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NOTATION

n = space dimension.

/ = / dx =
/ n

d
n
x.

R
dS; dS = various surface measures

3K = boundary of set K C R .

Variables

t' £ ft.

x = (xii« • • • » xn ) b IR
n

.

U = U(t) = U(x,t) .

Operations

X • Y = £
R
X
K
Y
R

[dot product] .

|x| = /x'X [norm]

f(x) *g(x) = /f (x-y)g(y)dy [convolution]

Derivatives

oU
U, = 3 T,U = 3XV . [partial derivatives]
k K K

,1 nn iIf u is a scalar and U = (UX ,...,U ) is a vector, define

V-U =
l 3 U [divergence]

the scalars { K
AU =

I
3*U [Laplacian]

K

and the vector {VU = (3,0, . ..,3
n
U) [gradient].

Spaces

Lq = Lq (|R
n

)

Hull, "

(1 1 <3 < 00)

u
II Lq

if u e R

u
II Lqx- • *xLq

if u e IR .

n times



V

Constants

»•»/ dS [area of unit sphere in |R ] .

n
1*1=1

X

Therefore, / dx = — [volume of unit ball in |R ] .

|x|<l

C, C, , C(-) are positive constants which change from line

to line.

References

(8) and (Lemma 3) refer to a numbered line and a lemma,

respectively, in the same chapter.

Figure 1.3.2 refers to the second figure in section three

of chapter 1.

(A2) and [3] refer to entries in the appendix and

bibliography, respectively.
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1. 1 Introduction

As was the case of ordinary differential equations, mathemati-

cians did not consciously create the subject of partial differen-

tial equations. As they continued to explore physical problems

that had led them to the theory of ordinary differential equations

and secured a better grasp of the physical principles associated

with these problems, mathematicians formulated mathematical state-

ments which now comprise the field of partial differential equa-

tions. Earlier the displacement of a vibrating string had been

studied separately as a function of time and as a function of the

distance of a point on the string from one end. During the

eighteenth century the study of the displacement as a function of

both variables and the attempt to comprehend all the possible

motions led to a partial differential equation which will be dis-

cussed in the next section. After the study of the vibrating

string came the investigation of the sounds created by the string

as they propagate in air. This study introduced additional par-

tial differential equations. After studying these sounds the

mathematicians took up the sounds given off by horns, bells,

drums, and other instruments.

The first real success with partial differential equations

came in regards to further study on the Vibrating String Problem.

In the first approaches to the Vibrating String Problem, it was

regarded as a "string of beads." That is, the string was con-

sidered to contain n discrete equal and equally spaced weights

joined to each other by pieces of weightless, flexible, and

elastic thread. To approximate the continuous string, the number

of weights was allowed to become infinite while the size and mass

of each was decreased, so that the total mass of the increasing
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number of individual "beads" approached the mass of the continuous

string. Although ignored at the time, there were mathematical

difficulties in passing to this limit.

Work continued throughout the eighteenth century on the

Vibrating String Problem. Much debate on the subject of the

hypotheses and conclusions associated with the problem raged

throughout the 1760s and 1770s among d'Alembert, Euler, Daniel

Bernoulli and Lagrange. Many of the arguments each presented were

grossly incorrect; and the results, in the eighteenth century,

were inconclusive. One major issue, the representability of an

arbitrary function by trigonometric series, was not settled until

the work of Fourier and most importantly Dirichlet. D'Alembert,

Euler and Lagrange were on the threshold of discovering the sig-

nificance of Fourier series but did not appreciate what lay before

them. Judging by the knowledge of the times, all three men and

Bernoulli were correct in their main contentions.

Even though the controversy over the vibrating string was

still being carried on, interest in musical instruments prompted

further work, not only on vibrations of physical structures but

also on hydrodynamical questions which concern the propagation of

sound in air. Mathematically, these involve extensions of the

wave equations in different space dimensions.

During the eighteenth century efforts were directed toward

solving the special equations that arose in physical problems.

The theory of the solution of partial differential equations

remained to be formulated and the subject as a whole was still in

its infancy. It wasn't until the nineteenth century that partial

differential equations were studied for their mathematical quali-

ties rather than for some physical phenomenon associated with them.



1.2 The Vibrating String Problem

Consider the motion of a string which is fixed at its end.

Set up coordinates as shown in figure 1.2.1

U(x,t)

Figure 1.2.1

(t fixed)

where the displacement U(x,t) of the string is unknown. In order

to find the equation of motion of the string, consider a short

piece whose ends are at x and x + Ax and apply Newton's second law

of motion to it. The portions of the string to the right and left

of our element exert forces on it which cause acceleration. There

are four standing assumptions on the problem above.

Assumption 1 . The string is perfectly flexible, offers
no resistance to bending.

Assumption 2 . A point on the string moves only in the
vertical direction. Equivalently , assume that the
horizontal component of the tension is constant.

Assumption 3 . The string is homogeneous and its cross-
section is neligible compared to its length.

Assumption 4 . The displacements are relatively small.

The partial differential equation which emerges from the

physical problem above is

(1) c 2U = U. .

xx tt

where c = /T/m with T the constant tension of the string and

m, the constant linear mass density of the string. Equation (1), is

called the one-dimensional wave equation.

In describing the motion of an object, one must specify not



only the equation of motion, but also both the initial position

and velocity of the object. The initial conditions for the string,

then, must state the initial displacement of every particle,

namely U(x,0), and the initial velocity of every particle,

U
t
(x,0)

.

For the vibrating string as described above, the boundary con-

ditions are zero displacement at the ends, so the initial-boundary

value problem for the string is

/
U
xx

= iu
2 tt

(2)

U(0,t) =

U(L,t) =

U(x,0) = <Mx)

U (x,0) = ^(x)

0<x<L, 0<t

< t

< x < L

under the assumptions noted plus the assumption that gravity is

negligible.

Seek a formal solution of (2) by the method of separation of

variables. That is, look for solutions of the form

(3) U(x,t) = f (x)g(t) .

Substitute (3) into (2) to get

c 2 f"(x)g(t) = f (x)g"(t)

or

(4)
f " (x) 1 g" (t)

f (x) g(t)

Since the left side is a function of x and the right side is a

function of t, equation (4) can hold only if both sides are con-

stant. Write this constant as -X 2 and separate the above into two

ordinary differential equations.

(5) f" + X
2
f =0 < x < L

(6) g" + c 2
A

2
g =0 t > 0.

The boundary conditions become



f(0)g(t) = 0, f(L)g(t) =0 t >

and, since g(t) = gives a trivial solution for U(x,t),

(7) f(0) = 0, f(L) = 0.

The eigenvalue problem, equations (5) and (7) have eigen-

values and eigenfunctions

• • •X
2 = (^)

2
, f (x) = sin(^), n=l,2,3,

n L n ij

Equation (6) has solution

q (t) = a cos X ct + b sin X ct
^n n n n n

where a and b are arbitrary,
n n

For each n = 1,2,3,...

U (x,t) = sin X x[a cos X ct +

b

n
sin X

n
ct]

which, for any choice of a and b , is a solution of the one-
n n

dimensional wave equation and also satisfies the boundary condi-

tions. Therefore linear combinations of the U (x,t) also satisfy

this wave equation with given boundary conditions. Since the a
n

and b are arbitrary, obtain

(8) U(x,t) = T sin X x[a cos \ ct + bn sin X ct]

.

L
, nn n n n

n=l

The initial conditions which remain to be satisfied have the form

(9) U(x,0) =
I a

n
Sin(2££) = <f>(x) < x < L

(10) u\ (x,0)* = T b ^c sin(^) =ip(x) < x < L.

Both of the initial conditions have the form of Fourier sine

series.

From equation (9)

TTX . ,27TX> niTX
,

(11) |(x)=a
1

sin Y+a 2
sm(— ) + "• +a

n
sin — + ••• .

*It is assumed that the series for U may be differentiated
term by term.
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The problem remains to find the coefficients a
n

when the function

H7TX
<j> (x) is given. To this end, multiply (11) through by sin -^— and

integrate the result, term by term from to L. When these opera-

tions are carried out, the fact that

L

/ sin mx sin nxdx = when m ^ n (Al)

leaves
L L

/ 0(x) sin SH dx = a / sin 2 *** dx ;

L n L

and since

J sin- —=— dx = -z
J

(1 - cos —-—)dx = -x

o
L 2

o
L

L
a = —

J 4(x) sin —^— dx .

n L L

Similarly it can be shown that

L

n mrc t . L

If the functions
<J>
(x) and iJj (x) are sectionally smooth on

the interval < x < L, then the initial conditions are really

satisfied, except possibly at points of discontinuity of $ on $,

By the nature of the problem, however, one would expect that <j>

,

at least, would be continuous and would satisfy f(0) =f(L) =0.

Thus, one would expect the series for <j> to converge uniformly.

Questions and answers relative to the meaning and validity of the

above solution and corresponding coefficients form the main theme

of the theory of Fourier series.



1. 3 The Initial Value Problem: d' Alembert ' s Solution

Consider the following initial value problem for the one-

dimensional wave equation

(12) {

C 2 U = U. t >
xx tt

U(x,0) = $ (X) -oo < X < «>

u
t
(x,o) = iMx)

where
<f>
(x) £ C 2

(IR) and ip (x) e CM|R).

For the remainder of the paper assume C 2 = 1. If C 2 were

not equal to 1, it is possible to "scale out" the C 2 through a

change of variables. The above IVP (12) is also referred to as

the infinite string problem due to the lack of restrictions on x.

Express the wave equation in terms of the following change of

variables

w = x + t

z = x - t,

and let U(x,t) = V(w,z).

By the chain rule calculate

3U 5V 3w 8V 3z = 3V 3V
3x 3w 3x 3z 3x 3w 3z'

3
2 U J_r^X 3V»3w J_,W 3V.3z

3X7" 3w l 3w 3z ; 3x 3z l 3w 3z ; 3x

3
2V

2
3
2V 3

2V
3w 2 3w3z 3z 2

And similarly

3
2U = ,3^V_ _ 2

3
2V

+
3
2V

3t 2 3w 2 3w3z 3z 2

If U(x,t) satisfies the wave equation, then in terms of the

function V and the new independent variables, this equation

becomes

3
2V 3

2V 3
2V

3w 2 3w3z 3z 2

3
2V

3w 2

3
2V 3

2V
3w3z 3z 2



Simplify to obtain

9
2V

3w8z
= ,

or

-Li2L) = o

3V
which means that -r- is independent of z or

-^-=f(w), where f is an arbitrary function
dW

with continuous derivatives.

Integrate this equation to obtain

V = / f(w)dw + G(z) .

Here, G(z) plays the role of an integration constant. Since the

integral of f(w) is also a function of w, write the general

solution of the partial differential equation above as

V(w,z) = F(w) + G(z) where

F and G are arbitrary functions with continuous derivatives.

Substitute the original variables to get

U(x,t) = F(x + t) + G(x - t) ,

as the general solution of the one-dimensional wave equation.

To solve the initial value problem (12) consider the follow-

ing two initial value problems (12a) and (12b) . After (12a) and

(12b) have been solved, apply the principle of superposition to

(12a) <

arrive at the solution for (12)

,

/

U = U. . t >
xx tt

U(x,0) = <Mx)

U
t
(x,0) = ,

U = U. t >
xx tt

U(x,0) =

U. (x,0) = 4>(x) ,

— oo < X < °°

(12b)

— oo < X < °°

with the same assumptions on <j) and ty .



Since the general solution to (12a) is

U(x,t) = F(x + t) + G(x - t) ,

apply the initial conditions to obtain

(13) U(x,0) = F(x) + G(x) = <Mx) and

U
t
(x,0) = F' (x) -G' (x) =0 .

This last equation states that F 1 (x) = G' (x)

or (14) F(x) = G(x) + C ,

or (15) G(x) = F(x) - C .

Substitute (14) into equation (13) to obtain

G(x) + G(x) + C = <Mx)

or G(x) = ^{x) ~ -£ •

This is also true for x = x - t, therefore

(16) G(x - t) = |cj)(x - t) - ^C.

Substitute (15) into equation (13) to obtain

F(x) - C + F(x) = <J>(x)

or F(x) = -z<$> (x) + ^ *

This is also true for x + t, therefore

(17) F(x + t) h?Tx + p) +2° '

Combine (16) and (17) to obtain

(18) U(x,t) = |[<J)(x + t) + <|>(x-t)].

Consider the IVP (12b) which is known to have general solu-

tion U(x,t) where

U(x,t) = F(x + t) + G(x-t) .

Apply the initial conditions to obtain

(19) U(x,0) = F(x) + G(x) = ,

and (20) U
t
(x,0) = F'(x) - G'(x) = $ (x) .

Since F(x) and G(x) are assumed to be dif ferentiable , equation

(19) states that

F' (x) - -G' (x) .
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Substitute this into equation (20) to obtain

1
G' (x) = -Ji|/(x) •

Integrate this last equation from an arbitrary x
Q

to x to

obtain

G(x) »:-»/ <Ms)ds + G(x ) .

Similarly

2 J *»-'— '

~*- '

X

x
F(x) = -| / ip(s)ds - G(x

n ) •

X

Both equations are true for any x, in particular, x-t, and x + t

respectively. Therefore

i
x-t

1

X
°

G(x-t) = -4 / ^(s)ds + G(x ) =| / ijj(s)ds + G(x
Q

)

x n X-t

and F(x + t) =\ I ip(s)ds - G(x ) .

x+t

/
x,

Combine these last two equations to obtain

, x+t
(20) U(x,t) 4 / ip(s)ds .

z x-t

Therefore by the principle of superposition, combine (18)

and (20) to give the following solution to the IVP (12)

:

x+t
(21) U(x,t) = » (x+t)

\
^ (x- t}

+ \ £_ t
*(s)ds.



11

1.4 The Semi-Infinite String

Consider the initial value problem

U=U < x < °° t>0
xx tt

(22) <

U(0,t) =

U(x,0) = $ (x)

^ U
t
(x,0) = *(x)

where <j> (x) £ C 2
(IR) and ^ (x) .£ C X (R).

The solution to (22) is very closely related to that of the initial

value problem (12) which has a solution

U(x,t) = F(x + t) + G(x-t) where

1
x+t

F(x + t) =|(f)(x + t) + 2 / »Ms)ds
X

and G(x- t) =|<t>(x- t) -| / iMs)ds ,

x-t

/
x,'0

except now the respective arguments must be positive. Write y

in place of x + t in the first equation and y in place of

x-t in the second equation to obtain

1 1 r
y

(23) F(y) = |<j>(y) +2 J <Ms)ds
X

y
and (24) G(y) = j<\>(y) - \ / ^(s)ds

X

y > 0,

From the last section, the values of F and G are determined for

positive values of their arguments.

A problem arises when < x < t. To determine the values of

G for negative values of its argument, substitute the boundary

condition of (22) into the general solution to obtain

F(t) + G(-t) =0 t > 0, or set

y = -t and note y < for t >

(25) F(-y) + G(y) =0 y < 0.
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But y < implies -y > , so that F(-y) for y < can be

found by replacing y by -y in equation (23) . Substitute this

into (25) to obtain
-y

G(y) = -h(-y) - i / iMs)ds, y < 0.
*

Thus the value of G for negative values of its argument is

furnished. Therefore the formal solution U(x,t) of the IVP (22)

is

x+t
<D(t + x) -4»(t 7 x) + 1

j ^ (s)ds

(26) U(x,t) mi
t-x

x+t

x-t

< x < t

^

j(x + t) +<l>(x-t) + 1
j

'

4,( s )ds x>t
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1.5 Domain of Dependence and Range of Influence

Recall that

x+t

(27) U.(x y t) ^ (X + t) ^ (X - t} +| J <Ms)ds
x-t

is the explicit solution of the initial value problem for the wave

equation. This equation illustrates a fundamental mathematical

property of solutions of the wave equation which corresponds to a

distinguishing feature of the physical phenomena described by the

wave equation.

Suppose that <f>
(x) and \p (x) vanish outside an interval

|x| < a. Interpret <t>U) and $ (x) as a disturbance from

equilibrium in the interval |x| < a of an infinite string. The

question then becomes, what is the effect of this disturbance

outside the interval?

Assume that either x > a + t or x < -a - t. In the first

case for t>0, x - t > a and, a fortiori, x + t > a. It follows

that <j>(x + t) = <t>(x-t) =0 since 4>(s) =0 for s > a. Similarly,

since ty
(s) = for s > a,

x+t
/ ip(s)ds = 0.

x-t

Combine these statements to obtain

(28) U(x,t) = outside the interval -a-t<_x<_a + t.

The ends of this interval outside of which the string remains in

equilibrium travel with velocities +c=l. Therefore, for the wave

equation a disturbance is propogated with finite speed. This is

the distinguishing factor of the wave equation. Where

U(x,t) # is referred to as the support of U. For each t

supp U(x,t) C (x: |x| < a + t>.

x

The preceding discussion can be illustrated best with the use
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of diagrams in the (x,t) or space-time plane. Let U 't
Q

) be a

point in the plane. According to equation (27) , the value

U(x ,t ) depends only on the values of <}> and ty in the interval

[x - t ,x + t n ] . This interval is called the domain of dependence

of the point (x./t.) . In particular, if
<i>

and $ vanish there,

then U(x.,t ) = 0. In figure L5J. the domain of dependence is

seen to be the base of the characteristic triangle in the (x,t)

plane formed by the x-axis and the straight lines of slope +1/C,

in this case +1, through (x ,t
Q

) . These lines are called the

characteristic lines of the wave equation through the point. In

3 space, the characteristic triangle becomes the backward charac-

teristic cone. This will be seen in later sections.

(x
o;

t
Q

)

x=x
o"

(t-t
o

)

Fig. 1.5.1 Characteristic triangle for (x ,t
Q
).

The inverse question can then be asked. Given a point X on

the initial line, which points (x,t) are influenced by it? It is

clear that this so-called Range of Influence of the initial point

X-, is the set of points (x,t) bounded by the two characteristic

lines issuing from (x.,,0). See figure 1.5.2.
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A

(x,0)
->

Fig. 1.5.2 Range of Influence of initial data at (x^O).

In figure 1.5.3, note the characteristic lines (of slope +1)

through the endpoints +a of the interval [-a, a] . The region of

the (x,t) -plane bounded by the characteristic lines and the

interval is called the region of influence of the interval.

Recall from the above, that the segment of the string which is

disturbed at time t = t
Q

must lie on the segment of the line

t = t. included in the region of influence of the interval [-a, a]

To make this clear, consider the point (x ,t
Q

) moving along the

line t = t., and use the fact that U must vanish at all such

points whose domain of dependence does not intersect the segment

[-a, a] .
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-a

t=t

<*n'V

^
Fig. 1.5.3 Region of influence of [-a, a].

These topics will prove effective in the proof of existence of

solutions to non-linear wave equations in chapter 2.
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1.6 The 3-Dimensional Wave Equation

Consider the following initial value problem for the 3-dimen-

sional wave equation,
/

(29) <

U = AU (x e |R
3 ,t > 0)

tt

U(x,0) =

U
t
(x,0) = i|i(x) ,

where ij>(x) £ C
2
(P

3
) .

Claim 1. U(x,t) is a solution of the initial value problem (29),

where

(30) U(x,t) = -^ j <MY)ds
y

.

|y-x|=t

Note: This solution can be derived from a method introduced by

Fritz John called spherical means. A closer lock at the solution

U(x,t) illustrates where the name of this method originated.

Proof . The following change of variables will be used throughout

the proof. Let

y = x + tco, where oo is the unit vector. Therefore

ds = t 2
du).

Y

Apply the change of variables to equation (30) to obtain

(31) U(x,t) = 4^ J *(x + tu))t 2
doj - j£ j <Mx + tu))dco.

|u|=l |u|=l
1

The change of variables will facilitate the following differentia-

tion. To see that (31) does satisfy the 3-dimensional wave equa-

tion, differentiate (31) with respect to t to get

:oj) du)
fg-fe / ^U + tuOdu,^^

j
>Mx + tc

lul-1
|U3 '"
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Substitute the original variables to obtain

|S = rU(x,t) + JL J V^(y).a)ds .

9t t ittt:
| y

_x
j

=t Jf

Differentiate this last equality to obtain

24 = --L U(x f
t)+|^U(x f t) --i- I vMy 2 )-^

t 2 t 2 fc dt 47Tt y-x =t
9
2 U

9

+
1 9

4Trt 3t |y-x|=t y

- 9U
Use tne computation of yr

ifg « -Jl. u(x,t) + -4 U(x,t) + —tt
I ?(*) «u)ds

9t 2 t 2 t 2 4irt
z

y-x =t y

/ ViKy)-u)ds + ^ -^ J V^(y)-o)ds
4-t 2

| y_x
J

|=t y 4Trt

= 4itA<
y. 3/

|

.t
7 * (y, - UdV '

,y-x|=t y '|y-x|=t

By the Divergence Theorem, this last equation becomes

9
2 U 19

L-H. = -± 2-( f WtHy
>t

2 4,t 9t (

|yJ, =t
)dv)

But this can be rewritten as

9
2 U 1 9

3 t 2 4Trt 9t^
i

3 u = -i-
f AiWy)ds

3t 2 47rt
|y-x

J

|=t
*

Y
y

Now from (30)

9
2U

A U(x,t) =-r^r / A *(y)ds„ = —jX 4lTt |y-x|=t Y 8t

Therefore, U(x,t) as stated in (30) satisfies the 3-dimensional

wave equation.

To verify that the initial conditions are satisfied, first
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show that

lim U (x,t) = tyix) •

t+0

To this end, note that with the change of variables

liBL U.(x,t) = lim, |u(x,t) + j= I V^(x + tw)du>

t+o
+ t t+o

+ t " «l-l

= lim. 1, t
/ 4j(x + tujdu] +^r / ViMx+toj) 'udu.

t.0
+

2
[ 4¥ j.j

—— 4 1,
|M|=1

Take the limit to obtain

lim. (T(x,t) - 7= / <Mx)dw •

tV fc M=i

Switch to spherical coordinates to get

2ti tt 1
27r

li». U. (x,t) = jr<Mx) / / sin * dtf.de = — ^(x)/ 2d6 » *<x) .

t+0 o o

Therefore,

lim U (x,t) = \\)(x) .

t+0
r

To see that the other initial condition is satisfied, namely

lim U(x,t) = 0,

t+0

consider, with the change of variables, the following inequality

|u(x,t)| = |^j- / i|>(x + tu>)dw| < £ / |ip(x + ta))|du.

|oj|=1 |w|»l

Observe that a ball B of radius 1 and center x is compact in IR .

Since $ e C 2
([R

3
), there exists an M > such that

1 1|> (y)
| £ M

Vy E B. For all t < 1, the argument (x + tw) e B. Hence

|i|>(x + tu>)
| <_ M. This shows that

. 2tt IT

|U(x,t) I
< t- (-F- J Mdcj) = t~ / / sin <|> dcfide = tM for < t < 1.

' ~ 47T
|u)|=l

47T

Take the limit as t * to obtain

lim U(x,t) = 0.

t-NT

From the above U(x,t) is a solution to the initial problem (29).
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Claim 1 is then established.

Claim 2 . If t|» e C 2
(IR

3
), then the unique solution U(x,t) e C 2 of

the initial value problem (29) is given by equation (31).

Proof. Assume U(x,t) is any classical solution to (29) and

define V(r
f
t) where

(32) V(r t) - t- i U(x + cor,t)du.

|
03 |=1

Claim 3 . V(r,t) satisfies the one-dimensional wave equation.

Proof. The proof is left to the reader and follows a similar

pattern to that of claim 1.

Since V(r.,t) satisfies the 1-dimensional wave equation

V(r,t) = F(r + t) + G(r- t) .

By the definition of V(r,t), equation (32)

lim V(r,t) = lim
+

F(r + t) + G(r - t) =0, which implies

r+0 . r+0

that . F(t) + G(.-t) = 0.

Differentiate with respect to t to obtain

(33) F' (t) = G'(-t) .

Note that

V(r,t) ,. F(r + t) + G(r? - t)
U(x,t) = lim ' = lim —

i

'—-
.

r+0 r.*0

This last limit is in indeterminate form (q-) , therefore apply

L' Hospital's Rule to get

U(x,t) » lim+ F' (r. + t) +G' (r. - t) = F' (t) +G' (-t) .

r.^-0

But from (33) this last equation implies that (34) U(x,t) = 2F'(t),

Vt in particular for t = r.

Now note that

(35) lim (V r + V ) = 2F' (r) =U(x,r) from equation (34).

t+0
+

Compute the lim (Vr
+ V ) using the definition of V, equation (32)

,

t+0+
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to get

U(x,r) = lim[
t+0

-lim[
V(£' tJ + ^ /

4tti , VU(x + wr r t) •wdu
O) =1

+ -r- / u (x + u)r,t)do>] .

4 IT
I I _i t
fa) =1

From (32)

V(r,0) = -r- / U(x + a)r,0)du) = from (29).

Since U(x,0) = 0, this implies that VU(x,0) = which implies

that the second term in [...] is 0. Therefore

U(x,r) = jy J ^(x + a>r)dw, Vr.

Let r = t to obtain

U(x,t) - jj- / ij;(x + u)t)dfaj .

|w|»l

Make the change of variables to show that

3 •

y
u<x,t) + -^ I *(y)ds

|y-x|=t

Claim 2 is proved.

Lemma 1 If U = U(r,t) satisfies

(36)

U
tt

- AU -

U(x,0) =

U
t
(x,0) = <j)(x) ,

(x e K 3 t > 0)

then V(x,t)
d= f-^-(U(x,t) ) satisfies

V
tt

- AV =

(37) < V(x,0) = (j)(x)

(x e R 3 t > 0)

V
t
(x,0) = 0,

where cj) (x) e C 3
(fR

3
) .

Proof . Differentiate V(x,t) with respect to t to obtain

V (x,t) = U
tt

(x,t) = AU by (36).
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Differentiate this with respect to t to get

Vtt
(x,t) = ^(AU).

Now take the second derivative of V(x,t) with respect to x to

obtain

AV = £(AU) .

Therefore V(x,t) satisfies the three-dimensional wave equation.

To see that the initial conditions of (37) are satisfied, note

that

V(x,0) = U
t
(x,0) = <}>(x) and

V
t
(x,0) = AU(x,0) = .

The proof of lemma 1 is complete.

t > 0)

Now consider the initial value problem

( i

U
fct

- AU = (x eE J

(38) ( U(x,0) = <}>(x)

U
t
(x,0) = ,

where f (x) e C 3
([R

3
) .

From lemma 1 and Claim 1 the solution U(x,t) to the IVP (38) is

U(x,t) m£[. ]

3t L
4TTt

/ <|>(y)ds ] •

|y-x|=t

Using the principle of superposition the solution U(x,t) to the

following IVP

U
fct

- AU = (x e tR
: t > 0)

(39) { U(x,0) = <J>(x)

U
t
(x,0) = ip(x)

where (J>(x) e C 3
(IR

3
) and * (x) e C 2

(|R
3
), is
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1.7 Conservation of Energy

Now turn to a topic that is crucial to the theory of partial

differential equations, the conservation of energy. The following

lemma and corresponding remarks will play a major role in the

theorems in Chapter 2. Consider the following lemma:

Lemma 2 (Conservation of Energy) If U is a smooth solution to

U. .
- AU = x e |R

n
,

tt

for £ t < T £ °°, then

^[|(H U
t
(t)||

2

2
+ ||

VU(t)||
2

2
] =0 for < t < T.

Proof . Assume U satisfies

U
tt

- AU = 0.

Multiply by U. to get

U
t
U
tt

-U
t
AU = 0.

Note that

u
t
u
tt

= K (u
t>

' so

K (u
t

}
= vu

= V* (U vu) - vu
t
«vu

= V- [U VU] - 9
t
(||VU| 2

)

.

Therefore

(41) 3
t
[|(U 2.+ |VU|

2
)] =V-[U

t
VU] .

Integration over all space and use of the Divergence Theorem on

the RHS completes the proof, the details of which will be seen in

Chapter 2.

Remark 1 . Equation (41) is known as the energy identity, and the

[...] on the LHS in equation (41) is referred to as the energy.

Since the derivative with respect to t of [ . . . ] is zero,

[...] = C Vt, in particular for t = 0. Therefore, from the .

initial conditions
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(42) |(|| *||| + || V*J$ 5 E ,

The assumption of finite energy data is that the energy at t=0,

E, is finite. If U is a smooth solution to the wave equation

with finite energy data, then Lemma 2 implies

y(ll 3
t
u(t)

Hi
+

'I
Vu(t) l^ = E

for < t <_ T. Since each term in the energy is positive definite,

it follows that

(43) || 3.U(t) ||

2
, || VU(t)

||

2
< 2E for < t < T .

t 2 2

Consider the following claim:

Claim 4 . If U(x,t) is a solution to the one-dimensional wave

equation and satisfies the IVP (12) and $ ,ty have compact support

with

supp U(y,t) C {|y| 1 k + t}

y

then |
U(*,t) | <_ C, where C only depends on the initial data.

Proof . Note that

X
3

U 2 (x,t) =
/ ^-[u 2 (y,t)]dy
— 00 '

< 2/ U(y,t) -U (y,t)dy .

Take absolute values to get
x

|u
2 (x,t)| < 2 / |u(y,t) -u (y,t) |dy,

-oo Jf

oo

< 2 / |u(y,t) -U (y,t) | dy
— 00 *

By Schwarz's inequality

|U
2 (x,t)

|

< 2|| U(x,t)
|| ||

U
x
(x,t)||

From inequality (43)

U 2 (x,t) : C (4> ,i/j) ,
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where C depends on the initial data. Therefore

|u(x,t)
|

< C .

Since this is true for all x, this implies

II
U(-,t) || < C .

oo

Claim 4 is established.

Remark . This argument is essentially the proof of an elementary

Sobalev inequality and will be used in the proof of global ex-

istence for a nonlinear wave equation in Chapter 2.
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1. 8 Uniqueness for Solutions of Linear Wave Equations

Consider the following two linear nonhomogeneous wave equations

(44a) {

U.
t

- AU = h
1
(x,t) x e |R

:

U(x,0) = f,(x)

U
t
(x,0) = gx

(x)

(44b) <

V - AV = h
2
(x,t) x e \R

:

V(x,0) = f (x)
2

V
t
(x,0) = g

2
(x) .

Theorem 1 . If U is a solution to (44a) and V is a solution to

(44b) and h
1
= h on K(x

Q
,t ), where K(x ,t

Q
) is the backward

characteristic cone with apex (x ,t ) (see fig. 1.6.1) and f, =f
9 >

gi
= g 2

for

0' 0'

x-x |< t
Q

, then U(x,t) = V(x,t) for all

(x, t) e K(x ,t
Q

) .

Proof. Define W(x,t) = U(x,t) - V(x,t). Then W(x,t) satisfies

- AW =

(44c)

W
tt

W(x,0) =

W
t
(x,0) =

(x,t) E K(x ,t
Q

)

The goal is to show that W(x,t) = Vx,t e K(x ,t
Q
). To this

end take T e (O'tn^ and snow W = in the truncated cone

K (x ,t
n
). (See figure 1.6.2.) Once this has been shown since

T is arbitrary and W(x,t) is continuous, take the limit as

T

Consider the energy equation (45) for the three-dimensional

wave equation

(45) ^[^(W£ + |VW| 2
)] = V-(W

t
V W)

t_ and the theorem will be proved.

or, equivalently

,

-^[§(w£ + |VW| 2
)] - V-(W

t
V W) = .

Rewrite as a four-dimensional divergence* and integrate over the

*V
4

E (V
3
,3t).
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(X0'V

3 3

Each point has the form (x,t) e R x R. (The plane represents R .)

3
For each (x /t

Q
) e R * [0,°°), define

the backward characteristic cone

K = K(x
Q
,t ) e { (x,t) e R

3
x [0,t

Q
]

the lateral surface of K

L = L(x ,t
Q

) E { (x,t) eR 3 x[0,t
Q

]

and the base of K

x-x
|

< t
Q
-t} ,

l

x " x
l

" t ~ fc > '

B = B(x ,t
Q

)
5 {(x,0) £ R x {o}: |x - x

Q
|

< t
Q

} .

The outer unit normal n = n(x,t) eR * R is given by n= (0,-1) on

B and n = —-(w,l) on L, where u =
x - x.

x - X,

Figure 1.6.1
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For each (x^tj £ R x [0,°°) and T e (0,t
Q

) , define

the backward characteristic cone

K = K(x ,t
Q

)
= {(x,t) etR

3 x[0,t J: |
x - x

Q |

< t
Q
- t} ,

the truncated cone

K
T

= K
T
(x ,t

Q
)

= {(x,t) e R3
x [0,T] : |x-x

Q
|

< t
Q
- t} ,

the lateral surface of K

L
T
= L

T
(x ,t ) = {(x,t) e |R

3
x [0,T] :

|
x - x

Q |

= t
Q
- t} , and

the bases of Km

B =B (x.,t.) = { (x,t) e IR x { s }: |x - x n |

< t_ - s} for s=0,T.
s s o o u — u

The outer unit normal n = n(x,t) £ (R x ir is

n=(0,-l) on B
Q

, n = (0,1) on B
T

, and n = — (co,l) on L
T

,

where to =
x - x,

x - X,

Figure 1.6.2
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solid truncated cone K (x ,t ) to obtain

/ v.* [-W VW,|(W£ + |VW| 2 )]dxdt = .

Now use the four-dimensional Divergence Theorem to get

/ n- (-W VW^(wJ + |VW| 2 ))ds =

3K
T

where n is the unit outer normal.

Use the explicit vectors n (figure 1.6.2) to obtain

/ (0,-1) • (-W VW i(W 2+|VW| 2
) )ds + / -^-(eo,l) • (-W VW,^(W 2 +|VW| 2 ))ds

B

B
T

Compute the dot product to get

+/ (0,1) • (-W
t
VW,|(W 2 + |VW| 2 ))ds =

(46) / -^(W 2 (x,0) + |VW(x,0)
|

2 )ds +— J[w (-W VW) + 4(W 2 +
|
VW

|

2
) ] ds

B
Q

/2L rZt
+ / |(W 2 (x,t) + |VW(x,t)

|

2 )ds =

B
T

Note that the first integral in equation (46) is zero, since

W (x,0) = and because W(x,0) = implies VW(x,0) = for

every x e B
n
(x

n
,t ). Further, in regards to the second integral,

since I to I
=1 and

CO • (-W VW)
|

<
|
ai

|

|W VW| <
|

W
|

|

VW
| £ |(W 2 + |VW| 2

) ,

it is implied that

(co» (-W VW) + |( |W
t |

2 +
|
VW

|

2
) > |( |W

|

2 +
|
VW| 2 - |u)«-W

t
VW|

> |(|w
t |

2 + |vw| 2
) -|(|w

t |

2 + |VW| 2
) =0 .

Equation (46) then reduces to

— J[w (-W VW) +4(W 2 +
|

VW
|

2
) ]ds + / y(W 2 (x,T) + |VW(x,T)

|

2
) ds = .

/2 L
t ^ t

B
T

Since the first integrand is positive and the second is positive
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definite, both integrands must be identically zero. In particular

Therefore

W?(x,T) + | VW(x,T)

|

2 E

(47) W (x,T) = and |VW(x,T)| = .

By the Mean Value Theorem, for each x there exist £ e (0,T)

such that

W(x,T) = W(x,0) + W (x,£) (T - 0) .

From (47) and (44a) it follows that

W(x,T) = .

Take the following limit

= lim W(x,T) = W(x,t )

T-t"

to imply that

W(x,t) = Vx,t e K(x ,t
Q

)

The proof of Theorem 1 is complete.

Corollary 1 . There exists at most one solution to (44a).

Proof . This follows immediately from Theorem 1.

The arguments above work for all n. n=3 was used to provide

background for the second chapter.
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1. 9 Huygens' Principle

Recall the result from section 1.5 concerning the domain of

dependence of the solution of the initial value problem at the

point (x,t): U(x,t) depends on the values of the initial data on

the part of the initial surface cut off by the backward character-

istic cone with apex at (x,t) . This part of the initial surface is

the closed ball B(x,t} in the x-space |R with center at x and

radius t. An examination of the formulas (21) and (40) shows that

indeed for n = 1,3, the value of U(x,t) depends on the values of

the initial data in B(x,t). However, a peculiarity occurs in the

case n=3: U(x,t) depends only on the data (and their deriva-

tives) over the boundary S(x,t) of the ball B(x,t). This

phenomenon was first discovered by Huygens and is known as the

Strong Huygens' principle. While formula (40) shows that the

Strong Huygens' principle holds for n=3, formula (21) shows that

the Strong Huygens 1 principle does not hold for n=l. In the

case n=l, U(x,t) depends on the values of the data over the

whole ball B(x,t). This is sometimes referred to as the Weak

Huygens' principle. In general, it can be shown that the Strong

Huygens' principle holds for every odd n _> 3 and the Weak Huygens'

principle holds for all n _> 1.

To better understand the implications of the Strong Huygens

'

principle, consider the initial value problem for the n-dimensional

wave equation with the initial data vanishing everywhere except in

a small ball B(x ,k) with center at the point x and radius k.

Let x be a fixed point in R
n outside of B(x

Q
,k) and study the

values of U(x,t) for t > (see Fig. 1.7.1). If n = 3 (or n

is odd and > 3), the Strong Huygens' principle holds and U(x,t)
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is given in terms of integrals of the data and their derivatives

over S(x,t). Therefore U(x,t) = for all t for which S(x,t)

does not intersect B(x ,k). If T is the distance between x

and x_, S(x,t) intersects B(x
Q
,k) only when t is in the interval

T-k£t<_T + k. Consequently U(x,t) = for t < T-k and for

t>T + k. If n = l (or n is even), the Strong Huygens ' prin-

ciple does not hold and U(x,t) is given in terms of the .values of

the data over the whole ball B(x,t). Since B(x,t) intersects

B(x ,k) for all t > T-k, it follows that U(x,t) =0 for

t < T-k, while U(x,t) may be nonzero for all t >_ T-k. Figure

1.9.2 illustrates the above. Note that the history of U(x,t) at

the point x is described along the line passing through x and

parallel to the t axis. Figures 1.9.3(a) and (b) show the

regions where U(x,t) may be nonzero if the data are not zero only

in the ball B(x ,k).

The Strong Huygens' principle will play a very important part

in Theorem 3 of Chapter 2

.
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B(x
Q
,k)

Fig. 1.9.1

U=0 for n=3 ,5, . .

.

>U may be nonzero for n=l and n=2,4,

/ / U may be nonzero for all n

U=0 for all n

B(x,k)

Fig. 1.9.2

(a)

(b)

Fig. 1.9.3
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2. 1 Introduction

Numerous types of differential equations were created by mathe-

maticians during the eighteenth and nineteenth centuries, but

methods to solve many of these equations were not available. Due

to the failure to find explicit solutions to these differential

equations, mathematicians turned to the proof of the existence of

solutions. These proofs serve several useful purposes, but either

they do not exhibit a solution or they do not exhibit it in a.

useful form. In almost all cases these mathematical equations

were formulations of physical phenomena with no guarantees that

these equations could be solved. Hence, the proof of the existence

of a solution would at least insure that a search for a solution

would not be attempting the impossible. The proof of existence

would also answer: What must be known about a given physical

situation, in other words, what initial and boundary conditions

insure a solution, particularly a unique one? From the investiga-

tion of the theory of existence proofs pose some other objectives.

Does the solution change continuously with the initial conditions,

or does some totally new phenomenon enter when the initial or

boundary conditions are varied slightly?

Cauchy spent much time on the work of existence theorems. He

emphasized that existence can often be established where an explicit

solution is not available. Cauchy noted that certain partial dif-

ferential equations of order greater than one can be reduced to a

system of first order partial differential equations, and then pro-

ceeded to show the local existence of a solution for the system.

The method he used is known today as the method of majorant func-

tions.
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Independently, Sophie Kowalewsky (1850-91) , a pupil of Weier-

strass, was completing work on systems similar to that of Cauchy

only in somewhat of an improved form. In 1888, Kowalewsky won a

prize awarded by the French Academy for a work in the integration

of the equation of motion for a solid body rotating around a fixed

point. Goursat later improved the proofs of Cauchy and Kowalewsky.

Many other mathematicians worked on the existence of solu-

tions during the nineteenth century such as Poincare, Dirichlet,

Hilbert and DuBois-Reymond, to name a few. At the end of the

nineteenth century the systematic theory of boundary and initial-

value problems for partial differential equations was still in its

infancy. The work in this area expanded rapidly in the twentieth

century compared to the nineteenth century due to the work of John

and Segal in relation to nonlinear wave equations.

The following is an exposition of some of the modern results

in the theory of non-linear wave equations. It will examine

existence, uniqueness, and blow-up of solutions to non-linear wave

equations in one- and three-space dimensions. Since much of

partial differential equation theory has been motivated in the past

by ordinary differential equations, a similar route follows.
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2. 2 An Example

Consider the following initial value problem:

= -u 3 (t > 0)

U(0) = cj>(1)<

u(o) =
i> .

Integration of the ODE twice with respect to t yields

(2) U(t) = ipt + $ + / - (t - x) (U
3
(t) )dx .

Note . This integral equation says that

t
U(t)=W(t)+J V(t-x,x)dT, where

(i) W satisfies the linear (ii) the family V(t,x) parametrized
equation with the same by x formally satisfies
data
W = and V =

W(0) = $ V(0,x) =

W(0) =
iJj

V(0,x) = -U 3
(x) .

The analogous statement of this note in the partial differential

equation case will be crucial to the main results of the chapter.

To see the equivalence of (1) and (2) , first assume U is a

continuous solution of the integral equation (2) and show U is a

solution to (1)

.

Differentiate (2) to obtain

t
U = ijj - / U 3 (x)dx,

and again to conclude that

U = -U 3
(t)

.

Now note that the right-hand side of the integral equation is

continuous and differentiable. Therefore U(t) is differentiable,

Through the same reasoning U(t) is also twice differentiable.

Further
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U(0) =
<j> + / (0 - x) (U

3 (T))dT = *

U ( 0) > * + J
- (0 - x)(U 3 (T))dx = tp .

The equivalence between (1) and (2) is established.

The goal is to prove local and global existence for the

initial value problem (1) , in a way which motivates the corres-

ponding proof for the nonlinear wave equation. Observe that if

an operator y is defined by7t
[f] = <j,t + Cf> + / ~(t - T) (f

3 (T))dT,

then f is a solution of the integral equation (2) iff f is a

fixed point of f , i.e., iff f
[f] = f.

Definition . If X is a Banach space, then an operator / : X * X

is called a contraction operator on X if there is a constant a

satisfying <_ a < 1 such that for every pair of functions f

and g in X

II 7 If] "7 [g] 'x - a|1 f "
g| x

'

Contraction Mapping Theorem . Let y : X * X be a contraction

operator on the Banach Space X. Then there exists a unique f

in X such that

°iiti. - f

.

Theorem 1 . There exists a time T > and a unique U E C([0,T],IR)

such that U is a solution of the integral equation (2) on (0,T).

Proof . Define for each B > and T > the Banach Space

X(B,T) = {f E C([0,T] ,|R) : ||
f

|| x
< B}

with || f
|

=
||
f

|
= sup |f (t)

|
and the positive number

X X (B,T) 0<t<T

B is yet to be chosen.

Define the operator / : X -* X by the equation
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t

°7if] - *t + + / -(t-T) (f
3 (T))dT .

1

By the Second Fundamental Theorem of Calculus, "/[f] £ C([0,T],|R)

whenever f e C([0,T],|R). To see that ||*7[f]||
x < B whenever

|| f ||
<_ B. Note that

. t

\°^[f]\ - \n + $ + / - (t-T) (f
3 (T))dT|

t
< |*t| + |<j>| + /

I

(t-T)
I

|f
3
(T) |dT

Take the supremum over t [0,T] to obtain

sup |^[f]
|

< k|T + |(|)| + C(T)B 3

0<t<T— —

*Note that C(T) can be made arbitrarily small by choosing T

arbitrarily small. Further C(t) increases with t.

If
<J)

= 0, then choose an arbitrary B and then T small enough

to ensure

|i|>|T + C(T)B 3
< B .

Otherwise let B = 3
| <J> |

and note the following

(i) |<t>| < "!) ;

(ii) |^|T <
| <J> |

whenever T is chosen such that

T < * If \ty\ =0, then the inequality
f

|^|T <_ |<j)| is obtained immediately;

and (iii) G(T)B 3
<

| <f> |
whenever C(T) < - jj 3

.

Therefore \$\T + \$\ + C(T)B 3 £ 3 1 <J> |

= B. Thus y[f] e X

whenever f e X, provided B,T are chosen to satisfy this last

discussion.

For all f and g in X consider the difference
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t t

*7[f(t)] ~"7[g(t)] = / -(t- t) [f
3 (x)]dx + / (t- t) [g

3 (x)]dT
' I

t
= / (t- x) [g

3
(x) - f 3 (x)]dx .

Take absolute values and factor to obtain

I7[f(t)] - 7[g(t)]
|

t
< / (t-x]

|

(g(x)-f (x)) (g
2 (x)+g(T)f (x) + f

2 (x)) |dx

< / (t-T) | f (T) -g(T)
I |g

2
(T) +g(T)f (T) +f 2

(T) |dt

t
</ (t-x) |f(x) -g(x)

|

(|g(T)
|

2 + |g(x)
|

|f(T)
|

+ |f(T)
|

2 )dx .

o

Now f and g in X implies
|
f (x)

|
,

|
g (t)

|
<_ B Vt e [0,T], so

t
|^[f] - ytg] |

< / |f(x) -g(x) |C(x)dT
' '

where C(T) = T(3B 2
) .

Therefore,
t

sup
|

V[f] - T'tg] |
< sup C(T) / |

f (t) - g(x) |dt

0<t£T / 0£t<^T

sup | f - g| C(T)
0<t<T

= C, (T) sup |f - g| •

0<t<T

Now choose T such that a = <_ C,(T) < 1, thus /is a

contraction operator, implying with the use of the contraction

mapping theorem that *V has a fixed point U in X. The proof is

complete.

Due to the equivalence of the integral equation and the initial

value problem apply Theorem 1 and the following is proved;-

Theorem 2 . There exists a time T > and a unique

U e C
2

( [0,T] ,IR) , such that U is the solution of the initial

value problem (1) on [0,T].
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Theorem 3 (Global Existence). The initial value problem (1) has a

global solution.

Proof . Let U be the solution to (1) on < t <_ t
Q

. Multiply

the ODE by U to get

UU + UU 3 = 0,

and rewrite as

J.[iu* + |o«] - .

Hence, the [ ], the "energy" is independent of t and must equal

its value at t = 0. Therefore

|[U 2
(t) + §U*(t)] = |[*

2 + !*.] .

Note that each term in the energy is positive definite. It follows

that

U 2
(t) # U'*{t) ± C{<$>,4)) whenever <_ t < t , t arbitrary.

Therefore |U(t)
|
£ C .

Invoke the boundedness implies existence theorem (A2) and the proof

is complete.

Now consider the possibility of a solution to an ODE being

restricted to a finite interval. Again techniques used in the

following example will serve as motivation in the analogous non-

linear partial differential equations. Note the nonlinear term in

the initial value problem (1) which has a global solution and the

nonlinear term in the following initial value problem (3) which will

be shown not to have a global solution.

Consider the following IVP

(3)

U = U 3

U(0) =
<J>

< $ < V^jT2
"

u(0) = ijj 4> > o .
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Claim 1 . If a solution U to (3) exists on [0,T], then T < ».

Proof . Suppose U is a smooth solution to (3) for <_ t < T.

Multiply both sides of the ODE by U

UU = U 3 U

and integrate from to t

to obtain

U 2 t , t

4
,

which is equivalent to

u
2
(t) U 2

(0) U" (t) U" (0)

2 " 2 4 4

Substitute the initial condition into the equation above to obtain

6. (t)
.sqtj. .£,».. .

62(t) = tqti + Ci uMtI/

where C=^ -
2 - ° "

In order to solve for U(t) , U must be greater than or equal to

zero Vt E [0,T], hence the following:

Claim 2 . u > V t e [0,T)

.

Proof . Since U is continuous on [0,T), and U(0),U(0) > 0, there

exists an interval of the form [0,T,) on which U,U > 0. This

proof establishes that T, can be chosen as T.

Assume there exists T < T such that U(t),U(t) > for [0,T)

but

U(T) =0 or U(T) = 0.

Case 1. (U(T) = 0) By the Mean Value Theorem g E, e (0,T) such

that
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0(f) - U(0) = U(K) • (T- 0) .

But this says a negative is equal to a positive, therefore a contra-

diction.

Case 2. (U(T) = 0) By the Mean Value Theorem (applied to U)

£ e (0,T) such that U(T) - U(0) = U(£) (T - 0) , which

leads to the same contradiction.

Therefore there does not exist such a T implying U,U >

for [0,°°) .

Now solve for U to obtain

U > /^U 2
(t)

U 2
(t) - 2 .

Integrate both sides of the inequality above

/ U (s)Uds > / / j ds

to obtain

-U
X

(t) + U
_1

(0) > /^ t

Multiply the inequality by -1 to get

1 i
< - 4 t .

U(t) U(0) - 2

Then substitute in the initial condition and solve for U(t)

- 1 <
1 t

' U(t)
/2

1 /2 - tcf,

U(t)

>

/2

/2

/2 - 4>t

/2
If T > V , then lira U(t) = +°° .

*
. /r

/2
Therefore, T < -r- < °°. Thus Claim 1 is established.
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Although many of the techniques above will be used in the cor-

responding partial differential equations, the difficulty will

increase drastically even in the case n = 1 but more particularly

with n = 3.

.
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2. 3 Local and Global Existence for n = 1
1

Consider the Cauchy problem

/ U _ U = _u 3 x e R , (0 < t < T)
tt xx

(4) ( U.'x,0) = <p(x)

U.
t
(x,0) = ty(x)

where <j>,^ e C 2
(IR) and supp <p ,\\> <Z {x: |x| < k}

.

Claim 3 . If U e C 2(Rx [0 ,T] ,R) and U. satisfies the integral

equation

(5) U(x,t) =W(x,t) + /^(Xft-TrTjdT,* where

(i) W is the solution to the (ii) the family V(x,t,x) param-

linear equation with the etrized by t, < t < t,

same data formally satisfies

*tt " W
xx

=
° and V

tt " V
xx

=
°

W(x,0) = <}>(x) V(x,0,t) =

Wjx,0) = ijj(x) V (x,0,x) = -u 3 (x,t),
t ~

then U(x,t) is a solution to (4).

Proof . Differentiate (5) with respect to t to get

U = W. + V(x,0,t) + / V (x,t-T,T)dx.
t t t

Use the initial conditions from (ii) to obtain

(6) U - W + /S/ (x,t-x,T)dT .

t t z

Differentiate with respect to t again to get

U„tt
= W

tt
+ V

t
(x,0,t) + /

tV
tt

(x,t-x,T)dx .

*This integral is referred to as Duhamel's integral.
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Again, apply the initial conditions from (ii) to obtain
t

n = W.. - U 3 (x,t) + / V (x,t-T,T)dT .

Now, differentiate (5) with respect to x twice to get

U = w + f

t
V (x,t-x,x)dT .

xx xx J

Q
xx x

Since W and V satisfy the linear wave equation, from the above

Utt" U
xx

= -*•<»'« '

From (5) and (6)

U(x,0) = W(x,0) = <|>(x) and

U
t
(x,0) = W (x,0) = i|)(x) .

Therefore Claim 3 is established.

Similar to that of the ordinary differential equation case,

an equivalence exists between the initial value problem (4) and

the integral equation (5) . This is shown from the claim above and

the fact that the right-hand side of the integral equation is

twice differentiable with respect to both x and t. Again, this

equivalence will play a crucial role in the proof of local ex-

istence for the initial value problem (4)

.

Define the operator *T by

(7) °i[f] = W(x,t) + J

fc /X-Kt- 1 )- f
3 (s,T)dsdx ,

' X-(t-T)
, x+t

where W(x,t) is the free solution and V(x,t) = =/ - f
3 (s,i)ds

x-t

is the solution to (ii) as shown in Chapter 1.

As in the case with the ordinary differential equation, f

is a solution of the integral equation (7) iff f is a fixed point

of 7.
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Theorem 4 . There exists a time T > and a unique continuous

function U from IR x [0,T] into R, such that U is a solution of

the integral equation (5) on Rx[0,T] with
||

( • ) IL,, || *( •) IL <0°-

Proof . Define for each B > and T > the Banach Space

X(B,T) = {f £ C(tRx [0,T],|R): supp f(x,t) C-
x

{x:|x|< k + t for each t e [0,T]}

l|f|l x IB}

where ||f|| v = ||f|| v , B ti
= SUP SUP I

f (x,t)
|

and the positive
A . A(U,l) o<t<T 0<x<°°

constant B is yet to be chosen. The sup |f(x,t)| will be
0<x<°°

denoted by j|f ( • ,t)
|| w .

Define the operator **i \ X + X by the equation (7) . Note that

if f e X, then the continuity and compact support of *f[f] are

guaranteed by the definition of *J
[f] and the assumptions on f.

Seek a B to ensure that || *^[f] ||
< B whenever ||f H x

< B.

Note that
. t X+(t-T)

|*V[f]| = |W(x,t) + f/ / -|f 3 (S,T)dsdT|,
' X-(t-T)

, t X+(t-T)
|w(x,t)

|
+ j / / f

3 (s,x) |dsdT.
Ox-(t-T)

Take the supremum over t £ [0,T] and x £ [O, 00
) to obtain

(8) sup
||
7[f] !!„ < ||*(') IL + 2T ||* C -) ||. + C(T,k)B 3

0<t<T

where C(T,k) = T(k + T)

.

If || <!>(•)
I

=0, then choose an arbitrary B and then choose T

small enough to ensure inequality (8) is less than or equal to B.

Otherwise choose B = 3 ||<j>(')
I

an<3 note the following

(i) IU(-)|L< ll<M-)|L
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(ii) 2T ||<M')|| II <l>(*) I

whenever T is chosen such that

T < [iJllllLB . if HiM-Hl. - 0, the inequality

2TH^(-)|L

2T H^(') | || <M*) I

is obtained immediately,

and (iii) C(T,k)B 3 < ||4(»>|| -B
whenever T is chosen such that

»VmIU
C(T,k) < .

27 ||<K«) IL

Therefore ||<j>C) IL + 2T ||i|»(-)
\\ x + C(T,k)B 3

< 3
1

1
4» ( - ) \\ M = B.

Thus i [f ] £ X whenever f e X.

Proceed as in the ODE case to prove that 7 is a contraction

and consider the difference

^[f] (x,t) - 7[g] (x,t)

m 1 ft
j(x+(t-T)_

f3(S/T) .dsdT +
l Jt jX+(t-T)

g
3
(s ^ )dsdT

2 x-(t-x) x-(t-x)

, t x+(t-x)
= 4 / / [g

3 (s,x) - f
3 (s,x)]dsdT .

X-(t-T)

Factor the right-hand side to obtain

, t x+(t—r)

= jj J ((g(s,x)-f (s,t)) (g
2 (s,T)+g(s,T)f (s,x)

x-(t-x)
+ f 2 (s,x) ))dsdx .

Take absolute values to get

|^tf] U,t) - -ytg] (x,t)
|

. t x+(t-x)

<±J j
|

(g(s,x)-f (s,x)) (g
2 (s,t)+g(s,T)f (s,T)+f 2 (s,T)) |dsdx .

x-(t-t)

Since f and g have compact support C {x: |x| <_ k + t}

i

"7 [fl (x_t) -"/w (Xftj
i

, t k+t
<£/ / |

(g(s,x)-f (s,t)) (g
2 (s,T)+g(s,T)f (s,T)+f 2 (s,T)) |dsdx .

-k-t
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Use the fact that
| j
f - g

1 1 OT
< l|f|L II 9 II „ and Minkowski's

inequality to obtain

II
7[f]C,t) - ^[gK^tJlL

, t k+t

<f/ / ||f (s,x)-g(s,T)
|| ||g

2 (s,T)+g(s,T)f (s ,t) +f 2 (s,t) H^dsdx
* -k-t

, t k+t
< |j / ||f (s,x)-g(s,T) \\j\\q(B,T)\&*\\g(kiT)\l\\f(B,T)\l*\\£(*,t) H^dsdx.

z -k-t

From the boundedness of f and g

t k+t
||7[f](-,t) - 7[g](-,t)||

oo
< i / / ||f-g|L 3B 2dsdx ,

' ' * -k-t

< t(k+t)||f-g|| 3B 2
.

Take the supremum over all <^ t <_ T to get

sup ||-7 [f] -*7tg] IL 1 sup t(k+t)||f-g|| 3B 2=C(T,k) supp-gl^ ,

0<t<T 0£t£T 0£t£T

where C(T,k) = T(k+T)3B 2
.

Similar to that of the ODE case, choose T such that _< C(T,k) < 1,

thus 1 is a contraction operator, implying with the use of the

contraction mapping theorem that f has a fixed point U in X.

The proof is complete.

Since the initial value problem (4) and the integral equation

(5) are equivalent, the following has been proved:

Theorem 5 . There exists a time T > and a unique function

U E C 2 (|Rx [0,T] ,R) , such that U is a solution of the IVP (1)

on R x [0,T] •

Theorem 6 . The initial value problem (1) has a global solution.

Proof . From the a priori energy estimates (Claim 4, Chapter 1)

l|U<''t)IL < C(*,*) for allt>0.

The proof is complete.

As in the case with the ODE, in proving j a contraction

operator the fact that
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(9) |f*g| £ |f||sl played a crucial role.

If
|

•
|

is replaced by
|

•
|j in (9) , then the inequality

I|f*g|| < l|f|| llgllii a iiq _ ii iiq ii ^ iiq

holds only for q = °°, which was used in the above. Since it is

not to be expected that ||U(-,t) [j^ <_C for < t < T and xeJR 3
,

the proof for local existence in the case n = 3 should be much

more difficult.
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2. 4 An Example* When Global Existence Fails

Consider the Cauchy problem

(10) <

U-U =UP xetR p>2
tt xx c —

U(x,0) = <p(x)

t >

U
t
(x,0) - ip(x)

where <j> (x) e C 2
(IR) , <Mx) 6 C 1

(1R) .

The following will show that if <j> and ty are chosen correctly,

then

F(t) = / U 2 (x,t)dx
R

goes to infinity in finite time.

Theorem 7 . If T > and p ^ 2 and U(x,t) is a smooth solution

to (10) on IR x (0,T), then T < °° with cj> , ij; e C^ (IR) .

Proof . Assume an a > and initial data <}> and ty can be chosen

such that

-a
(i) (F(t) ") " < for all t >

-a,
(ii) (F(t) ")* < at t =

-a
Then F(t) will go to zero in finite time. See Figure (2.4.1)

This is equivalent to saying F(t) goes to +°° in finite time.

F(0)
-a

slope= ^ F(t)"a

Figure 2.4.1

*This example is due to H. Levine.
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Condition (ii) is automatically satisfied by choosing <j> and $ to

have the same sign on (- 00
,
00

) since

(F(0)
_<V = -a(F(0)'

1_a
)F' (0) = -2aF(0)" 1-a

/ <J^dx .

It now remains for (i) to hold. Since F(t) > ° is the same as

showing that Q(t) >^ where

Q(t) = (-a)
_1

Fa+2 (F"
a
)" = F"F - (a + l)(F') 2

•

But,

F' (t) = 2 / UU.dx, and

F"(t) = 2 / (UU
tt

+ U 2 )dx

= 4(a + l) / U 2 dx + 2 / (UU
fct

- (2a + l)u£)dx .

Therefore,

Q(t) = 4(a + 1) { (/ U 2 dx) (/u 2 dx) - (/uu
t
dx) 2

}

+ 2F(t) {/uu
t
dx - /(2a+l)U 2 dx} .

Since the first term to the right of the equal sign is positive

by the Schwarz inequality, it suffices to arrange for H(t) >_

where

H(t) E J UU
tt

dx - (2a +1)/ U^dx .

U = Up + U by (10) , therefore
tt xx J

H (t) = / UP+1dx + / UU dx - (2a + 1) / U 2 dx .

Use integration by parts and the compact support of U to obtain

H(t) = / UP+1dx - / U 2dx - (2a +1) / U 2 dx .

Note that the conserved energy for (10) is

E(t) = \ /(U 2 + U 2 )dx - ^ / UP+1dx ,

which is independent of t. Thus, choose a so that

2(2a+l) = p + 1 to obtain
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H(t) = -(p + l)E(t) + 2a / njd
x x

= -(p + l)E(0) + 2a / U^d
x

.

Therefore if E(0) < 0, the H is always strictly positive

since a = ^(p - 1) > 0. Now choose <j> > and \\> > so that (ii)

is satisfied and since p + 1 > 2, multiply if by a positive con-

stant and eventually E(0) < implying H(t) > 0. For any such

data, F(t) goes to infinity in finite time, therefore T < ».
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2.5 Local Existence for n=3

Consider the Cauchy problem

- AU = -lulP^U X E IR < t < T

(11) { U(x,0) = cj)(x)

U
t
(x,0) = \\)(x)

where <p (x) E C 3
(|R

3
), ip (x) e C 2

(IR
3
).

As in the previous examples, the Cauchy problem (11) is equivalent

to the following integral equation
t

(12) U(x,t) = W(x,t) + / V(x,t-x,T) dx, where, as expected,

(i) W is the solution to the (ii) the family V(x,t,x) parametrized

linear equation with the

same data

W - AW =

W(x,0) = <j>(x)

W
t
(x,0) = <Mx)

and

by t, <_ T <_ t, formally satis-

fies

V
tt

- AV =

V(x,0,t) =

P-l,V
t
(x,0,T) = -|U(X,T)| P U(X,T)

Digress for a moment and consider the following homogeneous IVP

htt
- Ah = x e |R

; t >

(13) < h(x,0) =

h. (x,0) = g(x) .

The solution to this problem, as seen in chapter 1, is

1
h(x,t) =

4lTt / g(y)ds^
y-x|=t

which when written in terms of the Riemann function

h(x,t) = R(x,t) *
x

g(x), where R(x, t) = ^-6 ( |x
|

- t) ,

where the distribution 6(|x| -t) is defined by

6(|x| - t)g(x) E / g(x)dS,
x =t
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Also, because of the lack of an infinity bound in the case n=3

some other norm must be used in order to apply the Contraction

Mapping Theorem. Define the energy norm as follows:

l|H(',t)||* = ||H (.,t)|| 2 + ||VH(-,t)|| 2

c <- 2 2 •

Apply this to (13) and since from the energy estimates

||h
t
(.,t)|| 2 + ||Vh(.,t)|| 2 = C Vt.

This is true in particular for t = 0, therefore

||h(-,t)
||

2 = ||h.(-,0)
||

2 +
||
Vln( - ,0)

||

2
.

e x. 2 2

Substitute the initial conditions from (13) to obtain

l|h(',t)||i= ||g(-)||
2 V t ,B 2

but since h(x,t) = R(x,t) *
x g(x) then

||R(.,t) *
x g(x)|| 2 = ||g(-)||

2
.

With the above in mind, return now to the question of local

existence for n=3, and rewrite (12) as

U(x,t) =W(x,t) + J*
1

R(-,t-x) *
x -|U(-,T)

|

p-1
U(-,x)dT .

In order to produce bounds for the following proof, the Sobolev

inequality ||u|| <_ C ||VU|| (A3) which is bounded from the energy
6 2

along with a technique called interpolation (A4) to produce bounds

other than the one just mentioned will play a crucial role.

by

(14) *7[f] (X,t) =W( X/ t) +/
t
R( X/ t-T) *X - |f (X,T)

|

P_1
f ( X ,T)dT,

where W is defined as in (12)

.

As in the case with the previous two sections, f is a solution of

the integral equation (12) iff f is a fixed point of / .

Theorem 8 . There exists a time T > and a unique continuous

function U from (R
3 x [0,T] into tR, such that U is a solution of

the integral equation (12) on R 3 x [0,T] given 1 < p < 3 and .
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II* IL' II* IL' H V*H' < -•

Proof . Define for each B > and T > the Banach Space

X(B,T) = {f E C(IR
3 x [0,T] ,R)

:

supp f (x,t)£ {x: Ixl <k+t} for each te [0,T] and ||f|| < B}
,A —

X

where ||f
||

= ||f
|| . . = sup ||f (*,t)

|
as defined above,

x xib,t;
< t <T

e

Note . The compact support of f will play a slightly different

role in this proof than in the case n = l. The compact support

will be used to infer bounds on other norms than mentioned above.

Define the operator °j : X -> X by equation (14). Note that if

f E X, then the continuity and compact support of f [f ] are

guaranteed by the definition of j [f] and the properties of f.

Now choose B to show that ||*/[£'ll]v < B whenever [I f II < B.

Note that

|*yifj| = |W(x,t) + f R(x,t-x)*x - |f| P_1 fdT|
'

|W(x,t) I + j
t

|R(x,t-T)* - |f|
p-1

f|dx .x

As it will be shown in the next section (Lemma 3)

|W(x,t)
|

< -t H ^IL + IUIL+ t iiv^i^.

Take the supremum over all _< t <_ T to obtain

sup |W(x,t)
|

< Tjj *|L + JI^II • + T|| V(J.|| .

0£t<T x

Also, /
fc

||R(x,t-T)*x - |f| P_1 f|f
aT

e

< /
fc ||f||P 2 <2p< 6 .

2 Pd T
-

Take the supremum over all < t <_ T and use the boundedness of

f to obtain
< TBP .

As in the last two sections, if ||${»)|| =0, the choice of B'
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is trivial. Otherwise choose B = 4|| <f>
( • ) |

, and continue in the

same manner as before to conclude that ||"7 [f]
|| x £ B whenever

|jfjj < B, therefore *tf [f ] £ X whenever f e X. For all f and g

in X consider the difference

°J[f] - "fig]

=
/
t

(R(x,t-x)*x
- |f

|

p-1
f)dT- J

t
(R(x / t-x)*x

-
|g|

P_1g)dT .

Take the energy norms to obtain

117 *fJ- 7^1 li e 1 J* ||R(x,t-T)*x (g
P -fp )|| e

dT .

From the digression above, rewrite the last inequality as

111 [f] - 7Cg)|L 1 J

1

Hg
p

- fp
ll ^ •

' 2

But |g
p - fP

|

< C|g-f| |g
p-1

+ f
p-1

1
so

irflf] - 7lgl II. i / II
|g-f| |g

p_1
+ f

p_1
l ll

2
^ .

Apply Holder's and Minkowski's inequalities to obtain

(15) ||7 [f] -^[g]|| e l ^ ||g-f||
r (||g

p_1
||s

+||f
p_1

lls
) dx ,

where — + — = =• and r,s > 1.
r s 2

Note that HgP" 1
!! - {/(gP-1 )'

,
)
1/8.[(/g»<P-1>)

V* <P"1,]P-i

9|| S(p-d'
-1 -.

therefore ||g
p

|| is bounded, and similarly ||f
P~

|| is
s s

bounded by the Sobolev lemma and interpolation provided

2 < s(p-l) < 6 .

Use this information to simplify (15) to

II*? tfi- 7**111- <C(T> / ||g-f||dT = C(T)J ||f-g|l dx .

r r

It is necessary to obtain the energy norm on the right-hand

side of the inequality above. To this end, since by the Sobolev

lemma ||f|| < C||vf|| (likewise for g) , utilize the compact support
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features of f and g and interpolate to obtain

||7[ f J
" ?teHL : °( T )/ ||V(f-g)||dx , provided

e 2

2 < r <_ 6 .

By increasing the right-hand side, the inequality is maintained,

therefore

llyif] - Y Eg] Il e
<C(T) / (||V(f-g)||

2
+ ||(f-g)

t ||
2
)dT .

But this is the definition of the energy norm, so

||7lf] "7 [g]|l e - C(T) / Hf-gll e
dT = C(T)

t
||f-g||

e
.

Take the supremum over all <_ t <_ T to obtain

sup ||^ [f] - 7[g] ||
< C(T) sup ||f-g|| •

0£t£T ' 0<t<T

As in the last two cases choose T such that _< C(T) < 1.

It remains only to show that
/

(16)

r s 2

r,s > 1

2 < s(p-l) < 6

2 < r <_ 6 .

If r = 2, this would imply that s = °° which would be a contra-

diction, so proceed with r > 2,

2rFrom (16) s =
r- 2

' therefore 2 <
2r

- r - 2
(p-1) < 6.

Divide both sides by
2r

r - 2
to obtain

r - 2 ^ , - />r-2,
-2F--2 £ P-1 < 6C-5J-) .

So p must be restricted to the interval

£-£-£ +1 ; p 3(^j^) + 1 •
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But r can only range between 2 and including 6. Therefore, r

and s can be chosen to satisfy (16) provided

1 < P 1 3 ,

the hypothesis on p. By the contraction mapping theorem, the

proof is complete.

The question of global existence for the Cauchy problem (11)

will be handled in a slightly different manner than in the previous

examples. Several results in the modern theory of non-linear wave

equations will be used. The first of which, Jorgen's cone estimate,

will play a crucial role. For this reason consider the following

lemma.

Lemma 1 (Cone Estimate)

.

If U e C 2
([R x [0,T),1R) and is a solution to (11) on [0,T],

then for each backward characteristic cone K(x_,t
n

) with

< t
n

< T (see Figure 2.5.1)

J (
1 |u| P+1 )ds /2 E .

'_ p + 1
'

' —
L P

Here p>l, _< T < °°, and E, the conserved energy, depends

only on the data and L stands for the lateral surface of K.

Proof . Define the energy density as follows:

e = e(x,t) = |[|U
t |

2 + |VU|
2 + -^jM**1

] .

Thus the energy

E(t) = / e(x,t)dx Vt.
R 3

Note that the energy identity takes the form

3 t
e = V- (U

t
VU) .

Equate the above to zero to obtain

d e - V« (U
t
VU) = 0.

Remark this as a four-dimensional divergence.*

*V 4 = (V,9 t ) .
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(vV

-7>

IR
C

3 3
Each point has the form (x,t) e IR x ir. (The plane represents \R .

)

3
For each (x

Q
,t

Q
) e IR x [O, 00 ), define

the backward characteristic cone

K - K(x
Q
/t ) S {(X,t) elR

3 x[0,t ]: |x-x
Q

the lateral surface of K

L = L(x ,t
Q

)
= { (x,t) e E 3

x [0,t
Q
]:

l

x-x

and the base of K

ItQ" 11
'

- t
Q
-t} ,

B = B(x ,t )
= {(x,0) e (R. x {0}: |x - x

Q |

< t
Q

} .

The outer unit normal n = n(x,t) e IR x r is given by n= (0,-1) on

, x - x
n

B and n = —=(w,l) on L, where oo = .

/2 x - x n1 i

Figure 2.5.1
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V
4

- (-U
t
VU,e) - 0.

Integrate over an arbitrary characteristic cone K and use the

(four-dimensional) Divergence Theorem to obtain

J
V
4

- (-U
t
VU,e)dxdt = ,

K

N (-U VU,e)ds =

'3K

where N is the outer unit normal.

Use the explicit vectors as shown in figure 2.5.1 to get

(17) -e(x,0)dx + —
/2

(co • -U. VU)dS +
/2

edS - .

B 'L "L

Seek a lower bound for the integrand in the second term. Since

|
co

|

=1, use the Schwarz inequality to get

|
co • - U

t
VU

|
<

|
co

|
|
U

fc
VU

| <_ |
U

|
|
VU

|

< i( | U |

2 +
|
VU

|

2
) .

This implies

(co • -U VU) + e > e - |co« -U VU
|

> e-|(|u
t |

2 + |VU| 2
) .

Use the definition of e to simplify this last inequality to

(co • -U
t
VU) + e > ^x|u|

P+1
.

This together with (17) implies

/2

2
'ul P+1dS <

p+1
e(x,0)dx < f e(x,0)dx = e(x,t)dx = E (t) vt.

IR
;L B tR

d

It then follows for every backward characteristic cone K with

lateral surface L

^|u|P+1
dS < /2 E ,

the proof of the lemma is complete.
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Continue now to the main result of the section.

Theorem 9 (Global Existence) . The initial value problem (11) with

1 < p <_ 3 has a global solution.

Proof. Let U(x,t) be a local solution to the nonlinear wave

equation (11) . The equivalent integral representation of (11) is

ft

U(x,t) =W(x,t) +
4TT(t-T)

|x-y

[-|u(y,x)

|

p_1
U(y,x)]dS

y
dT .

=t-x

Take the absolute values of both sides to get
•t

|U(x,t)
|

< |W(x,t)
|
+

4ir(t-T)
|x-y|=t-x

U(y,x) I* dS
y
dx ,

= |w(x,t) | + I
1

.

Now verify that both |w(x,t)
|

and I
1

are bounded.

To see that W(x,t) is bounded consider the following lemma.

Lemma 2 . * Let F(x) e C 1
(IR) with x e R 3

. Then for all t > 0,

f F(y)dS < C IIVFll , where the constant C is

y-x|=t y " '

independent of x,t.

Proof . Let n denote the unit outer normal to the ball

|

y — x | = t. Because n is the unit vector

/ F(y)dS = / n • (nF(y))dS .

|y-x|=t y |y-x|=t Y

Then by the divergence theorem

/ n-(nF(y))dS = / div(nF(y))dy
|y-x|=t y-x | <

t

/ [n • VF + F div n]dy .

y-x | <t

Since div n =

*This lemma is due to Glassey [10]
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(18) |/ F(y)dS |
< / |VF(y)|dy+ J J |F(y)|dy.

| y-x|=t
y |y-x|<t |y-x|<t

Apply Holder's inequality to the last integral

/ |F(y) |dy < ( / |

F
|

3/ *dy) z/

3

( / l
3 dy) l/s

<_ Ct ||
F

|| 3
.

|y-x|£t |y-x lit ly-xllt T

By Sobolev's inequality, IIfII , <C|Ivf||
3/2 — 1

Thus

/ |F(y) |dy < Ct ||VF|| .

|y-x|<t 1

Insert this bound into (18) to obtain

| J F(y)dS
|

< C ||VF|| .

|y-x|=t y »

The proof of lemma 2 is complete.

Lemma 3 . If ||^|| o , ||<f>|| , ||Vc}>|| , ||A<{>|| , and ||ViJj|| are finite,

then |W(x,t) | is bounded.

Proof . As seen in chapter 1,

w(x ' t} =
lit / ^ { y )ds

y
+
jt [^t i *(y) ds

y ]
•

|y-x|=t |y-x|=t

Differentiate the second term to obtain

W(x ' t)= 47t I
,MY) ds +^7 / <y> dSv tlit / ^(lf)««dS

I I
4lTt || II|y-x|=t [y-x|=t |y-x|=t

Take absolute values and simplify to get

(19) |w(x,t)| < |JL|
| / i|/(Y>dS

I

|y-x|=t y

+
II^ M

,

;
,

* (y)dS yl + l4itH, /, V*(y)..dS
|

.

^ TTX- |y-x|=t 2 |y-x|=t J

Consider two cases i) t e (0,1) and ii) t e [l, 00
) .

Case i (t e (0,1)). With the following change of variables

Y = x + too oj = unit vector

dS = t 2
doj

Rewrite inequality (19) as
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dw

|W(x,t)|<|^j-|| / *(x+ta>)dw + \-&-\\ / ((>(x+ta))da)|
47T

|u>|=l |a>|=l

+ ItH I
/ V<J)(x+too) •todtol

I

w |=1

llwl IMl,/, ld" + l^l IML/, ia- + .l£l 11**11, ,/i

I

ai
|

=1
|

(jo
J

=1
I

u)|=l

= t |ML+ 11*11 + t 11**11,

which since t e (0,1)

< IML+ ll*IL + 11**11, •

Case ii (t.e [1,°°)). Apply lemma 2 to the first two terms of

inequality (19) and the divergence theorem to the last term to

obtain

|wu,t)
|

< Jcjf'slKlf + ^c Hv^l^ + | ||V-V*||

<hzi IIV^H + ||V<j>|| + || a* || ) .

* 1 1 1

The proof of lemma 3 is complete, therefore |W(x,t) | is bounded

for all t e (0,°°), and define this bound B(T).

To see that I is bounded rewrite the inner integral as

follows:

J
|u|P = / lul^lul < ||u(x)|| J lup"

1

|x-y|=t-x |x-y|=t-x |x-y|=t-x

Use Holder's inequality on this last integral to obtain

,
/, |U| P < ||0(T)|| J l-lulP" 1

|x-yl=t-x |x-y|=t-x p-1
p+1 2 _, p+1 p+1

< 110(1)11. ( / i 2 )p+T( / lulP-^p-i)
|x-y|=t-t |x-y|=t-T

Therefore after integrating the first integral and multiplying

through by (—

)

t 2 , p+1
I < C/ (t-T) p+1 " -1

- ||U(T) H^ ( / |U(T)| P+idS) dT .

1 |x-y|=t-x
yy

By the generalized Holder's inequality (A5)
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t (^ 9 i t it p+ i Ezi
I <C(/ (t-T)P+1 dx)

9
(/ ||U(t)H; dx)

r
(/ J |U(T)| dS dx)P+1 ,

|x-y[=t-T y

where g- + - + jj^y =1, 9,r > 1.

Simplify and choose 8 and r such that

< 20 > F +
r-

=
pTT '

which is possible, provided

>*±±

For p _< 3 , choose any 8 > ±—t— . After 8 has been chosen

define r so that (20) holds. Note that r > 1 and 8 < °°

from the above.

Recall the last upper bound on I .

t
<3-p)

e 1 t
1

1 t Ezi
I < C(/ (t-T) P+1 dT)

9
(/ ||U(T)||^ dT)

r
(/ /

|U(T)|P+1dS dT)P+1 .

1 .0 |x-y|=t-x y

Integrate the first integral and note that for 1 < p < 3

this power of t is positive and use the cone estimate (lemma 1)

on the last integral to obtain

(^P-e+l) t -

\ ict p+1
(j iio(t)h; dx)

r
.

Recall that |u(x,t) | < |w(x,t) | + I . Take the supremum over x

and use the estimates above to conclude that for <_ t < T,

t r i
||U(t)

|| ^ < B(T) + C(T) (/ ||U(x)
|| 0O

dx)
r

,

where B(T) is the bound found in lemma 3.

By the generalization of Gronwall ' s Lemma (A6) , the above implies

||U(t) 11^ < C(T).

Hence sup ||U(t) j^ <_ C(T). This is true for all < T < «.
0<t<T

Global existence is then proved.
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2.6 Nonexistence of Global Solutions in IR
;

Consider the following Cauchy problem

(21) <

U
tt

- AU = |U|

U(x,0) = (j)(x)

U
t
(x,0) = iMx)

x e |R
; t >

supp <J),^d{x: |x| < k},
x

<|)(x) < C 3
(IR

3
) , i|>(x) e C 2

(IR
3

) •

Theorem 10 . If T > and 1 < p < 1 + /2 and U(x,t) is a smooth

solution of (21) on tR
3

* (0,T), then T < «>, given <j> (x) e C 3
(IR

3
)

and i^(x) e C 2
OR

3
) .

Note : The following proof combines similar proofs by Kato,

Glassey and Sideris [17]

.

Proof . Suppose U(x,t) is a smooth solution to (21) on

IR
3 x (0,T). Integrate the PDE above with respect to the spatial

variables to obtain

(22)
dt"

\ U(x,t)dx-
f
AU(x,t)dx = U(x,t) I* dx .

[R
c (R^

rr> 3
IR

Due to the compact support features of U(x,t)

AU(x,t)dx = AU(x,t)dx

|x|<k+t

By the divergence theorem this last integral

/ AU(x,t)dx = / VU(x,t)«n dS ,

| x | <k+t | x | =k+t x

where n is the unit outer normal.

The compact support features of U(x,t) implies that VU(x,t) is

zero on (|x| = k + t}; therefore

/ AU(x,t)dx = .

IR
3

Equation (22) simplifies to
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d 2

(23) ^rj j U(x,t)dx = / |u(x,t)| pdx .

dt 2
IR

3
|R

3

In order to see that / U(x,t)dx becomes unbounded in finite time,

define
IR

3

F(t) = / U(x,t)dx .

IR
3

Then (23) says

F(t) =
/ |U(x,t)

|

Pdx .

IR
3

Proceed, with the use of ordinary differential inequalities to

obtain a lower bound, Kato's Lower Bound, for F(t).

Note that

(24) |F(t)

|

P =
|

/ U dx| P
.

IR
3

Use the compact support of U to write (24) as

|F(t)
|

P =
| / U(x,t)dx| P

.

I

x
I

l

k+t

Now apply Holder's inequality to obtain

|F(t)| P
< |( / l?"

1
)

P
f J UP

)

P

|x|<k+t |x|<_k+t

p-1

= t, ,/
i)

l
* P

(, ,/ l"l
P

) •

|x|<_k+t |x|<k+t

The first integral is the volume of a ball in |R
3 with radius

k + t which implies that

|F(t)| P : 4»<k-Kt) 3(P-1
.

)

( / |U| P ) .

J |x|<k+t

But / |u| P =/|u| P =F(t). Substitute this into the last
|x|<k+t IR

3

xnequality to obtain

|F(t)
|

P < C(k + t)
3(p_1)

F(t) .

Solve for F(t) to obtain
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(25) F(t) > C(k + t)~ 3(p_1) |F(t)
|

P
.

Now continue with a better lower bound on F(t) due to Glassey.

As seen previously the IVP (21) satisfies the following integral

equation

rt

(26) U(x,t) = W(x,t) +
1

4ir(t—r)
U(s,t)

|

PdS
y
dx ,

|x-y|=t-x

where W(x,t) is the solution to the homogeneous wave equation

in 3 space. Notice that the integral in (26) is positive, implying

U(x,t) > W(x,t) .

Further, since W - Aw = 0, integrate with respect to the spatial

variable and use the divergence test to obtain

-2- / W(x,t)dx = .

dt 2 ^3

Integration with respect to t yields

(27) / -^r W(x,t)dx - C .

1R
3 dt

Use the initial conditions to obtain

/ A(W(x
/ 0))dx = / <Mx)dx = C .

[R
3 at

(R
3 v

Equation (27) now becomes

J
A(W ( X/t))dx - C, .

R 3 dt *

Integrate this with respect to t to get

(28) / W(x,t)dx = C,t + C .

IR
? >

Again use the initial conditions

/ W(x,0)dx = / <Mx)dx s c. .

E 3
|R

3 *

Equation (28) can be written as

/ W(x,t)dx = C.t + C, •

IR
3 * *

Since W(x,t) is the solution to the homogeneous wave equation, in
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3 space, the strong Huygens ' principle can be applied here, namely

supp W(x,t) C {t-k < |x| < t + k}, t > k .

x

Thus the last equation can be simplified to

(29) C^t + C^ - f w(X/t)dx =
J W(x,t)dx .

1R {t-k<|x|<t+k}

The goal continues to find an improved lower bound for

F(t) = / |u(x,t)

|

Pdx. Recall that U(x,t) > W(x,t), therefore

from (29)

C.t + C, / U(x,t)dx = / l«U(x,t)dx .

* * {t-k<|x|<t+k} {t-k<|x|<t+k}

Apply Holder's inequality to obtain

^ i/PV + C*^ ( ,', X
^

P
(

/|U(x,t)| P
)

9 * {t-k<|x|<t+k} {t-k<|x|<t+k}

^ 1/P
(30) <

( / 1 )
P

(/ |U(x,t)| P
)

{t-k< |x|<t+k} 1R
3

The above inequality contains

(/, |U(x,t)| P dx) 1/p = (F(t)) 1/p
,

2zl 2(p-l)
IR

3

also ( / 1 )
P !C(t + k) p

. Inequality (20)
{t-k< |x|<t+k}

becomes „ , ,

,

2(p-l)

C^t + C^ < C(t + k) P (F(t)) 1/P
.

Continue and solve for F(t) to obtain

(C^t + C^) P < C(t + k)
2(p-1)

F(t) ,

< F(t)
c(t+k) 2(p- 1) "

Since C, > and only large values of t are of interest,

conclude that
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F(t) > Ct P C > 0, for all large t.

Integrate twice to obtain

F(t) > Ct p C > .

Rewrite to look like Kato's Lower Bound (25)
1

F(t) > Ct
4 "P = [C

4 ~P t]
4~P

= [c
4 -p (|t + |t)]

4 -p
.

For all t >_ k this last expression

1

> [c
4-p (§k + |t)]

4 "p = [^c
4 -p (k + t)]

4 -p

Therefore

F(t) >C (k + t)
4 P where C

Q
< (|c4_P )

4 P
.

Now use these two inequalities found by Kato and Glassey,

respectively.

(31) F(t) > C(k + t)" 3(p_1) |F(t)
|

P and

(32) F(t) > C
Q
(k + t)

4-p
k < t,

to prove that T < °° given 1 < p < 1 + /2.

Combine (31) and (32) to get

(33) F(t) > C
2
(k + t)- 3(p

- 1) + (4 "p)p
.

Integrate (33) over [a,t] to obtain

F(t) > F(a) + C j (k+ S)"P +P+3dS .

z
a

Note that if -p 2 + p+3 > -1, then F(t) > F(a) + C
2 / (k+s)~ dS
a

= F(a) + C
2
[ln(k+t) - ln(k+a)]. As t -* « the RHS of the

inequality gets arbitrarily large implying 3 a such that

a < a. < T and F(a
Q

) > 0. If no such a
Q

exists, then T

must be finite, thus a contradiction to the existence of a is

sought. Therefore restrict -p 2 + p + 3 > -1, which is true for

-



70

1 < p <
1 *

. Note that (33) implies that F(t) > on [0,T],

therefore F(t) must be a non-decreasing function, in particular

(34) F(t) > F(a
Q

) > V t > a
Q

.

Let e (0,1) such that

,,-» 1 < fi < i 3(p-l)-2
< 35) p < 6 < 1

p(4-p) '

which is true for 1 < p < 1 + /2.

Use this information and interpolate between (21) and (22) to

obtain

(36) F(t) > C(k + t)
(1 - e)( -P 2+P+3) F(t) 6p

.

To facilitate the following operations let a = 8p and

3 = (6-1) (-p 2 +p+3). By the inequality (35) a > 1 and since

p < 1+ /2, 3 < 2. The remainder of the proof holds for both

positive and negative values of 3 < 2. To simplify matters assume

< 3 < 2.

Since F(t) > ((30)), multiply (36) by F(t) to obtain

F(t)F(t) > C(k + t)" BF(t)
a
-F(t) .

Integrate both sides from a
n

to t
t . t

/ F(s)F(s)ds > C / (k + s)" eF(s)
a
«F(s)ds .

a a

This is equivalent to

|[F 2
(t) - FI[ F 2 (t )

- F 2
(a )] >C/ (k + s)" 6F(s)

a
-F(s)ds ,

a
o

(2 4-
*

> C(k + t)~ P
f
t

F(s)
a
«F(s)ds

Now integrate the right-hand side

(37) |[F 2
(t) -F 2 (a

Q
)] >

I
^-(k+t)" e [F(t)

1+a - F(a
Q

)

1+a
] .

The proof will continue by solving for F(t) to obtain a contra-

diction on its positivity, hence a contradiction on the existence
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of an a_. Choose C small enough but still positive so that

(38) | F2 ( aJ 1 C(k + a )" 3F(a )

1+a
in order to ensure

positivity.

Solve for F 2
(t) from inequality (37) to obtain

F 2
(t) > C(k + t)" 3F(t)

1+a
+ C

1
(t) ,

where C
1
(t) = -C (k + t)

~

3F (a
Q

)

1+a
+ ^F 2 (a ) which is greater than

zero by (38)

.

Therefore

F 2
(t) > C(k + t)~ 6F(t)

1+a
.

Take the square root of both sides to yield

F(t) > C(k + t)"p/2F(t)
1+a/2

for t e [a
Q
,T).

Integrate a final time from a. to t

t. -(iis.) t

/ F(s)F(s)
2

ds > C / (k + s)~ 3/2ds
a a

l-g l-g
1 __3 , 6

I|i [F(t)
2

- F(a
Q

)

2
] > C[(k + t)

2 - (k + a
Q

)

2
] .

2Recall that a > 1, therefore ^ < 0. call it -C, , so
1-a 1

1-a 1-a

-C
1
[F(t)

2
- F(a

2
)

2
] > C[(k + t)

1_3/2
- (k + a )

1-6/2
] .

Group the constants and distribute the -1 to obtain
l-g 1-a

F(a
Q

)

2 - F(t)
2

> C[(k + t)
1_3/2

- (k + a )

1-3/2

o

Since 3 < 2, this implies 1 - -| > and the RHS of the inequality

is positive, but since t e [a
Q
,T) the LHS is less than or equal

to zero. This is the desired contradiction. Therefore an a_ cannot

exist, implying T < <», for 1 < p < 1 + /2

.
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2.7 Conclusion

Local existence, global existence and global non-existence

(blow-up) for non-linear wave equations has been presented.

Although only the cases n = l and n = 3 have been addressed,

similar results exist for the case n=2. The bounds associated

with the corresponding theorems are much more tedious to produce,

hence the proofs are somewhat more difficult. This should not

dissuade the reader from considering these theorems.

Although much progress has been made in the theory of non-

linear partial differential equations in the twentieth century,

there is still much work to be done. Other topics being con-

sidered today are decay theorems and scattering theory. Decay

theorems are concerned with the value of some spacial norm

placed on the solution of a non-linear wave equation as t

approaches plus infinity, while scattering theory compares the

global solution of a non-linear wave equation to solutions of a

linear wave equation with certain data for large positive and

negative times. There are many unsolved problems in the theory

of non-linear wave equations which will undoubtedly provide rich

areas of research in the twenty-first century.
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Orthogonality

(Al) / SIN mx SIN nxdx = when m jt n and SIN ml = and

SIN nl = 0.

Proof

The eigenfunctions U (x) = SIN mx and U (x) = SIN nx, satisfyr m n ii
the equations

U" = -m 2U and U" = -n 2 U .mm n n

If the first equation is multiplied by U and the second by U ,n m

then the difference of the resulting equations is

U U" - U U" = (n
2 - m 2 )U U

n m m n m n

or

(U U' - U U') * = (n
2 - m 2 )U U .

n m m n m n

Integrate both sides of this last equation from to 1 and use the

fact that um ( x ) and u
n ( x ) both vanish at and 1, to obtain

(n
2 - m 2

)/
1

Um (x)U
n
(x)dx = [U

n
(x)U^(x) - Um (x) IT (x) ]

J
= 0.

Therefore / SIN mx SIN nxdx = when m jt n.

(A2) (Boundedness =^>Existence) [3] Theorem

9f
Suppose that f and -~— (J=l,...,n) are continuous in a

8yJ

given region D and suppose f is bounded on D. Let (t
n ,n) be

a given point of D. Then the unique solution . <p of the system

Y' = f (t,y) passing through the point (t
Q
,n) can be extended

until its graph meets the boundary of D.

3 fCorollary . If D is the entire (t,y) space and if f and %=
8y

J
(J=l,...,n) are continuous on D, then the solution cj> of

Y 1 = f (t,y) can be continued uniquely in both directions for as

long as U (t) I remains finite.
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Sobolev Inequalities

(A3) If n = 2 and 2 < q < °°, then ||f || < C ||Vf

If n > 3, then ||f || 2n < C ||Vf || „.

n - 2
Z

Interpolation (Follows from Holder's inequality)

(A4) If 1 < a < ? < 3 < °°, then

II flic l|f||

9

llflli"
9

where J - i + l=i
11 '

' C — " "a " "$ £ a 3

Generalized Holder Inequality

(A5) If 1 < a, < » for k = l,2,...,K, then

_L JL l

ihf
2

.-.f
k

< (Jf«>) ^(Jf^)^. .(/£)*

provided — + — + • • • + — = 1.
a
l

a
2

a
K

Generalization of Gronwall's Lemma

(A6) If a e R, 3(t) > 0, and both 3(t), F(t) are continuous

K

real functions on tn
'

<_ t < t, , which satisfy

t f
t) < a + {/ B(t)[F(t) ]

Ydx Y for t < t < t ,

t()

then

. 2y
*

F(t) < 2a exp[— / 3(T)dx].
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ABSTRACT

During the twentieth century, there has been a great deal of

interest in non-linear wave equations primarily in applied physics

and quantum field theory. Like most non-linear problems, these

equations must to some extent be treated individually because each

equation has its own special properties. As will be shown in

chapter two, proofs of existence and properties of solutions often

seem to depend on special properties of the particular equation

studied. With using standard tools of linear functional analysis

and the contraction mapping principle, a unified approach to these

non- linear equations can be provided.

Chapter one introduces classical solutions to linear wave

equations in one and three space dimensions. These solutions will

play an important part in the theorems of chapter two. Section

1.5 presents a fundamental mathematical property of solutions of

the wave equation which corresponds to a distinguishing feature

of the physical phenomena described by the wave equation. Sec-

tion 1.7 presents a topic crucial to the theory of partial dif-

ferential equations, the conservation of energy. This will play a

major role in the theorems in chapter two as well as play a key

role in the proof of uniqueness for solutions of linear wave

equations (1.8). Chapter one concludes with a discussion of

Huygens ' principle which will play an important part in the proof

of Theorem 10 of section 2.6.

Chapter two presents results dealing with the local existence,

global existence and global non-existence (blow-up) of solutions

to non-linear wave equations in one and three space dimensions.

To prove local existence of solutions the contraction mapping

theorem will be used in both section 2.3 and 2.5. The example of



non-existence of global solutions in (R
x (2.4) is due to H. Levine.

Jorgen's cone estimate will play a crucial role in the proof

global existence of solutions in |R
3 (2.5). Work by Kato and

Glassey is included in the proof of non-existence of global

solutions in |R
3

.

Although much progress has been made in the theory of non-

linear partial differential equations in the twentieth century,

there is still much work to be done. Other topics being con-

sidered today, other -than the question of existence/non-existence,

are decay theorems and scattering theory. There are many unsolved

problems in the theory of non-linear wave equations which will

undoubtedly provide rich areas of research in the twenty-first

century.


