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INTRODUCTION

The importance of the production scheduling problems has long been
recognized by ﬁarious types of industrial organizations. The control
of production in industry usually centers around two distinct types of
manufacturing processes: batch; and continucus. These twe types are
usually represented by the classic models of the job-shop and the as-
sembly-line production systems. Consequently, production scheduling
problems may be classified as Shop Production Schecduling and Line Pro-—
duction Scheduling. This research is concerned with a special class
of the shop prﬁdﬁction scheduling problem.

The job-shop usually consists of a limited number of multi-purpose
machines., A [inite number of jobs are to be processed on one or more of
these machines. In processinz these jobs, certain technological re-
quirements may be specified in advance. These requirements are usually
referred to as machine ordering or routing. The mest common and frequently
referred to scheduling problem consists of finding the job sequence for
processing J jobs.on M machines such that a certain criterion is optimized.
Among the criteria usuzlly considered are: (1) minimization of the total
time required to process all jobs on all machines, i.e., minimization of
scheduie-time or make-span; (2) maximization of the profit by meeting the
dead lines or due-dates; (3) minimization of the in-process inventory;

(4) minimization of the total idle time on all machines; (5) maximization
of the facility utilization; and (6) minimization of the total cost. However,

the criterion considered in this research is that of minimizing the schedule



time. This is because all bounding procedures considered for comparison
compute lower-bounds on schedule time.

In shop scheduling problems, there exists a situation in which a
certain number of jobs arrive simultaneously in a shop that is idle and
immediately available for work. In this case, the number of jobs is
considered fixed and known. Such a process refers to the static behavior
of job-arrivals. There also exists other situation in which the jobs
arrive continuously at random intervals. This process is therefore
refers to the dynamic behavior of job-arrivals. The static situation
usually leads to various deterministic mecdels; however, the dynezmic
situation leads to several stochastic models.

In practice, the scheduling problem is usually cf dynamic nature and
hence stochastic models are of more interest. However, the deterministic
models are noi withcut inhereut interest of their own. These models
can be considered as a prelude to the more realistic stochastic models
because of the following. First, it provides an approach to handle more
complex dynamic situations as a series of deterministic medels. Second,
knowledge gained from work with static situations may be directly applicable
to the dynamic situations. Thus it would be a wise step to attack more
simple static problems because the experience gained from these experiments

may direct the researchers to handle more complex and realistic situations.

- %
1.1 Problem Formulation

In shop scheduling problems, the order im which various machines perform

a particular job provides a distinction between the two types of shops,

* .
Adapted from Ashour, S., Introduction to Scheduling, John Wiley & Soms,
Inc., to appear.




'usﬁally referred to as flow-shop and job--shop. This research is concerned
with the flow-shop scheduling problems ir which each job is performed on
a certain set of machines in an identical order. Due to this, the jobs
are said to flow over machines along the seme path. On tha contrary, in
job-shop schedﬁling problems, the machine cordering for each jcb may be
different. To account for this, the job-shop problems are more complex
than the flow-shop.

To help facilitate the formulation of this scheduling problem, a job
is designated by an integer j and a machine by an integer m. Since an
operation is defined as the processing of a job j onm machine m, it may
be symbolized by (jm).

The indexing of jobs and ﬁachines is arbitrary and precouncsived; it
does not necessarily correspond to the sequence in which the jobs are

- performed on each machine or to the order in which the machines process

each job. Since the jobs may be performed in a sequence other than the

preconceived one, a sequence of jobs is usually designated as
jl!jz!"‘,jk!"'!jJ

where J is the total number of jobs. As an example indicates the job

,jk

o th o : th P .
index which is in the k  sequence-position, i.e., the k™ position in
the job permutation (hereafter referred to as job jk).

On the other hand, in considering a permutation of the machines with

respect to the preconceived order, the machines may be designated as

My Moy o o v 5 Wy o 0 0 5 My

where M is the total number of machines. For example, m, means the machine



: doy th . ¢ y th o g %
index which is in the & order-position, i.e., the & position in the

n

machine permutation. In general, the subscripts of j and m are used to
denote the position in a job peiniatios and order in a machine permuta-
tion, respectively.

Consequently, since it will be necessary to consider permutations
of the job-sequence on a particular wmachine, permutations of the machine-
order for a particular job, and even permutations of both the job-sequence
and the machine-order, tﬁe following set of operations are defined.

; ; : . th - .
First, the operation of a job in the k  sequence-position, on machine

m is designated

(jkm)! k = l’ 2, - L] L] s J .

h

Second, the operation of job j on a machire in the gt order-position is

» designated
(jmz), ¢e=1, 2, ... ,M.

Finally, a specific operation involving a particular job jk and a particular

machine m, is denoted

(jkmg), k=1, 2, . . « 5 J,

L=1,2, s « « s M.
In scheduling problems it is necessary to consider the order relations
for each job performed through the machines and the sequence relations
between the jobs processed on each machine. This leads to define a binary

" relation, usually referred to as precedence relation.
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Considering three operations (Jp!q > Gm_) and (Jumv), if the
processing of job jp on machine mq can not be started after the processing
of job jr on machine m_s then operation (jpm—) is said to precede

q

operation (jrms)' This relation is designated
¢ —< (4
(meq) G -

It can also be said that operation (jrms) follows operation (jpmq). The
precedence relation has the follewing properties

1. transitive which means that if
(meq) ~= (ers) and (ers) — G,

then

{ 8 q) — G =)
2. nonreflexive which means that
im)/~<(Gm) .
(JP q) JP q
Or, in words, there is no operation which precedes itself; and

3. antisymmetric which means that if
CESE R

then
(3 m) #< (jpmqi .

Now considering the two operatioms (jpmq) and (jrms) having a job or

. . e, o - h . . :
a machine in common, i.e., jp j,or mq m_s the operation (meq) is



said to directly-precede operation (jrmc) if there is no intermediary

operations. Such a relation is designated

(jpmq) = =% (jrmsi .

This implies that operation (jrms) next-follows operation (jpmq).

The above statement implies that

. ¥
1. (Gm) ¥ Qm),
2. (meq) — (G m), and
" 3. no operation, say (jumv)’ can exist such that
(meq) — Gpm) =< Gm) .

It should be noted that direct precedence relation is intransitive, non-
»reflexive and antisymmetric. However, when this relation is extended to
. have the transitive property, it is called precedence relation.

 The direct-precedence relations are usually prescribed in advance
because of the technological requirements. For example, a hole drilling
operation must precede, or can directly precede a boring operation.
In terms of the above definitions, the prescribed ordering of M
machines for a particular job j may be arranged in a single chain of

direct-precedences such that

(jml) —<—< (jmz) — ., < (jmg) — . . —<—< (ij).

For convenience, the above machine ordering for a particular job j is

designated by a row vector such that

My=lDmy fmp «oogmp v amd, 3212, ..., 0



These machine ordering vecteors, one for each job, may be combinad in a
{JxM) matrix called the maching ordering matrix denoted by M, For
example,‘consider a problem having two jebs to be processed on three
machines. Let the jobs be j = 1, 2, and the machines be m = 1, 2, 3.

The machine ordering matrix of this problem is shown below

MlA lml lm2 1m3 i1 13 12
M = = =

M 7 9

|. 2 2ml 2m2 2m3 22 21 23

This matrix indicates that job 1 must be processed on machine 1 first,
machine 3 second, and machine 2 last. However, job 2 must be performed
on machine 2 first, machine 1 second, and machine 3 last. It should be

noted that the machine m. in tha element l?i is not necessarily the same

1

as machine my in the element Zml. In terms of direct-precedence re-
f

lations, the machine orderings for jobs 1 and 2 are

(11) — —<(13) — —=(12),
and

(22) —% —=(21) —= ~=(287s

respectively.
Associated with each operation, (jmz), there is a processing time,
tjm s that is, the time required to perform job j on a particular machine
2

m The processing times of each job on the various machines are usually

X
estimated in advance and known exactly. For convenience, the processing

times for job j on all machines are designated



‘The above set of processing time, one for each job, may be combined iz a
(JxM) matrix referred to as the processing time matrix and denoted by T.

The processing time matrix of the abeove example is shown telow

- _ - -
T t £t 2 4 1
1 1ml 1m2 1m3
T=T=ttt=51’
3
2 Zml 2m2 2m3 J

The above processing time matrix indicates that to pexfeoxm job 1 on
* machines m; s mz, and g, it requires 2, 4, and 1 units of time, respectively.
Similarly, job 2 requires 5, 1, and 3 time units to be completed on

machines my, m and My, respectively, It is obvious that if a job is

9
not to be processed on a particular machine, a zero processing time can
be placed in the corresponding element in the processing time matrix.
While the machine ordering specifies the order In which : particular
jpb is processed on various machines, the job sequencing specifies the
sequence in which a particular machine performs various jobs. Using the
definiti&n,of direct-precedence relation, the series of operations on
machine m may be designated
)< == (@)

Gm — = G <= .. .—=<—=<(

m
k
Again, for convenience, the above sets of job sequencings on each machine

can be arranged in a row vector
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S = 1 i1 '] i
- [Jlm jzm SRR PR RO JJm], m=1, 2, ..., M.

These job sequencings, ome for each machine, may be corkined in 2 (MxJl)
matrix called the job sequencing matrix and dencted by . For example,
one of the possible job sequencing matrices of the above problem is

shown below

S .
1 Jll j21 11 21
S . .
S = 2| = 312 322 _ |22 12
-33‘ '_j 13 i 23- ._13 23“

This matrix indicates that machines 1 and 3 process jobs 1 and 2 in the
sequence {1 2}; however, machine 2 performs the two jobs-in the sequence
{2 1}. In other words machines 1 and 3 preccess 3ob 1 first and then job
‘_2 last; and machine 2 ﬁrocesses job 2 f%;st and job 1 last. It should be
noted that job jl iﬁ the element jll may orrmay not be the same job as in -
the elements jiZ or j13} In tihe above example, the elements jll and

j13 have the same job which differs from that in j12. In terms of pre-
cedence relations, for example, (13) —< —< (23); or, in words, 0pération

- (13) directly precedes operation (23).

| The above sequencing matrix may be represented by Gantt charts shown
in Figure 1.1. In this figure, each machine is represented by a horizontal
‘bar. fhe ﬁatched portion in each bar indicates the processing of a job

on the corresponding machine. Job indexes are marked on the top of these
bars; however, the numbers below show the starting and completion times of

the various operations.
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Figure 1.1

Gantt Charts Depicting the Job Sequencing Matrix

It is interesting to illustrate the precedence and direct-precedence
relations discussed above, using the Gantt charts shown in Fig 1.l. For

example, the precedence relation
(3ym)) —< (G,my)
or

an =< (23)

holds. In words, the processing of job 1 on machine 1 precedes the
processing of job 2 on machine 3.

Similarly, the direct-precedence relation on machine 1

(3,1 = =< G,
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‘ or
(11) — —< (21

holds. This implies that operation (11) directly precedes operation (21)
on machine 1,

The direct-precedence relation for job 1
(Im)) — — (m,)

or
Coan — =< a3
holds. In‘words, machine 1 performs job 1 immediately before it is performed
on machine 3. Note that in the direct-precedence relation, the operations
have either the same job or the same machine.
' In scheduling problems, the machine ordering matrix is usually
specified and it is required to dﬁtermin; the job sequencing matrix, which
optimizes some measure of performance. In general, the job segquencing
matrix will be referred to as a sequence. A sequence may be definead ss a
collection or combination of machine orderings and job sequencings. Since
the elements appearing in the machine ordering matrix' M are the same as
those in the job sequencing matrix § , the sequence relaticns given by S
may be inconsistent, i.e., nonfeasible with the order relatioms specified
in M . 6ne of the characteristics of the required sequence is that it
must be consistent or compatable with the machine orderings of all jobs.
In terms of the above formulation, the scheduling problem can be

stated as: given both the machine ordering and processing time matrices

Mand T, it is required to find the optimal sequencze § with respect tc =
, q p q

—
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certain eriterion.

The flow shop scheduling problem with which this paper is ccncerned,

is subject to the following assumptions.

1.

Assumptions regarding jobs:

1.1 All jobs are known, ready to be processed as soon as possible,
according to specified machine orderings,

1.2 All jobs are equally important; i.e. no pre—emption, due dates
or rush orders.

1.3 Each job must be processed by a designated machine ordering.

1.4 A job may not be processed by more than one machine at & time,

1.5 No job is processed more than once on any machine.

1.6 Each job, once started for processing in the shop, must be
performed to completion; that is, no job cancellation.

1.7 Eachk job may have to wait between machines; that is, in-process
inventory is allowed. /

Assumptions regarding machines:

2.1 There is only one machine of each type in the shop.

2.2 All machines are ideal; i.e., they operate with constant efficiency,
without breakdown, never lack operator, tool, or material, and
always produce acceptable products.

2.3 Each machine can process at mest one job at a time.

Assumptions regarding operations;

3.1 Each operation, once started on a machine, must be performed to
completion before another operation can begin on that machine;
that is, no pre-emptive priorities.

3.2 Each operation can be performed by only one machine in the shop.
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4, Assumptions regarding processing times:
4.1 The processing times are known, finite and integers.
4.2 The processing times are independent of the sequence in which
the jobs are performed.
4.3 The processing time also includes the set-up times and the

transportation times between machines.

1.2 Proposed Research

Fl

The problem of scheduling J jobs on various machines with the same
machine orderings, has been studied by several investigators. However,
as yet no efficient algorithm has been found for determining an optimal
sequence cf jobs. In this paper, the branch-and-bound algorithm will be
discussed. Various bounding procedufes will be analyzed mathematically
and evaluated empirically.

»

The basic concepts of the branchvané—bound was first realized by Land
" and Doig [9a] which has been named by Little et. al. [11] while solving
the travelling salesman problem. This approach which gives an optimal
or near optimal solution after the generation of only a small subset of
the possible sequences, is considered one of the combinatorial approaches
to the production scheduling problem.

Ignall and Schrage [8] have applied the above concept to tﬁe two-and
three—ma;hine flow shop problem using their sophisticated lower-bound,
Tﬁeir coméutational experience involves upto nine jobs. Brown and Lomnicki
[3] have extended the branch-and-btound algorithm developed by Lomnicki [12]
for three machine case to arbitrary number of machines. McMahon and Burton

[13] have applied this technique to the three-machine problem, giving a new

procedure of obtaining the bound referred by them as composite lower-bound.
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Their experience involves upto 10 jobs and 2 machines. They have concluded
that the use of composite bound is more efficient. Nabeshima [ISj has
reported a révised lower-bound and attempted to show the superiority of
this lower-bound by three sample problems.
For comparison purposes all bounding procedures are generalized to
an arbitrary number of machines by assuming that all jebs are performed
on each machine in the same sequence. Thus, fhe computational algorithm
&iscussed in this paper will develop optimal permutation-sequence and this -
will be referred to as optimal sequence or optimal solution in the dis-
;ussion throughout this paper., It should be noted that the permutation
sequeﬁces will always be optimal for cases involving upto three maéhines*.
However, for more than three machines, the solution is comsidered optimal
within the set of permutation-sequences only.
As mentioned earlier the branch-and-bound technique has been first
; applied to flow shop scheduling problem py [8, 12]. Since then several
researchers-have developed various lower-bounds or bcounding procedures
thich are vital in making the branch-and-bound techniquz efficient. There-
" fore, the success of the branch-and-bound technique depends on the quality
of the lower-bounds. To the knowledge of author, no comparison among
these lower-bounds has been yet made. The purpose of this paper is to
present a mathematical analysis of the five promising lower-bounds referred
fo as boﬁndiné-procedures 1B 1, LB II, LB IIT, 1B IV, and LB V; to compare
'the quality of these bounding procedures. This comparison is based on the

following: (1) the number of nodes explored; (2) the computational

— 7 _
See Theorems 5-1 and 5-2, in Conway, et al; Theory of Scheduling, 1967,
ppc 81_83- -



15

efficiency. To obtain fair comparicon amcng these procedures and to
minimize the variations, considerable experiments were conducted.
In Chapter II, the basic concepts of branch-and-bound technique
are discussed. A more general computational algorithm is illustrated
by a sample problem., Chapter III is devoted to the mathematical
analysis of various bounding procedures under consideration. The various
lower-bounds computed by each of the bounding procedures are also illustrated
by a sample problem. In Chapter IV, the computational experiments and
their results are reported. Finally, summary of results and conclusions

are provided in Chapter V.
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CHAPTER II
BRANCH--AND-BOUND TECHNIQUE

A survey of the approaches used in the sclution of scheduling problems
reveals that all'the existing approaches can be classified into four basic
categories: (1) combinatorial; (2) mathematical programming; (3) queueing;
and (4) simulation. This report is concerned with the branch-and-bound
technique which is based on combinatorial analysis. It seems reasonable to
elaborate the explanation of combinatorial mathematics before discussing

the basic concepts of the branch-and-bound technique.

2.1 Epmbinatorial Mathematics

Combinatorial mathematies, also referred to as combinatorial analysis
or combinatorics, is one of the mathematical disciplines. The formal
"definition of combinatorics becomes difficult due to the diversified
" applications of combinatorial analysis in various areas of mathematics.
Ryser [17] has defined the combinatorial analysis as the mathematics
which deals with the study of the arrangement of elements into sets. The
elements are usually finite in number, and the arrangement 1s restricted
by certain constraints, if any, imposed by the specific problem under
consideration. The problems tackled by combinatorial analysis are classified
as: (1) existence problem, and (2) enumeration problem. Existence problems
are thoée in which the existence of solution is doubtful and the study
attempts to settle this issue. On the contrary, enumeration problems have
the surity of existence of solution and the objective is to find the
solutions, the number of such solutions, and their classifications. Thus,

each enumeration problem is an extension of existence problem.
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According to the definitions of combinatorial problems cited above,
it is obvious that the scheduling problem is ar enumeration problem. ‘The
combinatorial approach for solving the scheduling problem represents quasi-
enumeration techniques. By applying many reliable heuristics, this
approach has succeeded in arriving at the subset of optimal schedules
through a shortest path. This subset is comparatively much smaller than
the complete enumeration. The efficiency of the combinatorial techniques
depends on how effectively enumeration is curtailed. A number of techniques
developed within the concept of combinatorial analysis for solving
scheduling problems can be listed as switch-and-check, branch-and-bound

and bound-and-resolve technique.

2.2 Basic Concepts of Branch—and-Bound Technique

The branch-and-bound technique is an intelligently designed search to
- obtain the subset of optimal solutions from a larger set of feasible sequences.
It has been pointed out in literature th;t for any particular scheduling
problem, the number of optimal schedules is much smaller than the number
of all possible feasible sequences. This fact revealed that even a technique
discarding only non-feasible sequences will not be efficient in solving
:larger size problems. By using certain processes, the search isrdirected
towards an optimal solution in a finite number of steps. The branch-and-
bound algorithm described in this chapter assures that it will arrive at
-an optiéal'solution and it may be possible to do so in less than complete
enumeration,

The basic philosophy behind this technique is the partitioning of the
‘set of feasible sequences into smaller and smaller subsets. A lower-bound

is calculated for the partial or complete sequence within each subset.
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The objective of this technique is to find the optimal solution with less
computationalreffort involved. The search should be systematically
progressed through branching and bounding processes which may be easily
discussed by using a scheduling tree.

The scheduling tree consists of nodes, each representing a partial

or complete sequence,-{j1 iy« - }, where L < J, The scheduling tree

. jL
starts with a node "ALL" which represents J unscheduled jobs at level 0.
At.level 1, the scheduling tree is initialized by J nodes, each of which
consists of a partial sequence having one job,'{jl}. Each of these J
nodes can be branched into J-1 nodes at level 2, each consisting of a
partial sequence'{jl jz}. In general, at any level, L, there are J-L+1
new nodes emanating from each node at the preceding level. Each of these
new nodes consists of a partial sequence having L jobs, {jl j2 o w § jL}.

:Note that the nuwber of jobs in each node at level L is equal teo L. As one

~moves down the tree, the index of levels increases by one; and the number
of nodes branched from a node, decreases by one than that of the preceding
ievel. The tree ends at level J with a number of nodes, each having a
complete sequence of J jobs. Any of these complete sequences can be
regarded as a solﬁtion to the scheduling problem. It should be pointed out
that when all nodes at each level are generated, the maximum number of
nodes in such a scheduling tree is J + J(J-1) + J(J-1)(J-2) + . . . + J!
which inéreases very rapidly as the number of jobs increases.

The process of generating a new set of nodes at 1eve17L, each ﬁaving
a partial sequence'{jl j2 T jL}, from a node at the preceding level,
L-1, is referred to as Branching process. Further, this node from which

the branching takes place is called active node. The nodes are generated
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by placing cne of the unscheduled jobs as a candidate for the next sequence-
position in the partial sequence of the activernode. Tﬁe branching
characteristic of the branch-and-bound algorithm, used in this report,"
guzrantees that if this algorithm is applied to ; flow shop scheduling
problem, an optimal solution will eventually be obtained. It merely
premises the optimal solution by exploring all nodes of the scheduling

tree,

Reduction in the generation of nodes at each level can be effectively
achieved by bounding process. In this process a lower-bound for each node
is computed and then according to the branching strategy, the active node
is picked up for further branching. The various lower-bounds developed
by several researchers will be analyzed in detail in Chapter III.

The lower-bound for a node is a lower limit on the schedule time

.which implies that any solution emanating from this node can not have
j schedule time less than the value of its.lower-bound. In other words,
all complete sequences resulted frem a particular node under consideration
will have schedule times either equal to or greater than the value of the
lower-bound for that node. This concept helps select the promising node
for branching to be carried down to the next level. As usuél, the
efficiency of the branch-and-bound algorithﬁ depends on the quality of
tﬁe bounding process, since this process has a characteristic of recognizing
an Optiﬁéljsolution prior to complete enumeration. It is logical to look
for a high lower-bound than a low lower-bound for the same node, computed
by different lower-bound formulas developed so far. The higher the value
of the lower-bound, the more powerful is the bound on the objective function.

Five of the more promising possibilities for these bounds are developed in
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{3, 8, 12, 13, 15] and discussed in Chaprer IIL.

It should be pointed out that the lewer-bounds which consider the

idle times created by the scheduled and unscheduled jobs, usually yield

higher and more realistic lower-bouads than those which consider the
idle times created by the scheduled jobs only. The lower-bounds which
do not consider idle times among the unscheduled jobs, assume that there
is no overlapping or conflict among these jobs. The bounding process is
more strong in recognizing direction of an optimal solution at higher
levels down the tree than lower levels up the tree. This is because
there are fewer jobs in the nodes at lower levels than those at higher
levels, The larger the number of jobs in a partial sequence, the more
closer will be the lower—boundrto the minimum schedule time.

As oﬁe moves down the tree, the lower-bound will never decrease along
‘the same branch of the tree. By moving down a level, an unscheduled job
is added to the previous partial sequence and while computing a lower-
bound for this newly created node, the idle time created by the last
scheduled job is also accounted. Thus, the lower-bound of a node will be
either equal to or greater than the lower-bound of the node from which
branching took place at the preceding level, depending upon the idle time.
However, it will never decrease, since the idle times can never take
negative values.

The'ﬁranching and bounding processes always yield a solution which
may or may not be an optimal. However, in order to guarantee optimality
a back-tracking process must be imbedded in the bragch—and—bound technique.
The function of the back-tracking process is to move upwards on the same

branch which has led to the previously obtained solution. Then, by using
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the brénching and bounding processes, the uﬁexplored node(s) at the im-
mediately preceding level and having lower-tound less than the value of
the previously obtained solution (hereafter referred to as updated
solution), is investigated. In moving downwards until the last level,
another solution may be obtained which again may or may not be better
than the previous one. This updated solution is considered optimal when
there is no unexplored node with a lower-bound less than that of the
previous solution. The branching, bounding and back-tracking processes
which are imbedded in the computational branch-and-bound algorithm stated

in Section 2.3, will be illustrated by a sample problem.

2,3 A Computaticnal Algorithm

The branch-and-bound algorithm described in this section is completely
general in the sense that it consists of various phases to compute the
flower—bounds; and to break the ties between the lower-bounds, if any. This
~algorithm has been designed to yield an éptimal solution which has been
guaranteed by back-tracking process.

The computational algorithm may be stated as follows:

Step 1: Set level index L = 1, and schedule time T = +=,
Step 2: Check L:

. 2.1, If L < J, go to step 3.

'2.2. If L = J, check the minimum lower-bound at level J - 1, I-1g,
2.21. £V <1, set T="tBpandL =L - 1. Go to
step 7.
J-1

| 2.2.2. If B>T, set L=L-1 and go to step 7.



22

Step 3: Compute the lower-bounds at level L, for each node n, LBn, by a

particular bounding process.
Step 4: Find the unexplored node(s) which has the minimum lower—bound at

level L, LB, such that

- L n. t L B
s = min (187,

and compare LB:
4.1, 1f LB < T, go to step 5.
4,2, 1If Ly > T, go to step 7.
Step 5: Branch from an unexplored node with the minimum lower-bound:
5.1, 1If a tie exists, break it by a particular rule,
5.2. If a tie does nét exist, branch from that node.
Step 6: Set L =L+ 1, and go to step 2.

:S8tep 7: Back-track along the same branch of the scheduling tree by setting
| L=L-1. Compare the lower-bounds for all unexplored nodes at
this level:

7.1, If there exist one or more nodes such that

LBn < T, go to step 4.

7.2. If for all unexplored nodes, LBn > T, go to step 8.
Step 8: Check for an optimal solution:
8.1. IfL > 1, go to stép 7.
‘B.Zo If L =1, T is an optimal schedule time.
The lower-bound, in step 3 of the algorithm described above, can be
computed by one of the five bounding processes summarized in Table 2.1.

According to step 5 of the algorithm, a tie, if exists, can be resolved by

one of the three rules: the Left Hand Rule (LHR) breaks a tie by selecting
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the farthest-left node from the tie-get at that level in the scheduling
tree. Similarly, the Right Hand Rule (RER) picks the £aIthest—right node
from the tie-set for branching. If the node is selected by random (RDM)
from the tie-set, the tie is said tc be resolved by random. It should

be pointed out that the (LHR) has been used in this research for resolving

the tie.
Table 2-1 Various Bounding Processes
Concept Bounding Discussed Investigator Reference
’ Procedures in Section

Machine Based LB I 3.1 : Brown & Lomnicki (3,121
Machine Based LB II 3.2 Ignall & Schrage [8]

Job Based LB III 3.3 McMahon & Burton [13]
Composite Based LB IV 3.4 McMahon & Burton [13]
fMachine Based LB V 3.5 Nabeshima [15]

2.4 Sample Problem

The computational algorithm described in the preceding section will be
illustrated by a sample problem. The problem consists of six jobs to be
processed on each of three machines. The machine ordering and processing

time matrices are given below:

B 12 13 6 7 3

21 22 23 12 2 3

31 32 33 4 6 8
M= o, T .

41 42 43 3 11 7

51 52 53 ' 6 g8 10

61 62 5§J 2 14 12
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The purpose of selecting this problem is.to make clear to the reader

how branching, bounding and back-tracking processes are imbedded in the

branch-and-bound technique.

The emphasis in this chapter is placed on

how the branch-and-bound works, not on how the lower-bound is computed.

The computation of the various lower bounds is left to be analyzed in

Chapter III.

bounding procedure LBI.

follows:

The lower-bound at level L for each node n,

The values of the lower-bounds are computed according to

For convenience, LBI is stated mathematically as

LBn, is given by

L.n max L n

= { B ] 2

m m

L . . .
where BE is the bound on machine m, at level L, for node n and is computed

such that

L.n_ Lo, % X
B ="C+ ] ty p* min R PR
k=l+1 K" jén |m'=mHl Iy
n=1, 2, . . ., M1
and
J
LB; = LC;; + tyowM
k=I+1 k
where LCE is the completion time of scheduled jobs in node n at level L on

machine m,

obtained, are displayed in Table 2.2.

For convenience, the elements from which lower-bounds have been

However, this lower-bound along

with others will be analyzed mathematically and illustrated by another

sample problem in Chapter III, -
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In solving this sample problem, a scheduling tree is initialized
with a node "ALL" which may be considered as level zero. In order to
follow the solution easily, Figure 2.1 should be followed throughout all
the steps.

Step 1. Set level L equal to 1 and the initial schedule time 'I‘o
equal to =, Level 1 is initialized by generating the nodes having partial
sequence {jl}. Thus, there are J - L + 1 or 6 nodes with partial
sequences {1}, {2}, {3}, {4}, {5} and {6}.

-Step 2. Check the level L. Since L is less than J, i.e., 1 is less
than 6, go to step 3.

Step 3. The lower-bounds are computed for each node at level 1 by
bounding procedure LBI such that

Node (1) (2) (3) (4) (5) (6)

Lower-bound 57 63 55 57 57 59

Step 4. Search for the minimum unexplored node(s) at level L. The
minimum value of the lower-bound at level 1, 1B, is equal to 55 for node
(3). According to step 4.1, go to step 5, since lB is less than To’ i.e.5
55 is less than «,

Step 5. The tie does not exist for the minimum lower-bound. There-
fore, the selected node, (3), is branched to generate the nodes (31), (32),
(34), (35) and (36) at level 2. -

Stéplﬁ. Set level L equal to 2 and go to step 2.

Step 2. Check level L. Since level L is less than J, i.e., 2 is less
than 6, go to step3.

Step 3. The lower-bounds for each node at level 2 are computed by

bounding procedure LBI such that



Node (31) (32) (34) 7 (35) (36)

Lower-bound 55 61 56 55 59

Step 4. The minimum lower-bound at level 2, 2B, is 55 for nodes (31}
and (35).

Step 5. The tie is resélved in favor of node (31) according to the
LHR in step 5.1. This active node, (31), is then branched to form new
nodes (312), (314), (315) and (316) at level 3.

Step 6. Set level L equal to 3 and go toc step 2.

Step 2. Check level L, As L or 3 is less than J or 6, go to step 3.

Step 3. The lower-bounds are computed for all nodes at level 3 by
bounding procedure LBI such that

Node (312) (314) (315) (316)

Lower-bound 64 60 57 - 63

Step 4. The node (315) has the minimum lower-bound at level 3, 3B,
.iwhich is equal to 57. According to step,4.l, go to step 5 since 3B or 57
is less than To or «,

Step 5. The active node (315) is branched to create new set of nodes
(3152), (3154) and (3156) at level 4.

Step 6. Set level L equal to 4 and go to step 2.

Step 2. Check level L. According to step 2.1 go to step 3 since L
or 4 is less than J or 6.

Step 3. At level 4, the.lower—bounds are computed for all nodes by
bounding p?ocedure LBI such that

Node (3152) (3154) (3156)

Lower~bound 62 58 61

Step 4. At level 4, the node (3154) is picked up for branching since

.26
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it has the minimum lowerlbound. According to step 4.1, go to step 5, since
43 or 58 is less than T0 or =,

Step 5. The active node at this level, (3154), is branched to
generate new nodes (31542) and (31546) at level 5.

Step 6. Set level L equal to 5 aad go to step 2.

Step 2. Check level index L. Since L is less than J or 5 is less
than 6, go to step 3.

~Step 3. The lower-bounds are computed for all nodes at level 5 by
bounding procedure LBI such that

Node {31542) (31546)

‘Lower-bound 64 65

Step 4. The minimum lower-bound at level 5, 5B, is 64 for node
(31542). Following step 4.1, go to step 5 because 5B or 64 is less than
‘To or «,

Step 5. The active node, (31542), at level 5 is branched to generate
a node with complete sequence {3 1 5 4 2 6} at level 6.

Step 6. Set level L equal to 6 and go to step 2.

Step 2. Check level L. As level L or 6 is equal to J or 6, according
to step 2.2, the minimum lower-bound at level 5 or 5B is compared with
the initial schedule time, T0 or @. Since SB or 64 is less than To or <=,
ghe iﬁitial schedule time is updated according to step 2.2.1 by setting
Tl = 5B--= 64, Set L =1L -1 or 5 and go to step 7.

Step 7. Back-track along the same branch of the scheduling tree if
there is a possibility for a better solution. Set level index L =L - 1 or

4 and compare the lower-bounds of all unexplored nodes with the updated

schedule time, Tl' There are two nodes (3152) and (3156) having lower-bounds



62 and 61, respectively, which are less than '1‘1 or 64. According to step

7.1, go to step 4. ‘

Step 4. At level 4, the minimum lower-bound, AB, is 61 for ncde
(3156). According to step 4.1, go to step 5 since 4B or 61 is less than
T, or 64,

Step 5. The active node (3156) at level 4, is branched according to
step 5.2 to create level 5 having nodes (31562) and (31564).

Stép 6. Set level L equal to 5 and go to step 2.

Step 2. Check level L. Since L or 5 is less than J or 6, go to step

Step 3. By bounding procedure LBI, the lower-bounds are computed for
each node at level 5, such that

Node (31562) (31564)

Lower-bound 61 61

Step 4. At level 5, the minimum lower-bound, 5B, is 61 for nodes
(31562) and (31564)., According to step 4.1, since 5B or 61 is less than
T1 or 64, go to step 5.

Step 5. According to the (LHR) in step 5.1, the tie at level 5 is
resolved in favorrof node (31562). This node is then branched according
to step 5.2 to generate a node having complete sequence {3 1 5 6 2 4}.

Steprﬁ. Set level, L, equal to 6 and go to step 2.

Steﬁ 2, Check level L. The level, L or 6, is equal to J or 6; the
minimum lower bound at level 5, 5B, is compared with the updated schedule
time, Il’ according to step 2.2. Since 35 or 61 is less than ’I‘l or 64,

the updated schedule time is modified by setting T2 = B = 61. Set level

L equal to L -1 or 5 and go to steﬁ 7.
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Similarily, the back-tracking procese is carried along the same
branch of the scheduling tree to find the unexpiored node{s} which has
" lower-bound less than the updated schedule time, Tg' At level 3, the
active node (314) which has lower-bound equal to 60, is brauched to
generate nodes (3142), (3145) and (3146) having lower-bounds 52, 61 and
67, respectively. Since any sequence derived from node (3145) can never
have schedule time better than 61, the branching is terminateéd in this
direction according to step 4.2. There is no unexplored node at level 3

which has lower-bound less than T2 or 61, At level 2, the node (35) is

picked up for branching which yields a sequence {3 5 1 4 2 6} having
schedule time of 6.4. Back-tracking process selects another ncde (334) at
level 3, for further branching. The branching is terminated at level 6§
with no improved soiution. The node (3542) at level 4, is brauched to
‘yield-a sequence {3 5 4 2 6 1} with echedulz tinme of 60 which is less than

the updated schedule time, T2 or 61. Now, the updated solution is modified

such that T3 = 60, The back-tracking along the same branch of the scheduling

tree finds a node (356) at level 3 which is still unexplored and has lower-

bound less than T,, i.e., 3356 4 T, or 57 < 60. The branching from this

node leads to a sequence {3 5 6 1 2 4} at level 6, having schedule time of

59. Since 59 is less than T3 or 60 the updated schedule time is mcdified

such that T4 = 59, Back-tracking picks another node (3562) at level 4

which generates a sequence {3 5 6 2 4 1} with schedule time of 57. Again,
the updated schedule time is modified according to step 2.2.1 such that

TS = 57. The back-tracking reveals that there exists only one node (34)

at level 2 which has lower-bound less than T5 or that 56 < 57. The branching

is carried until level 3 where the nodes (3412), (3415) and (3416) having
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lower-bounds 62; 61 and 67, respectively are generated. The branching in
this direction is terminated, since the miﬁimum lower-bound at this level
 15 greater than thé updated schedule time, T5 or 57. The node (342) at
level 3 is therefore branched but the branchine is terminated at level 4.
Now there is no unexplored node at any level which has lower-bound less
than T5 or 57. Hence, the schedule time, T5 or 57, is the minimum
schedule time and the corresponding sequence'{3 562 4 1} is optimal.
The problem is solved by exploring 58 nodes. It is interesting to know

that 'paper and pencil' solution of this problem took around 5 hours while

the author wecrked at normal pace.
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CHAPTER 11X
LOWER-BOUNDS ON SCHEDULE TIME

As mentioned in the previous chapter, the bounding process reduces
the number of éxplored nodes, and, thus decreases considerable amount of
computation time involved. This chapter is devoted to the analytical
study of the various lower-bounds which have.been developed by several
investigators., To illustrate the various bounding procedures, a sample
problem will be solved in Section 3.6 employing the branch-and-bound
algorithm discussed in Chapter II. The values of the lower-bounds fcr
all nodes, at each level, will be summarized in the solution of this
sample problem. However, the lower-bounds for only two nodes at different
levels will be computed following the mathematical analysis of each bounding
. procedure. Since the bound on the schedule time is a functiom of tle
processing times of the jobs on the machines, the computation of the
lower-bounds by the various bounding procedures requires the data in the
processing time matrix., Thus, for convenience, the processing time matrix

of the sample problem solved in Section 3.6 is reproduced below:

9 13 6
7 7 20
6 4 8
T =
8 3 10
20 7 2
10 2 13
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The following notation is considered to discuss those bounding

procedures:

L level index of the scheduling tree, L =1, 2, . . . , J

n node at any level, L, consisting of a partial sequence of
scheduled jobs, {jl Jp e e jL}

q a set of unscheduled jobs, 1417 dpeor ¢ 0 e jJ

LCE completion time on machine m, at level L, and for node n. 1t is
also the earliest possible starting time for the first unscheduled
job, jL+l’ if there is no conflict on preceding machines.

LB; bound on the schedule time, on machine m, at level L, and for
node n.

LBn lower-bound on the schedule time, at level L, for node n.

LB minimum lower-bound on the schedule time at level L.

3.1 Bounding Procedure LB I

This bounding procedure has been developed by Lomnicki [12] for the 3-
machine flow shop scheduling problem and then extended to an arbitrary number
of machiﬁes by Brown and Lomnicki [3]. The extension is based on an assumpticn
that all jobs are processed in the same sequence on each of m machines. This
procedure is also referfed to as machine-based bound [13], since it estimates

a bound by finding a schedule time on each machine.



Mathematically; the bound, LB£, for each node n, on machine m, at

level L, is given as

L.n L n J min M
B o="C + § t._+ j N Y
k=I+1 X . o= m'=m+tl Yk
jen :
k= 1’ 2, . e [ J’
m=1, 2, ..., M1, (1)
and
J
L.n L.n
B, ="C + t, (2)
M= k=I+1 KT

The completion time on machine m, at level L and for node n which has the

partial sequence {jl APEPERE jL} is such that

EF: Yo 2w ), Tl ds dg e o 3
Ln | oo | el 72 23 o172 -1, ,
m mn-1 m ij
m=1,2, . ..,M, (3)

where
Lis 35 ¢ » 9
C 1-2 L

m-1

and

L-1 jpd, - - jL—l
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The lower-bound at level L, for any node n is given by

LBn = max [LB;, LB;L VoW o8 & LBﬁ]
= max [LBH]
m
m

In words, Equation (1) consists of the sum of three terms. The first
term, LCE, is the measure of time elapsed from the start of processing the
job in the first sequence-position, jl’ on machine 1, until the completion
of the job in the last sequence-position, jL’ of the partial sequence,

{jl j2 i @ W jL}, on machine m. It should be noted that this term includes
all idle times, if any, on machine m, for all jobs included in the partial
sequence of node n.

L

The term, Cz, is calculated by employing Equation (3), the elements

of which can be explained as follows:

L jl j2 « w e jL
Cm—l the completion time of job jL in the partial
sequenice of node n, on machine m-1. In other words,
this is the earliest possible time at which job jL

is ready to be processed on machine m.

the completion time of job jL—l’ in the partial
sequence of node n, on machine m. In other words,
this gives the earliest possible time at which

machine m will be ready to process jcb jL.
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' The maximum of these two periods will giﬁe the étarting time of job jL on
machine m.

The second term in Equation (1), is the total procezsing time for the
remaining unscheduled jobs, jL+1’ jL+2’ ey jJ; on machine m, regardless
of overlapping of these jobs on that machine. This assumes that there is
no idle time on machine m for these unsched:iled jobs.

The third term in Equation (1), is the sum of processing times of the
last job in the complete sequence on the succeeding machines, mt+l, mt2,
< . M. Since the job which will fill up the last sequence-position of
the required complete sequence, is not yet determined, a‘job with the
minimum total processing time on all succeeding machines is selected to be
in the las; sequence-position so as to minimize LBS. The jobs in the
partial sequence have already been scheduled; hence this last job is chosen
. from unscheduled jobs.

The following computations illustrate the bounding procedure LBI
discussed above. For space limitation, the computation of the lower-
bounds for only node (3)7at level 1 and node (34) at level 2 will be shown
below.

At level 1 and for the node n which consists of partial sequence {jl}

or {3}, the completion time on each machine is computed such that

& C c

1.3 1.3 0.0
et max[ 0’ 1]+t31’

C., = max

1.3 13 00
2 {C

and



or

and

The bound

and

or

max,[ Cys Ca] * t33

= max [ 0, O ] + B =6y
= max [ 6, 0 ] + 4 = 10,
= max [10, 0 ] + 8 = 18.

this node is computed oneach machine such that

1.3 6 min g
=TCi+ )} oty + ] t, s
Doz Bt B s 3W®
Jk'r
6 nin
1.3 \
=C,+ ] ty ot I (tj 3
k=2 -k . k
Jk#B
6
1.3
=00+ ) OB s
3 =2 3k3

6 + (9+74+8+20+10) + min [13+6, 7+20, 3+10, 7+2, 2+13]

If

6 + 54+ 9

69,

L1



B2 = 10 + (13+7+3+74+2) + min [6,20,10,2,13]
= 10 + 32 + 2
= 44,

and

1.3

B3 = 18 + (6+20+10+2+13)
= 18 + 51

=69,

bound for this node is

Thus, the lower

B = max B B B

1.3 (1.3 1.3 1.3
| Tl TR T3

r

= max |69, 44, 69 ]

.

= 69. .

Similarly, the lower-bounds for nodes (1), (2), (4), (5) and (6) is found
to be 81, 73, 70, 86 and 71, respectively.
At level 2, the completion times for node having partial sequence

{jl j2} or {3 4} are computed such that

2 34 (2 34 13

Cl_ = max ~ CU 3 C1J + tél’
2 34 _ (2 34 1 3]

C2 = méx k Cl § C2J + t42,

and



or

and

2 34

At this level, the bounds for this node on each machine are computed such

that

and

or

It

max

max

max

PNr——
[
-

-
1—!
o

| S
+
w

It

17,

[17, 18 ] + 10 = 28.

L3
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B3Y = 14 + (947420410) + min [13+6, 7420, 742, 2+13]
= 14+ 46 + 9 = 69,
282% = 17 + (13+7+742) + min [6,20,2,13]
=17 + 29 + 2 = 48,
and
2B)* = 28 + (6+20+2+13)

= 69.

Thus, the lower bound for this node is

2g34 _ max [69,48,69]

= 69.

Similarly, the lower-bounds for each node at all levels are computed.

!

3.2 Bounding Procedure LB I1

Ignall and Schrage [8] have developed the sophisticated bounding
procedure LB II for 3-machine flow shop scheduling problem. For comparison
purposes, this procedure is extended for an arbitrary number of machines,
M. It differs with LB I only in the computation of the completion time.
This procedure considers the bound on each machine independently, such
as in LB I[ It forms a bound from the total processing time remaining on
that machine, together with the minimum run-out time for that maéhine.

In mathematical terms, the bound, Lﬁz, on machine m, at level L, for

node n, can be stated as follows:
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£ L J min M
B = D"+ § ot i t. | s
= = -
- m k=141 H"® L R
jken
k=1, 2, . s J,
m=1, 2, .. » M, (4)
where
min M
3 I t. ] =0, m =M,
i EE m'=mtl K
k

At level L, the earliest starting time of the first unscheduled job, jh+1’

on machine m, for each node n, LD;, is given by

m-1 !
Lt o max (®, Y® | + min [ B N |
m . m m-i o . j,m
i jen [m =m—-i “k
k=1, 2, . s Jy
i Ty 25 02w s Ms (5)
i=1,2, .. ., m1
where
L n m-1
Cm—i + min_ Z t i =0, m=1

m
en |m'=m-i jk

Iy

In words, Equatien (4) states that at level L, for node n, the schedule
time on machine m is boundad from below by the sum of three terms: the

earliest starting time of the first unscheduled job, jL+l’ on machine m,
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plus the total procezring time of all urscheduled jobs on the same machine,
plus the minimum of the total processing times required to perform the
unscheduled jobs on succeeding machines, m+1,rm+2, e 4 s s M, i.e,, the
minimum run-out time on machine m, As in Eguation (1), the last temm
becomes zero when the bound is computed on machine M. Thus, the lower-

bound at level I, and for each node n is such that

Lan max [LBH]
@ |
The first teim, LDE, is obtained by the recursive Equation (5). This
term computes the earliest possible starting time for the first unscheduled
job on machine m. This is done by estimating the minimum idle time
between the completion of last job, jL’ in the partial sequence of node
n, and the start of the first unscheduled job, I
As in L3 I, it is sufficient tc show the computation of the lower-
bounds for node (3) at level 1 and node (34) at level 2.

At level 1 and for node (3), the completion time for scheduled job

on each machine is computed according to Equation (3) such that

1,3 1.3 0.0)]
C1 max [ Co, Cl + t31,

J

fl

2 1 2 32?

o

163 - max [103 00| + ¢

and

o
]

1.3 13 0.0
nmax [ C2’ CB] + t33s

or



and

The earliest starting time of the first unscheduled job on each

max

max

max {10, o] + 8

[ g

o o

L=
n

10,

n

18 .

machine is obtained by using Fquation (5), such that

and

or

1D3

1

max

max

max

max

max

1.3
Pt o

13 1.3
3 V2

min [9, 7, 8, 20, 10]]

7



and

e

[

The bounds for

=]
I

and

or

o]
]

o
n

and

max (18, 10 + =min [13,7,3,7,2] , 6 +
min [9+13,7+7,8+3,20+7,10+2])}
max [18,10+2,6+11] = 18,

node (3) at level 1 on each machine is given as follows:

6 min 3
g 4 Yot .+ [ ¥ ot ] .
1 o2 Rt 5 :3 ateg A
k
6 min
3 .
lnz + Ez ty 2 + (tjk3) .
Jk¥3
6
3
lD3 + kzz 1:jk3 ;

6 + (9+7+8+20+10) + min [13+6,7+20,3+10,7+2,2+13]

6 + 54 + 9 = 69,

13 + (13+7+3+7+2) + min [6,20,10,2,13]

13 + 32+ 2 = 47,

L8



=s}
1l

18 + (6+20+10+7+13)

18 + 51 . =

L9

69.

Thus, the lower-bound at level 1 fcr mode (3) is

133

|

|

Following

(5) and (6) is

At level

computed such

and

or

max Bl’ B B

3.3 1.3 1.3
2’ 3

max [ 69, 47, 69]
69.

the same steps, the low
found to be 81, 73, 70,
2 and for node (34), the
that

_ 2 34 13]
= max [ CO ’ CIJ + tél’

2 34 13]

= max [Cl » Cgf T fap0

+ t

2.3 13
43’

= max [ C2 § 3

= max |14, 10 +3

er-bounds for nodes (1), (2), (4),
87 and 71, respectively.

completion time on each machines are

14,

17,



and

50

The earliest starting time of the first unscheduled job on each machine is

given such that

and

or

= max

= max

= max

= max

14,

C

23, 23, ™
[C 1 oI

2 3

3 G

mi
[2C34 2 34 \

. )

=+

I

(zy 1))
3,734 °
n min
2.3 ™
Iy .(thZJ s Gt K
3,734 3,734

max [17, 14 + min [9,7,20,10]

max

21,

. 2]



and

At level

and

or

51

2% o e (28, 17 + min [13,7,7,2], 14 + min [9+13,747,20+7,10+2])

max [28,19,26]

= 28.
2 and for node (34) thc dounds on all machines are given such that
6 rin 3
234 _ 2p34 4 T o4+ 3 P
1 1 3.1 k oo 55m
k=3 k . M =c k
3 73,4
234 _ 234, O Bin
By = Dy + I ot .+ 3 (t54) s
=3 “k Ik
| 3,#354
236 _ 234, 2 '
By = Dy + ] ty 3
k=3 -k
23?* = 14 + (947420+10) + min [1346,7+20,7+2,2+13]
=14+ 46 + 9
= 69,
2 34 .
B2 = 21 + (13+7+7+2) + min [6,20,2,13]
=21 + 29 + 2

= 52,
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and

=]
]

28 + (6+20+2+13)

= 69.

Therefore, the lower-bound at level 2 and for the node (34) is

2 34

[« ]
n

max [69,52,69]
= 69 .

Similarly, the remaining lower—bouﬁds are computed for all nodes at each

level.

3.3 Bounding Procedure LB 111

This bounding procedure has been introduced by McMahon and Burton [13],
‘which in some circumstances gives a larger value than that obtainable by
other lower-bounds. The bounding procedure, LB III, has been referred to
as job-based bound, since it expresses the fact that the schedule time may
be determined by the total processing time for a job, rather than by the
total processing time on one machine.

The bound on the schedule time, LB;, is expressed such that

LBn L.n max ¥ g ( )
, = 4 - Z t, ., + min {t, , t. 5
n n jken m'=m K" x=L+1 3" JxH
3.3y
k=I4l, I42, « « . 4 J

m=1,2,...,M (6)
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where
M J J
max z P + Z min [t. m® b4 H} = Z t. ,» m=M
jken m'=m Jk =L+1 Ix Y% k=L+1 Tk
3,73,

In words, Equation (6) states that at level L, the schedule time of
each node n, on machine m, is bounded from balow by the sum of the following
two terms. The first term represents the completion time of all jobs
included in the partial sequence of node n, at level L, on machine m, This
is also an estimate of the earliest possible starting time for any un-
scheduled job on machine m, assuming no conflict for this job. The second
term consists of two parts: (1) the total processing time on one of the
unécﬁeduled jobs, jksﬁ, on machines m, m+l, . . . , M, assuming no conflict
or overlapping for this job on any of these machines; (2) the sum of

"minimum processing time either on machine m or on machine M, for all re-
‘maining unscheduled jobs because each of these jobs must either precede
job jk on machine m or follow it on machine M,
Similar to the previous bounding procedures, the computation of LB IIL
ié shown for only node (3) at level 1 and node (34) at level 2.

At 1evél 1 and for node (3), the completion time for scheduled jobs

on each machine is computed such that

C1 CO, C1 + t3l’

4

. 1.3 {1 3 0.0)
max

g, Cls Cy) *+ tap

13 [1 3 0.0)]
max

and



orxr

and

1.3 0.0
max [ C2’ C3J

[ 0]
e 0 0)

o {200

33°
+ 6 = 6,
+ 4 = 10,
+ 8 = 18

Bounds on schedule time, at level 1 and for node (3) on each machine is

given by

and

or

1 3 max
G # 8 Y
m

3, 3

max
1.3 ;
C2+ Iy [m'
3,73
6
1C§+ It
k=2 -k

3 €
\ + i s t,

=1 thml ;EZ o (tjxl thB)] ,
3 #3

i ] s )

t -+ min (t ¢ By i

=2 jkm' x=2 sz Jx3

3,73,

6 + max [(9+13+6) + (7+8+2+10), (7+7+20)

+ (6+8+2+10),

+ (6+7+8+10),

(8+3+10) + (6+7+2+10), (20+7+2)

(10+2+13) + (6+7+8+2)]

sk



6 + max [55, 60, 46, 60, 48]

= 66,

133 = 10 + max [19+14, 27+13, 13%+17, 9+18, 15+18]}
= 10 + max [33, 40, 30, 27, 33!
= 50,

and
1.3 _
33—18+(6+20+1O+2+13)

= 18 + 51
= 69 .,

. The Tower-bound for this node is given by

143 o wex (66, 50, 691

= 69.
At level 2 and for node (34), the completion times for scheduled jobs

on each machine is computed such that

234 _ (234 1.3
max { C0 - Cl] + tAl’

_ 2.34 1.3
2 max [ Cl s Cz} + t42,

9]
I

and

55



or

and

1l

max

max

14,

max [ 14, 10]

17,

max

28 .

(.

+ 10

The bounds for this node on each machine is given by

and

or

2 34

]

2_34

¢

2 34
C3

max
+ Jk

jk¢3,4

max
+ Jk
jk%3,4

=3

I

3

)t

m'=1 J°

56
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231134 = 14 + max [(9+1346) + (7+2+10), (74+7+20) + (6+2+10), (20+7+2)
+ (6+7+10), (10+42+13) + (6+7+2)]
- = 14 + max [47, 52, 52, 40]

= 14 + 52
= 66,

2324 = 17 + max [19411, 27+10, 9415, 15+15]
= 17 + max [30, 37, 24, 30]
= 54,

and

252" = 28+ (6 + 20 + 2 + 13)
= 28 + 41 )
= 69 .

Thus the lower-bound for node (34) at level 2 is

2B34

It

max [66, 54, 69]

69 .

Similarly, the other lower-bounds for all nodes at each level are computed.

3.4 Bounding Procedure LB IV

This procedure has been developed by McMahon and Burton [13] with the

idea of selecting the more powerful bound from the machine-based bound and
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the job-based bound. The bounding procedure, LB IV, has been referred to

as a composite lower-bound, which is computed such that

LB IV = max [LB I, LB III] .

To obtain composite lower-bound for any node n, the lower-bounds by bounding
procedures LB I and LB III are first computed {or that node. The maximum
of these two lower-bounds is the composite lower-bound for that particular

node.

3.5 Bounding Procedure LB V

This procedure has been developed by Nabeshima [15], referred to as
revised lower-bound. This may be comsidered as a machine-based bourd.
Nabeshima has claimed that the bounding procedure, LB V, is superior over
the other bounding procedures because it reduces the number of explored
‘nodes in his sample problem,

This bounding procedure utilizes Johnson's criterion [9] of finding
the optimal sequences on 2 machines, for the purpose of estimating powerful
lower-bound. It has already been pointed out that LB 1 does not account
fér any idle time for the unscheduled jobs while computing total processing
time for these jobs on machine m, However, LB V takes into consideration
the estimation of this idle time by applying Johnson's criterion for the
two-machine case as explained below.

Thérestimation of the idle time for the unscheduled jobs requires
that they should have a specific sequence determined by any reasonable
rule. LB V considers the sequence of the unscheduled jobs on comsecutive
two machines m and m+l, wherem =1, 2, . . . , M-1; by using criterion

given by Johnson for independent two machines m, m+l. For any two jobs



59

e 7 . \
min [tj . tj m+1] < min [tj i1 t_,I mJ (7}
r s r =8

holds, then job jr must precede job jS in order to minimize the schedu}e
time of the sequence of J-L jobs in n on machines m and m+l. The sequence
constructed according to Johnson's criterion is referred to as preliminary
sequence, Thus for M-machine problem, there will be M-1 preliminary f

partial sequences, oy il OF {(JL+1 Ip4p * - - jJ)m,m+l}’ B¥ds 25 5 & w3

M-1, of unscheduled jobs in n. Hence, the sequence'{jl j2 e jL

}, must be processed on machines m, m+l in this

(jL+l jL+2 T jJ)m,m+l
order. Due to the nature of this sequence, it is referred to as dynamic
sequence. The first L jobs in this dynamic sequence do not interchange °
- their sequence-positicns on any of the M machines, but the remaining J-L
jobs may interchange their sequence-positions on scme or all of the M

machines. The bounding procedure, LB V is stated below.

At level L, for node n, on machine m, the bound LBz is given by

Lo ) M ]
LBE = ch 4 gl - I S A
m I mt=m+1  Jk

m=2,3 ..., M1l (8

and

1,m

m- . . . : . g i
where Fm is the total processing time of jobs in the preliminary

partial sequence, i 5w 3.0 1 m}, on machine m after the
k]

Y4 L I m-
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; L n
completion time, Cm'

Equation (8) may further be simplified by combining the first two

terms in the right hand side such that

Ln M
n _ m-1,m , min
LBm = G +j en Z tj m'
k m'=mt+l -~k
m=2, 3, ..., M1, (9)
and
Len _ LC“M-l,M-
M M
where n is the dynamic sequence of J jobs on machines wm-1 and m,

m-1,m
{jl 3y o e o3 Qg g - jJ)m-l,tn} !

The completion time for the scheduled jobs, LCE, is computed such

that ]
L i, s« « « 3 -1 3, J, « » « ] _
Lcn = max C 1-2 L , C 1 -2 L-1 +t !
m m-1 m ij
m=1, 2, . . ., M (10)
where
Ljgd, ]
172 L _
cm—l = 0, m=1
and
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The completion times for the unscheduled jobs which are arranged

~according to preliminary sequence, are computed by the following recurrent

relation:
L n(3 : = e Lcn(jl.-:-l ~ = » Byt Loo
¢ i 42 0 I m R |
" m
h
+ By | FE
2=1 1+ IL+h
ho= 1, 2 « v w g J=ly
m=2,3, ...,M (11)
where
L n(j v wow T )
c I+1 L+h-1 - Lcn , h=1
m m
L.n !

The lower-bound, B, at level L, for node n is given by

In words, Equation (9) isrcomposed of two terms: The first term is
the measure of the completion time of job jJ in the last sequence-position

j )

. . jL (JL+1 b } , on

of the qygamlc sequence, {Jl ig - el g
machine m., This is the time elaﬁsed between the start of job jj on machine
1 and completion of job jJ on machine m, where jl and jJ belong to the same
dynamic sequence, In addition to the sum of processing times of all jobs

on machine m, this term also includes the exact idle time for jobs in the

partial sequence of node n, and an estimate of idle time for unscheduled
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jobs, . Tﬁis term is computed by recursive Egquations (10) and (11)
which are similar to the Equation (3) of LB I.

The second term in Equation (9) computes the minimum run-out time
for machine m. Run-out time is the duration of time bhetween the completicn
of last job, jJ, on machine m and the completion of the same job on the
last machine M. This term does not include idle time on any of the
succeeding machines, m+l, m+2, . . . , M. It is obvious from definition
~that the run-out time on machine M is zero.

Theoretically, it may be stated that this lower-bound is more power-
ful in reducing the total number of nodes explored. This will always
estimate bound which is gqﬁal to or greater than that computed by LB I,

since

nm--l,m 4
F
m

k=I+1 -k

_Again, as in the previous bounding!procedures, the computation of
the lower-bounds for node (3) at level 1 and node (34) at level 2 will be
shown below.

As required in the bounding procedure LB V, the preliminary sequence
on machines 1 and 2 is {2 1 53 4 6} , and on machines 2 and 3 is
{6 43215} . For more detail refer to Appendix A in which Johnson's
algorithm is applied.

At‘level 1 and for node (3), the completion time for scheduled job

is computed according to Equation (10) such that

1.3 _ 13 0.0
Cl = max [ CO’ Cl] + t31’

and
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1.3 13 0.0
hg ™ mo= [ G Cz] T By
or
lCi = max [ 0, 0 ] + 6
= 6,
and
lcg = max [ 6, 0 ] + 4
= 10.

The completion time for the last job in the dynamic sequence, {3(2 1 5 & 6)1 2},
3

is obtained such that

1C3(2) - pax [1 3 13

~I1ba

L2l e {102(2)’ l.i Loty 1] 5.2 0
2=1 J1+2 3

3
1C2(215)= max [lcg(ﬂ), lc:i + ) ot 1] +to, s
2=1 J1+1 Iy

" 4
103(2154)= —_— llcg(ZlS), lCi + 7 ot 1] i
2=1 J1+g Is

and



5
102(21546) = max [lcg(2154), 1ci + ) £y 1]+ t. 5 s
| 2=1 J1+g I
or
1Cg(2) mp— [10, e+7] +7 =20,
1c3(21) = e [20, 6+7+9] % 1% = 35 ,
~ 1) g [35, 6+7+9+20) + 7 = 49,
1Y o pax [49, 6+7+9+2o+8] +3 =53,
and

1Cg(21546) = s [53, 6+7+9+20+8+10] +2=62.

Similarly, the completion time for the job in the last sequence-position

of the dynamic sequence, {3(6 4 2 1 5)2’3}, on machine 3 is computed.
Firstly, the time within which all jobs included in the partial

sequence of node n are completed on machine 3, is computed by using

EquatiOn (10) such that

1.3 (13 00
C3 max CZ’ C3] + t33 s

[}
|._I
o

-
=]
T N

+
0.4}

]
1—-\
o

Using Equation (11),



1C3(6)

1.3(64)
€3

1.3(642)
03 _
4
.1C3(6421)
3
and

1.3(64215)
Cq

or

1.3(6)
C,

1 3(64)

Cy

' 1.3(642)
Cq

1.3(6421)
Cq

and

= max

max

max

max

max

max

max

max

= max

|
{
|

|

1.3 1.3
¢, cl 4+t ] +t. .,
# 2 .2 3,3
2 ,
9® 124 o Jee,
2=1 1+2 3
1.3(64) 1.3, &
c3 y "By y ot 2] ttoa,
2=1 J1+g Ig
13(642) 1.3, &
03( ), Cs } 2]+tj3,
=1 J1+g 5
1.3(6421) 1.3 § ]
C s C. H t. + t .
3 2 g2y d142 g3

.
[31.

a

10+2] +13 =31,

10+2+3] +10 = 41,

[61, 10+2+3+7+13] + 6 =

10+2+3+7] + 20 =61 ,

67

65



1,3(64215) _

3 ax [67, 10+2+3+7+13+7] + 2= 6% .

The bounds for node (3) at level 1 are computed on machines 2 and 3 such

that
1.3 1.3(21546)  Mim
B, = G, + 3 (tjk3] "
jk¥3
and
1.3 _ 1_3(64215)
\ B3 = C3 ’
or
1.3 "
B2 = 62 + min [6, 20, 10, 2, 13]
=64,
* and
1.3 _ ’
B3 - 69 L]

The lower-bound for this node at level 1 is then given by

133

max [64, 69]‘

69 .,

Similarly, the lower-bounds for nodes (1), (2), (&), (5) and (6) at level
1 are found to be 81, 73, 70, 86, and 71, respectively.
At level 2, for node (34) the completion time for all scheduled jobs

is computed on machines 1, 2 and 3 by Equation (10} such that

C C

2 34 234 13
s [ 0° 1] g o

66



2,34 _ 234 13
C, =m [ Cl s Cz} + ot s
and
2 34 {234 1.3
C3 = max [ACZ § CBJ + t43 §
or
2034 = max [ 0, 6 + 8 = 14,
1 A
zcga = max [14, 10 + 3 =17,
/
and

The completion time for the job in the last sequence-position of the

dynamic sequence, {3 4 (215 6)1 2}, on machine 2 is computed, such that
3

2,34(2) _ [2 34 234

c.’, “ci 4+ t, ] +t, o,
2 2 1 331 332

2
2024(21) = max [2034(2), zcia + ¥ ot 1] L
g=1 d24¢ 34
P 3
ZC;A(ZIS) = max [2334(21), 2034 + ]t 1] b By 5
g=1 J242 Is

-

and

2034(2156)

4
3 - max [2034(215) 2636 4 ¥

s t J-l't. 3
2 1 g=1 Jdo4pt e



or
T o [17,
2
2034(21) = max [28,
2034(215)= max [43,
and
2034(2156) - max {57,

68

14+7] +7 =28,

It

14+?+9} + 13 = 43,

l4+7+9+20] + 7 = 57,

14+7+9+20+10] + 2 =62,

Similarly, the completion time for the job in the last sequence-position

of the dyﬁa@ic sequence, {3

or

4 (6 21 5)2 3}, on machine 3 is computed

such that
2 34(6) _ 2 .34 2 34 ’
C3 = max [ C3 ’ C2 + tj 2) + tj 3
3 3
2°34(62) 2 34(6) 2.34 . 2
C3 = max [ 03 s C2 + z t. 2] + t 3
g=1 J24¢ 3,
3
G gy (RO Zs § vy ) by
g=1 J24g I5
and
2 34(6215) 2 _34(621) 234 4
C3 = max [ C3 ’ C2 + Z t 2] HRTIEE
g=1 Jo2+g Je



The lower-bound for this node is given by

2 34

max [64, 69]

69.

61,

2034(6) - max [28, 17+2] + 13 = 41,
-zc§4(62) — [41, 17+2+7] + 20
2034(621) — [61, 17+2+7+13} §

and
2034(6215) = max [67, 17+2+7+13+7]
3
The bounds for node (34) at
that
in
34 _ 2.34(2156) |
2B2 € o3 (tjk3) ,
3,43,
- and
2.34 _ 2 34(6215)
By = G J
or
2334 = B2 b min [6, 20, 2, 13]
= 64,
and
2 34
By = 69

67,

69‘

level 2 are computed on machines 2 and 3 such

69
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Similarly, the lower-bounds for each node in the scheduling tree are

computed.

3.6 Sample Problem

As mentioned ea?lier, a sample problem is solved to illustrate the
various bounding procedures. In order to be fair in the illustration of
the bounding procedures, this problem is selected in which the solution
is obtained by exploring the minimum number of nodes, using the various
bounding procedures. However, the quality of the 1ower—bounds will be
investigated by several computational experiments reported in Chapter IV.
The sample problem is solved by the branch-and-bound algorithm stated in
Section 2.3.

The sample problem consists of sequencing six jobs on three machines
such that the schedule time is minimized. The machine ordering and

'
.. processing time matrices are given below:

!

11 12 13 9 13 6

21 22 23 7 7 20

31 32 33 6 4 8
M = 3 T =

41 42 43 -1 8 3 10

51. 52 53 20 7 2

61 62 B{J 10 2 13

Following the branch-and-bound algorithm, level 1 is initialized by
generating the nodes (1), (2), (3), (4), (5), and (6). The lower-bounds
obtained by the various bounding procedures are tabulated for all nodes

at level 1 as follows:



T

Level  Node LB I LB II LB 11 LB IV 1B V
I (1) 81 81 81 81 81
(2) 73 73 73 73 73

(3) 6" 6o 69" 69" 69"
(%) 70 70 70 70 70
(5) 86 87 86 86 86
(6) 71 71 71 71 71

Note that * indicates the minimum lower-bound in each bounding procedures.
Node (3) has the least lower-bound. Therefore, this node is branched
to form the nodes (31), (32), (34), (35), and (36) at level 2.

At level 2, the computed lower-bounds for each of the zbove nodes

are summarized as follows:

, Level Node 1B I 1B II 1B IIT LB IV LB V

2 (31) 79 79 .79 79 79
(32) n n 7 71 7
(34) 69" 69" 69" 69" 69"
(35) 84 86 84 84 84
(36) 69" 69" 69" 69" 65"

Upon examining the above lower-bounds, the tie exists between the nodes
(34) and (36) which have the least lower-bounds, 69. The tie is resolved
in favof-of node (34).

At level 3, node (34) is branched to create the nodes (341}, (342),

(345), and (346). The lower-bounds are computed and tabulated below.



3 (341)
()
(345)

(346)

1B I

77

*
69

82

*
69

LB I1

77

*
69

85

&
69

77
%

69

84

ok
69

T2

1B IV 1B V
77 77
% *
69 69
-84 82
* %
69 69

Again, the minimum lower-bound is €9 and a tie exists between those nodes

(342) and (346). The tie is resolved in favor of node (342).

At level 4, node (342) is branched to generate the nodes (3421),

(3425), and (3426).

The lower-bound for each of these newly created nodes

is computed and summarized below.

Level Node
4 (3421)
(3425)
. (3426)

1B I
*
69
5

%
69

LB II

*
69
75

*
69

!

LB ITT

*
69
79

*
69

1B IV 1B V
& X
69 69
79 71
* *
69 69

The nodes (3421) and (3426) have the least lower-bound. The tie is broken

and the node (3421) is selected for branching.

At level 5, the newly created nodes are (34215), and (34216); and

the lower-bounds are tabulated below.

Level Node
5 _ (34215)
{34216)

LB I

75

*
6%

LB II

75

*
69

LB IIT

75

*
69

LB IV

1B V

75 75
* *

69 69

At this level, the node having the least lower-bound is selected. By

adding the only remaining job to the partial sequence of that node, a

complete sequence is obtained.

The minimum lower-bound at level 5 is 69

for node (34216), and the unscheduled job for this node is job 5. Thus
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the feasible sequence {3 4 2 1 6 5} is a solution with schedule time T or
69.

Now, the back-tracking process is carried over all preceding levels
and since there is no node having lower-bound less than 69, the sequence
{34216 5} is an optimal solution with minimum schedule time of €9.

It should be noted that the solution is obtained after exploring 20 nodes.
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CHAPTER IV
COMPUTATIONAL EXPERTMENTS

To establish a fair comparison among the various bounding procedures
discussed in Cﬁapter ITI, a series of computational experiments were con-
ducted on IBM 360/50 computer. The computational algorithm presentgd in'
Section 2.3 was programmed in FORTRAN IV language. The flow chart and
the computer program will appear in Appendix B, This chapter is devoted

to the computational experiments and their results.

4.1 Experiments I - X

The experiments performed in this research consist of 395 problems
which were selectéd-with six to twelve jobs and three to five machines,
The entries of the processing time matrices were generated at random
- from a uniform distribution between one and 30, inclusive. The number of
problems in these experiments varied frém 10 to 50. These comfutational
experiments were designed in order to investigate the effects of changes
in both the number of jbbs and the number of machines. A summary of

these experiments_is tabulated below.

Experiment Problem Number Experiment Problem Number,
No. Size of Problems No. Size of Problems
(JxM) (JIxM)
I~ . 6x3 50 Vil 8x3 35
I1 6x4 50 VIII 8x4 25
III 6x5 50 IX 8x5 25
v 7x3 50 X 12x3 10

v o 7x4 50

VI 7x5 50
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4,2 Experimental Results

This section is dewveoted to the results of the various computational
experiments. These results will help explore empirically the performance
of the various bounding procedures. The number of nodes and computation
time of all experiments are summarized in Tables 4.1 - 4.5 and discussed
below. Various statistics such as the minimum, maximum, mean and
standard deviation are reported for both the number of nodes explored
and the computation time spent to obtain the solution.

The results of Experiments X which consists of 10 problems soived
by Ashour [2] are summarizéd in Table 4.6. The purpose of this experiment
was to note the feasibility and efficiency of various bounding procedures
for larger problems. The sclutions obtained by LB I, LB II, LB TII,

LB IV and LB V were for 9, 9, 6, 10 and 5 problems, respectively. On
compariag this result from that given in [21, it is obvious that branch-
and-bound technique worked more efficiently than the various other
techniquesidiscussed therein.

As mentioned earlier, the branch-and-bound algorithm requires the
exploration of at least J+ (J-1) + . . . + 2 nodes; however in many
cases more nodes may be explored; their number can be regarded as a
measure of computational effort required in arriving at the solution for
; specific bounding procedpre. It is of interest £o point out that the
size of'the scheduling tree, i.e., the number of all the possible nodes
for exploratiOn 1s J + J(J-1) + . . . + J! which increases with the
increase of J. For problems of various sizes, the minimm and maximum

number of nodes which might be explored are shown below.
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Number of Jobs

6 7 8 12
Minimum number of 20 27 35 77
explored nodes
Maximum number*of o on
explored nodes 1,236 8,659 69,280 3,297,901,344

G .
That is the size of the scheduling tree.

In analyzing the results obtained by various bounding procedures,
the effects of the changes in the number of jobs and machines are as
follows:

The number of nodes explored to reach an optimal solution increases
rapidly as the number of jobs increases. It was also noticed that the
rate of change of increase in the number of nodes, increases rapidly
with the increase in the number of jobs. Tor example in Table 4.1,
Experiments I, IV and VII having problems of sizes (6x3), (7x3), and
(8x3), the number of nodes explored increases by 127.28 and 235.45 nodes
as the number of jobs increases from 6 to 7 and 7 to 8, respectively.

It should be noted that the increase of similar nature is also reported
for other bounding procedures in Tables 4.2 - 4.5, As an example, for
LB ITI the number of explored nodes increases by factoré of about 4.43
and 5.48 when the problem sizes change from (6x3) to (7x3) and from
(7x3) to (8x3), respectively. However, these factors vary greatly with
both the bounding procedure and tﬁe problem size. The steep increase in
the rate of change of the explored nodes with increase in the number of
jobs, is observed for each bounding procedure in all the experiments!

Table 4.7 shows the various factors o for all bounding procedures obtained
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from different problem sizes. The reason for the increase in the number
of nodes explored with the increase of the number of jobs is that the
addition of one job to the problem increases the level by one in tﬁe
scheduling tree. Since nodes are formed by various permutations of
these jobs, the number of nodes formed should increase rapidly with the
increase in the number of jobs. Thus by intuition, an increase must be
expected.

The computation time spent to find an optimal solution also increases
rapidly with increase of the number of jobs and for fixed number of
machines. As in Table 4.1, the computation times increase from 0.68 to
2.00 seconds and from 2.00 to 4,99 seconds when the problem's size
changes from (6x3) to (7x3) and from (7x3) to (8x3), respectively. This
is because the computatioﬁ time depends on the number of nodes explored.

" The number of these nodes vary greatly from one problem to another of

the same size. Tables 4.1 - 4.5 show how the number of nodes explored
varies within éach experiment, For example, tﬁe number of nodes explored
in Experiment VII, shown in Table 4.3, ranges between 35 and 26,984, The
variation in the computation time is also due to the variation in the
elements of the pfocessing time matrices of problems of the same size,
since the processing times affect the amount of'computational time in-
volved. The reason is that the criterion used in this research is the
schedulé time which is a function of the processing times. The rate of
change of increase in the computation time seems to increase rapidly as
the number of jobs increases. The effects of variation in the number of
jobs on both the number of nodes explored and the computation time are
shown in Figures 4.1 - 4.3, The factors (R) by which the computation

time changes are shown in Tables 4.7 and 4.8 for various bounding procedures.
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The number of nodes explored to obtain an optimal solution increases
as the number of machines increases with a fixed number of jobs. However,
when problems were solved by LB IIT in all experiments but V and VI, the
nﬁmber of nodes explored decreases as the number of machines increases.

LB V also show a similar reduction in the number of explored nodes except
for Experiments II, III, V and VI. The increase in the number of nodes
depends upon the quality of the various bounding procedures used to

compute the lower-bounds. If the bounding procedure works efficiently, it
will recognize the optimal solution by exploring small number of nodes.
:Otherwise, the optimal solution is reached after a number of back-tracking
which in turn increases the number of nodes explored. By similar reasoning
a decrease in the number of nodes may be expected. For example,_as shown
in Table 4.8, the number of nodes explored changes by factors about 2.34
_and 0.83 when the problem size changes from (8x3) to (8x4) and from (8x4)
to (8x5), respectively. ,

As the number of machines increases the computation times increases
in most of the cases; however, in some experiments it appears to take
negative changes. Comparing the results of Experiments VIIL and IX in
which each problem has 8 jobs, a reduction in the number of nodes was
realized by all bounding procedures. For the same experiments, the compu-
fation times also seem to decrease for all bounding procedures except |
LB 1I, whi;h shows an increase of 3.05 seconds. Similarly, in Experiments
IV and V having problems of size (7x3) and (7x4), only LB III shows a
decrease in computation time from 20.30 to 15,92 seconds when the number
of machines changes from 3 to 4, respectively. It should be noted that

for same experiments, the number of nodes decreases from 622.72 to 357.92.

The increase in the number of machines causes an increase in the number
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of bounds computed since the lower-bound for each node is selected as
the maximum value of the bounds for all machines. Thus, the computation
" time depends upon the number of machines.

In all bounding procedures, the computation time spent per node
increases as the number of machines increases from M to M+l. For exaﬁple
in Experiments I and II, an increase of 0.0019 second is observed when
number of machines changes from 3 to 4. This is due to the reason mentioned
above.

In all bounding procedures, the computation time spent per node in-
creases as the number of jobs increases from J to J+1l. In Experiments
I and IV having problems of sizes (6x3) and (7x3) respectively, the
computation time per node increases from 0.0087 to 0.0097 second as the
number of jobs changes from 6 to 7.

It is observed that the change in the computation time per node is
more due to one unit change in the number of machines than one unit
change in the number of jobs,

It should be pointed out that for some problems LB V produced better
solutions. The LB V considers the permutations of unscheduled jobs on
each pair of machines. These permutations change from one machine to
another and help estimate a powerful lower-bound. Other bounding procedures
can not reach that solution since they do not permute among the unscheduled
jobs. 'Fo; example, a flow shop problem of size (7x4) having the following

processing time matrix:



I 1L .5 B
19 23 26 13
30 19 4 18
T= (25 25 10 3

28 7 23 25
| 5 2 4 22

16 21 17 20

The optimal permutation-sequences and their schedule times of this problem,

when solved using bounding procedures LB I - V, are as follows:

Bounding Procedure Sequence Schedule Time
LB I {6375241} 169
LB II '{6375241} 169
LB III {6 723541} 169
LB IV {6 723541} 169
LB V {672351k 161

The number of solutiomns obtained by 1B V found different from those obtained

by the other bounding procedures are

Experiment Problem Size Number of Number of Different
Problems Solutions by LB V
II- - (6x4) 50 16
5ed (6x5) 50 20
A (7x4) 50 13
Vi (7x5) 50 21
VIII (8x4) 25 5

IX (8x5) - 25 11



ILLEGIBLE

THE FOLLOWING
DOCUMENT (S) IS
ILLEGIBLE DUE
TO THE
PRINTING ON
THE ORIGINAL
BEING CUT OFF

ILLEGIBLE



81

(T99ndmod 0G/09E WHI) SPUODIS UT SWT3 noapdpsmﬁoot

D9T0"0  08°ST €8°E€T 89°'SL %9°'0 €2°666 %0°299 g6Ly T 4 52 (¢xg) XI
JETO0  25°02 Hq2'fT  46°'g9 SS°0 GR GONT 9S°"TEOT  HEEY € GE g2 (txg) _HHH>
:TT0"0  €6°2T  66°n  #8°L9 €x°0 €6°2LIT TLOxf  @xT9 - et 49 43 (€xg) IIA
HT0'0  €8°6  OL'h  9S°SE  €4°0 69620 oL'EE  En9z € L2 06 (sx1) A
5TTC°0  €N°E 63° 2 69°SGT H®E'O l9°Llée gn'ene 22ET f Le 0s (7xl) A
L6000  €g'e 002  QO'#T 620 T6°20E 92°S02  S9RT et L2 0s (ExL) AT
Leto*o L't 79°T L tARS ge*o 00°€0T O "62T qen g 02 0§ (6Xx9) TIT
30T0°0  /I'T  #2'T  68°h  €2°0 wo.mﬂﬁ, 00°LTT  onn L 02 0S (4%9) 11
Lgoo*o oL*0  g9°0 QL'E  QT'0 63°98 86°LL Ly €T (0% 0$ (£x9) I
3pON UOT1BTASQ UOTFB TAS( T T U TN BWaTqOXg (WX L)
J9d PISPUELS UBIH WNWIXEN WNWFUTH ~ pISPURIS UWBSN  WMWTXBN 3y} JO UMWUTH Jo 9ZTg Iaqumy
. Louanbax g Jaquml waTqoxd guamTIadxy
*pnmnm SWTT, uOTAEINdWo) pPoJoTdXy SBapO) JO Jaqumy

| ' g . il

T g7 sanpadoag maﬂvnwom_uOM s3Tnssy

T°% 8Tq8L



82

(xs3ndwod 05/09€ WHI) SPUOdas UT Swil uOﬁpﬁpﬂmEoos

16L0°0 €2°g9 69°T9 68°61E 0S°E 90°LLg %9°9LL ETTH T 43 62 (S6xg) XI
1660°0 €0°H8 ®9°8S LO'wle SS°e T8 LY 89°986  6TLy € 93 62 (7%Q) ITIA
:Eh0°0 92°sy  LL°LT €g°Tte 08°T 6L°G80T TE'OTH 4056 ST 43 GE (€xg) ITA
50L0°C T6°92 gL°02 6E°29T TE'C gg*66E 06'262 ENNe € Le 0§ (6xL) TA
2€60°0  L9°RT  60°2T 6L°€9 L9°T gn°9ge 9r°lee  OTeT 9 Le 0S (txLl) A
JREC0  96°0T  4E'L  TS'gh 9T*'T 00°T62 2ST'E6T  OSGET AN Le 0§ (€xL) AT
wmwo.o 96°¢ gL'l sT°ye 05" T 719°96 29°QTT  68¢ £ oe 0s (6%9) IIT
L7000 99°% €6°n 26°61 90°T S8 E0T  02°HOT  9th 6 02 0§ (%%9) II
£€0°0 €92 Sn'z  lenT  EL'O 29'hg  gU'RL  89n by 02 05 (£%9) %
WA TGN SWerqoxd  (WX[)
SpOl TOT3BTASQ UBI) UMWIXBHY UNWIUTH UOTIBTA9Q UBSN WNWIXBH ay3 JOo UMWFUTH Jo 9ZTS Jaqumy
J8d  pIBpuBAg PIBDPUBLS Louanbaxd Joqum) wWaTqoXg quamTaadxy

quadg swly UoTgmindmo)
i

POIOTAXT SODPON JO Jaqumy

II g7 @anpadoxg Juppunog J0F s3Tneay

. 2'%. 9198,



(¥9IndmO2 0G/09€ WAI) SPUODIS UT SWF3 uoF3@qndmo)

3L90°0 . 2T°TH 02°E% 90°69T QS'E gn°oz9 39 QL9 o6he o 43 &2 (6%g) XTI
JTS0°0  g6°n6  66°89 96°94E &8¢ LS*GL6T 0O2°LnET  6L89 c GE T (rxg) ITIA
36€0°0  02'qEES 6E°22T gTgL6  ET*3 99°L899 TL'LIHE %8692 ot 143 49 (€xQ) TIA
:660°0  &n'92  L6°'T2 TL'@2T  4S'0 9T°S2s 967 96¢ ££9¢ T le 08 (oxk) IA
Mh0*0  T9°QT  26°ST 26°0Q EL°T 0 g9n 26" LSE onTe 9 Le 0§ (fxLl) A
32E0°0 Wm.:m 0£°02 69°0UT OE°T £6°00g 2L"229 0Tee T Le 08 (exL) AI
um:o.o €9 g6’ £9°ce 9e¢°T T6°LOT  QE°00T Les 6 Oc 08 (6%9) III
wmmo.o €6°6T  6E'N  RI'y 00°T 22'9TT %0°"eTT 8Ty 6 02 0S (f1%x9) IT
IL20°0  L9'{ e8¢t o' 6T gL0 LG LT fntonT T6L LT 0¢ 0§ (€%9) I
SPON  UOT3GLAD( UoT3BIASQ . WNW LU TN SWaLqoId (WXT)

I3 DIVPUTLE - UBS) UNWIXEN WNWIUTY  pPIBPUB3S UBS) UWMWIXBH ay3 JO uUMWTUINW Jo 9ZTQ Joqum

. Lousnbaay Joqum) wWoTqoId IFUSWTIAXY
¥¢nmgw U], UOTFEHNAWOY POIOTAXT S9PON JO Zoqumy

III €1 ampasold Jujpunog JI0J S3TNSIY

€ STaRI



8l

(799ndwoed 0S5/09€ WHT) SPUOdas UF ST noﬂvmuﬂmaoo*

INg0*0 Tl 92 8T°92 of°"L6 Lo'y N2 o9HE 9L°goE  {&2T L 4 6e (Sxg) X1
589070 gs'gn Lg* 62 GL'n6T ¢g€2'€ Lg'gnl fg@°wew 2662 9 GE 62 (t*Q) ITIA -
5060°0  66°KE S8°NT TS°2RT Ente 6e2*6nl LL'T62  6QQE Lx GE 149 {€xg) IIA
MLOTO L2'TT €0'TT E£6°29 91°'¢ 6T"L9T 20°64T  QE6 i L2 0s (6xL) IA
)e90°0  gSs'9 gh*9 20°9t 00°2 RT*0ST #n°"®oT 199 T L2 0s (nxL) A
Loro"c  6T°L 0T°6 69°gE 0S°T 26°LLT 22°60T 086 AT Le 0s (€xL) AT
%900 06°E BL°E gE*02 0&°T 6n°0L HE'QS TLE TT 0e 0s (6x9) ITI
:£60°0  06°T 65'2 26°0T QT°'T 2@ 6E en'gn  gie 9T oe 0s (7x9) IT
o000 RE'T H9*'T EL°9 28°0 6n°LE  ®S5°Of 96T ge oe 0s (€x9) I
9pO)N UOTABTAS( uoT4a TAS(d WO TU TR SmaTA0Xd (Wxp)

84 PpPJIBPUBLS UBSH UMMTXBN UNWIUYH  pIBpPUELS UWeal WNWIXeN a3 JO UMMTUTIR Jo 3219 Joqum

Louanbaxg Jaquml wWaTqoxg Jusmfxadxy

Juadg ewry UOI3Bsndwor
%

PaJIOTAXY S8epON JO Joqumy

ATl T 2Inped0Id IUTpunog J0J s3INSsy

h

%, oTaeL



(xe3ndmod 06/09E WHI) SPuUOdIs Ul 8wy noapapamaoo:

gnoto  26°ee g6°€2 H9'ETT 00°t 00°LLS e6°0ls TELS T €9 6e (Sxg) X1
I£0°0 H2™%9 T6°QE 65°K92 TE'T 60°2g02 gZE°LEST OT9Q | 43 ¢e (%xQ) TIIA
220°0 z2g'el 0g*Lz 9q7°s62 06°0 98°gL2E LEONST Tnlet }T 43 43 (€ExQ) IIA
9eED"0  BS°9T #§9°€T 26°20T Te2'T 79°69%r HE"OLE  9E62 £ le . 0s (sxL) . IA
gec*o 9L'9 9°9 G6°0E 06°0 98 THe " 96°0te  LgOT £ L2 0§ (txl) A
610°0 QT"0T 22°9 06°05 T9°0 6E°HES - 26°HTIE  90Lle ,:H. Le 08 (exl) AL
€€0"0 El'e Lt TO°RT 26°0 2e° g 92°€2T cth T fe 04 (5%9) ITI
€20°0 60°2 oh*2 QE'g 65°0 28 N8 2E" 66 1 X4 6 02 0$ (7%x9) II
LT0"0 €2°¢ 98°'T 06°6 oR°0 ER"EET  O0E"90T 996 T o2 04 (€x9) I
omoz UOTIRTAS( , VO T8 TAS( AW TUTH suaTqoLd (wxr)
Isd paBPUB}g UBS) UMWIXSN WNWTUTH  PIEPUBlS UESN UMWTXBR 2Y3 JO UMWIUTH Jo 2278 Joqum
. Lousnbaag : Jaqum) WaTqoIq Juamixadxy
.*pnmnm JWTL UOTF83NAmWOY peJoTdxy SopO) JO Laqumpy

A I 2I0pad0ld JuTpimog J0F 83TNSsY

$*h STPFL



86

*y 43TA pateqer swarqoxd 03 SUOTINTOS BYJ FUTUFRIGO INOYITM SPUODSS (QTT 4933 poddo3s sem umu:mﬁou*

*UOFITITWIT Puf3 I93ndwod JO 9ENBDIq PIUTEIGO JOU SISM SUOTINTOS
¥

*BpUOTIS UJ z93ndwod owxoom HgI uo ouwf3 uofF3Ieindwmo)

i

# %L°TT  8L°8T g9°L £0°2 * LL goY LL 98 8ve 0T
# 09°5¢ i €C°9E  TE°0T » LEL * 85y 44" 98T 6
€Y°€ 18°IT 19°0T 88°L 76T LL LL Y LL LL 292 8
# Z0°€T # c8°'8 ST°2 ¥ €6 ¥ €6 €6 444 L
i 6%°21T 68°TT # # * 98 86 ¥ * LT 9
£€T°€ 16°TT L%°0T 16°L 68°T 7 Y ) LL LL 622 S
6€°8 €Z°TT  ¥L°0T VAR 70°¢ VA4 LL ¥ LL LL 102 i
76°L 0z'we ¥8°0C T6°L ¥ 90% Z6T Z6T LL 907 LST €
# 92°21 # €2°8 90°¢ * LL * LL LL L6T z
96°C 12°¢CT # 89°CT LT'€ LL LL ¥ ™ T 0€T I
QUL
AgI AT €T IIT 91 II 91 Id1 A€l AI g€ III €1 II €1 I €1 @ °INpPeuds *ON
Tewr3do wRTqoad

Juadg PwW], uofie3induo)

+

peioTdxy S2poN JO Jaquny

X jueuwfxadxy I0J S3TNSIAY .

9 TqeL



87

SaUTYOR) 98Iyl JuTABH 925 WITQOId JO 3993FF 8yl T°4 "PTd

8QO[ JO Jaqumy

AT \ \ \
o S /
;o
/o
/ |
/ |

—_—
e

ITT |

0T

o¢

o€

quads awrg uoryeindmos uesy

sqof JO Jaqumny

[l

}

005

0001

00ST

000¢

00Se

paxoTdxs S2pou JO IaqUMU URS)



88

SaUTYIS INOJ JUTABH 92TS WITQOId JO I09JJF UL 2° °*ITd

SOUTIYIBN JO Jaqumy

ot

oe

0€

oY

0S

09

0L

quads swiy3 uorgeindmod usIR

BqOL JO Jaqumpy

ooz

1004

4009

—1008

000T

-1002T

- oont

paxordxs sapou JOo Jaqumu U



89

SaUTYIBY SATA Jutrasy 9ZTg WATQqoId JO 393JJT aYJ m.: .wﬂ.m

5qQ0Q JO Jsqmny 8qOf JO Joquny
0 0
- 0T 4 0oz
e \ i =
S / 0
7 \\\ 402 P - oon
.+.,.. [¢]
r ; §
AT i £
/
ey 3
/
/o :
I
/S 108 g ~ 008
rrr/ / 8
/ [
\s..
# - 06 . -1 000T
...\
!
!
! .
; _ o
17 ¢ - o2 o ] ooet

poxoTdxas sapou JOo Ia2quNU UBS)



g

+so8ury> sepou paioTdxs JO Jaqunu UBSW Y3 Y2Tym £q 103083 ®

*safueyo owp3 uoTiwindwod uesw Y3l YDITFYM Aq 103083 ¢

¥

SL°T %81 Le*e L0°C 96°'T 09°T 96°¢C 69°'¢ 76°¢ 65°¢ S
€8s GE*S 18y 90"Y EE'Y 9L°¢ €8y 7E'Y 6 Y A V4
ar’*y £6°¢E 16°¢C L9'¢ 2079 8v'q (A Z1°1 6%'C %1°¢T £ 8« L
L2t 00t 16'¢ 6G'¢ 9% °y ce't 69°¢ 9%°C 98¢ LG*T S
0L 4 A4 068°¢ S1°¢ t9°¢t 6T°¢ 1 A 81°¢C | £L°? 80°2 7
YeE'L 96°C 01'¢ 69°C £Z°'s Ev'y 66°C 09°¢ ¥6°¢C £9°¢ £ [+ 9
g 0 g 0 g 0 g 0 d 0 sauTorW I+ <«
10708 2I039®J 1030BJ J030BJ 103dBF 103dB] JI030BJ J030BI  I03dBg  I1030®J 30 - woxj
: x iaquny so8ueyd sqof
A q1 AL 971 III 91 II 91 1 91

jo aaquny

sqo[ Jo Joquny @2y3 uf 28ury) Jo IVVFIFA YL ’ :

L'y PTGEL



‘gafueys swf3 Uofleindwod usaw 9yl YIFym £q I030®37 §

-gafuey> sopou paioTdxe Jo Ioqunu ueaw Y3 YIFym Aq 103083

3%

19°0 9%7°0 68°0 eLto 29°0 L%°0 G0°T 8L°0 L6°0 £8°0 8
60°¢ 09°1 oLt 't 8E°1 01°'T IL°1 8T°T 9°1 9¢°T L
69°T 6C°T Syl 0T'1 1°1 68°0 96" T €1°1 T 0T'T 9 S« ¥
6E£°T 66°0 L6°T A 96°0 6£°0 62°¢ ov°e 68°¢ wE"T 8
90°1 €L°0 2T 5670 8L°0 LGS0 79°'T ET™T VAR 8T T L
e°T 68°0 LS°T 6T°T ET°T 6L°0 T0"Z ov'1 8°1 0s°1 9 <t
g K g © g 0 9 0 g 8 sqof H+EEMHM
10308f J03I0BJ I030B] 1030BJ I0Id®I 10308 10308 103083 guouumm_ «uouumm Jo P i
A T1 AL 91 | IIT 971 I1I 91 I 491 hmmEﬂz seuTyorU
. FJo aequny

SoUTYoRK FO Jdquny 2yl uf 23uey) Jo BIVIIFH *YIL

8% ST9BL



92

CHAPTER V
SUMMARY AND CONCLUSION

The basic objective of this report is to analyze énd compare various
bounding proceaures used in branch-and-bound technique to obtain the
lower-bounds for the solution of flow shcp scheduling problem. In flow
shop certain jobs are performed on various machines in an identical
routing. This problem is first defined and-fermulated mathematically.
The branch-and-bound concept, and branching, bounding and back-tracking
processes are also discussed in detail. The bounding procedures subject
to combarison in this report are analyzed. Various computational experi-
ments were performed to carry out the investigation. The comparison was
based on both the number of nodes explored and the computation time spent
- in obtaining an optimal solution.

For convenience, the summarized results of Experiments I - IX are
given in Table 5.1. This will help analyze the results vertically and
horizontally. The vertical analysis means the study of the effects in
the changes of the number of jobs or machines in each bounding procedure,.
However, by horizﬁntal analysis, is meant the study of the performance
{(number of nodes exPlored and computation time) of the various bounding
procedures in each experiment,

Iﬁ‘énglyzing the results of all bounding procedures, most significant
observations are obtained -

1. The number of nodes explored and the computation tiﬁe increases with
thé increase of the number of jobs.

2. The computation time is proportional to the number of nodes explored.
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In general, the number of explored nodes, and, thus the computaticu
time increase as the number of machines increases with a fixed ruwber
of jobs; however, this was not the case in few experiments.
Computation time required to explore a node depends upon the number
of machines.

Computation time is a better criterion for comparing various bounding
procedures, since the computation time required to explore a node
varies from one bounding procedure to another. TFor example, in

Table 5.1, LB I and LB IV explored on the average 77.98 and 40.54
nodes, respectively, to solve a problem having 6 jobs and 3 machines.
At first glance, it appears that on the average LB IV is more ef-
ficient than LB I, since it reached the optimal after exploring
comparatively less number of nodes. On the other hand, LB I and

1B IV require on the average 0.68 and 1.64 seconds to solve a (6x3)
problem. Thus, the LB I is more efficient than LB IV, though it
Tequires to explore more nodes., The reason is that LB I spends less
computation time in calculating a lower-bound for each node than

that by LB IV.

The ranking according to the number of explored nodes and the compu-
tational time are shown in Table 5.2 and 5.3. Bounding procedure

LB IV is ranked first according to the numbér of explored nodes in
alirexperiments; however, it is ranked second in Table 5.3. This is
because the computation of lower-bound for a node by LB IV requires
the lower-bounds computed by LB I and LB III, and, hence, more compu-
tation effort is required. LB III is generally ranked last according

to both the number of explored nodes and the computation time. As



9k

*Spuco98 ur ‘xajndwod Q0G/09¢ WHI WO SuWi3 uoTrendmo)d
#*

gr"$ LT GG'6T  E£6°'TT LE‘E 0¢*2ET 00°LOT E£8°'fST 22'g2T  99°'0sT (ex2T) X
g6°€z gr'9e  02°Eq 69°T9 €§°ET  2S°0LS 9L°QOE 08°BE9  N9'9LL  n0°E%¢ (6%g) XI
®9°ET E€O°TT L6°Te gL'02 OL°% nE*OLE 20°64T 86°96E 06°262 9L°cEe (sxL) IA
LT’y L€ 26" % 2L°L %9°T  92°€8T HE'QS  QET00T  29°QTT  Ox"6eT (6x9) 111
16°0€  l2'62  66°99 49°8S ne'HT  2E°LEST wgTneh 02'L4ET 897986  9STTEOT (h*g) IIIA
$9°9 gn°9 26°6T 60T 68°2 96°0€2 Hh"HOT 26°LSE 91°legz yn°Ene (f%xLl) A
gn"e 692 6E° N g6  w2'T 2€°66 2n'gy  KO'STT 02'70T  00°LTT (%%9) II
ogle  Sg°HT 6£°22T LL°LT 66°f  LEcon2T LL°T62 TL-LINE TE°OTh  TL Ok (€x@) IIA
22'9  0T'$ 0E'02 HE'L 00'2  26°HIE 22°60T 2L°229  TUL'E6T 927502 (€XL) AT
98°T  49'T 8g "€ ¢r'z  §9°0  OE'90T HG'O%  wnTORT  QT'wL  86°LL (€%9) I
AgT AT 9T IIT € IT € 141 AGT AI ST IIT €T IIgl T4l
=pnumw maﬂa.noﬂpmpsamou R pogoTdxy 4&poN JO Jaqump] Wedj ﬁoﬂmwwm pﬂmﬁmwmmmm

gaanpacodd Furpunog TIV 407 s3(nsesy jo Aremmg

T°S 9TqL



95

IT 91 TII &1 III 91 1II 971 IIT 91 111 91 11 91 II 91 111 91 S
TII 971 11 91 A €1 11 €1 11 91 I1 91 III 91 IIL 91 11 91 i
AL 91 A 91 II €1 & 57 A 91 A 91 A 91 AI €1 A g1 =
A 91 Al 91 AT €1 AT €1 AT €1 AT €1 AT €1 A g1 AL €1 z
I 91 T g1 I €1 I 91 I 91 1491 141 I 91 141 T
(5%g) (¥%8) (£%g) (sx%L) (7%L) (€x%L) (Sx9) (§2.°)) (€x9)
Nuey
Juswfaadxy
Qwyll uoFiwindwo) uo peseyg s9inpoloig Jujpunog Jo Nuey
£°6 91qel
I a1 IIT a1 III €1 ITI 91 111 91 III 971 T 91 191 III 91 g
I1I 91 A 91 A g1 A g1 197 A g1 A €1 III 91 A 91 Vi
11T 91 I 91 I 91 I 91 A 97 I 91 IT 91 11 91 1 91 €
A 91 II 91 II 91 11 91 IT 97 II 91 IIT 91 A g1 11 91 z
AL 41 AT €1 AT 91 AL 91 AT 91 AT 91 AT €1 AT €1 AL 91 T
(5xg) (7%g8) (£%g8) (6x/) (h%L) (€xL) (5x9) (7%9) (£x9)
Nuey
Jusutaedxy

sopoN pexoTdxy JOo Xoquny UOo peseg Soanpedoid Surpunog Jo yuey

T°S OTEL



clear from Table 5.3, LB V and LB II are ranked third and fourth,
respectively in most of the experiments. However, these rankings

vary from one experiment to another as shown in tables.
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APPENDIX A

In this appendix, an algorithm for finding an optimal sequence for
two-machine flow shop problem is stated. This algorithm is based on
Johnson's criterion [9] for two machines which can be restated as:
job jr must precedes job jS on machines m and mtl in order to minimize

the schedule time, if

min [t. y L. ] < min [t. y L, ]
jim Jsm+1 er+l igm

holds.
The algorithm may be summarized in the following steps.
Step 1: Arrange the processing times of the jobs on machines m and mtl,

as follows:

* Job Index Machine m Machine m+l
1 tim Eiorel
z ~ Yon Comrl
d _ €y oyl

Step 2: Examine all processing times for the minimum value.
2,1 If the minimum processing time is tjm’ schedule the
- corresponding job first on machine m.
2.2 If the minimum proceésing time is tjm+l’ schedule the

corresponding job last on machine m.



2.3 1f a tie exists among the processing times on the same
machine, schedule the job with the smallest degignation
first. |

2.4 If a tie exists for the same job on both machinés, consider
it as in step 2.1.

Step 3: Cross off the job just assigned and repeat step 2 on the reduced-

set of processing times.

To illustrate the algorithm, the processing time matrix of the sample

problem solved in Section 3.6 is reproduced below

9 13 6]
7 7 20
6 4 8
T =
8 3 10
20 7 2 ’
10 2 13
i i

To find the preliminmary sequence on machines 1 and 2, the first two
columns of the processing time matrix are considered. Thus, according to

step 1 the processing times are arranged as follows:

Lm0
1 9 13
2 7 7
3 6 4
4 8 3
5 20 7
6 10 2
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According to step 2, the minimum processing time is 2 units for job 6
on machine 2. Therefore, job 6 is scheduled in the last sequence-position.

According to step 3, job 6 is crossed off, since it has been already
scheduled.

RePéating steps 2-3 on the reduced set of processing times, the
preliminary sequence {2 1 5 3 4 6} is obtained. Similarly, the preliminary

sequence on machines 2 and 3 is found to be {6 4 3 2 1 5}.



Appendix B
' START )

Read
J,M, T

Set L=0
call BRANCH

Set T= "B

Set L=L-1

Yes

Find LB and
call BRANCH

Print the
solution

No JB < T?

Yes

Set T = JB

Figure B.1

Flow Chart for Branch-and-Bound Algorithm
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('START' )

>,
>

Y

Set L=L+1

r

Form the par-
tial sequence
in each node

A

Compute
LBn

P

!

Find the

active node

Yes Complete

v

the sequence

Set LB=+m ( RETURN )

Figure B.2

Flow Chart for Branch Subroutine
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JOB

OO0 0O000O000000O0000000O00O 0000000000000 0 e

MNQ, RUN=CHECK 102
PROGRAMMED BY <csccscccssssss M. NAWA QURAISHI

THIS PROGRAM CONSISTS OF MAIN AND SEVEN SUBROUTINES.

THE BRANCH-AND-BOUND ALGORITHM OF SECTION 2.3 IS
PROGRAMMED IN FORTRAN IV . THE BACK-TRACKING PROCESS
GUARANTEES THE OPTIMALITY. THIS PROGRAM IS COMPLETELY
GENERAL IN THE SENSE IT CAN HANDLE ANY NUMBER OF JOBS
AND ANY NUMBER OF MACHINES. IT CAN READ AS WELL GENERATE
THE PROCESSING TIMES.

CONTROL CARD FOR THIS PROGRAM CONTAINS FOLLOWING
VARIABLES-

JOBS NUMBER OF JOBS
MACH NUMBER OF MACHINES
IREAD DATA ORIGINATION

1 = READ PROCESSING TIMES FROM CARDS
0 = GENERATE PROCESSING TIMES

LIMIT] USED ONLT WHEN IREAD = 0,
SMALLEST VALUE IN THE INTERVAL ( A,B )

LIMIT2 USED ONLY WHEN IREAD = 0,
LARGEST VALUE IN THE INTERVAL ( A,B )

ISKIP CONDITIONAL PRINT OUT
1 = PRINT THE MINIMUM LOWER-BOUND FOR
FACH NODE AT EACH LEVEL
0 = DO NOT PRINT THE MINIMUM LOWER-BOUNDS

IPRINT CONDLITIONAL PRINT OUT
1 = PRINT THE ELEMENTS FROM WHICH LOWER-
BOUND IS COMPUTED, AND THE LOWER-BOUND
FOR EACH MACHINE
0 = DO NOT PRINT THE ABOVE

ICARD CONDITIONAL PUNCHED OUTPUT
1 PUNCHED OUTPUT NEEDED

0 = NO PUNCHED DUTPUT NEEDED
NPROB NUMBER OF PROBLEMS
1Y STARTING POINT FOR RANDOM NUMBER
GENERATOR
NBF FIRST BOUND
NBL LAST BOUND

COMMON IT{20,10),MACH, ISTMIN,KOUNT, IPRINT,IB
COMMON J(20),ILB(20,20),KONTMB,KONTJB,KONTMJ
COMMON NREPET,JSQ(20,20,20)

1500 FORMAT{915,110,215)
1501 FORMAT{10I5)
1502 FORMAT{1H1,10X,*THIS IS THE PROCESSING TIME MATRIX?',

160X, *PROBLEM NUMBER'",13)



(== Vo - - R

12

13
l4

15
16
17
18
19

20

21
22

23
24
25

26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

o000

OO0

OO

1503 FORMAT(1H ,1015) 103

1511 FORMAT(1lH ,10X,*COMPUTATION TIME =',F10.2,' SECONDS')

1512 FORMAT(1H ,'THIS SOLUTION IS OBTAINED BY BOUND',I1)

1513 FORMAT(1H ,10X,*TOTAL NUMBER OF NODES FOR WHICH ',
1*COMPOSITE BOUND IS PICKED UP FROM MACHINE BASED BOUND',

1' ONLY = *,19)

1514 FORMAT(1H ,10X,'TOTAL NUMBER OF NODES FOR WHICH *,
1*COMPCSITE BOUND IS PICKED UP FROM JOB BASED BOUND ',
1°0ONLY = ',19)

1515 FORMAT{1H ,10X,'TOTAL NUMBER OF NODES FOR WHICH COMP®',
1'0OSITE BOUND IS PICKED UP FROM BOTH BOUNDS = ',19)

1516 FORMAT(1HO,130(1H%))

1517 FORMAT(1H +10X,"NUMBER OF TIMES THE SCHEDULE TIME IS',
1* IMPROVED BY BACK-TRACKING = *,19)

1518 FORMAT(1H ,10X,'TOTAL NUMBER OF NODES EXPLORED =1',19)

1519 FORMAT(1HO,130(1H*))

1520 FORMAT(I10,F10.2,110)

1521 FORMAT(I10,F10.2,4110)

1600 FORMAT(1H ,10X,*SCHEDULE TIME = *,15,10X,*OPTIMAL *,
1"SEQUENCE = ",2014%)

READ(1,1500) JOBS,MACH, [READoLIMITL,LIMIT2,ISKIP,
1IPRINT,1CARD,NPROB, IY,NBF,NBL

DO 14 NP = 1,NPROB

IF{IREAD.EQ.O) GO TO 990

READ PROCESSING TIME MATRIX FROM CARDS IF IREAD =1

DO 1 JC = 1,J08S
1 READ(1,1501) (IT(JCyM)yM = 14MACH)
GO TO 992

GENERATE PROCESSING TIME MATRIX IT{(JsM)

$90 DO 991 K = 1,MACH

DO 991 JA = 1,J0BS

IT{JAyK) = BANDNO(IV)*LIMIT2 + LIMIT1
S91 CONTINUE
S92 CONTINUE

PRINT THE PROCESSING TIME MATRIX

WRITE(3,1502) NP
DO 993 JC = 1,J0BS

S93 WRITE(3,1503)(IT(JC,M), M = 1,MACH)
JOoB = JOBS - 1
DO 15 IB = NBF,NBL
ITERM = O
LV = 0
KOUNT = 0
KONT =
KONTMJ
KONTMB
KONTJB
NREPET
ISTMIN 99999
CALL INTIME(ITIMELD)
CALL BRANCH (LV,JOBS,KONT,NACTIV,ITERM)
ISTMIN = ILB(JOBS,1)
D0 5 K = 1,J08B
JSQUJOBSy1,K) = JSQUJOByNACTIV,.K)

nmunwnno

CoOoo



50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
13
T4
75
16
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

(s NNl

1200

700
710

750

730

170

71
160
1300

984

986

985
987

S94

982

595
16
15

CONTINUE
BACK TRACKING

LV = Lv-1

LTERM = O

ND = JOBS # 1 - LV

DO 700 N = I.ND
IF(ISTMIN-ILBTLV;3;N))T00,700,710

CONTINUE

LF{LV<GT.1) G0 TOo 1200
IF(LVJEQ.1) GO T 1300
LBX = ILBILV,.1)

NACTIV = 1

00 730 NOD = 24ND
IF(LBX-ILB{LV,NOD))730,730,750

LBX = ILBILV,NOD)

NACTIV = NOD

CONTINUE

ILBILV,NACTIV) = 99999

CALL BRANCH (LV,JOBS+KONTE4NACTIV,ITERM)
IF(ITERM.EQ.L) GO TO 1200
LF{ISTMIN-ILB{JOBS,1))760,760,770
ISTMIN = ILB{JOBS.1)

DO 771 K=1,J08
JSQUJOBS+1,K)=JSQ{JOB,NACTIV.K)
CONTINUE

GO TO 1200

WRITE{3,1516)

WRITE{(3,1512) 18

DO 984 K=1,J0R

JIK)=JSQUIOB,NACTIV,K)

CONTINUE

DO 985 K=1,J08BS

DO 986 KS = 14J08B

IFIK.EQ.J{KS)Y GO TO 985
CONTINUE

JSQ(J0OBS+1,J0BS)=K

GO TO 987

CONTINUE

CONTINUE

CALL INTIME(ITIME2)

COTIME = ( ITIME2-ITIMEl )/100.
WRITE{3,1600) ISTMIN, {(JSQ(JOBS,14K),K=1,J08S)
WRITE(3,1518) KOUNT

WRITE{3,1511) COTIME

WRITE{(3,1517Y KONT

IF{IB.EQ.5) GO TO 982
IF{ICARD.EQ.O) GO TO 994
WRITE(2,1520) KOUNT,COTIME,KONT

CONTINUE

GO TO 16

WRITE(3,1513) KONTMB
WRITE(3,1514) KONTJB
WRITE{3,1515) KONTMJ

LF{ICARD.EQ.O)} 60 TO 995
WRITE{2,1521F KOUNT,COTIME,KONT,KONTMB,KONTJB,KONTMJ
CONTINUE

CONTINUE

CONTINUE

104



107 14 CONTINUE 105

108 sTOP
109 END



110
111
112
113
114
115
116
117
118
119
120
121
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

145
146
147
148
149
150
151
152
153
154
155
156

157

158
159
160
161

OO0

YOO

5C00
5100

27

26

701
702
703
704
705

25

1€00

50

80

70
60

SUBROUTINE BRANCH (LV,JOBS,KONT4NACTIV,ITERM) 106
COMMON IT7{20,10)4MACHyISTMIN,KOUNT, IPRINT,IB

COMMON J(20),ILB{20,20)KONTMB,KONTJIBs KONTMJ

COMMON NREPET»JSQ(.20420,20)
FORMAT(1H—-45X, SHLEVEL y 15X, 4HNODE 4 10X, 16HPARTIAL SEQUENCE)
FORMATI{1HO,TX%,12,18X,12,16X,2012)

L=LV+1

JOB =J0BS-1

BO 10 LL = L,JDB

LiLP=LL-1

NN=JOBS+1-LL

KOUNT = KODUNT + NN

IF{LL.GT.1) GO TO 1000

FORMING THE PARTIAL SEQUENCES AT LEVEL 1 AND COMPUTING
THE LOWER BOUND FOR EACH NODE.

DO 25 N = L,NN

JSQILLsNs1} = N

IF(IPRINT). 26426427

WRITE(3,5000)

WRITE{3,5100) LLoNyJSQILLsN,1)

IF{1BJEQ.1) GO TO 701
IF(1BJEQ.2) 60 TO 702
IF(1BJEQ.3) GO TO 703
IF(IBJEQ.4) GO TO 704
IF(IBJEQ.S) GO TO 705
CALL BOUNDL (NN,LL,JOBS,N)

G0 TO 25

CALL BOUND2 (NN,LL,JOBSsN)

GO T@ 25 ;

CALL BOUND3 (NN,LL,sJOBS,N)

60 TO 25

CALL BOUND4 ( NNoLL,JOBSeN)

GO TO 25

CALL BOUNDS { NNslLyJOBS4N)

60 TO 25

CONT INUE

GO TO 100

FORMING THE PARTIAL SEQUENCES AT LEVEL LL ( LLIS GREATER
THAN 1 ) AND COMPUTING THE LOWER BOUND FOR EACH NODE

DO 50 K = 14LLP

JIK)= JSQ{LLP,NACTIV,K)
CONTINUE

DO 60 K = LL,JOBS

KK = K-1

DO 70 JUNK = 1,J08S

DO 80 I = 1.KK
IF{JUNK.EQ.J{1)} 60 TO0 70
CONTINUE

JIK) = JUNK

GO 70 60

CONT INUE

CONT INUE

KA = LL-1

DO S1 N = 1,NN

KA = KA + 1
JSQILLsN,LL) = JIKA)



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

(s N e Xyl

51

53
52
92

91

61
62
63
64
65

90

100

40
30

1400

1100

35
10

15

CONTINUE

DO 52 N=14+NN

DO 53 K = 1,4LLP

JSQILLsNsK) = J{K)

CONTINUE

DO 90 N = 14NN

IF({IPRINT) 91,91,92

WRITE(3,5000)

WRITE{3,5100) LLyNy{JSQILLsNsK)K=1,LL)
IF(IB.EQ.1) GO TO 61
IF(IBJEQ.2) GO TO 62
IF(IB.EQ.3) GO TO 63
IF(IB.EQ.4) GO TO 64
IF({IB.EQ.5) GO TO 65
CALL BOUND1 (NN,LL,JOBS,N)

G0 TO 90

CALL BOUND2 (NN,LL,JOBS¢N)

GO TO 90

CALL BOUND3 ([NN,LL,JOBS,N)

GO0 TO 90

CALL BOUND4{NN,LL,JOBS,N)

GO TO 90

CALL BOUNDS(NN.LLsJOBSsNX

G0 TO 90

CONTINUE

SEARCH FOR THE ACTIVE NODE AT LEVEL LL

LLB = ILB(LL,1)

NACTIV = 1

DD 30 N = 24NN
IF(LLB-ILB(LLsN))30,30,40

LLB = ILB(LL,N)

NACTIV = N

CONT INUE
IF{ILB{LL.NACTIV)=ISTMINY1100,1400,1400
LV = LL

LTERM = 1

GO TO 15

IF(LL.EQ.JOB) GO TO 35
ILB{LL,NACTIV) = 99999

G0 7O 10

ILB{LL+1l,1) = ILBI(LL,NACTIV)

CONTINUE

LV = LL

KONT = KONT +# 1

RETURN

END
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2C7
208
2C9
210
211
212

213
214
215
216
217
218
219
220

221
222
223
224

225
226
227
228
229
230
231
232
233
234
235
236

237
238
239
240
241
242
243
244
245
246
2417
248
249
250
251
252
253
254
255

[sNeXuRql

OO0

1700

1710
1720
1740
1750
1760
1770
1780
1790

120

130

150
160
155

420
410

430

510

SUBROUTINE BOUND1 {NN,LL,JOBS,N)

DIMENSION ITRR(10),ITRMM{10),ICT(20,20)
COMMON IT{20410)4MACH,ISTMIN,KOUNT,IPRINT,IB
COMMON J{20),ILB(20,20),KONTMB,KONTJB,KONTMJ
COMMON NREPET,JSQ{20,20,20)

FORMAT(1IH ,10X,'JOB?,10Xs"ML M2 M3 M4
1* M6 M7 M3 M9 M10 ')
FORMATI(1H ,10X,12,6X,1017)

FORMAT{1H ° ¥%kx¥¥x COMPLETION TIME MATRIX
FORMAT{1lH ,10X,"SECOND TERM?®,10X,*MACHINE")
FORMAT{IH 413Xs14,14X,14)

FORMAT{1H 4 11X,*'THIRD TERM',10X,*MACHINE")
FORMAT({1H ,10X,'ON MACHINE *,I2,' LOWER BOUND IS
FORMAT(1H s 11HLOWER BOUNDj15X,5HLEVEL, 15X, 4HNODE)
FORMAT(1IH 44X,15919X,12,18X,12)

IF{IBJEQ.S) GO TO 155
DO 120 K = 1,LL

JIK) = JSQILL.NyK)

CONTINUE

SPLITTING THE JOBS WHICH ARE NOT INCLUDED IN THE
PARTIAL SEQUENCE

JU = LL+1
DO 160 K = JU,JDBS
KK = K-1

DO 150 JUSK = 1,J08S

DO 130 I = 1,KK

TF{JUSK.EQ.JI(T)) GO TO 150
CONTINUE

JIK) = JUSK

GD TO 160

CONTINUE

CONTINUE

CONTINUE

M5°%,

EEEXET )

*y14)

FORMING THE COMPLETION TIME MATRIX FOR JOBS INCLUDED IN

THE PARTIAL SEQUENCE

DO 400 I=1,1L

JJ = J(I)

IF(I.GT.1) GO TO 430
DO 410 ™ = 1,MACH

IF{M.GT.1) GO TO 420

ICT{Jd, M} = IT(IJM)

ICTF = ICT(JJ.M)

GO TO 410

ICT(JJ,M) = ICTF + IT(JJ,M)
ICTF = ICT{JJ.M)

CONT INUE

GO TO 400

1t = 1I-1

Jp = JiIn

DO SC0 M = 1.,MACH

IF{M.GT.1) GO 7O 510
ICT(JIeM) = ICTC(IP MI+IT(dJ.M)
GO TG 500

MM = M-]
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256
257
258
259
260
261

262
263
264
265
266
267
268

269
270
271
272
273
274
275
276
277
278
2719
280
281

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

297
258
299
300
301

OO0

OO0

(alzlz

OO0

520
500
400

106
105

180

185

109
108

190

210
220
200

250

111
110

IF{ICT(JJMM)GELICTL{IP, M)) GO TO 520 109
ICT(JJsM) = ICTUIP,MI+ITIJI,M)

GO TO 500

ICTUJIM) = ICT(II, MMIHIT(II M)

CONTINUE

CONTINUE

PRINT THE COMPLETION TIME MATRIX IF IPRINT =1

LF{IPRINT.EQ.O) GO TO 105
WRITE(3,1720)

WRITE{(3,1700)

D0 106 K = 1,LL

JK = JIK)

ﬂRITEl3f1710‘ JK!(ICT{JK;“’:H = 11HACH'
CONTINUE

SECOND TERM IN THE BROWN AND LOMNICKI FORMULA

KU = LL +# 1

DO 185 M = I,MACH
ITR = 0
DO 180 1
K = J(1}
ITR = ITR #+ IT{(KyM)

ITRR{M) = ITR

CDNTINUE

IF{IPRINT.EQ.0) GO TO 108
WRITE(3,1740)

DO 109 M = 1,MACH

WRITE{3,1750) ITRR(M),M

CONTINUE

(1]

KU, JOBS

FHIRD TERM IN THE BROWN AND LOMNICKI FORMULA

MMM = MACH - 1

DO 250 M = 1.,MMM

MA = M+l

DO 200 I = KU,JOBS

ITRM = O

DO 190 MR = MA,MACH

K = J(I)

ITRM = ITRM ¢ IT(K,MR)
IF(1.GT.KU) GO TO 210
ITRMIN = ITRM
LF{ITRM-ITRMIN) 220,200,200
ITRMIN = ITRM

CONTINUE

ITRMM(M) = ITRMIN

CONTINUE

PRINT THE THIRD TERM FOR ALL MACHINES , EXCEPT THE LAST.

IF{IPRINT.EQ.O) GO TO 110
WRITE(3,1760)

DO 111 M = 1,MMM

WRITE(3,1750) ITRMM{M),M

CONTINUE

COMPUTATION OF LOWER BOUND



302
303
304
305
306
307
308
309
310
311

312
313
314

315
316
317
318
319
320

OO0

OO0

610
620
630

112

600

113

DO 600 M = 1,MACH

JL = JI(LL)

IF{M.EQ.MACH) GO TO 610
LB = ICT{(JL,M) + ITRR{M) & ITRMMI(M)
IF{M.GT.1) GO 7O 620
ILB{LL.,N) = LB

GO TO 112

LB = ICT{JL,M) + ITRR{M)
IF(LB=ILB(LL,N))112,112,630
ILBILL,N) = LB

PRINT THE LOWER BOUNDS FOR EACH MACHINE AT LEVEL LL.

IF{IPRINT.EQ.O)
WRITE{3,1770) M,LB
CONTINUE

PRINT THE LOWER BOUND AT LEVEL LL , IF ISKIP

IF{ISKIP.EQ.O)

WRITE(3,1780)

WRITE{13,1790) ILBALL,N),LLsN
CONTINUE

RETURN

END

GO

GO

T0

TO

600

113

1.
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321
322
323
324
325
326
327
328
329
330
331
332

333
334
335
336
337
338
339
340
341
342

343
344
345
346
347
348
349
350
351
352
353

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

(s Na NNyl

OO0

OO0

3C00
3010
3C20
3030
3040
3C50
3060

691

680
685

705

700

670
675

715

710

SUBROUTINE BOUND2 (NN,LL»JOBS.N)

DIMENSION JOS{10520)4JPSE10,20)+ICT(20,20),ITXMM(10)
COMMON IT(20,410)+MACH, ISTMINysKOUNT, IPRINT, 1B

COMMON J120),1LB120+20) s KONTMB4KONT JBoKONTMJ

COMMON NREPETsJSQ120,20.201

FORMAT(1H ,*SEQUENCE ON MACHINE',12,*AND*,12,'15",2012)
FORMATI1H »°* COMPLETION TIME MATRIX'}

FORMAT{1H 20Xs*JOB®s 15X *MACHINE® ,12915Xs "MACHINE®,13)
FORMAT(1H 420Xs12417X414421X514)

FORMAT(1H ,* SECOND TERM ON MACHINE'"+12+"AND"313,'=",15)
FORMAT{1H ,*'LOWER BOUND ON MACHINE®,12;"AND*,13,'IS5%,15)
FORMAT(1H ,°*LOWER BOUND AT LEVEL",12,°FOR NODE®",12,°="415)

FORMING THE SEQUENCE ON MACHINE M AND M+1 BY USING THE
JOHNSON'S CRITERION.

IF(NREPET.EQ.1) GO 1O 692
MM = MACH - 1

DO 690 M = 1,MM

DO 691 JE 1,J08S

JOS{M.JE) 0

JX = JOBS 1

JJ =1

TJUMP = O

D0 695 JD = 1,J08BS

MINT = 9999

* W

THIS PART COMPUTES THE MINIMUM PROCESSING TIME AND
CORRESPONDING JOB ON MACHINE M

D0 700 JA = 1,J08BS

IF{ 1JUMP.EQ.O) G0 TO 685
DO 680 JR = 1,J08S

IF(JA.EQ.JOS{M,JR)) GO TO 700
CONTINUE

IF{ITL{JA, M) LT MINT) G0 TO 705
60 TO 700

MINT = IT{JA,M)

JMTX = JA

CONTINUE

MIT = S999

THIS PART COMPUTES THE MINIMUM PROCESSING TIME AND THE
CORRESPONDING JOB ON MACHINE M+1

po 710 J8 = 1,J08S

IFl TJUMPLEQ.O) 60 TO675

DO 670 JQ = 1,J0BS

IF{JBJEQ.JOS (M, Q) ) GO TO 710
CONTINUE

IF(ITIJByM+1).LT MIT) GO T0 715
GO TO 710

MIT = IT{JByM*1)

JNMTY = JB

CONTINUE

IF(MINT.LE.MIT) GO TO 720
JX = JX = 1

JOS{MuJX) = JIMTY

IJuMP = 1

IF{JXJEQ.1) G0 TO 721
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369
370
371
372
373
374
3i5
376

377
378
379
380

381
382
383

384
385
386
387
388
389
390
391
392
393
394
395
396
397
368
399
400

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

(aNaNe! OO0

aNeNeN g

OO0

720

721
695
690

692

102

101

731

136

134

735

732
733

137

141
740

60 TO 695

JOS(M,JJd) =
LJUMP = 1

JJ = 4 + 1
CONT INUE
CONT INUE
NREPET =
CONT INUE

JNTX

NREPET + 1

PRINT THE SEQUENCE IF IPRINT =

LF{IPRINT.EQ.O)
DO 102 M = 1.MM
MR = M + 1

WRITE{3,3000) M,MR, (JOS(MsJINY,JIN

112

GO 70 101

= IQJDBS,

SPLITTING UP THE JOBS INCLUDED IN THE PARTIAL SEQUENCE

DO 731 K = 1,LL
JIK) = JSQILLsN,K)
CONTINUE

SPLITTING UP THE REMAINING JOBS FROM THE SEQUENCE
COMPUTED BY THE JOHNSON®S CRITERION.

Ju = LL + 1

DO 733 M = 1.,MM

KN = 1

D0 732 K = JU,JOBS

JUSK = JDS{M4KN)
DO 734 1 = 1,LL
LF(JUSK.EQ.J(T1))
CONTINUE
JPSIM,K) = JUSK
KN = KN + 1

IF(l KN.GT.JOBS)
G0 TO 732

KN = KN + 1

IFl KN.GT.JOBS)
60 TO 736
CONTINUE
CONTINUE

GO TO 735

(]

KN JOBS

KN JOBS

FORMING THE COMPLETION TIME MATRIX

DO 750 M = 1.,MM

MF = M + 1

DO 737 K = JU,JOBS
JIK) = JPSIM,K)
IF{MF.GT.2)
DO 738 I =
J44J = J(1)
IF{I.GT.1)
DO 740 MA =
IF(MAJGT.1)
ICTUJJJsMA) = IT(JJJdeMA)
ICTF = ICT(JJJ,MA)

GO TO 740
ICTtJII.,MA) =
CONTINUE

1,J08S

MyMF

ICTF + IT{JJJ,MA)

GO TO 742

G0 TO 739

GO TO 741



416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

457
458
459
460
461
462

463
464
465
466
467

OO0

OOOO0

739

745

T46
743
738

758

T42

T48

751

147

752

754

753

104

601

759

G3 TO 738

LI = I-1

4P = J{IT1)

DO 743 MA = M.MF

LF{MA.GT.1) GC TO
ICT{JJIMA) = ICTLJIPLMA) + IT(JJJ.MA)
GO TO 743

MN = MA - 1
IFUICTIJIJoMNY.GESICTIJIPMA) ) GO TO
ICT{JJJIsMA) = ICFLJP,MA) + ITIJJJ,MA)
GO TO 743

ICT{JJIeMA) = ICTEJIILMNY ¢ IT(JIJJeMA)
CONTINUE

CONTINUE

GO TO 104

CONTINUE

GO TO 602

DO 747 IR = 1l.LL

JJJ = J(IR)

IF(IR.GT.1) 60 TO
ICTIIJI NF) = ICTHJII,M) #+ ITUJII4NF)
GO TO 747

I = IR~-1

JJP = JII11)

IF{ICT(JIP MF).GEJICT{JJJeM)) GO 10
ICTUJJIMF) = ICTEJII M) ¥ ITLIJIMF)
GO TO 747

ICT{JJIIMF)Y = ICTUJIPMF)Y + IT(JJIJ,MF)
CONTINUE

DO 752 K = JU,JOBS

Jd = JIK)

JR = J(K-1)

ICTUJIsM) = ICTUIR,M) + ITUII4M)

DO 753 K = JU,JOBS

KR = J(K)
JN = J(K-1)
IF{ICTI{KRyM)eGE.ICT{JNsNF)) 60 T0

ICT(KRyMF) = ICT{JIN,MF) ¥ IT{(KR,MF)
GO TO 753
ICT{KRsMF) = ICTI{KR,M) + IT(KR,MF)
CONTINUE

745

T46

748

751

754

PRINT THE COMPLETLON TIME MATRIX IF IPRINT

IF({IPRINT.EQ.O) G0 TO
WRITE (3,3010)

WRITE{(3,3020) M,MF

DO 601 JM = 1,J08BS

JK = J(JM)

WRITE{(3,3030) JKoICTIJIKsM),ICT{JIK,MF)

FINDING THE MINIMUM OF THE SUMS OF PROCESSING TIMES
FOR JOBS NOT INCLUDED IN THE PARTIAL SEQUENCE ON

SUCCEEDING MACHINES.

MH = MF + 1

IF{M.NE. MM) G0 10
JJ3J = JLJOBS)

LB = ICT(JJJeMF)

LFI{LB — ILB{LL,N))521,521+522

759

523
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468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

483
484
485
486
487
488
489
490
491
492
493
494
495

OOG

522
521
523

761

162
763
760

524

157
765
602

750

603

ILB(LL.N) = LB

GO TO 602

DD 760 KA = JU,JOBS
ITXM = 0

DO 761 MG = MH,MACH

KJ = J(KA)

ITXM = ITXM & IT{KJ,MG)
IFIKAGT.JUY

ITXMIN = ITXM
IFL{ITXM — ITXMIN)T63,760,760
ITXMIN = ITXM

CONTINUE
TTXMM{M) = TTXMIN
IF{IPRINT.EQ.O)

WRITE(393040) MeMF, ITXMMIM)
COMPUTATION OF LOWER BOUND

J4J = J{JOBS)

LB = ICT(JJIJ4MF) + ITXMMIN)
ILBILL,N) = LB

IF(M.EQ.1)

IF{LB - ILB{LL,N11602,602,765
ILB{LL,N) = LB
IF{IPRINT.EQ. D)
WRITE(343050) M,MF,LB
CONTINUE

IF({IPRINTL.EQ.Q)
WRITE{3,3060) LLsN,ILB(LL,N)
RETURN

END

GO 7O 762

GO TO 524

GO TO 758

GO TO 750

GO TO 603
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496 SUBROUTINE BOUND3 (NNysLL,JOBS,N) 115

497 DIMENSION ICT(20,20)¢ITRR{10), ITRMM(10),1DT(20,20)

498 COMMON IT(20,10) 4MACH, ISTMIN,KOUNT, IPRINT, IB

499 COMMON J(20)41LB{20,20) sKONTMB,KONTJB,KONTMJ

500 COMMON NREPET,JSQ{20,20,20)

501 3200 FORMAT(LlH ,10X,*JOB*,10X, "Ml M2 M3 M& M5°,
1 M6 M7 M8 M9 M10 *)

502 3210 FORMAT{1H ,10Xs12+6X,10I7)

503 3220 FORMAT(1H ,°* *%%%% COMPLETION TIME MATRIX *%%%&!)

504 3230 FORMAT(1H o' SOPHISTICATED COMPLETICON TIME FOR THE LAST JOB IN THE
1 PARTIAL SEQUFNCE.")

505 3240 FORMAT({1H 510X, *SECOND TERM',10X,*MACHINE")

506 3250 FORMAT(1H ,13X,14,14X,14)

507 3260 FORMAT(1H 511Xy *THIRD TERM',10X,*MACHINE®)

508 3270 FORMAT(1lH ,10Xy"ON MACHINE *,12,* LOWER BOUND IS ',I4)

509 3280 FORMAT{1H ,11HLOWER BOUND,15X,SHLEVELs15X+4HNODE)

510 3290 FORMAT(1H +4X,15,19X412,18X,12)

C
c SPLITTING THE JOBS INCLUDED IN THE PARTIAL SEQUENCE
c
511 DO 120 K = 1,LL
512 JIK) = JSQILL,NyK)
513 120 CONTINUE
C
C SPLITTING THE JOBS WHICH ARE NOT INCLUDED IN THE
C PARTIAL SEQUENCE
c
514 JU = LL+1
515 DO 160 K = JU,JOBS
516 KK = K-1
517 DD 150 JUSK = 1,J0BS
518 DO 130 I = 1.KK
519 LF(JUSK.EQ.JI(I)) GO TO 150
520 130 CONTINUE
521 JIK) = JUSK
522 GO TO 160
523 150 CONTINUE
524 160 CONTINUE
c
c FORMING THE COMPLETION TIME MATRIX FOR JOBS INCLUDED IN
C THE PARTIAL SEQUENCE
C
525 DO 400 I=1,LL
526 Jd = J(I)
527 IF{I.GT.1) GO TO 430
528 DO 410 M = 1,MACH
529 IF(M.GT.1) GO TO 420
530 ICT(IJ,M) = ITLJIJIeM)
531 ICTF = ICT(JJeM)
532 60 TO 410
533 420 ICT(JJ,M) = ICTF + ITUJJuM)
534 ICTF = ICT{JJIyM)
535 410 CONTINUE
536 G0 TO 400
537 430 II = I-1
538 JP = J(II)
539 DO 500 M = 1,MACH
540 LF(M.GT.1) GO TO 510
541 ICT(JI,M) = ICT(IP MI+IT{JI, M)

542 GO TO 500



543 510 MM = M-1 116

544 IF{ICT{JJsMM) JGELICT{JIP,M)) GO TO 520
545 ICT(JIsM) = ICT(JP,MI+IT(JI, M)
546 GO TO 500
547 520 ICT(JJoM) = ICTUJI,MMIHIT{JI M)
548 500 CONTINUE
549 400 CONTINUE
550 LF{IPRINT.EQ.O) GO TO 105
551 WRITE(3,3220)
552 WRITE(3,3200)
553 DO 106 K = 1,LL
554 JK = JIK)
555 106 WRITE(3,3210) JKs{ICT{JIK;M)4M = 1,MACH)
556 105 CONTINUE
c
C FINDING THE SOPHISTICATED COMPLETION TIME
C
557 DO 855 M = 1,MACH
558 JL = JiLL)
559 IF{M.GT.1) GO TD 860
560 IDT{JL,M) = ICT(JL,M)
561 GO TO 855
562 860 MG = M-1
563 IDT(JL,M) = ICTH{JIL,M)
564 DO 865 MS = 1.MG
565 MINT = 9999
566 DO 875 K = JU,JOBS
567 JK = JIK)
568 ITIME = 0
569 DO 870 MX = MS,MG
570 870 ITIME = ITIME + IT{JK,MX)
571 IF{ITIME.GE.MINT) GO TO 875
572 MINT = ITIME
573 875 CONTINUE
574 IDTX = ICT(JL.MS) + MINT
575 IF(IDT{JLsM)oLT.IDTX) GO TD 880
576 GO TO 865
577 €80 IDT(JL,M) = IDTX
578 865 CONTINUE
579 855 CONTINUE
o
c PRINT THE SOPHISTICATED COMPLETION TIME FOR THE LAST
o JOB IN THE PARTIAL SEQUENCE.
<
580 IF{IPRINT.EQ.O) GO TO 107
581 WRITE(3,3230)
582 WRITE(3,3200)
583 WRITE(3,3210) JL, (IDT{JLsM)4M = 14MACH)
584 107 CONTINUE
C
o SECOND TERM IN THE IGNALL & SCHRAGE LOWER BOUND
C
585 KU = LL + 1
586 DO 185 M = 14MACH
587 ITR = 0
588 DO 180 1 = KU,JOBS
589 K = JtD)
590 180 LTR = ITR + IT(KsM)
591 ITRR{M) = ITR

592 185 CONTINUE



593
594
595
596
597

568
599
600
601
602
603
604
605
606
607
608
609
610
611
612

613
614
615
616
617

618
619
620
621
622
623
624
625
626
627

628
629
630

631
632
633
634

OO0

(aNaNg

OO

o006

aNeNgl

OO0

109
108

190

210
220
200

250

111
110

610
620
630

112

600

I13

PRINT THE SECOND TERM FOR EACH MACHINE, IF IPRINT

IF(IPRINT.EQ.O)
WRITE{3,3240)

DO 109 M = 14MACH
WRITE(3,3250) ITRR(M),M
CONTINUE

GO TO 108

THIRD TERM IN THE IGNALL & SCHRAGE LOWER BOUND

MMM = MACH - 1

DD 250 M = 1,MMM

MA = M+l

DO 200 1 = KU,JOBS
ITRM = 0

DO 190 MR = MA,MACH
K = J{I)

ITRM = ITRM + IT(K,MR)
IF(1.GT.KU)

ITRMIN = ITRM
IF{ITRM-ITRMIN)220, 200,200
LTRMIN = ITRM

CONTINUE

ITRMM{M) = ITRMIN

CONTINUE

60 TO 210

PRINT THE THIRD TERM FOR ALL MACHINES , EXCEPT THE LAST.

IF(IPRINT.EQ.O) GO TO 110
WRITE(3,3260)

DO 111 M = 1,MMM

WRITE{3,3250) ITRMM(M},M

CONT INUE
COMPUTATION OF SOPHISTICATED LOWER BOUND

DO 600 M = 1,MACH

JL = JI(LL)

IF(M.EQ.MACH) GO TO 610
LB = IDTUJLsM) + ITRRIM) + ITRMMIM)
LF(M.GT.1) GO TO 620
ILB{LL,N) = LB

G0 TO 112

LB = IDTU{JLsM) + ITRRIM)
IF(LB=ILB(LL,N))112,112,630

ILBILL,N) = LB

PRINT THE LOWER BOUNDS FOR EACH MACHINE AT LEVEL LL.

IF(IPRINT.EQ.O) GO TO 600
WRITE{3,3270) M,LB

CONTINUE

PRINT THE LOWER BOUND AT LEVEL LL .
IF(IPRINT.EQ.O) G0 TO 113
WRITE(3,3280)

WRITE{3,3290) ILBILLsN),sLL,N
CONTINUE

117



635 RETURN 118
636 END



637
638
639
640
641
642
643

644
645

646

647
648
649
650

651
652
653
654
655
656
657
658
659
660
661
662

663
664
665
666
667
- 668
669
670
671
672
673
" 6T4
675
676
677
678
679
680
681
682
683

g N uNe

OO0

s NaNaNa

SUBROUTINE BOUND4 (NN4LL,JOBS,N)

DIMENSION

ICTt20,20)

COMMON IT(20,10)¢4MACH,ISTMIN,KOUNT,IPRINT,IB
COMMON J(20),1LB(20,20),KONTMB,KONTJB, KONTMJ

COMMON NRE
3500 FORMATILH
3510 FORMATI(1H
15}
3520 FORMAT{1H
3530 FORMAT{LlH

PET»J5Q120+20,20)

+ 10Xy "LOWER BOUND ON MACHINE ",12,' IS

» 10X, "LOWER BOUND AT LEVEL ',I2,* FOR NODE *,12,°*

! *%%%k% COMPLETION

» 10!, .JGB'Q 10x’ '!‘ll

M2

TIME
"3

M10 ')

MATRIX
M4

'y14)

TxERE )
M5,

SPLITTING THE JOBS INCLUDED IN THE PARTIAL SEQUENCE

GO TD 155

GO TO 150

FORMING THE COMPLETION TIME MATRIX FOR JOBS INCLUDED IN

GO

GO

G0 TO 430

TO 420

TO 510

1° M6 M7 M8 M9
3540 FORMATI{1H ,10X,[2,6X,1017)

IF({IBJEQ.5)

DD 120 K = 1,LL

JI{K) = JSQILL4N«K)

120 CONTINUE

SPLITTING THE JOBS WHICH ARE NOT INCLUDED IN THE
PARTIAL SEQUENCE

JU = LL+1

DO 160 K = JUHJOBS

KK = K-1

DO 150 JUSK = 1,J0OBS

DO 130 I = 1.KK
IF{JUSK.EQ.J(I))

130 CONTINUE
JIK) = JUSK
GO TO 160
150 CONTINUE
160 CONTINUE
155 CONTINUE

THE PARTIAL SEQUENCE

DO 400 I=1,LL

JJ = Jt1)

IF{T.GT.1)

DO 410 M = 1,MACH
IF{M.GT. 1)

ICTIJI,M) = ITLII.M)

ICTF = ICT(JJ.M)

GO TO 410

420 ICT{JJ,M) = ICTF + ITUJJeM)
ICTF = ICT{JJ.M)
410 CONTINUE
GO TO 400
430 I1 = I-1

JP = Ji11)

DO 500 M = 1,MACH
IF{M.GT. 1)

ICT(JJyM) = ICT(IP,MI+IT(JJ,M)
GO TO 500

510 MM = M-1

IF{ICT(JIMM).GEL.ICT(JP4M))

ICTT{JJeM) = ICTUIP,MI+ITHIIWM)

GO

TQ 520

118
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684
685
686
687

688
689
690
691
692
693
694

695
696
697
698

699
700
701
702
703
T04
705
706
T07

708
709
710
711
712
713
714
715
716
717
718

719

720
721
122
723
124
725
726

oMo

(aNeNel

OO0 0O

OO0

OoO0n

520
500
400

206
205

906

905

901

904

902

900

907

908

GO TO 500

ICT(JJeM) = ICT(II MMIFITLIILM)
CONTINUE

CONTINUE

PRINT THE COMPLETION TIME MATRIX.

IF(IPRINT.EQ.O) GO TO 205
WRITE(3,3520)

WRITE(3,3530)

DO 206 K = 1l.LL

JK = J{K)

WRITE(3,3540) JKoLICT{JK,M),M = 1,MACH)
CONT INUE

SECOND TERM IN THE JOB BASED LOWER BOUND.

JP = LL + 1

DO 903 MJ = 1+MACH
MAX = 0

DO 900 K = JP,JOBS

PROCESSING TIME ON MACHINE *MJ* AND ALL MACHINES
FOLLOWING MACHINE *MJ* , FOR A UNSCHEDULED JOB .

IF{MJJNE.MACH) GO TO 905
D0 906 KQ = JP,JOBS

49 = J(KQ)

MAX = MAX + IT(JQeMACH)

GO TO 907

JH = JIK)

IPROC = 0

DO 901 M = MJ,MACH

IPROC = IPROC + IT(JHsM)

MINIMUM RUNNING TIME FOR THE REMAINING JOBSEXCLUDING

THE JOB CONSIDERED FOR NEXT SEQUENCE PGSITION

IRUN = 0

DO 902 KS = JP,JOBS

JR = J{KS)

IF{JRJEQ.JH) GO TO 902
IFUIT(JRyMIILELITIIR,MACH)) GO TO 904
IRUN = TRUN + IT{JR,yMACH)

GO TO 902

IRUN = IRUN + IT(JR,MJ)

CONTINUE

LTERM = IPROC + IRUN
IF{LTERM.GT.MAX) MAX
CONTINUE

LTERM

LOWER BOUND ON MACHINE *MJ*' .

JL = JILL)

L8 = ICT(JL,MJ) + MAX

LF{IPRINT.EQ.O ) GO TO 908
WRITE(3,3500)MJ,LB

LF{MJ.GT.1) . G0 TO 909
ILB{LL,N} = LB

GO TO 903
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727
728
729
730
731
732
733

909
910
903

911

IF(LB - ILB{LL,N))903,903,910
ILB(LL,N) = LB

CONTINUE

IF(IPRINT.EQ.O)

WRITE(3,3510) LLyNy ILBILLWN)
RETURN

END

G0 TO 911
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734
735
136
737

738
739
740

741
742
743
144
745
746
141
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764

OO0

OO0

120

130

150
160

980

983
981

SUBROUTINE BOUNDS{NN,LLsJOBS.N) 122
COMMON IT(20+10) ¢MACH, ISTMIN,KOUNT,IPRINT,1B

COMMON J120),TLB{20,20) ¢ KONTMB,KONTJIB,KONTMI

COMMON NREPET,JS5Q(20,20,20)

SPLITTING THE JOBS INCLUDED IN THE PARTIAL SEQUENCE
DO 120 K = 1,LL

JIK) = JSQULL.NsK)

CONTINUE

SPLITTING THE JOBS WHICH ARE NOT INCLUDED IN THE
PARTIAL SEQUENCE

JU = LL+1
DO 160 K = JU,JOBS
KK = K-1

DO 150 JUSK = 1,J08S

DO 130 I = 1,KK
IF{JUSK.EQ.JI(T)) GO TO 150
CONTINUE

J{K} = JUSK

GO TO 160

CONT INUE

CONTINUE

CALL BOUNDL{NN,LL,JOBS,N)
MBASED = ILB{LL.N)

CALL BOUND4(NN,LL,JOBS,N)

IF(MBASED.EQ.ILBI{LLyN)) GO 10 983
IF{MBASED.GT.ILB{LL,N)) GO To 980
KONTJB = KONTJB #+ 1

GO TO 981

ILB(LLsN) = MBASED
KONTMB = KONTMB + 1
GO TO 981

KONTMJ = KONTMJ + 1
RETURN

END



765 FUNCTION BANDNO{1Y) 123
T66 LY = 1¥Y*65627

T67 IFLIY) 5+646

768 5 IY = 1Y + 2147483647 + 1
769 6 BANDNO = IY*.4656613E-9
770 RETURN

771 END
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There exist several production situations in which a certain number
of jobs have to be processed on various machines according to a specified
technological requirement. The production scheduling problem consists of
finding the sequence of jobs to be processed on all machines so as to
optimize a certain criterion, This research is concerned with the solution
to the fléw shop problem in which all jobs have the same machine ordering.
Various approaches to this'problem are available; however, due to the
combinatorial nature of the problem, these techniques are inefficient even
for relatively small size problems.

The branch-and-bound technique is used in this research. This
procedure involves generation of nodes that indicate partial sequences.

A lowér-bound on the schedule time is evaluated for each node in order to
determine which node is to be explored. The number of explored nodes can
be "curtailed by a powerful bounding process which is imbedded in the
branéh—andﬂbound algorithm, Back—track%ng process of the algorithm
guarantees optimality of the solutionm.

The basic objective of this research is to analyze mathematically
and empirically the five bounding procedures developed by several in-
vestigators. The basic concept of the branch-and-bound technique including
branching, bounding and back-tracking processes are discussed. In order
fo study the merits of the various bounding procedures, several compu-
ta;ional experiments were conducted. The comparisdn was based on both the
number of-nodes explored and the computation time spent in obtaining the
optimal solution. Based on problems solved, the numﬁer of nodes explored
and-the computation time increase rapidlj as the number of jobs increases.
The ranks of the bounding procedures are tabulated according to the number

of nodes explored and the computation time spent. It appears that LB I



ranks first in the computation time; however, its rank in the number of

nodes is second.



