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Abstract 

Heat treatment of grain-processing facilities involves using elevated temperatures of 50- 

60˚C for 24 h or less to manage stored-product insects. Heat is an alternative to a non-ozone 

depleting fumigant sulfuryl fluoride, which was registered in the United States in 2004 for 

disinfestation of grain-processing facilities.  In this study, life history traits of the warehouse 

beetle, Trogoderma variabile Ballion, were characterized on ground cat food at 28°C and 65% 

RH to facilitate harvesting life stages of a specific age for bioassays with heat.  Eggs laid by 

females were observed for daily eclosion.  Eggs hatched on days 6 through 10, and the mean 

proportion for egg hatching was 87%. Larvae hatching from eggs (first instars) were reared on 

ground cat food and their head capsule widths were measured every 2 d until all larvae became 

pupae.  Head capsule widths indicated six instars and the total larval duration ranged from 28-40 

d.  Pupae became adults in 3-9 d.  Newly eclosed unmated female adults lived 7 d longer than 

unmated males (16 d), whereas mated males lived 2 d longer than mated females (8 d).  Eggs 

were not observed when food was not provided to male and female pairs. Females started laying 

eggs 2 d after pairing until the fifth day. The total number of eggs laid by mating pairs in the 

presence of food ranged from 30 to 135.    

Exposure of eggs, young larvae, old larvae, pupae, and adults of T. variabile at 46, 50, 

and 54°C and 15-20% RH for four fixed time periods showed pupae to be generally more heat 

tolerant than other life stages. At 46, 50, and 54°C, complete mortality of all stages occurred at 

1440, 120, and 30 min, respectively.  Pupae also were generally more heat tolerant than other life 

stages during tests in pilot flour and feed mills at Kansas State University and in a commercial 

grain-processing facility. However, results from pilot and commercial mills were not as 

conclusive as the results at fixed temperatures in the laboratory. 
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 Introduction 

The warehouse beetle, Trogoderma variabile Ballion (Coleoptera: Dermestidae), is a 

major pest of packaged and processed stored products. The common name “warehouse beetle” 

was given by Okumura (1972), who regarded it as the next most serious dermestid pest after the 

khapra beetle, Trogoderma granarium Everts (Cross et al. 1977). Originating in central Asia, this 

species was first described in the United States by Beal in 1954 (Partida and Strong 1975; 

Loschiavo 1960). This species was found to be most prominent in western areas infesting a wide 

variety of seeds and stored products of both animal and vegetable origin (Vincent and Lindgren 

1975). This pest is distributed throughout the tropical and subtropical parts of the world, and has 

been reported infesting 119 different commodities (Hagstrum et al. 2013). Although adults have 

been reported as occasional feeders, most of the damage to stored products is caused by larvae 

(Vincent and Lindgren 1975). 

 Food materials attacked 

Commodities infested by T. variabile include barley, oats, maize, rice, rye, shelled maize, 

sorghum, wheat, barley cereal, instant oatmeal, maize cereal, maize meal, noodle, oatmeal, 

polished rice, rolled barley, rolled oats, wheat feed, wheat flour, wheat germ, white rice, 

safflower, copra meal, safflower meal, cowpea, kidney bean, lima bean, pinto bean, black eye 

bean, polished rice, whole wheat flour, alfalfa, Austrian peas, beet, brome, burnet, carrot, clover, 

corn, cotton, cucumber, dallis grass, dandelion, eggplant, fescue, garbanzos, lettuce, millet, 

muskmelon, onion, pepper, pumpkin,  ryegrass, soybeans, spinach, squash, sudan, sunflower, 

sweet corn, tomato, vetch, watermelon, pollen and wheat grass. Animal products infested by this 

species include dead moths, fish meal and animal feeds (cat food, dog food, poultry laying mash, 
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cattle feed, rabbit feed). Mud dauber nests, spider egg mashes and spider webs are the natural 

habitats for this species (Strong et al. 1959; Hagstrum et al. 2013; Partida and Strong 1975). 

 Damage caused by the insect 

Damage to stored products caused by T. variabile usually results in loss of weight and 

decrease in quality. An infestation of this insect is characterized by the presence of larvae, 

masses of cast skins, live or dead insects, and fine dust (Vincent and Lindgren 1975). Although 

dermestid larvae are responsible for damage caused to commodities by feeding, generally all 

stages are present in an established infestation (Vingent and Lindgren 1975). A single insect only 

causes a few milligrams of weight loss, whereas populations measured by millions of T. 

variabile individuals can bring considerable weight loss.  Emergence holes may be found in 

whole grains (http://museumpests.net/wp-content/uploads/2014/03/Warehouse-Beetle.pdf). 

Infestation of cereal grains and of seeds of beans and other plants could adversely affect 

germination as the germ is attacked (Partida and Strong 1975). In grains, it feeds on broken 

kernels (http://www.eco2.nl/en/pest/commodity-feeders/warehouse-beetle-trogoderma-variabile). 

 Description of life stages 

The body of T. variabile is typically brownish black in color, oval, about 3.2 mm long 

(1/8th inch) and covered with fine pubescene. The elytra have distinct reddish-brown maculae 

which vary considerably in pattern within the species (Loschiavo 1960). The head bears three-

segmented antennae with simple setae occurring on the mesal side of the basal segment only 

(Beal 1954). Six ocelli are present on each side of the head, five forming a crescent-like 

configuration. The prothorax is the longest of the body segments. The head is very small in 

relation to the rest of the body and is almost entirely covered by the pronotum. The antennal club 

http://www.eco2.nl/en/pest/commodity-feeders/warehouse-beetle-trogoderma-variabile
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has three to eight segments, joined symmetrically. Males are distinctly smaller than females. The 

ratio of width to length is 1:1.8 in females and 1:1.7 in males (Loschiavo 1960). Unlike many 

Trogoderma species, the adult beetles are capable of flight (Wright and Morton 1995).  

Loschiavo (1960) also observed that adults normally crawl but if handled roughly or upon 

reaching the edge of a plane surface, adults spread their wings and fly in an almost vertical 

ascent. The adults are short-lived, and display concealment/exposure behavior, remaining hidden 

and inaccessible most of the time but emerging for purposes of mating, oviposition and dispersal 

for a certain period of the day, termed the exposure period (Shapas and Burkholder 1978; Wright 

and Morton 1995). The flight behavior of females is very different to that of male. T. variabile 

females fly most of the daylight hours, while males fly for several hours after sunrise (Wright 

and Morton 1995). Adults are inactive at temperatures below 15°C. Loschaivo (1960) reported 

that adults do feed but did not require food to lay eggs (Loschiavo 1967). The overall sex ratio of 

adults (male:female) is about 1.2:1 (Partida and Strong 1975). 

The eggs of T. variabile are pearly-white, translucent, extremely fragile and covered with 

a sticky secretion. After two or three days it is less fragile and can be handled safely with a soft-

haired brush. A typical egg is cylindrically elongate and bears a number of hairs at one end; a 

few eggs are banana-shaped. The length of the egg ranges from 0.54 to 0.71 mm and width 

ranges from 0.23 to 0.30 mm. The developing larva can be clearly visible through the transparent 

egg membrane about a day before hatching and gives the egg a reddish-brown appearance.  

Loschiavo (1960) observed five distinct brown spots or ocelli on each side at the anterior end of 

the egg. The posterior end was dark brown owing to the coiled, long, simple hairs of the last 

abdominal segment. The segments and erectile hairs on the dorsal surface were clearly visible in 

the developing larva. Shortly before hatching bulging movements occurred at different locations 
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on the surface of the egg. The egg ruptures at the anterior end. When inspected microscopically, 

the chorion appeared sculptured like a peanut shell (Loschiavo 1960). 

            Loschiavo (1960) stated that first instars emerge their head from eggs first and gradually 

pushing themselves from the egg case with legs and stopping periodically to rest. As the larva 

emerges, the long brush-like “tail” slowly unwinds. After emergence the larva crawls about 

actively in search of food. The larva has, on the last abdominal segment, a number of long simple 

hairs directed posteriorly to form a long “tail” increasing in length with each succeeding instar. 

Loschiavo (1960) reported the mean length of the “tail” in the first-, second-, third-, fourth-, 

fifth-, and sixth-instar larva to be 1.6, 0.9, 0.6, 0.5, and 0.4 times the mean body length 

respectively. Simple hairs projecting laterally and dorsally occur over the entire surface of the 

body; barbed hairs (hastisetae) occur in paired tufts on the body segments and in fourth, fifth, 

and sixth instars are particularly dense on the fifth, sixth, seventh and eighth abdominal tergites. 

These features also occur in Trogoderma granarium Everts and Trogoderma versicolor Cruetzer 

(Hadaway 1956). The first-instar larva is yellowish-white but later instars are reddish-brown and 

usually dark brown just before molting. During molting the skin splits along the mid-dorsal line 

from the head to about the sixth abdominal segment and the larva crawls out leaving behind the 

cast skin. Larvae are active feeders and have strong mouth parts capable of chewing holes 

through acrylic plastic 1.7 mm thick. From the first- to the fourth- instar, larvae cast their skins 

on the surface of the food and penetrate not more than four millimeters into it; subsequent instars 

tunnel through the food and cast one out of three skins beneath the surface. Loschiavo (1960) 

observed that the greatest increase in size occurred between the third and fourth instars. The 

duration of each larval instar was progressively longer. The larval period was normally 

completed in six instars but many fully-developed larvae moulted 28 times in 11 months and did 
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not become pupae. These larvae were considered to be in diapause. At this stage, larval 

development was complete but larvae continued to molt at irregular periods. Daily disturbance 

and handling is an important factor in diapause. Burges (1961) found that the amount of space 

was an important factor affecting the incidence of diapause and larvae were in diapause stage as 

long as 2 years. Partida and Strong (1975) observed diapause in larvae when insects were reared 

singly and in groups, although a higher percentage of larvae reared individually failed to pupate. 

It appears likely that diapause in larvae of T. variabile has a complex genetic basis, and the 

phenomenon may be induced by several variables. Development of larvae stops when the 

temperature falls below 21.1˚C or above 35˚C (Partida and Strong 1975). 

           The pupal stage is passed in the last larval skin. At the last molt the larval skin splits 

dorsally but is not cast off. The pupa, being wider than the larva, forces the skin part, leaving the 

dorsal surface visible through the gap. It has a thin transparent skin which, at adult emergence, is 

passed to the posterior end of larval skin. More than 90% pupae are found at or near the surface 

of the food. The male pupa ranges from 4.31 to 4.62 mm in length and from 1.53 to 1.80 mm in 

width respectively. Female pupa ranges from 6.24 to 6.69 mm in length and 2.42 to 2.69 in width 

respectively. Males are distinctly smaller than females (Loschiavo 1960). 

 Effect of temperature and relative humidity on immature development and survival 

Temperature is the single most important factor affecting development and survival of T. 

variabile. Partida and Strong (1975) reported that temperature of 35°C approached the upper 

limit for physiological development. Low temperatures slowed development and reproductive 

activity, and humidity effects varied with temperature. Loschaivo (1960) stated that development 

and hatching of eggs occur between 17.5 to 37.5°C. Partida and Strong (1975) indicated that the 

most severe temperature and humidity effects were observed at 37.8°C and 30% RH, where 20% 
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of the larvae were dead on the fourth day and 100% mortality was observed after the 35th day. 

No larvae died at 37.8°C and 50% RH. Temperatures of 35 and 21.1°C approached the upper and 

lower limits for larvae to develop. Pupation was earliest at 32.2°C and 70% RH, and larval 

development from the time of hatch to pupation took progressively longer at temp below 32.2°C. 

Development was fastest at 37.8°C and 50% RH, but a low number of insects pupated and 

reached adult stage at this temperature and humidity. The optimum humidity for larval 

development and pupation is 50%. Higher humidity prolonged the egg duration and lower 

humidity caused higher mortalities in larval development. These two environmental variables 

had more influence on the length of the pupal stage than on adult maturation. 

Sex pheromone, mating, and reproduction 

Pheromones are chemical messengers that influence the behavior or physiology of T. 

variabile. In general, pheromones produced by the female are attractive to male adults of the 

same species, while male pheromones are aphrodisiacs and are not attractive to females. Female 

sex pheromones are active over longer distances than those of males.  Cross et al. (1977) 

observed that the calling activity was largely restricted to 7-h interval with a maximum at 2-4 h 

after light onset. Abdominal elevation by T. variabile females was considered part of a pattern of 

postural activities accompanying sex pheromone release. Like other Trogoderma pheromones, 

that of T. variabile has several components, of which the main attractant is (Z)-14-methyl-8-

hexadecenal. Secretory epithelium on the inner surface of 7th abdominal strenites, is considered 

the site of sex pheromone production in T. variabile (Hammack et al. 1973).  

 Loschiavo (1960) indicated that copulation occurs shortly after emergence. Mating in T. 

variabile may be mediated by contact chemoreception of chemicals dissolved in the cuticular 

wax of the females, but which are not major components of the airborne pheromone, or by non 
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chemical means (Cross et al. 1977). Partida and Strong (1975) stated that males never fertilized 

more than one female during a 24-h period and more than 6 females per male can cause masking 

effect. Females do not require multiple matings to lay a full complement of eggs, but fertile eggs 

are laid by mated females only. 

 Loschiavo (1967) stated that a suitable ovipostion site, which provided crevices for 

insertion of the ovipositor, was more important than food in stimulating egg production. Partida 

and Strong (1975) also noted that females extended their ovipositor and seemed to prefer placing 

eggs in crevices under the surface of loose food.  Loschiavo (1960, 1967) reported that females 

laid eggs after a pre-ovipostion period of one to two days and maximum egg production occurred 

in the first three days after emergence, followed by a rapid decline thereafter. They also reported 

that maximum oviposition occurred among females that were three to five days old.  

 Lethal effects of low and high temperatures 

Larvae of T. variabile are very resistant to low temperatures. (Loschiavo 1960) reported that a 

six day exposure at –1, 10 and 20°C to mature larvae did not kill them. A one-week exposure at 

10°C prevented oviposition, but did not affect the survival of young mated females. At 20°C 

many eggs were laid but none of these hatched.  Brower and Tilton (1972) stated that all adults 

were sterilized when irradiated at 30 krad or above. Adult females were more sensitive to the 

sterilizing effects of gamma radiation than were males. Development of adults from treated eggs 

and larvae was prevented by 5 krad but some adults emerged from pupae at all treatment levels, 

with no reproduction after exposure at 30 krad or above. In a previous study in Australia, large 

larvae of T. variabile were found to be the most heat tolerant stage, based on experiments in a 

growth chamber at 56˚C and 0% RH (Wright et al. 2002).  A 4-min exposure at this temperature 

resulted in 79% mortality of large larvae, whereas mortality of eggs, diapausing larvae, pupae, 
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and female adults was 93-100%. They did not report the susceptibility of young larvae of T. 

variabile to elevated temperatures. Furthermore, Wright et al. (2002) developed a degree minute 

model using constant temperature data at 50, 52, 54 or 56˚C for predicting mortality of large 

larval instars of T. variabile. The base temperature for accumulating degree minutes, and the 

intercept and slope values of the linear regression of mortality (expressed as the inverse of the 

standard normal deviate) against degree minutes were different at each of the four temperatures. 

Despite these differences, Wright et al. combined data across 52, 54 and 56˚C to describe the 

relationship between mortality and degree minutes without giving any statistical or biological 

basis, even though the intercepts and slopes of the linear regressions at the three temperatures 

were different. 

There is limited information on the effects of high (elevated) temperatures on the survival 

of life stages of T. variabile. Therefore, I conducted field and laboratory experiments, reported in 

this thesis, to determine the impact of elevated temperatures on the survival of T. variabile life 

stages. The first part of my research involved a careful study of the biology of T. variabile on 

ground, cat food at 28˚C and 65% relative humidity to enable me to harvest specific stages for 

exposure to elevated temperatures. The second part of my research involved exposure of eggs, 

young larvae, old larvae, pupae, and adults of T. variabile to elevated temperatures to identify a 

heat tolerant stage. The work reported on this thesis forms a valid basis for use of elevated 

temperatures for management of T. variabile life stages in grain-processing facilities. 
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 Introduction 

Stored-product insects associated with grain-processing facilities are best managed with 

fumigants, aerosols, residual products and heat. The concept of heating the ambient air of the 

whole, or a portion of the facility, to 50 to 60˚C and maintaining these temperatures for up to 24 

h or less is termed as “heat treatment”. Heat treatments have been used effectively against stored-

product insects for hundred years (Dean 1911). The phase out of methyl bromide in the USA in 

2005, because of its adverse effects on stratospheric layer, made heat treatment a viable 

alternative to fumigation with methyl bromide. Since 1999, the research group in the Department 

of Grain Science and Industry, Kansas State University, Manhattan, KS, has been generating 

data on utilizing heat treatments as a non-chemical alternative to methyl bromide fumigation for 

management of stored-product insects associated with food and feed processing facilities 

(Mahroof et al. 2003a, b; 2004, 2005a, b; Roesli et al. 2003, Boina and Subramanyam 2004, 

Mahroof and Subramanyam 2006, Boina et al. 2008, Yu et al. 2011). Previous research at Kansas 

State University focused on evaluating susceptibility of various life stages of the red flour beetle, 

Tribolium castaneum (Herbst) (Mahroof et al. 2003a,b), confused flour beetle, Tribolium 

confusum (Jacquelin du Val) (Boina and Subramanyam 2004), Indian meal moth, Plodia 

interpunctella (Hübner) (Mahroof and Subramanyam 2006), and cigarette beetle, Lasioderma 

serricorne (F.) (Yu et al. 2011) to elevated temperatures. Quantitative data are limited (Wright et 

al. 2002) on susceptibility of various life stages of the warehouse beetle, Trogoderma variabile 

Ballion (Coleoptera: Dermestidae), exposed to elevated temperatures used for structural 

disinfestations. 

In order to extract large numbers of insects of a specific life stage for exposure to 

elevated temperatures, it was very important to first conduct a detailed biological study of           

T. variabile on a suitable diet. The development and reproduction of T. variabile is influenced by 
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the food substrate (Partida and Strong 1975), and detailed information on the development and 

reproduction of this species on processed animal feed is lacking. Therefore, laboratory tests were 

conducted at 28˚C and 65% RH to determine certain life history parameters, such as egg 

hatchability, duration and survival of immature stages, number of instars, adult longevity, and 

number of eggs laid by females. The processed animal feed (cat food) was finely ground and 

sifted for easy separation of life stages from the food substrate. 

 Materials and Methods 

 Insect diet 

The diet used for rearing T. variabile at controlled environmental conditions and for all 

experiments was processed animal feed, Brand Meow Mix, manufactured by Big Heart Pet 

Brands, Topeka, KS, was obtained from local grocery store. This pet food contained crude 

protein (31.0% min.), crude fat (11.0% min.), crude fiber (4.0% max.), moisture (12.0% max.), 

calcium (1.0% min.), phosphorous (0.8% min.), selenium (0.125 mg/kg min.) and vitamin E (50 

IU/kg min.). The major ingredients of the diet include: ground yellow corn, corn gluten meal, 

chicken by-product meal, soybean meal, beef tallow, turkey by-product meal, salmon meal, 

ocean fish meal, minerals (ferrous sulfate, zinc oxide, manganese oxide, copper sulfate, calcium 

iodate) and vitamins (B1, B2, B6, K, D3, B12). The cat food was stored in a freezer (-13°C) until 

use in experiments. For use in experiments, the cat food was thawed for 3 hours on a laboratory 

bench, and milled using table top Roller Mills (Serial No. 906, 907; Size 9X6; Ross Machine and 

Mill Supply Incorporation, Oklahoma City, OK.) in the Milling Laboratory, Department of Grain 

Science and Industry, Kansas State University, Manhattan, KS. For milling, two pair of rolls was 

used, the first pair of rolls was kept as apart as possible (> 0.457 mm) and the second rolls were 

at a distance of 0.125 mm. The ground cat food was sifted with 250 m sieve for easy separation 
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of life stages from the diet required for further experiments. About 350 g of diet was placed in 

0.94-liter glass jars, with wire-mesh and filter paper lid, and seeded with 200 T. variabile adults 

to start the cultures.  Starting cultures of T. variabile reared on rolled oat, were obtained from 

United States Department of Agriculture, Center for Grain and Animal Health Research, to 

obtain large cultures on ground cat food. . All cultures were reared at 28˚C and 65% RH in 

growth chambers (Model I-36 VL, Percival Scientific, Perry, IA). 

 Collection and rearing of eggs 

To collect eggs, 60 male and female adults of T. variabile were placed in 150-ml plastic 

containers containing 10 g of the wheat flour sifted through a U.S. Standard Sieve No. 80 

(Hogentogler & Co., Inc., Columbia, MD), with 180 μm openings. After 3 days adults were 

separated from the flour using sieves of two different mesh sizes and a bottom pan. The top sieve 

had 600 μm openings (U.S. Standard Sieve No. 30, Seedburo Equipment Company, Chicago, 

IL.) and the bottom sieve had 180 μm openings. Adults were collected on the top sieve, and the 

eggs were retained on the 180 μm sieve, while the wheat flour passed through the second sieve 

into the bottom pan. Eggs were gently removed from the sieve using a camel’s hair brush into 9-

cm glass petri dishes. Eggs (20) were placed in 9-cm glass petri dishes using camel’s hair brush 

and kept in a growth chamber set at 28°C and 65% RH. Eggs were examined daily until the 

emergence of first instars to record duration and egg hatchability.  

 Determining number of instars 

In a related experiment, newly hatched larvae ( 0-1d old) were removed from petri dishes 

using a very fine hair brush and placed in 30-ml plastic condiment cups similar to that used by 

Subramanyam et al. (1985) with 3 g of the diet per cup. Total 120 cups were used in the study. 

After placing 10 larvae in each cup, the cups were covered with a parafilm (American National 
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Can, Menasha, WI) and then holes were punched with a pin for air diffusion.  All infested cups 

were incubated at 28˚C and 65% RH. The cat food used in this experiment was pre-sifted using a 

250 µm sieve (Fisher Scientific, Pittsburg, PA), for easy separation of first instars from the diet. 

Every 2 d, 3 cups were chosen and one larva from each cup was kept in 95% ethanol for further 

observations. The measurements for head capsule width were made under ethanol by pinning 

abdomens of larvae such that the dorsal region of the head capsule was clearly visible. The 

widest portion of the head capsule was measured using a stereomicroscope (Model SMZ 1000, 

Nikon Corporation, Japan), fitted with an ocular micrometer, at 8X magnification. 

 Determining adult longevity and female oviposition 

When the larvae from the above experiment started to pupate, the food was sifted using a 

sieve with 600 μm openings, for collection of pupae from the diet.  Individual pupae were kept in 

glass vials (1 cm dia., 4.4cm length and 4 ml. cap.) and covered with a parafilm.  Holes were 

made with a pin in the parafilm for air diffusion. Pupae were examined daily until the emergence 

of adults to record duration of pupal stage and determine pupae to adult survivorship. 

When adults emerged from pupae, they were sexed using differences in their antennae 

shown in Fig.2.1 (International Standards for Phytosanitary Measures, ISPM 27 Diagnostic 

Protocols, DP: 3 Trogoderma granarium Everts, 2012). A total of 27 unmated male adults and 

120 unmated female adults were placed individually in the glass vials and checked daily for 

longevity. 

Additionally, one male and one female were paired and placed in 30 ml plastic condiment 

cups containing 1 g of the diet sifted using 180 m sieve, and covered with parafilm with pin 

holes (total 11 pairs). In another experiment, one male and one female were paired and placed in 

30 ml plastic condiment cups without diet and covered with parafilm (total 13 pairs). Cups were 
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examined daily to record whether adults were alive or dead and for counting number of eggs laid 

by the females. To count number of eggs laid, the diet in each cup was sifted through a sieve 

with 180 μm openings to separate eggs from the diet as explained above. Fresh diet (1 g) was 

placed in cups and checked daily until all the adults were dead.  A new cup was also made and 

checked daily for the mating pair without diet. The objective here was to determine the 

difference in egg production with diet and without diet and also the effect of diet, sex and mating 

on adult longevity. 

 Data analysis 

Means and standard errors (SE) for the duration of each immature stage and for the egg-

to-adult development were calculated using the Statistical Analysis System (SAS Institute 2003). 

The number of individuals surviving at each stage was expressed as a percentage. The egg 

hatchability and frequency distribution of head capsule widths by instar was plotted using Sigma 

Plot 12.5 (Systat Software, Inc., San Jose, CA). Differences in head capsule widths among 

instars were determined by subjecting data to DISCRIM procedure of SAS (SAS Institute 2003). 

One-way analysis of variance (ANOVA) and Ryan-Einot-Gabriel-Welsch multiple range test at 

α = 0.05 level was used to determine significant differences among instars using the GLM 

procedure of SAS (SAS Institute 2003). This test was also performed on the longevity data to 

determine significant differences among various treatments on longevity. 

 Results 

 Development and survival of immature stages 

 Out of the 180 eggs, 87.2 % hatched, and the mean duration of this stage at 28˚C and 

65% RH was 7.6 days. Eggs started hatching on the sixth day and continued hatching till the 
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tenth day with a maximum percentage of hatching (53.3 %) on seventh day (Fig. 2.3). 

Measurement of head capsule width and length indicated six discrete instars (Table 2.2).There 

were significant differences in head capsule widths among the instars (F= 8709.28; df= 5,410; P 

< 0.0001) and the widths among the instars were significantly different from one another ( Table 

2.2). The first four instars took approximately 6 d each, whereas the fifth instar took 8 d and also 

there was overlap of time in fifth and sixth instar (Table 2.1). The number of misclassified 

observations was very small (4 out of 418 = 0.9%). In the fourth instar range only one 

observation (1.3% of 76) was misclassified as third instar and in the fifth instar range three 

observations (3.9% of 77) were misclassified as sixth instars. Pupae became adults in 5.8 days 

with a survivorship of 98% and there was no significant difference of time to become adult from 

pupa, between male and female since the confidence interval for male and female overlapped. 

Pupation occurs mostly on the surface of food. The total egg-to-adult development on ground, 

cat food took 40 to 58 days (Table 2.1). 

Adult longevity  

In general, the longevity of both mated male and female adults was lower than unmated 

males and females (Table 2.3). Both sex and mating had significant effect on adult longevity     

(F = 87.86; df = 5,189; P < 0.0001). Unmated females lived approximately three times longer 

(23.4 d) than mated females (8.7 d), and this difference was significant (P < 0.0001). When no 

diet was provided to the mating pair, female longevity was significantly higher than male 

longevity (P < 0.0001). However, when diet was provided to the mating pair, males lived for a 

longer period of time, but this difference is not statistically significant. Unmated females always 

lived longer than mated females or unmated males.  
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 Female oviposition 

Among the 26 mated pairs with diet, females started laying eggs on the second day after 

pairing with males and continued to lay eggs for five days. The maximum number of eggs was 

laid on the second day after mating. Table 2.4 shows that egg production was significantly higher 

with diet when compared to egg production without diet (F= 76.67; df = 1, 42; P < 0.0001).  

Females, on average, laid 62.7 eggs with a mean daily egg production of 20.9 eggs. When laying 

eggs females extended their ovipositor and seemed to prefer placing eggs under the surface of 

loose food. Eggs were usually deposited singly, but occasionally they were found in short chains 

of 3 to 4 eggs also.  

 Discussion 

Loschiavo (1960) reared T. variabile on mixture of equal parts of finely-ground wheat 

and bran at 32˚C and 70 % RH, and observed the egg, larval, and pupal periods to be about 6.9, 

34, and 4.1d, respectively. On ground cat food, the egg, larval and pupal periods were 7.6, 33 

and 5.8 d, respectively, at 28˚C and 65% RH. Given that the rearing conditions used by 

Loschiavo (1960) and in this study were different, the similarity in immature developmental 

times for T. variabile on mixture of finely-ground wheat and bran and ground, cat food suggests 

that the latter is also an optimal diet for rearing this species in the laboratory. 

Development of T. variabile, especially the larval stage, is influenced by the food 

substrate. Partida and Strong (1975) studied the influence of different kinds of food on 

populations of T. variabile (see Table 2.5). Different kinds of food were infested with 10 pairs of 

young adults or 30 large larvae and populations were counted after 6, 12 and 18 weeks of 

infestation. Larval development was slow on raisins and shelled nuts, and the original stock of 

large larvae tended to remain in the larval stage on these foods. Rolled barley and oats were more 
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suitable hosts than the corresponding whole cereal grains. As a group, processed animal feeds 

were better host materials than foods found in any other category. Based on this finding, cat food 

was chosen as a diet for mass rearing of T. variabile cultures. 

In our study, six discrete instars were identified based on the head capsule widths. 

Loschaivo (1960) also reported six instars in his study based on the measurements of head 

capsule. Partida and Strong (1975) found that males usually completed 5 molts and females 6 

before pupation. Based on our study two instars: third instars (young larvae) and fifth instars (old 

larvae), were selected for exposure to elevated temperatures (see Chapter 3). Young larvae and 

old larvae that were 12-14 d and 20-26 d old after eclosing from the eggs were used in 

experiments with elevated temperatures.  

Loschiavo (1960) reported that adults live from 8 to 20 days, the mean life span being 

14.3 days at 32˚C and 70 % RH. When young adults were exposed to 10°C for seven days, no 

mortality was observed but oviposition was prevented. However, when adults were exposed to 

20˚C, they laid 399 eggs but none of these hatched. Partida and Strong (1975) reported that adult 

longevity increased with decreases in temperature explaining that exposures at low temperatures 

slows the rate of metabolism and thereby increases longevity. Loschiavo (1967) reported that at 

temperatures below 12.8°C longevity decreased rapidly. Adult longevity was found to be 

affected by sex and mating in our study.  Unmated male and female adults lived for 7-33 d and 

mated adults lived for 6-25 d. Unmated females usually lived longer than unmated males and 

mated females, but when diet was provided to the mating pair, males lived for a longer period of 

time indicating that females laid eggs in the presence of food. In the temperature range 

associated with high egg production, productive females probably required considerable energy 

for synthesis (Loschiavo 1967). This view is supported by the fact that ovipositing females had 
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much shorter life spans than non-productive females. Mated females had a shorter life span than 

males at all temp except mean temperature of 15.6˚C (Partida and Strong 1975). Loschiavo 

(1960) found that at 32˚C, high egg production was associated with high adult mortality, 

particularly among females.  

 In a study by Loschiavo (1967) the lengths of the preoviposition and oviposition period 

were found to be inversely related with temperature. At 17.5 and 27.5°C, the preoviposition and 

oviposition periods were 16.5, 10.2, 0.7 and 6.3 days respectively. The lengths of preoviposition 

and ovipositon periods in our study at 28°C and 65% RH were, 2 and 3 d respectively which 

were close to 2.5 and 3.9 d for preoviposition and oviposition period at 26.7°C reported by 

Partida and Strong (1975). On ground cat food, 26 females of T. variabile laid 30 to 135 eggs 

during their life time with mean daily egg production of 20.9 eggs which is very close to 20.2 

eggs at 27.5˚C reported by Loschiavo (1967). Partida and Strong (1975) stated that egg 

production by mated females was extremely variable among individuals, even under the most 

favorable conditions. Loschiavo (1968) in a study found that a suitable oviposition site, which 

provided crevices for insertion of the ovipositor, was more important than food in stimulating 

egg production. As similar to Partida and Strong (1975) study, virgin females were found to lay 

eggs, but none of these eggs hatched.  

In summary, our results suggest that ground cat food to be an optimal laboratory diet for 

mass rearing T. variabile at 28°C and 65% RH based on the speed of development of immature 

stages and number of eggs laid by mated females. Characterizing stage-specific development and 

adult longevity of T. variabile on ground cat food in the laboratory enabled us to harvest eggs, 

young larvae, old larvae, pupae and adults of specific age in large numbers for detailed studies at 

elevated temperatures. 
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 Figure 2.1Antennae of Trogoderma variabile adults used for sexing male and female in the 

adult stage. 
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Table 2.1 Development and survival of T. variabile immature stages on ground cat food. 

 

Life Stage Number of insects Median development 

time (range) in days 

Egg 180 8 (6 – 10)  

First instar 83 4.5 (4 – 5) 

Second instar 83 5.5 (5 – 6)  

Third instar 55 4 (3 – 5)  

Fourth instar 76 5.5 (5 – 6)  

Fifth instar 77 7.5 (7 – 8)  

Sixth instar 44 8.5 (5 – 12) 

Pupae 147 5.5 (5 – 6) 

Egg-to-adult 745  49 (40 – 58) 
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Table 2.2 Head capsule width and length measurements of T. variabile instars. 

 

Instar Number 

of insects 

Head capsule width 

(mm)ª 

Range  

(mm) 

Length 

(mm) 

Range 

(mm) 

Mean ± SE  Mean ± SE  

      

First 83 0.19 ± 0.01a 0.19 – 0.22 0.92 ± 0.35 0.72 – 3.90 

Second 83 0.26 ± 0.01b 0.25 – 0.29 1.47 ± 0.32 0.95 – 2.50 

Third 55 0.37 ± 0.01c 0.31 – 0.37 2.26 ± 0.38 1.5 – 2.85 

Fourth 76 0.55 ± 0.03d 0.42 – 0.62 3.50 ± 0.68 1.5 – 4.50 

Fifth 77 0.75 ± 0.01e 0.72 – 0.79 3.90 ± 0.44 2.8 – 4.75 

Sixth 44 0.86 ± 0.05f 0.81 – 1.00 4.34 ± 0.43 3.4 – 5.50 

 

        ªMeans followed by different letters are significantly different (P < 0.05, by REGWQ test). 
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 Figure 2.2 Frequency distribution of head capsule widths of six instars of T. variabile 

reared on ground cat food. 
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Table 2.3 Longevity of unmated and mated T. variabile adults. 

 

Treatment Number of individuals/pairs Mean ± SE Longevity (d)ª 

 

Unmated female 120 23.5 ± 0.3a 

Unmated male 27 16.7 ± 0.9b 

Mated female with diet 11 8.7 ± 0.4c 

Mated male with diet 11 10.7 ± 0.6c 

Mated female without diet 13 18.6 ± 1.5b 

Mated male without diet 13 8.5 ± 0.7c 

 

ª Means followed by different letters are significantly different (P < 0.05; by REGWQ 

test). 
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Table 2.4 Egg production of mated T. variabile females with diet and without diet. 

 

Treatment Total number 

of eggs 

Number of 

pairs 
Mean ± SE 

Eggs/femalea 

 

Mean ± SE 

oviposition 

period (d) 

 

Eggs/female 

per day 

Without diet 23 18 1.3 ± 2.6   1 ± 0.0 1.2 

With diet 1632 26 62.8 ± 29.6  3 ± 0.8 20.9 

         

          aF = 76.67; df = 1, 42; P < 0.0001 (ANOVA Type III SS) 
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Table 2.5 Influence of different types of food on populations of T. variabile. (Source: Partida 

and Strong1975) 

 

Food Multiple of original number of weeks after infestation with 

10 Adults 30 Large larvae 

 6 12 18 6 12 18 

Barley 30 29 141 10 28 40 

Milo 28 11 14 24 -- 16 

Oats 31 32 18 11 -- 16 

Rye 32 26 15 9 25 -- 

Wheat (western) 35 32 80 16 23 36 

Cat food (friskies) 38 20 262 26 -- 41 

Dog food (kibbled) 38 270 228 29 23 125 

Poultry laying mash 45 35 150 12 125 104 

Rolled barley 39 116 394 27 35 107 

Rolled oats 38 47 244 21 21 65 
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Figure 2.3 Egg hatchability of T. variabile eggs over days at 28°C and 65 % RH. 
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Chapter 3 - EFFECT OF ELEVATED TEMPERATURES ON 

TROGODERMA VARIABILE BALLION LIFE STAGES  
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 Introduction 

The use of elevated temperatures, also termed heat treatments, has long been documented 

as an effective approach for managing stored-product insects infesting food-processing facilities 

(Mahroof et al. 2003a). It is becoming popular as a methyl bromide alternative because of the 

phase out of methyl bromide in 2005 in the United States (Boina and Subramanyam 2004, 

Dosland et al. 2006). During heat treatment the ambient temperature of the entire facility, or a 

portion of it, is raised to 50-60˚C, and these elevated temperatures are held for 24 h or less to 

facilitate heat penetration throughout the entire space for effective disinfestation. 

Time-mortality relationships at constant elevated temperatures were described for eggs, 

young larvae, old larvae, pupae and adults of the red flour beetle, Tribolium castaneum (Herbst) 

(Mahroof et al. 2003a); confused flour beetle, Tribolium confusum (Jacqueline du Val) (Boina 

and Subramanyam 2004); Indian meal moth, Plodia interpunctella (Hübner) (Mahroof and 

Subramanyam 2006); cigarette beetle, Lasioderma serricorne (Fabricius) (Yu et al. 2011), and 

drug store beetle Stegobium paniceum (Abdelghany et al. 2010). The most heat tolerant stage 

based on these studies identified the following: young larvae (first instars) for T. castaneum,  

S. paniceum; old larvae for T. confusum and P. interpunctella; and eggs for L. serricorne. 

Among all the insect species and stages tested, the young larvae of T. castaneum were found to 

require longer exposure times at temperatures of 50-60˚C (Abdelghany et al. 2010 and 

Subramanyam et.al 2011). However, during actual facility heat treatments, where temperatures 

are dynamically changing over time, the young larvae were not found to be heat tolerant 

(Mahroof et al. 2003b). In a more recent study (Brijwani et al. 2012) reported adults of T. 

castaneum to be the most heat tolerant stage during heat treatment of pilot flour mill. Yu et al. 

(2011) also reported eggs to be heat tolerant at constant elevated temperatures, but this finding 
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was difficult to confirm during commercial facility. Heat tolerance among life stages within a 

species may be related to heating rates during commercial heat treatments (Subramanyam et al. 

2011). Therefore, it is important to conduct experiments at constant elevated temperatures and 

during commercial heat treatments to definitively identify a heat tolerant stage. It is also essential 

to confirm which stage is heat tolerant at different heating rates, which can occur in different 

locations during commercial heat treatments (Subramanyam et al. 2011).  

Limited quantitative data are available on relative susceptibility of life stages and time-

mortality relationships for the warehouse beetle, Trogoderma variabile Ballion, an important 

pest associated with food-processing facilities (Campbell and Mullen 2004; Arthur et al. 2014), 

exposed to elevated temperatures. In a previous study in Australia, large larvae of T. variabile 

were found to be the most heat tolerant stage, based on experiments in a growth chamber at 56˚C 

and 0% RH (Wright et al. 2002).  A 4-min exposure at this temperature resulted in 79% mortality 

of large larvae, whereas mortality of eggs, diapausing larvae, pupae, and female adults was 93-

100%. They did not report the susceptibility of young larvae of T. variabile to elevated 

temperatures. Furthermore, Wright et al. (2002) developed a degree minute model using constant 

temperature data at 50, 52, 54 or 56˚C for predicting mortality of large larval instars of T. 

variabile. The base temperature for accumulating degree minutes, and the intercept and slope 

values of the linear regression of mortality (expressed as the inverse of the standard normal 

deviate) against degree minutes were different at each of the four temperatures. Despite these 

differences, Wright et al. combined data across 52, 54 and 56˚C to describe the relationship 

between mortality and degree minutes without giving any statistical or biological basis, even 

though the intercepts and slopes of the linear regressions at the three temperatures were different. 

The studies described in this paper were conducted using eggs, young larvae, old larvae, pupae, 
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and adults of T. variabile exposed to three constant elevated temperatures at fixed times, and in 

pilot scale and commercial facilities subjected to heat treatments. The three constant 

temperatures selected were 46, 50 and 54˚C. The elevated temperatures tested (≥46˚C) were well 

above the range (21.1- 35˚C) for development and survival of T. variabile (Partida and Strong 

1975). Although 50°C is the minimum temperature required for effective disinfestation (Wright 

et al. 2002, Roesli et al. 2003, Boina et al. 2008), vertical and horizontal stratification of 

temperatures during heat treatment may result in temperatures below or above 50˚C in some 

portions of the facility (Dosland et al. 2006). Therefore, temperatures between 46 and 54°C were 

selected for this study. Our objective was to determine the relative susceptibility of T. variabile 

life stages at constant temperatures in the laboratory and during facility heat treatments, where 

temperatures are dynamically changing over time (Subramanyam et al. 2011).   

 Materials and Methods 

 Insect cultures and collection of life stages 

Cultures of T. variabile were reared on ground, cat food (Brand Meow Mix, Big Heart 

Pet Brands, Decatur, AL, USA) obtained from a local store. After thawing, cat food was milled 

and sifted using table top Roller Mills  (Serial No. 906, 907; Size 9X6; Ross Machine and Mill 

Supply Incorporation, Oklahoma City, OK) in the Milling Laboratory, Department of Grain 

Science and Industry, Kansas State University, Manhattan, KS. For milling, two pair of rolls was 

used, the first pair of rolls was kept as apart as possible (> 0.475 mm) and the second pair of rolls 

was at a distance of 0.125 mm. This ground diet was sifted for 1 minute with 250 m sieve. 

About 350 g of diet was placed in 0.94-liter glass jars, with wire-mesh and filter paper lid, and 

seeded with 200 adults to start the cultures. All cultures were reared at 28˚C and 65% RH in 

growth chambers (Model I-36 VL, Percival Scientific, Perry, IA). 
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Field and laboratory experiments were conducted using various life stages of T. variabile. 

To collect eggs, 60 male and female adults of T. variabile were placed in 150-ml plastic 

containers containing 10 g of the wheat flour sifted through a U.S. Standard Sieve No. 80 sieve 

(Hogentogler & Co., Inc., Columbia, MD), with 180 μm openings. After 3 d adults were 

separated from the flour using sieves of two different mesh sizes; the top sieve had 600 μm 

opening and the bottom sieve had 180 μm openings, with a bottom pan. Adults were collected on 

the top sieve, and the eggs were retained on the 180 μm sieve, while the wheat flour passed 

through the second sieve into the bottom pan. Eggs were gently removed from the sieve using a 

camel’s hair brush into 9-cm glass petri dishes. Twenty eggs were placed in plastic test boxes 

(4.5 x 4.5 x 1.5 cm), each containing 1 ± 0.05 g of the rearing medium, using camel’s hair brush. 

All other life stages were separated from the rearing media with a U.S. Standard Sieve No.60 

(Fisher Scientific, Pittsburg, PA) with 250 μm openings. For both field and laboratory 

experiments, 20 individuals of each life stage were transferred to separate plastic test boxes (4.5 

x 4.5 x 1.5 cm) each containing 1 ± 0.05 g of the rearing medium. Test boxes had perforated lids 

(3-cm diameter perforation) covered with mesh (600 μm openings) for ventilation. 

 Laboratory heating conditions 

A growth chamber (Model I-36 L, Percival Scientific, Perry, IA) was used for exposing 

life stages of T. variabile to elevated constant temperatures of 46, 50 and 54˚C and 15-20% RH. 

A humidity of 15-20% was used because during heat treatment, the humidity inside the facility is 

around 22-25% (Roesli et al. 2003, Mahroof et al. 2003a). Another growth chamber set at 28˚C 

and 65% RH, served as the control treatment. The internal volume of growth chambers was 0.84 

m³ (29.5 ft³). Air velocity, measured with an electronic wind speed indicator (Davis Instruments, 

San Leandro, CA), inside the growth chambers at 46-54˚C ranged from ~0.6-1.2 m/s. In order to 
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verify that the insects in test boxes are exposed to the set chamber temperature (46, 50, or 54˚C) 

and humidity (22%), the air temperature and relative humidity inside growth chambers were 

measured using HOBO® data-logging units (Onset Computer Corporation, Bourne, MA). At 

each temperature, a HOBO® unit was placed in each of the four corners and the center of the top 

shelf inside growth chambers in a similar manner as the test boxes were kept inside the chamber. 

The accuracy of each HOBO® unit was verified with a mercury thermometer before use and was 

within 0.1˚C of the reading from the mercury thermometer. 

 Lab experiments at elevated temperatures   

In order to determine the most heat tolerant stage, square test boxes each with 20 specific 

life stages of T. variabile were exposed to 46, 50 and 54˚C and 15-20 % RH. Eggs (1-3 d old), 

young larvae (12-14 d old from the time of eclosion from eggs), old larvae (20-26 d old from the 

time of eclosion from eggs), pupae (2-4 d old from the time of pupation), and adults (3-6 d old 

from the time of eclosion from pupae) were used. At each elevated temperature four different 

exposure times were used, because time to death is inversely related to elevated temperatures 

(Mahroof et al. 2003a, Boina et al. 2004, Yu et al. 2011). At 46˚C, the exposure times were 120, 

240, 480 and 1440 min; at 50˚C the exposure times were 20, 30, 60 and 120 min; and at 54˚C the 

exposure times were 5, 10, 15 and 30 min. After the desired exposure time, three test boxes of 

each stage were taken out of the chamber and the contents of the test boxes were transferred to 

150 ml round plastic containers with perforated lids each holding 19 ± 1 g of T. variabile diet. 

The plastic containers were placed in a growth chamber set at 28˚C and 65% RH. After 24 h, the 

diet was sifted using a 600 μm sieve to separate adults from the diet. Adult mortality, expressed 

as a percentage, was determined based on number of dead adults out of the total exposed. 

Immature stages were reared to adulthood in the plastic containers as described above, and the 
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mortality of immature stages was based on number of adults that emerged out of the total 

exposed. Each of these experiments was replicated three times by conducting tests on different 

dates, along with the control treatment consisting of life stages placed separately in test boxes 

with diet at 28˚C and 65% RH, and sampled at the same fixed times corresponding to each 

elevated temperature.  

 Exposure of life stages during commercial facility heat treatments  

The Kansas State University pilot-scale O. H. Kruse Feed Technology Innovation Center 

was heated during 2–4 April 2014. Only Cargill Feed Safety Research Center of the O. H. Kruse 

Feed Technology Innovation Center was heated during the heat treatment. The total volume of 

the heated facility is 1017.44 m³ and it has three built-in steam heaters, out of which two are on 

the first and fourth floor (FAQ-202, Armstrong-Hunt Inc., Granby, QC, Canada) and one is on 

the second floor (AQ-122, Armstrong-Hunt Inc., Granby, QC, Canada). Each of these heaters 

produced 55 Kw/h. Heat treatment started at 3 pm of 2nd April and continued until 3 pm of 4th 

April. Four locations were selected to place test boxes: three locations were the three corners 

(North-west, West-south and North-east) of the room and the fourth location was the center of 

the room (right below the heater). At each of the four locations, a HOBO® data-logging unit was 

placed to record temperature at one minute intervals during the entire heat treatment period (41 

h).  

All life stages of T. variabile: eggs, young larvae, old larvae, pupae, and adults were used 

in the pilot scale heat treatment. All test boxes were placed on the ground floor of the Cargill 

Feed Safety Research Center, subjected to heat treatment.  Test boxes were collected at 6, 17, 24 

and 41 h into the heat treatment. For young larvae and old larvae, test boxes were collected at 20 

h instead of 17 h. The number of test boxes collected at the specific time intervals varied from 1 



35 

 

to 3 as per the availability of life stages. Test boxes were brought back to the laboratory after 15 

min of collection and the contents transferred to 150-ml plastic containers, as described above. 

Control treatment consisted of life stages placed separately in test boxes with diet at 28˚C and 

65% RH, and sampled at the same fixed times corresponding to each elevated temperature. After 

48 h, adult mortality, expressed as a percentage, was determined based on number of dead adults 

out of the total exposed. Immature stages were reared to adulthood in the plastic containers as 

described above, and the mortality of immature stages was based on number of adults that 

emerged out of the total exposed. 

 Another experiment with T. variabile life stages was conducted at a grain- processing 

facility subjected to heat treatment during 19-20 August 2014. This particular facility conducts 

heat treatments in several rooms and processing areas twice a year using propane heaters from a 

heat treatment service provider. The total volume of the facility is 26051.49 cubic meters.  Four 

propane gas heaters from Temp-Air® (Burnsville, MN, USA) were used to heat the facility. 

Each of the four heaters (THP-4500) produced 1318.87 kW/h. All heaters were placed outside of 

the mill because of an open flame. Heat generated by the units was discharged into the mill floor 

by nylon ductwork of 80 cm diameter with round holes. Heaters were turned on at 5:00 p.m. 

(local time) on 19 August and turned off at 5:30 p.m. on 20 August. Forty five fans were used to 

distribute the heat evenly throughout the processing area. Of these, 19 were Schaefer® fans with 

a 90-cm blade diameter, 18 were Box® fans with a 122-cm blade diameter and 8 were Bayley® 

fans with a 50-cm blade diameter. Two locations were selected to place test boxes based on the 

distance from the heating source: the first location was at a distance of 4.3 m from the heating 

source (duct) and the second location was at a distance of 7.8 m from the heating source. At each 

of the two locations and at a distance starting from 3 to 11.6 m from the heating source, a 
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HOBO® data-logging unit was placed to record temperature and relative humidity at one minute 

intervals during the entire heat treatment period (27 h). 

Eggs, young larvae, old larvae, pupae, and adults were used. All the test boxes were 

placed on the ground floor of the processing area. Test boxes were collected when the 

temperature reached 46, 48, 50, 52 and 54˚C at each of the location. At the end of the heat 

treatment (after 27 h), last set of test boxes was collected. Three test boxes for each stage were 

collected at the required temperatures. The contents were transferred to150-ml plastic containers 

with perforated lids each holding 19 ± 1 g of T. variabile diet and placed in a growth chamber set 

at 28˚C and 65% RH. Control samples were kept in a separate room in the processing area and 

sampled at same intervals as the treatment. After 48 h, adult mortality, expressed as a percentage, 

was determined based on number of dead adults out of the total exposed, as described in the 

above field experiment. Immature stages were reared to adulthood in the plastic containers at 

28°C and 65% RH, and the mortality of immature stages was based on number of adults that 

emerged out of the total exposed. 

The last heat treatment was conducted at the Kansas State University pilot flour mill 

occurred during 10-11 September 2014. The pilot flour mill is vertically separated into four 

floors. Each floor is horizontally separated into a cleaning house that has equipment for cleaning 

wheat and a milling house that has equipment for milling wheat. Each cleaning house floor is 

12.1× 8.5× 3.7m, while each milling flour is 11.6× 9.9× 3.7m. Concrete walls separate both 

houses and vertical floors of the flour mill. Heaters were started at 10:00 a.m. in the morning 

because previous experience has shown that the built –in steam heater were inadequate to rapidly 

increase the mill temperature to 50˚C or above. Doors of first and third floor were not sealed to 

prevent heat loss. Four locations were chosen to place test boxes, based on the distance from the 
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heaters: Two locations were on the first floor (location 1 at a distance of 0.7 m from the heater 

and location 2 at a distance of 3.2 m from the heater) and two locations were on the third floor 

(location 3 at a distance of 0.6 m from the heater and location 4, 3.3 m away from the heater). 

All life stages similar to the above described heat treatments were used.  Test boxes were 

kept at the decided locations and two test boxes of each stage were collected at 5.25, 18.75, 24 

and 27 h into the heat treatment. Test boxes were brought back to the laboratory after 5 minutes 

of collection and the contents transferred to 150-ml plastic containers, as described above. 

Control treatment consisted of life stages placed separately in test boxes with diet at 28˚C and 

65% RH, and sampled at the same fixed times corresponding to each elevated temperature. After 

48 h, adult mortality, expressed as a percentage, was determined based on number of dead adults 

out of the total exposed. Immature stages were reared to adulthood in the plastic containers as 

described above, and the mortality of immature stages was based on number of adults that 

emerged out of the total exposed. 

 Data analysis 

Mortality data for T. variabile life stages was corrected for natural mortality by using 

Abbott’s (1925) formula in both laboratory and field experiments. Corrected mortality data at 

each elevated temperature for fixed time responses was subjected to two-way and one-way 

analysis of variance (ANOVA) and Ryan-Gabriel-Welsch multiple range test at α = 0.05 level to 

determine significant differences for mortality among stages using the GLM procedure of SAS 

(SAS Institute of 2003). 

The temperature data from HOBO® units at each of the locations from the commercial 

heat treatments was used to determine the starting temperature, time required to reach 50˚C, time 

above 50˚C, and the maximum temperature. Corrected morality was expressed against degree-
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hours by converting the exposure time into degree hours using the following formula: 

(Temperature in °C at time of insect collection −  ambient temperature in °C) × time in hours at 

sample collection. The corrected mortality of T. variabile life stages were summarized by each 

location, for each commercial treatment. Corrected mortality data were plotted as a function of 

degree-hours using Sigma Plot 12.5 (Systat Software, Inc., San Jose, CA). 

 Results 

 Temperature and humidity measurements in growth chambers   

The temperatures recorded by HOBO® data-logging units on the top shelf of growth 

chambers and inside test boxes with 1 ± 0.05 g of T. variabile diet were similar to the set 

chamber temperature and humidity levels. This indicated that the insects were exposed to 

predetermined treatment and control temperatures and humidity levels. 

 Fixed time-mortality responses of life stages   

The natural (control) mortality among the stages ranged from 0 to 24%. High mortalities 

observed for egg and larval stages is due to fact that in insects higher mortalities occur in initial 

stages of development. At 46˚C, two-way ANOVA showed that there were significant 

differences in mortality among life stages (F = 387.72; df = 4, 40; P < 0.0001) and among the 

exposure times (F = 1642.79; df = 3, 40; P < 0.001).  The stage and exposure time interaction 

was significant (F = 48.84; df = 12, 40; P < 0.0001). Generally, differences among stages were 

less apparent at longer exposure times because of near or complete mortality of all life stages. 

One-way ANOVA at each exposure time also showed significant differences among the life 

stages (F, range among exposure times = 99.08 – 1022.65; df = 4, 10; P < 0.0001).  A 24 h 

exposure resulted in 100% mortality of all stages except the pupa stage (Table 3.2). 



39 

 

 At 50˚C, two-way ANOVA showed that there were significant differences in mortality 

among life stages (F = 17.60; df = 4, 40; P < 0.0001) and among the exposure times (F = 138.09; 

df = 3, 40; P < 0.0001). The stage and exposure time interaction was significant (F = 5.66; df = 

12, 40; P < 0.0001). One-way ANOVA at 20 and 30 min exposure time showed that differences 

among life stages were significant (F, range among exposure times = 4.79-88.11; df = 4, 10; P < 

0.0203).  

At 54˚C also, two-way ANOVA showed that there were significant differences in 

mortality among life stages (F = 32.91; df = 4, 40; P < 0.0001) and among the exposure times (F 

= 272.54; df = 3, 40; P < 0.0001). The stage and exposure time interaction was significant (F = 

8.11; df = 12, 40; P < 0.0001). One-way ANOVA showed that at 5, 10 and 15 min of exposure 

time differences among life stages were significant (F, range among exposure times = 5.02 – 

31.37; df = 4, 10; P < 0.0176).  A 15-min exposure at 54˚C resulted in 100% mortality of all 

stages except for the pupa stage (Table 3.6). 

The data at 54˚C and 46˚C showed pupae to be the most heat-tolerant stage. However, at 

50˚C, differences among postembryonic life stages were not apparent, because of increased 

susceptibility at these high temperatures (Table 3.4). Also at a temperature of 50˚C and an 

exposure time ≥ 60 min, no significant differences in susceptibility among the stages were 

observed (P = 0.3). Similarly, at 54˚C and 30 min exposure, no significant differences in 

susceptibility among the stages were observed. Eggs and adults were found to be the most 

susceptible stages consistently respectively, followed by young larvae and old larvae (Table 3.2; 

3.4 and 3.6). 

In general, mortality of T. variabile developmental stages increased with an increase in 

temperature and also with an increase in exposure time at a particular temperature except for 
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pupae, when they were exposed to 240 min at 46˚C. Fixed-time mortality responses of life stages 

suggest pupae to be the most heat tolerant stage.  

 Temperature profiles and responses of life stages during a facility heat treatments 

The starting temperature at all four locations of the Feed Technology Innovation Center 

was different and ranged from 18 to 20˚C. At locations L1, L2 and L4, the maximum 

temperature was less than 50˚C while at location L3, the maximum temperature was 60˚C. The 

time required reaching 50˚C at location L3 was 25.3 h because of the slow heating rate 

(1.24˚C/h), and temperatures above 50˚C were maintained only for 15.5 h (Table 3.7). The mean 

control mortality of eggs, young larvae, pupae, and adults at the four observation times ranged 

from 16.6-50, 22.5-62.5, 10-45, 3.3-20, and 0-10, respectively (Table 3.8). High control 

mortality could be due to improper handling of stages and movement of test boxes to and from 

the feed facility to laboratory. 

Among all the life stages, 100 % mortality was observed after 41 h into the heat treatment 

except for pupae, which concludes that pupa was the most heat tolerant stage. However, old 

larvae and young larvae had 100 % mortality only at location L3 (Table 3.8 and Fig. 3.1). The 

lack of consistent trends in stage-specific susceptibility made it difficult to discern a heat-tolerant 

stage based on results at locations 1 through 4. Pupae were the most heat-tolerant stage at all 

locations, except location 1 where young larvae were found to be heat tolerant. Eggs and adults 

were found to be the most heat susceptible stages as the mortality was 100 % at all locations after 

41 h into the heat treatment. 

Starting temperatures at all locations of the grain-processing facility were high as 

compared to the temperatures at the pilot feed facility. The initial temperatures at both the 

locations were 30˚C. The time required reaching 50˚C was less than an hour (48 minutes) at 
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location 2 while at location 1 it took 1 hour and 18 minutes to reach 50˚C. This is evident from 

the high heating rates of 24.97 and 16.72˚C/h at location 2 and location 1 respectively (Table 

3.9). The mean control mortality of eggs, young larvae, pupae, and adults at the six observation 

times ranged from 10-18.3, 1.7-5, 1.7-5, 0-1.7, and 3.3-13.3, respectively. Control mortalities 

were less as compared to previous heat treatment. 

At both locations of the grain-processing facility, 100% mortality was observed among 

all the life stages of T. variabile after 27 h into the heat treatment.  As can be seen from figure 

3.2, at all degree-hours, 0% mortality for old larvae and pupae was noted except at 12 degree-

hours for location 1 and 20 degree-hours for location 2.  For young larvae also, 0 % mortality 

was noted at 42 and 34 degree-hours, at location 1 and 2 respectively. As similar to the data from 

KSU pilot feed mill, the lack of consistent trends in stage-specific susceptibility made it difficult 

to discern a heat-tolerant stage based on results at locations 1 and 2. Eggs and adults were found 

to be heat susceptible consistently at both locations.  

During heat treatment at the pilot flour mill, the initial temperatures were close to 24-

25˚C at all locations. Location 4 was the hottest and location 1 was the coolest followed by 

location 3 and 2 since the time to 50˚C were 2.08, 23.53, 21.32 and 12.27 h, respectively at each 

of the location. Temperatures reached above 50˚C at all locations and temperatures above 50˚C 

were maintained for sufficiently longer period of time at each location (Table 3.11). High 

variability in heating rates at location 1 and 4 was observed. Heating rates ranged from 1.08 to 

11.96˚C/h at all locations. The mean control mortality of eggs, young larvae, pupae, and adults at 

the four observation times ranged from 10-15, 5-7.5, 2.5-7.5, 0, and 0-2.5, respectively. 

Difference in heating rates influences the life stages to become heat tolerant. At location 

1, after 27 h into heat treatment, young larvae were found to be heat tolerant with only 5.4% 
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mortality, whereas at location 4 100% mortality for all life stages was achieved only after 18.75 

h into heat treatment. At this location pupae were found to be heat tolerant, with only 2.5% 

mortality after 5.25 h into heat treatment. Similarly, at location 3, where the temperature profile 

was similar to location1 (Table 3.11), young larvae and adults were found to be heat tolerant 

whereas at location 2, where the temperature profiles were close to location 4, pupae were found 

to be least susceptible to heat. As similar to above described commercial heat treatments, the 

lack of consistent trends in stage-specific susceptibility made it difficult to clearly identify a heat 

tolerant stage based on the results from all locations. 

 Discussion 

The fixed-time mortality experiments showed pupae to be the most heat-tolerant, of all  

T. variabile life stages. Unlike T. variabile, the most heat-tolerant stage of T. castaneum, T. 

confusum, P. interpunctella and L. serricorne at elevated temperatures were observed to be 

young larvae, old larvae, old larvae (wandering stage) and eggs, respectively (Mahroof et al. 

2003b, Boina and Subramanyam 2004, Mahroof and Subramanyam 2006, Yu et al. 2011). These 

studies show that stage-specific susceptibility to elevated temperatures varies among the species. 

Within a given species heat tolerance among life stages may vary based on heating rates or 

temperatures. The rapid drop in lethal time estimates at 50 and 54˚C as compared to 46˚C is due 

to rapid mortality of life stages at higher temperatures. The data from Wright et al. (2002) 

suggested old larvae to be heat tolerant however the method of insect exposure was different 

than the methods we used. In our experiments, stages were exposed to constant temperatures of 

46, 50 and 54˚C and 15-20% RH, while Wright et al. (2002) exposed stages at 0% RH.  

The exposure of life stages of T. variabile during a facility heat treatment, to identify a 

heat tolerant stage was not very successful.  Pupae were found to be generally more heat tolerant 
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then other life stages, in both the laboratory experiments and the field experiments. Mahroof et 

al. (2003a) exposed eggs, young larvae, old larvae, pupae, and adults of the red flour beetle, 

Tribolium castaneum (Herbst), during heat treatment of a flour mill and observed pupae to be the 

most heat-tolerant stage. However, laboratory test using the same life stages at six constant 

elevated temperatures between 42 and 60˚C showed young larvae to be the most heat tolerant 

stage (Mahroof et al. 2003b). Yu et al. (2010) also reported eggs to be heat tolerant at constant 

elevated temperatures, but this finding was difficult to confirm during commercial facility. It is 

unclear why there is a discrepancy in definitively identifying a heat tolerant stage during facility 

heat treatments. It is plausible that heating rates may have an impact on which stages develop 

heat tolerance during facility heat treatments and this aspect warrants further study. 

In summary, pupae of T. variabile were generally the most heat tolerant of all stages 

tested at 46-54˚C. For example, at 54˚C, and 15 min exposure, mortality for other life stages 

ranged from 96.7 to 100%, while for pupae it was 91% only. Also at 46˚C, after 24 h exposure, 

mortality for all life stages was 100% except for pupae which was 94.5% only. Pupae also were 

generally more heat tolerant than other life stages during tests in pilot flour and feed mills at 

Kansas State University and in a commercial grain-processing facility. However, these results 

were not as conclusive as the results at fixed temperatures. Therefore, pupae should be used as 

test insects in evaluating heat treatment effectiveness because heat treatment designed to control 

pupae should be able to control all other T. variabile life stages. The information presented in 

this article provides a quantitative basis for successful use of elevated temperatures for managing 

T. variabile life stages associated with food-processing facilities.                                      

 

 

 



44 

 

Table 3.1 Control mortality of T. variabile life stages corresponding to 46˚C. 

 

Temp (˚C) Stage  Mean ± SE % mortality at: 

  120 min 240 min 480 min 1440 min 

28 Egg 18.8 ± 3.4 13.3 ± 1.9 17.2 ± 3.0 19.4 ± 1.5 

 Young larvae 14.4 ± 0.9 17.2 ± 2.2 21.1 ± 2.0 14.4 ± 2.2 

 Old larvae 12.2 ± 1.7 10.0 ± 3.3 22.2 ± 2.8 19.4 ± 1.4 

 Pupae 2.2 ± 1.5 6.1 ± 2.0 6.1 ± 1.1 8.3 ± 2.5 

 Adults 0.8 ± 0.4 5.0 ± 2.5 2.2 ± 1.6 10.0 ± 0.9 

 

Each mean in based on n = 3. 
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Table 3.2 Corrected mortality of T. variabile life stages for fixed-time responses at 46˚C. 

 

Temp (˚C) Stage Mean ± SEª % corrected mortality at: 

  120 min 240 min 480 min 1440 min 

46 Egg 62.4 ± 1.4a 83.3 ± 1.3a 100 ± 0.0a 100 ± 0.0a 

 Young larvae 15.0 ± 1.3b 37.6 ± 2.3b 92.2 ± 0.7b 100 ± 0.0a 

 Old larvae 0.0 ± 0.0c 6.8 ± 2.2c 87.1 ± 1.2c 100 ± 0.0a 

 Pupae 6.8 ± 1.1d 2.8 ± 2.5c 46.2 ± 0.6d 94.5 ± 1.0b 

 Adult 28.3 ± 5.8e 69 ± 0.6a 100 ± 0.0a 100 ± 0.0a 

     ª Means followed by different letters are significantly different (P < 0.05, by REGWQ 

test).  

 

The mean control mortality of eggs, young larvae, pupae, and adults at the four observation times 

ranged from 11.4-22.2, 13.5-23.1, 6.7-25, 0.7-10.8, and 0.4-10.9, respectively. 
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 Table 3.3 Control mortality of T. variabile life stages corresponding to 50˚C 

 

 

        Each mean is based on n = 3. 

 

  

Temp (˚C) Stage Mean ± SE % mortality at: 

  20 min 30 min 60 min 120 min 

28 Egg 21.7 ± 3.3 18.7 ± 1.6 22.2 ± 2.2 18.9 ± 3.4 

 Young larvae 16.7 ± 0.9 12.0 ± 2.1 17.8 ± 0.9 14.4 ± 0.9 

 Old larvae 12.8 ± 1.7 9.2 ± 2.0 11.7 ± 1.9 12.2 ± 1.7 

 Pupae 2.7 ±1.0 2.7 ± 1.0 0.5 ± 0.5 2.2 ± 1.6 

 Adults 1.1 ± 1.1 3.5 ± 2.3 1.3 ± 0.5 1.9 ± 1.0 
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Table 3.4 Corrected mortality for T. variabile life stages for fixed-time responses at 50˚C. 

 

Temp (˚C) Stage Mean ± SEª % corrected mortality at: 

  20 min 30 min 60ᵇ min 120ᶜ min 

50 Egg 85.8 ± 1.9a 96.6 ± 1.8a 98.6 ± 1.4 100 ± 0.0 

 Young larvae 36.7 ± 1.3b 55.2 ± 1.7b 94.0 ± 3.5 100 ± 0.0 

 Old larvae 7.1 ± 1.7c 44.9 ± 1.8b 93.1 ± 5.1 100 ± 0.0 

 Pupae 4.6 ± 1.5c 48.6 ± 9.4b 95.5 ± 1.5 98.3 ±1.7 

 Adult 34.8 ± 6.8b 40.8 ± 20.4b 100 ± 0.0 

 

 

100 ± 0.0  

 

     ª Means followed by different letters are significantly different (P < 0.0001 by 

REGWQ test). 

 

ᵇ Susceptibility among life stages not significant (F = 1.42; df = 4, 10; P = 0.2952, one-way 

ANOVA). 

 

ᶜ Susceptibility among life stages not significant (F = 1.00; df = 4, 10; P = 0.4516, one-way 

ANOVA). 

 

The mean control mortality of eggs, young larvae, pupae, and adults at the four observation times 

ranged from 15.5-25, 9.9-18.7, 7.2-14.5, 0-3.7, and 0-5.8, respectively. 
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Table 3.5 Control mortality of T. variabile life stages corresponding to 54˚C. 

 

Temp (˚C) Stage Mean ± SE % mortality at: 

  5 min 10 min 15 min 30 min 

28 Egg 23.8 ± 2.9 20.8 ± 2.8 21.6 ± 3.3 18.7 ± 1.6 

 Young larvae 18.8 ± 2.4 16.1 ± 0.7 15.0 ± 2.8 12.0 ± 2.0 

 Old larvae 16.6 ± 0.9 12.2 ± 1.0  16.1 ± 1.4 9.2 ± 2.0 

 Pupae 0.0 ± 0.0 0.0 ± 0.0 1.1 ± 0.5 2.7 ± 1.0 

 Adult 0.5 ± 0.5 0.8 ± 0.5 0.0 ± 0.0 3.5 ± 2.3 

 

Each mean is based on n = 3. 
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Table 3.6 Corrected mortality for T.variabile life stages for fixed-time exposures at 54˚C. 

 

Temp (˚C) Stage Mean ± SEª % corrected mortality at: 

  5 min 10 min 15 min 30 min 

54 Egg 75.9 ± 0.0a 94.4 ± 1.8a 100 ±0.0a 100 ± 0.0 

 Young larvae 19.9 ± 1.2b 70.9 ± 1.7ab 100 ± 0.0a 100 ± 0.0 

 Old larvae 1.4 ± 0.7c 68.4 ± 3.3ab 96.7 ± 1.7a 100 ± 0.0  

 Pupae 1.1 ± 0.5c 48.9 ± 14.0b 91.0 ± 2.0b 100 ± 0.0 

 Adult 49.7 ± 15.1a 86.0 ± 7.8a 100 ± 0.0a 100 ± 0.0 

 

 

        ªMeans followed by different letters are significantly different (P < 0.0006 by REGWQ 

test). 

 

The mean control mortality of eggs, young larvae, pupae, and adults at the four observation times 

ranged from 17.1-26.7, 10-21.2, 7.2-17.5, 0-3.7, and 0-5.8, respectively. 
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Table 3.7 Temperature data at four locations where test boxes with T. variabile life stages 

were placed during heat treatment at Feed Technology Innovation Center. 

 

Location Initial 

temp. 

(˚C) 

Time 

to 

50˚C 

(h) 

Rate to 

50˚C 

(˚C/h)ª 

Time 

above 

50˚C 

(h) 

Max 

temp 

(˚C) 

Temp. at sample collection time in hours 

 6 17 20 24 41 

 

1 19.0 -- -- -- 47.5 31.8 41.9 44.2 47.1 47.5 

2 18.9 -- -- -- 45.5 28.8 38.3 41.1 44.3 45.5 

3 19.9 25.3 1.2 15.5 60 31.8 41.8 44.8 47.7 60 

4 17.9 

 

-- -- -- 43 27.1 36.1 38.4 41.9 42.5 

ª Rate = (50˚C− Initial temp.)/ time to 50˚C. 

Location 1 North-west, Location 2 West-south, Location 3 North-east corner of the room and 

Location 4 is the center of the room.
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Table 3.8 Mortality of T. variabile life stages in test boxes at four locations sampled at four different time intervals during heat 

treatment at Feed technology Innovation Center. 

 

Location Stageª Sample 

collection time 

(h) 

No. of test 

boxes 

Treatment Control Corrected       

Mortality (%) 

 

 

No. dead 

insects/total 

Mortality 

(%) 

No. dead 

insects/total 

Mortality 

(%) 

         

1 A 6 3 3/60 5 2/60 3.3 1.7 

  17 3 2/60 3.3 0/60 0 3.3 

  24 2 1/40 2.5 0/40 0 2.5 

  41 1 20/20 100 1/20 5 100 

 P 6 3 8/60 13.3 8/60 13.3 0 

  17 3 3/60 5 7/60 11.6 0 

  24 2 2/40 5 8/40 20 0 

  41 1 14/20 70 2/20 10 66.6 

 OL 6 2 2/40 37.5 17/40 42.5 0 

  20 2 4/40 35 14/40 35 0 

  24 1 7/20 50 9/20 45 0 

  41 1 12/20 40 7/20 35 38.5 

 YL 6 2 21/40 52.5 25/40 62.5 0 

  20 2 23/40 57.5 9/40 22.5 38.7 

  24 1 10/20 50 7/20 35 38.5 

  41 1 6/20 30 12/20 60 12.5 

 E 6 3 52/60 86.6  10/60 16.6 84.0 

  17 3 54/60 90 12/60 20 87.5 

  24 2 26/40 65 11/40 27.5 51.7 

  41 1 20/20 100 5/20 25 100 

2 A 6 3 5/60 8.3 1/60 1.6 6.8 

  17 3 10/60 16.6 0/60 0 16.7 

  24 2 5/40 12.5 0/40 0 12.5 

  41 1 20/20 100 2/20 10 100 
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 P 6 3 1/60 1.6 7/60 11.7 0 

  17 3 1/60 1.6 3/60 5 0 

  24 2 1/40 2.5 4/40 10 0 

  41 1 0/20 0 2/20 10 0 

 OL 6 2 5/40 45 9/40 22.5 0 

  20 2 8/40 20 16/40 40 0 

  24 1 8/20 25 8/20 40 0 

  41 1 11/20 55 6/20 30 35.7 

 YL 6 2 24/40 60 17/40 42.5 8.7 

  20 2 18/40 45 13/40 32.5 7.4 

  24 1 10/20 50 11/20 55 0 

  41 1 11/20 55 9/20 45 18.2 

 E 6 3 52/60 86.7 19/60 31.7 80.5 

  17 3 51/60 85 15/60 25 80 

  24 2 25/40 62.5 13/40 32.5 44.4 

  41 1 20/20 100 10/20 50 100 

3 A 6 3 5/60 8.3 0/60 0 8.3 

  17 3 13/60 21.7 1/60 1.7 20.4 

  24 2 22/40 55 2/40 5 52.6 

  41 1 20/20 100 1/20 5 100 

 P 6 3 2/60 3.3 3/60 5 0 

  17 3 0/60 0 5/60 8.3 0 

  24 2 2/40 5 2/40 5 0 

  41 1 4/20 20 3/20 15 5.9 

 OL 6 2 5/40 35 13/40 32.5 0 

  20 2 9/40 40 10/40 25 0 

  24 1 11/20 55 5/20 25 40 

  41 1 20/20 100 2/20 10 100 

 YL 6 2 21/40 52.5 19/40 47.5 14.3 

  20 2 27/40 67.5 18/40 45 22.7 

  24 1 14/20 70 9/20 45 54.5 

  41 1 20/20 100 8/20 40 100 

 E 6 3 47/60 78.3 11/60 18.3 73.5 
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  17 3 55/60 91.7 22/60 36.7 86.8 

  24 2 37/40 92.5 8/40 20 90.6 

  41 1 20/20 100 0/20 0 100 

4 A 6 3 4/60 6.7 0/60 0 6.7 

  17 3 6/60 10 1/60 1.7 8.5 

  24 2 6/40 15 0/40 0 15 

  41 1 20/20 100 2/20 10 100 

 P 6 3 1/60 1.7 6/60 10 0 

  17 3 2/60 3.3 2/60 3.3 0.0 

  24 2 20/40 50 3/40 7.5 45.9 

  41 1 1/20 5 2/20 10 0 

 OL 6 2 1/40 55 8/40 20 0 

  20 2 2/40 42.5 11/40 27.5 0 

  24 1 5/20 75 4/20 20 6.2 

  41 1 10/20 35 7/20 35 23.1 

 YL 6 2 21/40 52.5 13/40 32.5 0 

  20 2 13/40 32.5 20/40 50 0 

  24 1 2/20 10 8/20 40 0 

  41 1 12/20 60 10/20 50 20 

 E 6 3 55/60 91.7 17/60 28.3 88.7 

  17 3 48/60 80 18/60 30.0 71.4 

  24 2 32/40 80 10/40 25 73.3 

  41 1 20/20 100 4/20 20 100 

 

ª A, adults, P, pupae, YL, young larvae, OL, old larvae, E, eggs. The mean control mortality of eggs, young larvae, pupae, and 

adults at the four observation times ranged from 16.6-50, 22.5-62.5, 10-45, 3.3-20, and 0-10, respectively. 
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Figure3.1 Corrected mortality for T. variabile life stages against degree-hours at four 

locations during heat treatment at KSU Feed Technology Innovation Center. 
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Table 3.9 Temperature data at two locations where test boxes with T. variabile life stages 

were placed during heat treatment at a grain-processing facility. 

 

Location Initial Temp. 

(˚C) 

Time to 50˚C 

(h) 

Rate to 50˚C 

(˚C/h)ª 

Time above 

50˚C (h) 

Max 

Temp(˚C) 

1 30.9 1.2 16.0  25.8 60.3 

2 30.1  0.8 25.0 26.2 61.2 

ª Rate = (50˚C− Initial temp.)/ time to 50˚C. 
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Table 3.10 Mortality of T. variabile life stages in test boxes at two locations sampled at six different time intervals during heat 

treatment at a grain-processing facility. 

 

Location Stageª Sample 

collection time 

(h) 

Temp at 

sample 

collection 

No. of test 

boxes 

Treatment Control Corrected       

Mortality (%) 

 

 

No. dead 

insects/total 

Mortality 

(%) 

No. dead 

insects/total 

Mortality 

(%) 

1 A 0.92 44.391 3 32/60 53.3 5/60 8.3 49.1 

  1.03 45.257 3 38/60 63.3 7/60 11.7 58.52 

  1.42 48.328 3 28/60 46.7 3/60 5.0 43.86 

  1.65 49.643 3 24/60 40.0 8/60 13.3 30.8 

  2.05 51.465 3 14/60 23.3 2/60 3.3 20.72 

  27 51.364 3 60/60 100 3/60 5.0 100 

 P 0.91 44.391 3 1/60 1.7 0/60 0 1.7 

  1.03 45.257 3 0/60 0 0/60 0 0 

  1.41 48.328 3 0/60 0 0/60 0 0 

  1.65 49.643 3 0/60 0 1/60 1.7 0 

  2.05 51.465 3 0/60 1.7 0/60 0 0 

  27 51.364 3 60/60 100 1/60 1.7 100 

 OL 0.91 44.391 3 2/60 3.3 3/60 5.0 0 

  1.03 45.257 3 2/60 3.3 2/60 3.3 0.03 

  1.41 48.328 3 0/60 0 2/60 3.3 0 

  1.65 49.643 3 0/60 0 1/60 1.7 0 

  2.05 51.465 3 1/60 1.7 1/60 1.7 0 
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  27 51.364 3 60/60 100 2/60 3.3 100 

 YL 0.91 44.391 3 15/60 25.0 3/60 5.0 21 

  1.03 45.257 3 2/60 3.3 1/60 1.7 1.7 

  1.41 48.328 3 18/60 30.0 2/60 3.3 27.61 

  1.65 49.643 3 11/60 18.3 2/60 3.3 15.54 

  2.05 51.465 3 2/60 3.3 2/60 3.3 0.03 

  27 51.364 3 60/60 100 3/60 5.0 100 

 E 0.91 44.391 3 57/60 95.0 8/60 13.3 94.2 

  1.03 45.257 3 54/60 90.0 10/60 16.7 88 

  1.41 48.328 3 56/60 93.3 7/60 11.7 92.4 

  1.65 49.643 3 55/60 91.7 8/60 13.3 90.4 

  2.05 51.465 3 58/60 96.7 6/60 10.0 96.3 

  27 51.364 3 60/60 100 11/60 18.3 100 

2 A 0.91 51.495 3 16/60 26.7 5/60 8.3 20.0 

 

  1.03 52.022 3 18/60 30.0 7/60 11.7 0 

  1.41 53.811 3 22/60 36.7 3/60 5.0 33 

  1.65 55.13 3 26/60 43.3 8/60 13.3 34.7 

  2.05 56.59 3 25/60 41.7 2/60 3.3 39.7 

  27 50.653 3 60/60 100 3/60 5.0 100 

 P 0.91 51.495 3 7/60 11.7 0/60 0 11.7 

  1.03 52.022 3 0/60 0 0/60 0 0 

  1.41 53.811 3 0/60 0 0/60 0 0 
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  1.65 55.13 3 0/60 0 1/60 1.7 0 

  2.05 56.59 3 0/60 0 0/60 0 0 

  27 50.653 3 60/60 100 1/60 1.7 100 

 OL 0.91 51.495 3 0/60 0 3/60 5.0 0 

  1.03 52.022 3 1/60 1.7 2/60 3.3 0 

  1.41 53.811 3 2/60 3.3 2/60 3.3 0.03 

  1.65 55.13 3 2/60 3.3 1/60 1.7 1.7 

  2.05 56.59 3 0/60 0 1/60 1.7 0 

  27 50.653 3 60/60 100 2/60 3.3 100 

 YL 0.91 51.495 3 4/60 6.7 3/60 5.0 1.7 

  1.03 52.022 3 4/60 6.7 1/60 1.7 0 

  1.41 53.811 3 2/60 3.3 2/60 3.3 0.03 

  1.65 55.13 3 0/60 0 2/60 3.3 0 

  2.05 56.59 3 3/60 5 2/60 3.3 3.4 

  27 50.653 3 60/60 100 3/60 5.0 100 

 E 0.91 51.495 3 58/60 96.7 8/60 13.3 96.1 

  1.03 52.022 3 54/60 90.0 10/60 16.7 88 

  1.41 53.811 3 60/60 100 7/60 11.7 100 

  1.65 55.13 3 53/60 88.3 8/60 13.3 86.5 

  2.05 56.59 3 52/60 86.7 6/60 10.0 85.2 

  27 50.653 3 60/60 100 11/60 18.3 100 

ª A, adults, P, pupae, YL, young larvae, OL, old larvae, E, eggs. The mean control mortality of eggs, young larvae, pupae, and 

adults at the six observation times ranged from 10-18.3, 1.7-5, 1.7-5, 0-1.7, and 3.3-13.3, respectively. 
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Figure3.2 Corrected mortality for T. variabile life stages against degree-hours at two 

locations during heat treatment at a grain-processing facility. 
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Table 3.11 Temperature data at four locations where test boxes with T. variabile life stages 

were placed during heat treatment at KSU pilot flour mill. 

 

Location Initial 

temp. 

(˚C) 

Time 

to 50˚C 

(h) 

Rate to 

50˚C 

(˚C/h)ª 

Time 

above 

50˚C 

(h) 

Max 

temp 

(˚C) 

Temp at sample collection time in hours 

      5.25 18.75 24 27 

1 24.6 

 

23.5 1.1 3.5 54.6 42.8 

 

47.5 

 

52.6 

 

54.0 

 

2 24.8 

 

12.3 2.0 14.8 61.5 46.3 

 

51.8 

 

59.5 

 

60.8 

 

3 25.0 21.3 1.2 5.7 55.6 39.0 

 

47.9 

 

52.4 

 

54.8 

 

4 25.1 

 

2.1 

 

12.0 

 

24.9 

 

66.6 

 

55.30 

 

61 

 

65.1 

 

65.6 

 

ª Rate = (50˚C− Initial temp.)/ time to 50˚C.  
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Table 3.12 Mortality of T. variabile life stages in test boxes at four locations sampled at four different time intervals during 

heat treatment at KSU pilot flour mill. 

Location Stageª Sample 

collection time 

(h) 

No. of test 

boxes 

Treatment Control Corrected       

Mortality (%) 

 

 

No. dead 

insects/total 

Mortality 

(%) 

No. dead 

insects/total 

Mortality 

(%) 

1 A 5.25 2 5/40 12.5 0/40 0 12.5 

  18.75 2 18/40 45 0/40 0 45 

  24 2 38/40 95 1/40 2.5 94.9 

  27 2 40/40 100 0/40 0 100 

 P 5.25 2 0/40 0 0/40 0 0 

  18.75 2 0/40 0 0/40 0 0 

  24 2 12/40 30 0/40 0 30 

  27 2 39/40 97.5 0/40 0 97.5 

 OL 5.25 2 0/40 0 3/40 7.5 0 

  18.75 2 0/40 0 2/40 5.0 0 

  24 2 3/40 7.5 1/40 2.5 5.1 

  27 2 13/40 32.5 2/40 5.0 28.9 

 YL 5.25 2 0/40 0 2/40 5.0 0 

  18.75 2 2/40 5 2/40 5.0 0 

  24 2 8/40 20 4/40 10.0 11.1 

  27 2 5/40 12.5 3/40 7.5 5.4 

 E 5.25 2 37/40 92.5 5/40 12.5 91.4 

  18.75 2 38/40 95 3/40 7.5 94.5 
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  24 2 40/40 100 6/40 15 100 

  27 2 40/40 100 4/40 10 100 

2 A 5.25 2 2/40 5 0/40 0 5 

  18.75 2 40/40 100 0/40 0 100 

  24 2 40/40 100 1/40 2.5 100 

  27 2 40/40 100 0/40 0 100 

 P 5.25 2 0/40 0 0/40 0 0 

  18.75 2 4/40 10 0/40 0 10 

  24 2 38/40 95 0/40 0 95 

  27 2 40/40 100 0/40 0 100 

 OL 5.25 2 0/40 0 3/40 7.5 0 

  18.75 2 20/40 50 2/40 5.0 47.4 

  24 2 40/40 100 1/40 2.5 100 

  27 2 40/40 100 2/40 5.0 100 

 YL 5.25 2 1/40 2.5 2/40 5.0 0 

  18.75 2 2/40 5 2/40 5.0 0 

  24 2 40/40 100 4/40 10.0 100 

  27 2 40/40 100 3/40 7.5 100 

 E 5.25 2 38/40 95 5/40 12.5 94.3 

  18.75 2 38/40 95 3/40 7.5 94.5 

  24 2 40/40 100 6/40 15 100 

  27 2 40/40 100 4/40 10 100 
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3 A 5.25 2 3/40 7.5 0/40 0 7.5 

  18.75 2 0/40 0 0/40 0 0 

  24 2 39/40 97.5 1/40 2.5 97.4 

  27 2 40/40 100 0/40 0 100 

 P 5.25 2 0/40 0 0/40 0 0 

  18.75 2 40/40 100 0/40 0 100 

  24 2 40/40 100 0/40 0 100 

  27 2 40/40 100 0/40 0 100 

 OL 5.25 2 0/40 0 3/40 7.5 0 

  18.75 2 31/40 77.5 2/40 5.0 76.3 

  24 2 40/40 100 1/40 2.5 100 

  27 2 40/40 100 2/40 5.0 100 

 YL 5.25 2 0/40 0 2/40 5.0 0 

  18.75 2 33/40 82.5 2/40 5.0 81.6 

  24 2 39/40 97.5 4/40 10.0 97.2 

  27 2 40/40 100 3/40 7.5 100 

 E 5.25 2 39/40 97.5 5/40 12.5 97.1 

  18.75 2 38/40 95 3/40 7.5 94.5 

  24 2 40/40 100 6/40 15 100 

  27 2 40/40 100 4/40 10 100 

4 A 5.25 2 38/40 95 0/40 0 95 

  18.75 2 40/40 100 0/40 0 100 
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  24 2 40/40 100 1/40 2.5 100 

  27 2 40/40 100 0/40 0 100 

 P 5.25 2 1/40 2.5 0/40 0 2.5 

  18.75 2 40/40 100 0/40 0 100 

  24 2 40/40 100 0/40 0 100 

  27 2 40/40 100 0/40 0 100 

 OL 5.25 2 40/40 100 3/40 7.5 100 

  18.75 2 40/40 100 2/40 5.0 100 

  24 2 40/40 100 1/40 2.5 100 

  27 2 40/40 100 2/40 5.0 100 

 YL 5.25 2 17/40 42.5 2/40 5.0 39.5 

  18.75 2 40/40 100 2/40 5.0 100 

  24 2 40/40 100 4/40 10.0 100 

  27 2 40/40 100 3/40 7.5 100 

 E 5.25 2 37/40 92.5 5/40 12.5 91.4 

  18.75 2 39/40 97.5 3/40 7.5 97.3 

  24 2 40/40 100 6/40 15 100 

  27 2 40/40 100 4/40 10 100 

ª A, adults, P, pupae, YL, young larvae, OL, old larvae, E, eggs. The mean control mortality of eggs, young larvae, pupae, and 

adults at the four observation times ranged from 10-15, 5-7.5, 2.5-7.5, 0, and 0-2.5, respectively. 
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Figure3.3 Corrected mortality for T. variabile life stages against degree-hours at four 

locations during heat treatment at KSU pilot flour mill. 
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