calibration and X-ray modelling. A conservative 10% Gaussian uncertainty K = 1.0 ± 0.1

is used in Ref. [6]. The factor A accounts for the change in the angle subtended by the

cluster between the reference cosmology and the cosmology of interest and is always very

close to 1. γ models non-thermal pressure due to subsonic motion in the gas, cosmic rays,

magnetic fields, etc. In the analysis of Ref. [6] uniform prior with 1.1 < γ < 1.2 is assumed.

b is the “bias” factor, the ratio by which the baryon fraction in the cluster differs from the

same mean ratio in the Universe. The “bias” factor is modeled as b = b0(1 + αbz) [6] and

cosmological simulations suggest the uniform priors 0.65 < b0 < 1.0 and −0.1 < αb < 0.1,

[6]. The parameter s = s0(1 + αsz) models the baryon gas mass fraction in stars. We use

the uniform prior with −0.2 < αs < 0.2 and the Gaussian prior with s0 = 0.13 ± 0.01, [6].

dref
A is the angular diameter distance computed in a reference, spatially-flat ΛCDM model

with ΩΛ = 0.7, and dA is the angular diameter distance computed in the φCDM model.

7.2 Many dimensional integration

We use the modified technique discussed below to perform some of the integrals to account

for these nuisance parameters, which have usually veen done numerically, as discussed next.

Let’s say we want to integrate a function f(x) on the interval (a, b). If this cannot be

done analytically, different numerical integration algorithms may be used to compute the

integral to a given precision.

If the problem is one dimensional and the integrand is reasonably well-behaved, (a, b) can

be subdivided into N segments of equal length; in each segment f(x) can be interpolated by

a polynomial; and the integral can be approximated by a sum [112]. The simplest method
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of this sort uses the trapezoidal Newton-Cotes formula∫ b

a

f(x)dx ' b− a
N

(
f(a) + f(b)

2
+

N−1∑
k=1

f

(
a+ k

b− 1

N

))
(7.2)

The error on the integral computed using Eq. (7.2) can be approximated by

σI ∼
1

2N
sup |f ′(x)| (7.3)

where prime denotes the derivative. The error could be smaller than this if the function is

sufficiently smooth.

This method can be applied to multi-dimensional integrals also, by transforming them

into repeated one-dimensional integrals. The number of function evaluations required to get

the same precision, however, will grow exponentially in this case and so will the required

computational time. To sample a unit interval in one dimensional space with a distance

between adjacent points of 0.01, only hundred evenly-spaced points are required. To do the

same thing in 10 dimensional space will require 1020 points.

To cut down on computational time Monte-Carlo integration techniques can be em-

ployed. Monte-Carlo algorithms randomly pick N points in the multi-dimensional space.

By the law of large numbers, the error on an integral computed using Monte-Carlo method

scales as 1/
√
N independent of dimensionality.

The gas mass fraction in Eq. (7.1) depends on eight “nuisance” parameters. These are

K, γ, b0, αb, s0, αs, Ωb, and H0. To perform this eight-dimensional integration we use a

method that in this particular case works faster than Monte-Carlo sampling.

Five out of eight nuisance parameters enter Eq. (7.1) as a redshift independent combina-

tion Γ = Kγb0(Ωbh
2)/h1/2. We can think of each nuisance parameter as a random number

with a given probability distribution function (PDF). Then Γ will also be a random variable

with some PDF.

We use the following statistics results [113]. If two random variables a and b are inde-

pendent with PDFs Pa(x) and Pb(x) then variables c = ab, d = a/b and f = F (a) are also
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random with PDFs

Pc =

∫ ∫
Pa(x′)Pb(x′′)δ(x′x′′ − x)dx′dx′′ =

∫
1

|x′|
Pa(x′)Pb(x/x′)dx′, (7.4)

Pd =

∫ ∫
Pa(x′)Pb(x′′)δ(x′/x′′ − x)dx′dx′′ =

∫
|x′|Pa(xx′)Pb(x′)dx′, (7.5)

Pf =

∣∣∣∣F−1(x)

dx

∣∣∣∣Pa(F−1(x)). (7.6)

We first numerically compute the PDF for Γ using Eqs. (7.4-7.6) and replace the the five-fold

integration of the likelihood function by a one-dimensional integral. This reduces computa-

tional time significantly.

7.3 Constraints from fgas data

We use the measurements of gas mass fraction of 42 hot, X-ray luminous, relaxed galaxy

clusters in the redshift range of z = 0.01 to 1.1 [6]. The cluster gas mass fraction data is

presented in Appendix F. We integrate the likelihood over the Hubble constant with the

Gaussian WMAP prior h = 0.73± 0.03, and baryonic mass energy density with a Gaussian

prior Ωb = (0.0223± 0.0008)h−2.

The constraints on φCDM parameters are shown in Fig. 7.1. Brown, light blue and deep

blue areas correspond to 1, 2, and 3σ confidence levels respectively. The black cross denotes

best-fit parameters Ω∗m = 0.27 and α∗ = 0.0, with χ2 = 43.5 for 40 degrees of freedom.

The nonrelativistic matter density is constrained to be in the range of 0.15 < Ωm < 0.45

at about 3σ confidence level and α is constrained to be less than 5 at about 3σ confidence

level.

One dimensional likelihood functions for individual parameters are shown in Fig. 7.2.

The best-fit values from the one dimensional likelihood functions are α∗ = 0.0 and Ω∗m =

0.27. 1σ confidence level intervals from the one dimensional likelihood functions are 0 <

α < 1.1 and 0.22 < Ωm < 0.33.
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Figure 7.1: 1, 2, and 3σ confidence level contours on φCDM model parameters from galaxy
cluster gas mass fraction data. Cross denotes the best-fit value at Ωm = 0.27 and α = 0.0.
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Figure 7.2: One dimensional likelihood functions of individual cosmological parameters
from galaxy cluster gas mass fraction data. The maximum likelihood values are normalized
to one.
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Chapter 8

Constraints on φCDM from Baryon
Acoustic Peak Measurements

This chapter is based on Refs. [91, 114].

8.1 Transverse baryon acoustic peak measurements

Before recombination baryons and photons are tightly coupled and gravity and pressure

gradients induce sub-acoustic-Hubble-radius oscillations in the baryon-photon fluid [115,

116]. These transmute into the acoustic peaks observed now in the CMB anisotropy angular

power spectrum, which provide very useful information on various cosmological parameters.

The baryonic matter gravitationally interacts with the dark matter and so the matter power

spectrum should also exhibit these “baryon acoustic” wiggles. Because the baryonic matter

is a small fraction of the total matter the amplitudes of the BAO wiggles are small. The BAO

peak length scale is set by the sound horizon at decoupling, ∼ 102 Mpc, and so detecting

the BAO peak in a real space correlation function requires observationally sampling a large

volume. The BAO peak in the galaxy correlation function has recently been detected by

using SDSS data [7, 117] and by using 2dFGRS data [118]. For more recent discussions of

the observational situation see Refs. [8, 119, 120].

The sound horizon at decoupling can be computed from relatively well-measured quanti-

ties by using relatively well-established physics. Consequently it is a standard ruler and can
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be used to trace the universe’s expansion dynamics [121–124]. A measurement of the BAO

peak length scale at redshift z fixes a combination of the angular diameter distance and

Hubble parameter at that redshift. More precisely, what is determined [7] is the distance

DV (z) =
[
(1 + z)2d2

A(z)z/H(z)
]1/3

, (8.1)

where H(z) is the Hubble parameter and dA the angular diameter distance. DV (z) depends

on the cosmological parameters of the model, including those which describe dark energy, so

we can constrain these parameters by comparing the predicted DV (z) to the measurements.

We examine the constraints on φCDM from two measurements of the BAO peak. The

first is from the BAO peak measured at z = 0.35 in the correlation function of luminous

red galaxies in the SDSS [7]. This measurement results in A(0.35) = 0.469 ± 0.017 (one

standard deviation error), where the dimensionless and H0-independent function

A(z) = DV (z)

√
ΩmH2

0

z
(8.2)

and DV (z) is the distance measure defined in Eq. (8.1). The measured value of A(0.35)

does not depend on the dark energy model and only weakly depends on the baryonic energy

density. The measurement also has a weak dependence on parameters like the spectral index

of primordial scalar energy density perturbations (the assumed value is n = 0.98) and the

sum of the neutrino masses, but this is not strong enough to have significant effect on the

final result. To constrain cosmological model parameters in this case we perform a standard

χ2 analysis.

The second BAO peak measurement we use is from the correlation function of galaxy

samples drawn from the SDSS and 2dFGRS at two different redshifts, z = 0.2 and z = 0.35,

as determined by Ref. [8]. This analysis includes the SDSS luminous red galaxies, so the

the two BAO peak measurements are not statistically independent.

This measurement gives the correlated values rs/DV (0.2) = 0.1980±0.0058 and rs/DV (0.35) =

0.1094± 0.0033 (one standard deviation errors), where rs is the comoving sound horizon at

recombination. These two measurements are correlated, with the inverse of the correlation
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matrix given b

V −1 =

(
35059 −24031
−24031 108300

)
.

To compute rs we first compute the angular diameter distance to the surface of last scatter-

ing, dA(1089). We then use the WMAP measurement of the apparent acoustic horizon angle

in the CMB anisotropy data [125] to determine the sound horizon rs = [(1+z)dA(z)]|z=1089×

0.0104 (where we ignore the WMAP measurement uncertainty and assume that rs is known

perfectly). The use of the WMAP prior on the apparent acoustic horizon angle results in

very tight constraints on the spatial curvature. When this measurement is not used, these

measurements alone can not tightly constrain the dark energy parameters.

To constrain cosmological parameters in this case we follow Ref. [8] and first compute

X(Ωm, α) =

(
rs/DV (0.2,Ωm, α)− 0.1980
rs/DV (0.35,Ωm, α)− 0.1094

)
, (8.3)

where for definiteness we consider the φCDM model. We then compute the χ2 function

χ2(Ωm, α) = X−1V −1X. (8.4)

and the likelihood function

L(Ωm, α) ∝ exp(−χ2(Ωm, α)/2). (8.5)

8.2 Constraints from transverse BAO peak measurem-

nts

The constraints on φCDM model from BAO data presented in Ref. [7] are shown in Fig. 8.1.

Constrains from BAO data presented in Ref. [8] are shown in Fig. 8.2. The one dimensional

individual likelihoods are shown in Figs. 8.3 and 8.4 respectively. The best fit values of

individual parameters from Fig. 8.4 are α∗ = 0 and Ω∗m = 0.24, with 1σ intervals 0 < α < 4.5

and 0.24 < Ωm < 0.26.

These measurements were made at only two redshifts and by themselves do not provide

a robust and reliable test of dark energy models, but in combination with other data they
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do provide useful constraints on cosmological parameters. In addition, a number of surveys

are planned in next few years that will measure the BAO scale accurately and at a variety

of redshifts up to z = 1.2. This upcoming BAO data, especially when combined with other

data, will prove very useful in tightly constraining dark energy parameters [126].
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Figure 8.1: 1, 2, and 3σ confidence level contours on φCDM model parameters from BAO
peak measurement of Ref. [7].
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Figure 8.2: 1, 2, and 3σ confidence level contours on φCDM model parameters from BAO
peak measurement of Ref. [8]. Cross denotes the best-fit value at Ω∗m = 0.25 and α∗ = 0.

8.3 Radial BAO peak measurements

Recently it was argued that the above measurements of the BAO scale were essentially

measurements orthogonal to the line of sight and so statistically independent from a line

of sight measurement of the BAO scale, even if the same galaxy catalog is used for both

measurements. Reference [127] used the SDSS data to compute the line of sight or radial

BAO scale in redshift space for two ranges of redshift and showed the resulting constraints
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Figure 8.3: One dimensional likelihood functions of individual cosmological parameters
from BAO peak measurement of Ref. [7]. The maximum likelihood values are normalized to
one.

on the spatially-flat XCDM parameterization [128]. These constraints from the radial BAO

scale data are quite similar to the constraints derived from earlier “transverse” BAO scale

measurements. The data are consistent with spatially-flat ΛCDM. However, these current

radial BAO measurements (like current non-radial BAO measurements) can not tightly

constrain time-varying dark energy by themselves (although the situation is anticipated to

improve in the next few years), as discussed next.
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Figure 8.4: One dimensional likelihood functions of individual cosmological parameters
from BAO peak measurement of Ref. [8]. The maximum likelihood values are normalized to
one.

In a spherically symmetric Universe the two-point correlation function is a function of two

variables, ξ = ξ(σ, π), where σ is the separation along the line of sight and π is the separation

on the sky. It can also be expressed as a function of absolute separation r =
√
σ2 + π2 and

the cosine of the angle between the line of sight and the direction of separation, µ = π/r.

The correlation function can then be decomposed into multipole moments,

ξl(r) =

∫ +1

−1

ξ(r, µ)Pl(µ)dµ, (8.6)
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where Pl is the lth order Legendre polynomial. Multipole moments of different orders can

be related to each other if one has a complete theory of linear and nonlinear evolution.

Although high multipoles that describe the “shape” of baryon acoustic oscillation imprints

on the matter distribution are very difficult to measure in practice, theoretically they are

independent of the monopole and could provide additional structure formation tests.

Initial work considered only the averaged over direction monopole part of the correlation

function,

ξ0(r) =
1

2

∫ +1

−1

ξ(r, µ)dµ, (8.7)

and found a BAO peak signal at a comoving distance of r ≈ 110h−1Mpc. This measurement

was however mostly transverse to the line of sight direction π; the weight of separation along

the line of sight contributes less then 1%. Consequently, it is fair to assume that the radial

baryon acoustic peak scale measurement in the line of sight direction from ξ(σ) is statistically

independent from that measured from ξ(r) ≈ ξ(π), even if the same galaxy sample is used

for both measurements.

Reference. [127] used SDSS data to measure the radial baryon acoustic scale in two

redshift ranges z ∼ 0.15− 0.30 with radial BAO peak scale ∆z = 0.0407± 0.0014 and z ∼

0.40− 0.47 with ∆z = 0.0442± 0.0016 (both one standard deviation errors). Theoretically

the radial BAO peak scale is given by

∆z = H(z)rs(zd)/c (8.8)

where H(z) is the Hubble parameter at redshift z, rs(zd) is the sound horizon size at the drag

redshift zd, at which baryons were released from photons, and c is the speed of light. H(z)

can be easily computed in a given cosmological model and depends on model parameters

such as the non-relativistic matter density and the time dependence of dark energy.

rs can be computed with two different methods. One is to use the ratio ls between the

distance to the last-scattering surface and rs measured by CMB anisotropy experiments and
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compute the sound horizon at photon decoupling from

rs(z∗) =
π(1 + z∗)dA(z∗)

ls
. (8.9)

Here z∗ is the redshift at photon decoupling and dA is the angular diameter distance. Alter-

natively, one can use priors on the fractional energy density parameters of baryonic matter,

Ωb, nonrelativistic matter, Ωm, and relativistic matter, Ωr, from, e.g., CMB anisotropy

measurements, and compute the sound horizon at the drag redshift from

rs(zd) =
c

H0

√
3Ωm

∫ a(zd)

0

da√
(a+ 1.69Ωr/Ωm)(1 + a0.75Ωb/Ωr)

. (8.10)

Both options have similar drawbacks. One has to assume priors on “nuisance” parameters

like ls or various energy densities. CMB anisotropy measurements themselves have measure-

ment errors that must be accounted for, otherwise the errors on the estimates of dark energy

model parameters of interest will be underestimated. Also, the best fit values for nuisance

parameters given by CMB anisotropy data are in general different for every cosmological

model and also depend on model parameter values. To be fully consistent when using priors

one would have to reanalyze CMB experiments for each cosmological model (and model

parameter value) instead of using a single set of values for ls, Ωb, Ωm, and Ωr.

At present, however, the BAO scale is measured only in two redshift ranges and does

not provide very tight parameter constraints compared to other observational tests. Hence,

as long as we are interested in preliminary constraints on dark energy from BAO scale

measurements we may use the simplified approach of Ref. [127], keeping in mind that when

more and better quality BAO scale measurements become available a more complete, careful,

and time-consuming analysis will be warranted.

8.4 Constraints from radial BAO peak measurements

The confidence level contours for the spatially-flat φCDM model are shown in Fig. 8.5

and 8.6. Corresponding one dimensional likelihood functions for individual cosmological
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parameters are shown in Fig. 8.7 and 8.8. Here, the radial BAO measurements constrain

Ωm to be between 0.15 and 0.4 at about 3σ, but the α parameter is not constrained well

and large values of α (relatively rapidly evolving dark energy) are not ruled out, although

the likelihood peaks at α = 0. These results are similar to the ones derived earlier using the

non-radial BAO peak scale measurements.
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Figure 8.5: 1, 2, and 3σ confidence level contours on φCDM model parameters from radial
BAO peak measurements using the technique of Eq. (8.9). The best fit values are α∗ = 0
and Ω∗m = 0.23.
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Figure 8.6: 1, 2, and 3σ confidence level contours on φCDM model parameters from radial
BAO peak measurements using the technique of Eq. (8.10). The best fit values are α∗ = 0
and Ω∗m = 0.25.
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Figure 8.7: One dimensional likelihood functions of individual cosmological parameters
from radial BAO peak measurements and using the technique of Eq. (8.9). The maximum
likelihood values are normalized to one.

63



0 1 2 3 4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

α

L

0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ω
m

L

Figure 8.8: One dimensional likelihood functions of individual cosmological parameters
from radial BAO peak measurements and using the technique of Eq. (8.10). The maximum
likelihood values are normalized to one.
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Chapter 9

Conclusion

9.1 Joint constraints

Chapters 5 to 8 present constraints on φCDM model parameters using different available

cosmological data sets. The lookback time versus redshift and the GRB data cannot at the

moment constrain dark energy strongly. Likelihoods resulting from these two data sets are

flat in the direction of α and give preference to cosmological models with low nonrelativistic

mass energy density Ωm < 0.2, which is at odds with other observations, but this is not very

significant.

In both cases this happens because the measurements are available only at a small

number of redshifts (32 for lookback time data and 6 for GRB) and the measurement

uncertainties are large. This should change when more and better quality data become

available. In the future these two methods could prove to be very useful in constraining

dark energy.

Constraints from SNeIa absolute magnitude versus redshift data, galaxy cluster gas

mass fraction versus redshift data, and BAO peak measurements are considerably tighter.

BAO peak measurements are not very effective in constraining the α parameter at the

moment, but they give very good constraints on nonrelativistic matter energy density. The

power of the constraints seems surprising given that the BAO peak measurements have been

made at only two redshifts so far. SNeIa and cluster gas mass fraction data are not that
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effective in constraining Ωm but provide upper limits on α. Current data favors the time-

independent cosmological constant, but there is a large part of time-evolving dark energy

(φCDM) parameter space that is still not ruled out.

Since none of the available data sets alone can simultaneously tightly constrain both cos-

mological parameters α and Ωm, we derive tighter constraints by performing joint analyses

of observational data. We get the best results when using SNeIa and BAO peak measure-

ments; adding other data to the mix does not significantly improve the constraints. Since

these two are independent we define the joint likelihood as the product of the individual

likelihoods

Ltot = LSNLBAO. (9.1)

The constraints derived from this joint likelihood function are shown in Fig. 9.1. The joint

analyses results in much tighter constraints. The nonrelativistic matter density is in the

range of 0.18 < Ωm < 0.32 and α is constrained to be less than 1.5 at about 3σ confidence.

The best-fit values α∗ = 0.27 and Ω∗m = 0.24 correspond to slowly-varying dark energy but

the time-independent cosmological constant also fits the data very well.

The likelihood functions of individual cosmological parameters are shown in Fig. 9.2.

The best-fit values from one dimensional likelihood functions are α∗ = 0.27 and Ω∗m = 0.24.

The 1σ intervals are 0.02 < α < 0.54 and 0.22 < Ωm < 0.26.

9.2 Future prospects of detecting time-evolving dark

energy

Joint analysis of currently available cosmological data already results in strong constraints

on the φCDM model. Ωm is estimated to be in between 0.2 and 0.3 and α is constrained to

be less than 1.5.

The quality and quantity of available cosmological data sets is expected to increase

significantly in the next decade. This will result in much tighter constraints on φCDM

model parameters. Some of the uncertainty in α and Ωm comes from the fact that we do

66



Ω
m

α

0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

Figure 9.1: 1, 2, and 3σ confidence level contours on φCDM model parameters from joint
analysis of SNeIa Union data and transverse BAO peak measurements. The best-fit param-
eters are α∗ = 0.3 and Ω∗m = 0.24 with χ2 = 321 for 307 degrees of freedom.

not know precise values of nuisance parameters, such as H0 and Ωb. Ongoing surveys (such

as HST) and new missions (such as PLANCK satellite) will measure these with greater

accuracy, which will translate into better constraints on α and Ωm.

From the joint analysis of near future SNeIa, GRB, galaxy cluster gas mass fraction and

BAO measurements we should be able to either detect the time-dependence of dark energies

energy density at a high confidence level or to constrain it to small, physically uninteresting
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Figure 9.2: One dimensional likelihood functions of individual cosmological parameters
from the joint analysis of SNeIa Union data and transverse BAO peak measurements. The
maximum likelihood values are normalized to one.

values.
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Appendix A

C++ function for a numerical
solution of the scalar field equations.

#inc lude<iostream>
#inc lude<f stream>
#inc lude<cmath>

us ing namespace std ;

double fy ( double a , double y , double dy , double kmp, double alpha ) ;
double f a ( double a , double y , double dy , double kmp, double alpha ) ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// This func t i on takes as an input the value o f alpha , n o n r e l a t i v i s t i c
// matter dens i ty Omega m , and r e d s h i f t z .
// I t s o l v e s ODEs us ing 4 th order Runge−Kutta method and re tu rn s
// comoving d i s t anc e .
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

double d i s t ance ( double alpha , double OmegaM, double z )
{

const double t0 = 0 . 0 1 ;
const double dt = 0 . 0 0 1 ;

double t = t0 ;
double A = 2 .0/3 . 0∗ alpha ∗( alpha + 2 . 0 ) ;
double kmp = 8 . 0 / 3 . 0∗ ( alpha + 4 . 0 ) / ( alpha + 2 .0 )∗pow(A , alpha / 2 . 0 ) ;

double a f in , da f i n ;
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double sum = 0 . 0 ;

// I n i t i a l c o n d i t i o n s on s c a l e f a c t o r − a , and s c a l a r f i e l d − y .

double a = pow( t0 , 2 . 0 / 3 . 0 ) ;
double y = s q r t (A)∗pow( t0 , 2 . 0/ ( alpha + 2 . 0 ) ) ;
double dy =

s q r t ( 8 . 0 / 3 . 0∗ alpha /( alpha + 2 . 0 ) ) / pow( t0 , alpha /( alpha + 2 . 0 ) ) ;
double OM =

4 .0/9 . 0/ a/a/a / ( 4 . 0 / 9 . 0 / a/a/a + ( dy∗dy + kmp/pow( y , alpha ) ) / 1 2 . 0 ) ;

double k11 , k12 , k13 , k21 , k22 , k23 , k31 , k32 , k33 , k41 , k42 , k43 ;

whi l e (OM > omegam)
{

k11 = fa (a , y , dy , kmp, alpha )∗ dt ;
k12 = dy∗dt ;
k13 = fy (a , y , dy , kmp, alpha )∗ dt ;
k21 = fa ( a + 0.5∗ k11 , y + 0.5∗ k12 , dy + 0.5∗ k13 , kmp, alpha )∗ dt ;
k22 = ( dy + 0.5∗ k12 )∗ dt ;
k23 = fy ( a + 0.5∗ k11 , y + 0.5∗ k12 , dy + 0.5∗ k13 , kmp, alpha )∗ dt ;
k31 = fa ( a + 0.5∗ k21 , y + 0.5∗ k22 , dy + 0.5∗ k23 , kmp, alpha )∗ dt ;
k32 = ( dy + 0.5∗ k22 )∗ dt ;
k33 = fy ( a + 0.5∗ k21 , y + 0.5∗ k22 , dy + 0.5∗ k23 , kmp, alpha )∗ dt ;
k41 = fa ( a + k31 , y + k32 , dy + k33 , kmp, alpha )∗ dt ;
k42 = ( dy + k32 )∗ dt ;
k43 = fy ( a + k31 , y + k32 , dy + k33 , kmp, alpha )∗ dt ;

a += k11 /6 .0 + k21 /3 .0 + k31 /3 .0 + k41 / 6 . 0 ;
y += k12 /6 .0 + k22 /3 .0 + k32 /3 .0 + k42 / 6 . 0 ;
dy += k13 /6 .0 + k23 /3 .0 + k33 /3 .0 + k43 / 6 . 0 ;

t = t + dt ;

OM = 4 .0/9 . 0/ a/a/a / ( 4 . 0 / 9 . 0 / a/a/a + ( dy∗dy + kmp/pow( y , alpha ) ) / 1 2 . 0 ) ;
}

a f i n = a ;
da f i n = fa (a , y , dy , kmp, alpha ) ;

t = t0 ;
a = pow( t0 , 2 . 0 / 3 . 0 ) ;
y = s q r t (A)∗pow( t0 , 2 . 0/ ( alpha + 2 . 0 ) ) ;
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dy = s q r t ( 8 . 0 / 3 . 0∗ alpha /( alpha + 2 . 0 ) ) / pow( t0 , alpha /( alpha + 2 . 0 ) ) ;
OM = 4 .0/9 . 0/ a/a/a / ( 4 . 0 / 9 . 0 / a/a/a + ( dy∗dy + kmp/pow( y , alpha ) ) / 1 2 . 0 ) ;

whi l e (OM > omegam)
{

k11 = fa (a , y , dy , kmp, alpha )∗ dt ;
k12 = dy∗dt ;
k13 = fy (a , y , dy , kmp, alpha )∗ dt ;
k21 = fa ( a + 0.5∗ k11 , y + 0.5∗ k12 , dy + 0.5∗ k13 , kmp, alpha )∗ dt ;
k22 = ( dy + 0.5∗ k12 )∗ dt ;
k23 = fy ( a + 0.5∗ k11 , y + 0.5∗ k12 , dy + 0.5∗ k13 , kmp, alpha )∗ dt ;
k31 = fa ( a + 0.5∗ k21 , y + 0.5∗ k22 , dy + 0.5∗ k23 , kmp, alpha )∗ dt ;
k32 = ( dy + 0.5∗ k22 )∗ dt ;
k33 = fy ( a + 0.5∗ k21 , y + 0.5∗ k22 , dy + 0.5∗ k23 , kmp, alpha )∗ dt ;
k41 = fa ( a + k31 , y + k32 , dy + k33 , kmp, alpha )∗ dt ;
k42 = ( dy + k32 )∗ dt ;
k43 = fy ( a + k31 , y + k32 , dy + k33 , kmp, alpha )∗ dt ;

a += k11 /6 .0 + k21 /3 .0 + k31 /3 .0 + k41 / 6 . 0 ;
y += k12 /6 .0 + k22 /3 .0 + k32 /3 .0 + k42 / 6 . 0 ;
dy += k13 /6 .0 + k23 /3 .0 + k33 /3 .0 + k43 / 6 . 0 ;

t = t + dt ;
OM = 4 .0/9 . 0/ a/a/a / ( 4 . 0 / 9 . 0 / a/a/a + ( dy∗dy + kmp/pow( y , alpha ) ) / 1 2 . 0 ) ;

i f ( a/ a f i n > 1 . 0 / ( 1 . 0 + z ) )
{

sum += 1.0/ a ;
}

}

sum ∗= dt ;
sum ∗= da f in ;

r e turn sum ;
}

double fy ( double a , double y , double dy , double kmp, double alpha )
{

r e turn (−3.0∗ s q r t ( 4 . 0 / 9 . 0 / a/a/a +
1 . 0 / 1 2 . 0∗ ( dy∗dy + kmp/pow ( ( y ) , alpha ) ) )∗
dy + kmp∗alpha /2 .0/pow ( ( y ) , alpha + 1 . 0 ) ) ;

}
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double f a ( double a , double y , double dy , double kmp, double alpha )
{

r e turn ( s q r t ( 4 . 0 / 9 . 0 / ( a ) + ( a )∗ ( a ) /12 . 0∗ ( dy∗dy + kmp/pow( y , alpha ) ) ) ) ;
}
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Appendix B

Ages of passively evolving galaxies.

Table B.1: Ages of passively evolving galaxies versus red-
shift data.

z Age (Gyr)
0.117100 10.2000
0.117400 10.0000
0.222000 9.00000
0.231100 9.00000
0.355900 7.60000
0.452000 6.80000
0.575000 7.00000
0.644000 6.00000
0.676000 6.00000
0.833000 6.00000
0.836000 5.80000
0.922000 5.50000
1.17900 4.60000
1.22200 3.50000
1.22400 4.30000
1.22500 3.50000
1.22600 3.50000
1.34000 3.40000
1.38000 3.50000
1.38300 3.50000
1.39600 3.60000
1.43000 3.20000
1.45000 3.20000
1.48800 3.00000

Continued on next page
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Table B.1 – continued from previous page
z Age (Gyr)

1.49000 3.60000
1.49300 3.20000
1.51000 2.80000
1.55000 3.00000
1.57600 2.50000
1.64200 3.00000
1.72500 2.60000
1.84500 2.50000
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Appendix C

Hubble parameter versus redshift
data

Table C.1: Hubble parameter versus redshift data with
1σ measurement uncertainties.

z H(z) σH
0.09 69 12
0.17 83 8.3
0.27 70 14
0.4 87 17.4
0.88 117 23.4
1.3 168 13.4
1.43 177 14.2
1.53 140 14
1.75 202 40.4
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Appendix D

SNeIa “union” data set

Table D.1: SNeIa “union” data set. The redshift z, dis-
tance modulii µ, and 1σ statistical measurement errors
on the measurement of µ.

z µ σµ
0.050043 36.7730018543 0.153148680782
0.052926 36.8241423261 0.148454214927
0.02513 35.1678175291 0.165420933733
0.070086 37.567740156 0.15403068043
0.062668 37.5515804571 0.145317136417
0.087589 38.1915656352 0.159495013964
0.078577 37.5212710132 0.147429338762
0.017227 34.6546665523 0.1880259565
0.042233 36.3586532798 0.152312134352
0.045295 36.6566139461 0.148758275509
0.019599 34.5182384466 0.179081303451
0.100915 38.5088119689 0.145279087383
0.027342 35.2300574166 0.171939536277
0.074605 37.6663645268 0.147931348064
0.026489 35.5199700817 0.182864910719
0.049922 36.6999653546 0.146530609404
0.030604 35.5404531616 0.161624590233
0.016345641 34.0924538801 0.144775220876
0.0154363 34.0329851021 0.150597548663
0.030529 35.5818149937 0.0920067053122
0.024525 34.9577174302 0.109085696057
0.023953 34.935520479 0.115625212493
0.026038 35.3566237332 0.106784897071
0.048948 36.6391120177 0.1766982111

Continued on next page
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Table D.1 – continued from previous page
z µ σµ

0.024314 35.0794913195 0.18643839963
0.015166 34.2041114924 0.225518080121
0.03572 36.1050539158 0.188094161827
0.048818 36.3507343053 0.166961986591
0.0219800059146 34.8811235819 0.196258768364
0.0275 35.6735856723 0.181507304221
0.1244 38.9521645786 0.168017789501
0.036 35.8260342723 0.173778570484
0.01673 34.1592687583 0.209352704395
0.016321 34.1144805357 0.209884301455
0.021793 34.9048499767 0.282608881266
0.01645 34.1818298266 0.292212075551
0.023208 35.117280195 0.276622195571
0.036457 36.1142750974 0.267250650207
0.019264 35.1559953619 0.285695464272
0.017605 34.3943547917 0.308882749558
0.031528 35.7346061594 0.270713039098
0.023536 35.1870287376 0.278885118559
0.016743 33.8878121745 0.292567467485
0.05371 36.4559044522 0.268351164818
0.016991 34.2677976869 0.290910806654
0.027865 35.0340198507 0.273008042132
0.017173 34.1860410198 0.293258906218
0.029955 35.9589514911 0.273866480307
0.016559 34.3764044862 0.292368203484
0.015 34.0959952821 0.145904476604
0.0544 36.9686138698 0.0771934613908
0.1561 39.294455039 0.0599663857105
0.0393 36.3055280023 0.0717497761757
0.1241 38.8100134766 0.0715971658275
0.1441 39.0528219919 0.0634435595707
0.1299 38.9956124177 0.0631822941145
0.0784 37.7810061412 0.0681153647931
0.62 43.2066240148 0.374321656282
0.57 42.6299495836 0.329397155099
0.3 40.9068557079 0.322661461524
0.38 41.981448045 0.294675002057
0.43 42.2865323661 0.353944288913
0.24 40.92039446 0.604691512396
0.3 40.152454556 0.463180764839

Continued on next page
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Table D.1 – continued from previous page
z µ σµ

0.24 40.8941528415 0.281508606621
0.44 42.0189541221 0.290912412354
0.5 42.4251183643 0.285032220696
0.97 43.0841865629 0.742582169563
0.479 42.2593258058 0.305353355969
0.83 43.4934896902 0.372098016098
0.416 42.042208973 0.43961209764
0.581 41.9804788609 0.422581723678
0.45 41.7965293235 0.367900106831
0.579 43.1102730617 0.562403228541
0.32 41.1885505108 0.339690792497
0.657 43.0812935967 0.549444460563
0.472 42.0990717933 0.469994746225
0.374 43.1153409984 0.694417590782
0.526 42.013309316 0.402473462081
0.763 44.3657126034 0.885466302481
0.58 42.9398798711 0.395142768132
0.43 41.8899803061 0.393293335469
0.45 42.2825129374 0.422650328365
0.828 44.203018183 0.611918160502
0.656 43.181554143 0.528708119909
0.495 42.1205013485 0.39827409355
0.49 41.8217131258 0.355251221615
0.57 42.742574543 0.395438890913
0.388 42.0969738461 0.370734294336
0.45 42.2128189449 0.377256221564
0.48 42.1266258961 0.403490417945
0.615 42.6108744805 0.520864721236
0.4 42.1077687105 0.382043588034
0.655 42.3305104738 0.496246176513
0.498 43.0296153325 0.451179870261
0.465 41.8375675989 0.677740680801
0.453 42.6855854693 0.388547543287
0.425 41.3010835176 0.366453610612
0.278 40.6729770427 0.205733686158
0.477 42.0071669413 0.149503540949
0.95 43.6972613338 0.274437861244
1.057 44.0787405468 0.211584422417
0.816 43.7951226482 0.423980625959
0.455 42.3522141356 0.239111591348

Continued on next page
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Table D.1 – continued from previous page
z µ σµ

0.514 42.4275455763 0.427580299971
0.423 41.6141933692 0.239548120652
0.946 43.1597477534 0.806741116211
0.859 44.022811801 0.304111603744
1.031 42.1761580597 1.28660173268
0.936 44.148887081 0.518330924179
0.528 42.3528772215 0.240748040733
0.645 44.0353749092 0.964152598465
0.978 43.6526492518 0.312966122482
0.885 44.1789952676 0.466461712419
0.815 44.1347089556 0.919484299622
0.568 42.5610152006 0.293309253351
0.711 43.2491247935 0.248908077637
0.3396 41.1022712766 0.259553392222
0.3965 41.4084095732 0.240552944224
0.812 43.8133209255 0.282936944717
0.799 43.1683351205 0.27444888856
0.882 42.9333230617 0.324847417172
0.833 43.407367536 0.347349605053
0.874 43.3865810553 0.462308366531
0.772 43.4354874701 0.263416996827
0.543 42.3919207564 0.135200439255
0.75 43.167266596 0.135523948437
0.64 42.7302552042 0.225082191179
0.43 42.202845059 0.143459564521
0.64 43.1881838551 0.186543501751
0.497 42.4090348089 0.158488764413
0.44 41.9964410659 0.127761277223
0.355 41.516716698 0.130966220782
0.78 43.4907628672 0.151115530925
0.54 42.4339111537 0.121366799166
0.86 43.7451019144 0.156150591229
1.02 44.1993977338 0.223075604603
1.14 44.2839104237 0.280516457089
0.854 43.9153676425 0.219112489318
1.37 44.7910462695 0.324513218653
0.975 44.2284945859 0.200606912017
0.97 44.5842379887 0.240421078134
0.74 43.417393486 0.196331774539
1.39 44.8274132597 0.591264643225

Continued on next page
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Table D.1 – continued from previous page
z µ σµ

0.46 42.1615041182 0.190529350474
1.02 43.9810540565 0.241216980878
1.12 44.2495126581 0.241680223529
1.23 44.852264567 0.236250346674
1.19 44.1207308635 0.245756009721
0.839 43.5971981016 0.211771806558
1.01 44.4466207888 0.195202527359
0.521 42.4304300932 0.194708817687
0.475 42.1851461163 0.216179583718
0.95 43.7698442025 0.212959739832
1.3 44.9491044223 0.351060245309
1.305 44.4157049301 0.292031859582
0.526 43.0211775986 0.234516092908
0.735 43.1143549007 0.18304597653
1.14 44.0289616697 0.770661375912
1.551 45.3317386715 0.395907584039
1.265 44.6312640583 0.231966862578
1.34 44.953151304 0.252440440679
0.84 43.5620294075 0.195661579434
0.468 42.4934212383 0.156341752732
0.84 43.3513315259 0.326964462638
0.96 43.5868914421 0.427260522942
0.8218 43.5365504755 0.348162814934
0.93 44.6348635492 0.689119011672
0.451 41.8469440412 0.136544105548
0.61 42.8826976033 0.146106297403
0.83 44.6922378489 0.457964640542
0.707 43.320290922 0.250954794869
0.415 41.7696832434 0.12867036751
0.557 42.6475499276 0.146252717965
0.791 43.334857994 0.19213955201
0.695 43.1559541077 0.177154136049
0.633 43.200350196 0.204733134997
0.2486 40.6291787524 0.144170347426
0.532 42.6510205265 0.198544372744
0.331 40.9259072634 0.124868930577
0.346 41.2816358992 0.133990721793
0.961 44.0860127956 0.541232742301
0.613 42.9577096308 0.147055302427
0.3402 41.2627973103 0.124216129606

Continued on next page
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Table D.1 – continued from previous page
z µ σµ

0.983 43.9686072633 0.873805060546
0.71 43.03031003 0.184976659207
0.73 43.3112856025 0.172061162401
0.47 42.2950363729 0.149449923436
0.62 43.0958537208 0.150521756378
0.521 42.2813323021 0.171703576261
0.369 41.5099445593 0.127128442179
0.571 42.4563923477 0.1847896727
0.604 42.4422921595 0.142594201708
0.9271 44.7438233798 0.616675765778
0.285 40.7117195315 0.128805577715
0.2912 40.7936031593 0.128325808339
0.548 42.684557193 0.163119668307
0.868 43.9551353049 0.697041426681
0.496 42.2194365099 0.160441226732
0.811 44.0557629679 0.356535950064
0.756 43.6720421887 0.2041097647
0.817 43.5678420781 0.305034089394
0.752 43.1434994817 0.179046394457
0.5516 42.4072918995 0.146846411569
0.3578 41.3894284101 0.125749074506
1.01 44.6896175735 0.910412577811
0.741 43.4820220235 0.161255047619
0.43 41.8372805299 0.138494545284
0.526 42.6736883867 0.151797295017
0.592 42.524194556 0.197075800472
0.905 43.686095579 0.424695030791
0.949 43.4679668471 0.467379485606
0.4607 41.9741739893 0.2613454679
0.3709 41.5023209499 0.132033007561
0.8 44.4199835555 0.537991937963
0.679 43.4170080051 0.175601683429
0.5817 42.8374976585 0.184185753799
0.55 42.3999711394 0.158230175273
0.81 43.7278491047 0.491922061811
0.95 43.780780395 0.421021094207
0.3373 41.1812895877 0.124867747916
0.91 44.4079361607 0.394461837584
0.263 40.6399477676 0.123324515918
0.643 43.0120301671 0.161285559543
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Table D.1 – continued from previous page
z µ σµ

0.691 43.1407175735 0.170861512594
0.357 41.3588695068 0.129068537648
0.721 43.1285593884 0.185537803758
0.581 42.7918076033 0.147505707094
0.6268 42.7073384153 0.145364365689
0.818 43.5731368588 0.562299153124
0.449 41.9045845939 0.150334954079
0.688 43.0446792667 0.179014967059
0.87 44.0828430243 0.496674095444
0.5043 42.3045856196 0.141778819311
0.591 43.3138714564 0.267379474385
0.426 41.806666569 0.204450457968
0.329 41.3757739861 0.25327455415
0.531 43.0629635087 0.301071564198
0.583 42.5993396847 0.461245287391
0.519 43.0898571036 0.385243880567
0.401 41.6214142647 0.259723821426
0.34 41.1002984666 0.22330741712
0.436 41.8355461879 0.219396208675
0.363 41.3991790454 0.206870861224
0.436 41.9186081822 0.214365467471
0.309 41.2854634774 0.20604264325
0.342 41.3335602868 0.20174070167
0.332 41.2428570494 0.223960203004
0.469 42.0869431125 0.219485296548
0.239 40.4663605358 0.193168326915
0.352 41.4402007529 0.222632458264
0.612 42.2601378946 0.819156755697
0.631 42.5665239435 0.270098723797
0.645 42.8315316986 0.22803549973
0.429 41.8321619796 0.217936090167
0.497 42.0900771628 0.23056454709
0.539 42.3621361424 0.235072095671
0.561 42.5988124145 0.254763512704
0.41 41.3480927299 0.217232818458
0.412 41.7758022341 0.2949457048
0.599 42.8544760765 0.290620357209
0.619 42.9246968389 0.246627072238
0.422 41.6678602675 0.238231296443
0.54 42.5656285356 0.254777678043
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Table D.1 – continued from previous page
z µ σµ

0.401 42.072813335 0.312075794951
0.218 40.3179435116 0.198433228858
0.633 42.2256486429 0.296301030677
0.383 41.592556266 0.228094106236
0.302 41.5660169963 0.259288152895
0.34 41.1438764437 0.199964450355
0.51 41.9188202391 0.258309489516
0.421 41.965762911 0.228780937104
0.399 41.7087506407 0.28376407894
0.493 42.122916001 0.229109806841
0.687 42.832217021 0.279368496827
0.502 41.8992528194 0.313490292477
0.687 42.8216812976 0.250279752764
0.495 42.2021639825 0.245006206755
0.603 42.6354160597 0.273892147864
0.421 42.0443812883 0.280749747008
0.348 41.5494690313 0.204875174321
0.213 40.3399930846 0.204646940237
0.344 41.0679683623 0.200210760141
0.271 40.5536369049 0.206465230307
0.564 42.3759756991 0.400947441397
0.274 40.7740469723 0.216212348503
0.582 43.2137150031 0.278992592748
0.68 42.8318958632 0.247902597912
0.401 41.9301329836 0.235368495661
0.416 41.7521888571 0.295167259169
0.286 41.387427719 0.334584228292
0.314 41.0209048393 0.287974294878
0.581 43.5994710152 0.377088903672
0.463 41.9546009246 0.265451577145
0.341 41.092049721 0.209704216095
0.671 42.1936025518 0.331542575911
0.631 42.9261055377 0.232187948068
0.522 42.6690298106 0.304891267733
0.368 41.4066563292 0.204741881488
0.309 40.8507297646 0.207725830155
0.528 42.4787440903 0.305372522825
0.268 40.7695452633 0.197555926698
0.695 42.9207400196 0.41358331096
0.284 40.7849823164 0.199874464698
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z µ σµ

0.508 42.1375516415 0.212951542267
0.781 43.3825529133 0.341139699918
0.613 42.4302887204 0.333098849656
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Appendix E

GRB data

Table E.1: GRB distance measures with 1σ upper and
lower uncertainties.

z r̄p(z) σ+ σ−

0.17 1.0000
1.036 0.9416 0.1688 0.1710
1.902 1.0011 0.1395 0.1409
2.768 0.9604 0.1801 0.1785
3.634 1.0598 0.1907 0.1882
4.500 1.0163 0.2555 0.2559
6.600 1.0862 0.3339 0.3434
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Appendix F

Galaxy cluster gas mass fraction data
set

Table F.1: Galaly cluster gas mass fraction data set. The
cluster ID, redshift z, and the measurement of fgas with
1σ error.

Cluster z fgas ± σf

Abell 1795 0.063 0.1074± 0.0075
Abell 2029 0.078 0.1117± 0.0042
Abell 478 0.088 0.1211± 0.0053
PKS0745-191 0.103 0.1079± 0.0124
Abell 1413 0.143 0.1082± 0.0058
Abell 2204 0.152 0.1213± 0.0116
Abell 383 0.188 0.0903± 0.0080
Abell 963 0.206 0.1144± 0.0102
RXJ0439.0+0521 0.208 0.0917± 0.0127
RXJ1504.1-0248 0.215 0.1079± 0.0111
Abell 2390 0.230 0.1257± 0.0110
RXJ2129.6+0005 0.235 0.1299± 0.0299
Abell 1835 0.252 0.1197± 0.0082
Abell 611 0.288 0.1020± 0.0133
Zwicky 3146 0.291 0.0943± 0.0163
Abell 2537 0.295 0.0949± 0.0147
MS2137.3-2353 0.313 0.1106± 0.0061
MACSJ0242.6-2132 0.314 0.1268± 0.0131
MACSJ1427.6-2521 0.318 0.1052± 0.0220
MACSJ2229.8-2756 0.324 0.1452± 0.0265
MACSJ0947.2+7623 0.345 0.1048± 0.0196
MACSJ1931.8-2635 0.352 0.1193± 0.0266

Continued on next page
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Table F.1 – continued from previous page
Cluster z fgas ± 1σf

MACSJ1115.8+0129 0.355 0.0925± 0.0283
MACSJ1532.9+3021 0.363 0.1280± 0.0162
MACSJ0011.7-1523 0.378 0.1067± 0.0125
MACSJ1720.3+3536 0.391 0.1153± 0.0151
MACSJ0429.6-0253 0.399 0.1375± 0.0154
MACSJ0159.8-0849 0.404 0.1097± 0.0160
MACSJ2046.0-3430 0.423 0.1253± 0.0398
MACSJ1359.2-1929 0.447 0.0845± 0.0290
MACSJ0329.7-0212 0.450 0.1262± 0.0129
RXJ1347.5-1144 0.451 0.0923± 0.0078
3C295 0.461 0.1067± 0.0096
MACSJ1621.6+3810 0.461 0.0954± 0.0172
MACS1427.3+4408 0.487 0.1201± 0.0294
MACSJ1311.0-0311 0.494 0.1066± 0.0168
MACSJ1423.8+2404 0.539 0.1141± 0.0086
MACSJ0744.9+3927 0.686 0.1151± 0.0140
MS1137.5+6625 0.782 0.0716± 0.0235
ClJ1226.9+3332 0.892 0.0769± 0.0198
CL1415.2+3612 1.028 0.1086± 0.0262
3C186 1.063 0.1340± 0.0777
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