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Abstract: Let D ⊂ ℝ2 be a strictly convex domain with C2-smooth boundary. Assume that ∫D eixyn dxdy = 0
for all su�ciently large n. In this paper, we will prove thatD is a disc.
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1 Introduction
We assume throughout thatD ⊂ ℝ2 is a strictly convex domain and its boundary S isC2-smooth. Suppose that

∫
D

eixyn dxdy = 0, n = 0, 1, 2, . . . . (1)

Our result is stated as Theorem 1.

Theorem 1. IfD is a strictly convex bounded domain inℝ2 and (1) holds, thenD is a disc.

This result the author obtained while studying the Pompeiu problem, see, for example, [3, Chapter 11]. The
result of Theorem 1 can also be established if the following is assumed in place of equation (1):

∫
D

eiyxn dxdy = 0, n = 0, 1, 2, . . . .

This follows from the proof of Theorem 1.
The proof shows that equation (1) is used only for su�ciently large n because asymptotic formula (3) is

used in the proof.

2 Proof of Theorem 1
Let ℓ be an arbitrary unit vector, L1 be the support line to D (at the point s1 ∈ S) parallel to ℓ, and L2 be
the support line to D (at the point q1 ∈ S) parallel to L1, where q1 = q1(s1). Since D is strictly convex, one
can introduce the equations y = f(x) and y = g(x) of the boundary S between the support points s1 and q1.
For de�niteness and without loss of generality let us assume that the orthogonal projection of the point s1
onto the line L1 lies not lower than the projection of the point q1 onto L1, and let the x-axis pass through
s1 and be orthogonal to L1. The graph of f is located above the graph of g. Since S is strictly convex the
functionf has a unique point of maximum x1, where x1 ∈ (a, b), andf(x1) > f(x) for x ∈ [a, b],f(x1) > 0 and
f��(x1) < 0. Here a and b are the x-coordinates of the points q1 and s1, a < b. Let us denote by s the value of
the natural parameter (arc length on S) corresponding to the maximum point of f, that is, to the point x1.
The function g has a unique point of minimum x2, x2 ∈ (a, b), g(x) > g(x2), g(x2) < 0 and g��(x2) > 0. From
the strict convexity of S it follows that these maximum andminimum are non-degenerate, that is, f��(x1) ̸= 0,
and g��(x2) ̸= 0. Denote by q the value of the natural parameter corresponding to the minimum point of g. Let
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us write equation (1) as

∫
D

eixyn dxdy =
b

∫
a

eix
fn+1(x) − gn+1(x)

n + 1
dx = 0, n = 0, 1, 2, . . . . (2)

The factor n + 1 in the denominator can be canceled because the integral in (2) equals zero. We want to take
n → ∞ and use the Laplace method for evaluating the main term of the asymptotic of the integral. Let us
recall this known result, the formula for the asymptotic of the integral

F(ë) :=
b

∫
a

õ(x)eëS(x) dx = (
2ð

ë|S��(î)|
)

1
2 õ(î)eëS(î)(1 + o(1)), ë → ∞,

see, for example, [1]. In this formula î ∈ (a, b) is a unique point of a non-degeneratemaximumof a real-valued
twice continuously di�erentiable function S(x) on [a, b], S��(î) < 0, and õ is a continuous function on [a, b],
possibly complex-valued. We apply this formula with

S(x) = ln |f|, ë := 2m := n + 1 → ∞, õ = eix,

and take n = 2m − 1 to ensure that n + 1 = 2m is an even number, so that f2m and g2m are positive, and ln f2m

and ln g2m are well de�ned. The point x2 of minimum of g becomes a point of local maximum of the function
g2m. Note that

!!!!(ln |f|)
��!!!! =

|f��(x1)|
|f(x1)|

at the point x1 where f�(x1) = 0, f(x1) > 0 and f��(x1) < 0.
Taking the above into consideration, one obtains from (2) the following asymptotic formula:

∫
D

eixyn dxdy = [eix1+2m ln |f(x1)|(
ð|f(x1)|
m|f��(x1)|

)
1
2 − eix2+2m ln |g(x2)|(

ð|g(x2)|
m|g��(x2)|

)
1
2 ](1 + o(1)) = 0, n → ∞, (3)

where 2m = n + 1, x1 ∈ (a, b) and x2 ∈ (a, b). It follows from the above formula that the expression in the
brackets, that is, the main term of the asymptotic, must vanish for all su�ciently large m. This implies
that f(x1) = |f(x1)| = |g(x2)| and |f��(x1)| = g��(x2) = |g��(x2)|, because f(x1) > 0, g(x2) < 0, f��(x1) < 0 and
g��(x2) > 0. It also follows from formula (3) that eix1 = eix2 . This implies x1 = x2 + 2ðp, where p is an integer.
The integer p does not depend on s because p is locally continuous and cannot have jumps. Thus,

x1 − x2 := 2ðp; |f(x1)| = |g(x2)|; |f��(x1)| = |g��(x2)|. (4)

We prove in Lemma 2 (see below) that p = 0. Another proof of this is given in Remark 3 below the proof of
Lemma 2.

Consider the support lines L3 at the point s and L4 at the point q, where L3 and L4 are orthogonal to ℓ.
Denote by L = L(s) the distance between L3 and L4, that is, the width ofD in the direction parallel to ℓ. Note
that L = f(x1) − g(x2) > 0, and

L = (r(s) − r(q), ℓ),

where r = r(s) is the radius vector (position vector) corresponding to the point on S which is de�ned by the
parameter s. This point will be called point s. The same letter s is used for the point s ∈ S and for the corre-
sponding natural parameter. Let R = R(s) denote the radius of curvature of the curve S at the point s and let
ê = ê(s) denote the curvature of S at this point. Then one has

R−1 = ê = |f��(x1)|,

because ê = |f��(x1)|[1 + |f�(x1)|
2]−

3
2 and f�(x1) = 0 since x1 is a point of maximum of f.
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From (4) we will derive that
L(s) = 2R(s) for all s ∈ S. (5)

It will be proved in Lemma 2 that equation (5) implies thatD is a disc. Thus, the conclusion of Theorem 1 will
be established.

We denoted by r = r(s) the equation of S, where s is the natural parameter on S and r is the radius vector
of the point on S, corresponding to s. One has r�(s) = t, where t = t(s) is a unit vector tangential to S at the
point s. We have chosen s so that t(s) is orthogonal to ℓ. Since ℓ is arbitrary, the point s ∈ S is arbitrary. The
point q ∈ S, q = q(s), is uniquely determined by the requirement that t(q) = −t(s), because S is strictly convex.
One has (r(s) − r(q), ℓ) = L, where L = L(s) is the width ofD in the direction parallel to ℓ. Since r�(s) = t(s), the
�rst formula in (4) implies

(r(q) − r(s), r�(s)) = 2ðp, (r(q) − r(s), r�(q)) = −2ðp for all s ∈ S. (6)

Di�erentiate the �rst equation in (6) with respect to s and get

(r�(q)
dq
ds

− r�(s), r�(s)) + (r(q) − r(s), r��(s)) = 0 for all s ∈ S. (7)

Note that r�(s) = t(s) = −t(q) = −r�(q) and r��(s) = ê(s)í(s), where í(s) is the unit normal to S (at the point cor-
responding to s) directed into D, and (r(s) − r(q), ℓ) = L(s) = (r(q) − r(s), í(s)), because í(s) is directed along
−ℓ. Consequently, it follows from (7) that

−
dq
ds

− 1 + ê(s)L(s) = 0 for all s ∈ S. (8)

One has L(s) = L(q), and it follows from formulas (4) that ê(s) = ê(q).
Di�erentiate the second equation in (6) with respect to q and get

(t(q) − t(s)
ds
dq

, t(q)) + (r(q) − r(s), r��(q)) = 0. (9)

Note that t(q) = −t(s) and r��(q) = ê(q)í(q), where í(q) = −í(s) because L3 is parallel to L4. Consequently,
equation (9) implies

ds
dq

+ 1 − ê(s)L(s) = 0 for all s ∈ S. (10)

Compare (8) and (10) and get ds
dq = dq

ds . Thus, (
dq
ds )

2 = 1. Since dq
ds > 0, it follows that

ds
dq

=
dq
ds

= 1 for all s ∈ S. (11)

Therefore, equation (8) implies
ê(s)L(s) = 2 for all s ∈ S. (12)

Let us derive from (12) thatD is a disc.
Recall that s is the natural parameter on S, L(s) is thewidth ofD at the point s (that is the distance between

two parallel supporting lines to S one of which passes through the point s) and ê(s) is the curvature of S at the
point s.

Lemma 2. Assume that D is a strictly convex domain with a smooth boundary S. If equation (12) holds, then D
is a disc.

Proof. Denote by K the maximal disc inscribed in the strictly convex domain D, and by r the radius of K. If
there are no points of S outside K, then D is a disc and we are done. If S contains points outside K, let x ∈ S
be such a point. Consider the line L̃ passing through the center of K and through the point x ∈ S, x ̸∈ K. Let
L� be the support line to S orthogonal to the line L̃ and tangent to S at a point x�, x� ̸∈ K. Denote the radius of
curvature of S at the point x� by ñ. One has ñ ≤ r, becauseK is themaximal disc inscribed inD. The width L of
D at the pointx� in the direction of the line L̃ is greater than 2r becausex� ̸∈ K. One has L > 2r and L = 2ñ ≤ 2r.
This is a contradiction. It proves thatD = K. Thus,D is a disc, and, consequently, the parameter p in formula
(4) is equal to zero. Lemma 2 is proved.
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Thus, Theorem 1 is proved.

Remark 3. Let us give another proof that p = 0, where p is de�ned in formula (4). One has

L(s) = (r(q) − r(s), í(s)).

Di�erentiate this equation with respect to s and get

L�(s) = −(r(q) − r(s), ê(s)t(s)) + (r�(q)
dq
ds

− r�(s), í(s)), (13)

where t(s) is the unit vector tangential to S at the point s. Here the known formula í(s)� = −ê(s)t(s) was used.
The second term in equation (13) vanishes since r�(s) and r�(q) are orthogonal to í. Thus, L�(s) = −2ðpê(s).
SinceD is strictly convex, one has the inequalitymins∈S ê(s) ≥ ê0 > 0, where ê0 > 0 is a constant. The function
L(s) must be periodic, with the period equal to the arc length of S. The di�erential equation L�(s) = −2ðpê(s)
does not have periodic solutions unless p = 0. Therefore, p = 0.

The author considered other symmetry problems in [2, 4, 5].
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