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INTRODUCTION AND STATEMENT OF PURPOSE

New methods for design and "i&nagement of water-resource

systsns are being evolved as part of a general social tendency

toward expressing social problems in the formal models that have

hitherto been restricted to scientific and engineering problems.

Two general types of models have been fruitful in the field

of water-resource development! the simulation model and the

analytic model. Simulation is used for highly complex systems

involving a large number of design decisions. For less

complicated systems, various optimization techniques can be

used to obtain the optimal conditions. Simulations are awkward

when a wide range of design decisions has to be evaluated:

analytic models can not be applied to practical problems without

drastically simplifying' them. But the two nethods can be used

in tandem, with analytic models delimiting the range within

which simulation is required.

Two basic problems in the analysis of water-resource

systems arei the problem of obtaining a realistic mathematical

1 and the problem of obtaining the best management policy

from an analysis of the resulting aathematioal model.

Of the different analytical approaches, dynamic programming

has been quite useful In optimization of water-resource systems.

Linear nrograamlng is not generally useful, bees-use individual

reservoir utility or cost functions are in general definitely
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THE GRADIENT PROJECTION METHOD

2.1 INTRODUCTION

In the fields of nonlinear optimization there are many

methods [29] which may be used successfully on unconstrained

problems, However, most practical problems involve constraints,

both general and specific, which must be satisfied in order to

obtain meaningful results.

Rosen [24] developed the gradient projection (OP) method for

solving the subclass of nonlinear programming problems

characterized by linear constraints. He extended this work to

handle the more difficult case of nonlinear constraints [15]. The

discussion here is confined to the simpler case of linear

constraints only.

Briefly, GP is a method for a system of m variables (x's)

subject to linear constraints -which may consist of inequalities,

equalities or both. The objective is to find the maximum value

of the objective function while satisfying the constraints.

In geometric terms, GP starts with a. feasible point (one that

fritisfies all the constraints) or finds one, if not given, and

then a ntep-'ise procedure gives a new feasible point at each

• top with an Increased value of the objective function. This is

accomplish:-: "... -' -.-.- ..-.ps in the direction of the gradient of

the objective function or its projection on the Interact ' r.i of

Selected constraints. Th i maximi ; -
-

i
-..- ;ep that

would increase ths r;-:lus of the obj&ctive "unction would violate



the constraints, or when the gradient roes to zero.

2.2 .-OIt"uIA.riCN FO:? LTKSA3 CC'TSTP.AIIJTS [24-]

A problem with m variables, x , i = 1, 2, ..., a, is

considered. Geometrically, any specified set of values for the

x. represents a point in a Eu.elld.ean ™~dim ens' onal erace, E .

It 5 s assume-] that the variables are constrained by a set of k

linear inequalities or equalities. These constraints form a

convex region ?. in E„ which is assuued to be bounded. A feasible

point lies in S. The constraints are of the form

jx vr biV l " 1 ' 2 k (1)

£ (n
= J

2
-. 1 i « 1, 2, .... It (2)

3b.ce a is a bounded region there mat

so that k > m*l.

Cc >OMding to each of the k c

defined

tt

i = Ki'\2 \*\

now be writti

! by I,;-) :01e<



hyperplasia whloh Will be denoted by H , m

H t ^
1
(x) =0 1 „ 1, 2, .... k (5)

The unit vector n is orthogonal to H,. A set of hyperplanes are

linearly independent if the corresponding vectors n are linearly

independent. Clearly there can be at most a linearly independent

hyperfplanes in an m-dimensional space.

Define the m x k matrix

and the k-dlmensional vector

\- [\> \ \\ (7)

Then (.1) or {h) oan be written conveniently as

N
*

x - \ > ° (3)

A set of q linearly in~i t unit v ctors n .

1

1 = li 2 q, with 1 < q < a, defines a set of q linearly

independent hyperplanes 1^ as given by (4) and (5) for any

specified iralBes of Wie b . Let

V CV B
2 V (9)

It cct be shown that the a x q symmetric matrix tJ

3
H is

'-- ,"10 j r-r.d thei-,:-foi e it:; ':iv ; r,;= fi;
T

\i
}

-1
,, -fist's

:.'. intersection of the q hyperplanes H and let

~i be the q-dlmenslonal subspacs of E ihl h is spanned by



; "space. The suhspaces Q and. Q sre orthogonal.

Define the m x a symmetric aatrix

i project!. on 'natr:

An a :: r. L2:<trix is now defined by

P
q

= I - P
q

(U)

The matrix P is a projection nstrix which takes any vector in

3 into the intersection Q.

In course of an optimization calculation, it is necessary

to obtain the projection of the gradient vector on various

intersections Q. In other words, the matrix (A; -1
la required

at each step. Rosen [24-] derived two recursion relations

which permit a hyperplane to be dropped from or added to (N N)"1

with considerably lews computation. A simple and verj useful

recursion relation for ? is also given.
1

2.3 CO! .

; [iV]

•
. active function

•:; - '(*!• ->:

z V (12)

is defined in R, and is \ \
-

:
-A

ipect to .he x. . Msi [x)

find a La



B at which F(x) has a global maximum. If the point x is on

the boundary of 5, it is a constrained maximum.

The gradient of F(x) Kill be denoted by g<x) and is defined

by

s(x) . lL, JS. AH (13)

It is sell kr.rx.i that for an unconstrained concave function

the necessary and sufficient condition that x be the maximum point

is g(x
o ) a 0. If such a point exists in the interior of P., it

Will be called the interior global maximum of P(x). If g(x)

does not vanish in the interior of R, the global maximum lies on

the boundary and will be called a constrained global raximura.

The basic theorem concerning a constrained global maximum is as

follows

Theorem

i

Let x be a boundary point of B which lies on exactly q,

1 < q < m, hyperplanes, which are assumed to be linearly

independent. Let the intersection of these hyperplanes be the

manifold Q. Then the poiat x is a constrained global maximum

of F(x) If, and only if,

P g(xj -, (14)

«<xJ <

I n a th, on a to st jllsl he

snce to a global maxlraui of F(x). Poi



Ta-„[-.c:Eatic<3l r.j-fli.tr.er.t of these ^spool's of constrained -aximusE

K.-y- c-nv-r •. .ca, the interested reader csn consult the original

reference [»].

CI [M [24]

Certain quantities used in the algorithm are defined here

Without going into complex mathematical details. Let

% - *<V (16)

to a constraint

actor in direction of step (18)

Y = selected stec size

i:o\- consider a feasible point x which lies on the a'

\. i = 1 q. Since it is a feasible

point, X.

1
(x) > 0, 1 = q+l, .... k. Then for each of the remaining

k-q hyperplwies, iy 1 „ q.+l ':. there iay exist a value

V = 'i, such t:a: >. (.:) a Q. ? ls fche distance from x to the

fallal to 2. In particular,

r, J~ 1 -- <H-1, ....
"

(19)

i •

. c of r,

urnsal distani

L

r
i '

r
2

^r

S
'

£
cli



Tr

VK^ol
"1 = "0 T ' m'



ra = la |Yi > 0] i = q~l fc (20)

The distance Ta represents the largest step that can be taken

from y_ in the direction 2 without leaving H (see Fig. 1). if

* =
-o +r* (2D

then it follows that for any Y, < f < f i X is in E.

The algorithm stated below is for a current, arbltary point

x in H which lies on the manifold Q forced by the intersection

of q linearly independent hyperplanes.

Step 1.

'

Compute s^ = a-(*v ) and P^. If p g?
„ o and r < 0, where

r is given by (17), then x^ is a global mftxim.ua.

Step 2.

,o
W>i either||Vv|>_jo.lr d

qi
--l)orj|PqM <

1 ~2 -5 -i
2

r
q 'qq >

Khere r
q

d
qq

2 > P
4

&Xi
2

, 1 =-- 1 , 2 q-1, and

where a is the, 1
th

a 1agonal element of (N
T

?J f\ rf the11 q q
lolds, compute z according to (18). If the latter holds,

'

'"
'

:

°

''

'

~ Vi '
'

eo* '
'

" : ' F
,-i-

Compute

z .

?

:

' ' K^ 1

Strip 3.

V .
'rora (19) Wd (20)

Sto 1

'.



Compute g* = g(x' ). If z
T
g' , > C, take x = x'

v+1 v+1 v+1 -
v+l v+1

and add to Q the H. corresponding to the minimum'1' in (20).

Vl* ?K+1+ (1 "f )x
v •

(23)

The intersection Q remains unchanged.

This is the basic algorithm for a single step from a point

x (if it is not maximum) to a new point x with an increasedv v+1
value of Fix). At each step, the intersection Q may remain

unchanged, a hyperplane nay be added or dropped, or one may be

dropped and another added. The last step of algorithm is the

orthogonal gradient interpolation.

2.5 PROGRAM FLOW

A genera] .
.

.

. , known as c [ >l] was developed

for the purpose of oclving a ser; • • • -
.

,-- rig design and

,;
';c;''""'" i:r.-!c3cr.s. A complete loi chart -.' the nrojram is

pendlx B. This .'. -
'

-elation methods,

matrix computations, re-lnversj
i lo Lo jto.

A brief description of th« md subroutines

follows the explanation of I. ol/;r .-;::-.-•.= .?nd li.iits Meces^.ry for



the program.

2.5.1 Tolerances and Limits

The gradient tolerance, g^ is used to determine when the

norm of the gradient is zero, and the problem has reached a

maximum. The value of £
1

is harder to determine for a nonlinear

function. In general, the smaller the value of t , the better

the "maximum" will be. The price paid for this better answer

will be in more machine tine. A value of I about 10~ 3
||r|| seems

to be reasonable.

The constraint tolerance, £
2

, determines when a point is on

a constraint, and is therefore the acceptable error in satisfying

the constraints. A value of £ about 10"3 V , where b' is the

largest right hand side of constraints, b , divided by the

corresponding scaling divisor or 10
-3

times the largest value of

x seems to be reasonable.

The linear dependence tolerance, £,, determines when a

constraint is linearly dependent and therefore can not be added

to the basis. The general value used for £ is 0.005.

^max ls the maximual step length which is used as the initial

step length and must be provided when the region is unbounded.

A possible choice for 7^ Is IJn, where L is the largest value

that srvj Individual s oan assume. A value off - 10 1 -
•max

found reasonable for quadratic functions. The program computes

a minimum step length, f „ lo"'
1
' f , which prevents some

Ing or extrapolating when the distance between the

points is less than T
1 win

7 " : five 111 its which must be set are now su-unarized. The
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settings for these limits will generally depend on the size and

type of problem being solved.

MAXU, maximum number of steps. The number of steps required

to reach the maximum is difficult to pre-determine since it

depends on such factors as size, type of function, and number of

constraints in the basis. It keeps the run to a reasonable

length without having to rely on a time limit.

MXBNi maximum number of re-inversions. The number of re-

inversions is limited to prevent the problem from re-inverting

too often thereby consuming extra time. The program will not re-

invert twice in a row to the same basis, but it may re-invert

after only one basis change or possibly repeat a series of re-

inversions.

^raax
and Yrnax

1- lmit the n™ber of gradient interpolations

which are computed in finding an x for which F has increased.

For a quadr.-itic function, 8 should be one and Y should beIEcix max
zero " Tnax Umlts the number of points to be saved and used in

computing extrapolation. If %3y. Is zero in input, the program

will use t;;-i theoretical limit, m-q, fori? .

2.5-2 Main Program

"he fl:.-.-:c ; action reals input and s.-?ts the initial conditions

for a pr.Volem. Tile constraints are read end normalized to unit

Vectors. If equalities are todicated, ;,he« form the initial

basis', and the corresponding inverse is soaputed.

In the next section, tn,v. urogram t-^'.s for fe^siMlltj

./, finds a feasible x or determines that there la



Ik

no feasible x.

When a feasible x is found, the subprogram is entered to

compute F and g, The program is now ready to enter the step

procedure. A step includes the projection of the gradient,

testing for the maximum, changes in the basis and computation of

the step length.

At the beginning of each step, the program has a feasible

x for which P and g have been computed. The non-basis constraints

are classified into V( (xj < £
g

) and W(
|\J

> g ) . The norm of

the gradient is computed and tested for zero. If flgjl < g ,

this is the maximum.

If
||'| > £

1
and q = 0, the computed gradient is stored as

the projected gradient, and program skips to comptite z. If

q # 0, the ^racUent is projected and the norm of the projected

,'jradient is tested for zero. If
||ps ||

< £ the program tests

for a constraint to drop. If there is no constraint to drop,

the maximum test is satisfied and the current point is the

maximum. If there Is at least one, the best one is cropped from

the basis, and gP HI is calculated and tested.

If
||

F -'| >€ and q < ra, the unit vector z is conputed. If

V j. 0, 7. n 1:5 computed and tested for all i in V. If the

IH z n, is negative, the corresponding constraint is added

to the basis if it is linearly independent, and |Pg| is calculated

and tested.

When there are no more constraints in V for which z
T
n. is

— v - 0, the program tests for basis ohanges.

If the rtep Mas interior, the program tests for a constraint drop.
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When the program finds no more changes to be made In the

basis, it is ready to compute the next step length. If the

previous step was not interior, the initial step length Is set

at
^max" If the ?revi0lis steP was interior, the initial step

length depends on the extrapolation method selected. Two extra-

polation methods available are x, G method and 3-point method.

When initial step length is determined and if W = this

is checked against constraints in W. For all 1 in W for which

z^n^ is negrative, Xt
= -^A^ is computed. If the minimum 1^

is less than the initial T, the step is limited by the constraint

H
1

and T, replaces Y.

A new x, x^ = ae^ + fz, is computed. F and g are computed

and z
T

n,. is computed. If T is less than Yml , the interpolations

axe skipped. Two kinds of interpolations are available to find

the maximum of F in the direction determined by z. The first is

computed if the gradient has reversed direction between x and

x^. This prevents the problem from overshooting the maximum.

The second is computed if F has not increased.

After completing the necessary gradient interpolations, x is

checked for feasibility. Theoretically, x should be feasible,

but because of inaccuracies due to round-off in the inverse

matrix it Is possible to violate the constraints. Tn that case

F and g are recomputed and ? is rcchecked.

One pass through the step procedure is now complete. The

step counter is tested against maximum step limit. If the

limit is not reached, the program returns to the beginning of

step procedure.



2.5-3 Subroutines

Subrpitone REINV essentially computes the inverse matrix
T -1

(N N ) whereas subrouLir.-s ::..:cc;: and CC;.:AT do the macrix
q q

computations required by the gradient projection algorithm.

Subroutine AMOA calculates the \*s while subroutine CLASS

classifies the constraints into different catagories. In the

program.

u •- linearly dependent constraint

v = constraints not in the basis with X =

w = constraints not in the basis with X >

Subroutine FUNGI is added to the program to compute the

value of the objective function, F(x), and its gradient, g(x),

for any given x within the region.

2.6 DISCUSSION

The technique and program into which it is incorporated are

designed to handle general nonlinear problems with linear

constraints. The method is intended to apply to a variety of

problems, wen though in many cases more computation time may

be required.

If the function is concave, a global maximum is guaranteed.

In order cases, the solution may be only a local maximum, and

several widely separated starting points should be tried. If

different results are obtained, the best that can be done is to

take the maximum value of this set.

As true with different variants of the gradient methods, in
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general, an Infinite number of iterations may be required before

the conditions regarding a constrained global maxinum are

reached. Also, the steps may get too small near the stationary

point resulting in a very slow convergence rate [ll].

Goldfarb [9] has developed a conjugate gradient method for

nonlinear problems with linear constraints. According to him,

the method has a faster convergence rate and can navigate through

the troublesome regions like "steep ridges" and "narrow curving

valleys". At this stage, only a limited amount of computational

experience is available for conjugate gradient method.

In conclusion, with this program, as with most nonlinear

programs, the results obtained on real-life problems are very

dependent on the design of the problem to be solved, as well as

the effectiveness of minor adjustments of an algorithm to obtain

best results for specific unusual problems.



A MANAGEMENT MODEL FOR WATER QUALITY CONTROL

3.1 INTRODUCTION

The problem of river basin planning for water quality is

currently receiving wide attention. The stimulus for this

attention is the recognition that water quality problems are not

necessarily the result of one recalcitrant polluter but of many.

Because of this, the Federal government's deep commitment to

restoring stream quality is increasing not only in form of

financial assistance, but also in responsibility.

One municipality, one industry or even one state can not

always control stream pollution, For this reason governmental

agencies having jurisdiction over entire ri^er basins are

establishing quality standards for each section of the stream.

These stream standards are intended to maintain stream quality by

limiting the amount of waste that can be discharged into the

stream.

The problem of determining standards for the stream becomes

more complex when there are two or more sources of pollution.

In these cases, the amount of waste released from one point may

mix with the waste released at another point to contribute to

the pollution downstream from both points. The quality standard

at any point in the stream can be met by many combinations of

quantities released at various locations upstream. The problem

is to find the combination that results in a minimum total cost.

Systems analysis and its applications have been increasingly
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applied to this problem of water quality management. A series

linear programming models were structured to determine alternative

ways of meeting quality standards. Deininger [>] structured the

problem as a linear programming model utilizing various

approximations of the differential equations used to describe

the dissolved oxygen profile of streams. Kerri [17] proposed a

dynamic model for achieving and maintaining water quality control.

He applied the concept of a critical reach to a simplified

version of Willamette River in Oregon. Thomann [28] and Sobel

[26] also developed linear programming models for related but

different conditions of the Delaware estury. Liebman and Lynn

[18] presented, a dynamic programming model to study this problem.

The model was solved for a simplified example based on data from

the Willamette River. Revelle, Louclcs and Lynn [19, 23] developed

several linear programming models. The difference in each model

reflected both the assumption regarding the river basin and the

manner in which the standard is specified.

In general, the treatment plant costs are not linear. An

attempt has been made to formulate this problem as a multistage

decision process with a nonlinear cost function. The model so

developed can be readily applied to a variety of river basins

with minimal alteration of the basic model. The treatment

closely follows one discussed in [19].

3-2 BACKGROUND

A large portion of the municipal and industrial waste

released into streams is organic material. These organics



become a source of nutrients for many organisms found in streams,

Dissolved oxygen (TO) contained is withdrawn by these organisms

in the process of utilizing these wastes. The larger the

quantity of these bio-degradable wastes the larger is the

population of those organisms and the greater is the demand for

oxygen.

Fish and other aquatic animals and plants require certain

minimum concentrations of DO if they are to survive in the

stream. If the DO concentration is completely depleted, the

stream becomes anaerobic and may be more reminiscent of a sewer

than a stream. Insufficient removal of organics in the waste-

water prior to its release into the stream can bring about these

conditions. For these reasons stream quality standards usually

specify minimum allowable DO concentrations in each section of

the stream. The CO parameter Is the one most commonly used to

measure and limit the amount of pollution resulting from these

organic wastes.

The capacity of the stream to assimilate bio-degradable

wastes is determined by such factors as stream flow, stream

temperature, the waste concentration as measured by its bio-

chemical oxygen demand (BOD), the DO concentration, and the

physical and biological properties of the stream that affect

settling rates, reaeration, BOD addition due to runoff, scour etc

Two differential equations describing the processes that

determine the concentration of DO in the stream have been

developed by Camp [2] and Dobbins [5].

The first equation assumes that the rate of change in the



BOD concentration with tla», (dB)/(dt), is proportional to the

concentration of HOD present, 3, and to the rate of BOD addition,

R, due to runoff and scour.

(d3)/(dt) = - (k + k ) B + R {1)

The terms J^ and k^ represent rate constants for deoxygenatlon

and sedimentation, respectively.

The second equation assumes that the rate of change in DO

deficit, (dD)/(dt), is proportional to the concentration of 30D

present, B| the existing oxygen deficit, D; and the rate of oxygen

production or reduction, A, due to plant photosynthesis and

respiration.

(dD)/(dt) i kjB - k
2
D - A (2)

The constant, k.,, reflects the rate at which BO is returned to

the stream through reaeration.

The equations, at best, grossly describe the effects of the

introduction of unstable oxygen-demanding substances upon the

oxygen resources of the stream. They do not adequately describe

the complex biological, physical and chemical phenomena of

streams. But the formulations are currently used by state and

federal officials to prescribe levels of wastewater treatment.

By Integrating equation (1), the 30D concentration, B ,

at any point (corresponding to a time, t) downstream from an

initial BOD concentration, 3
o>

can be determined.



Using equation (J), eq'

the oxygen deficit, D

initial oxygen deficit

At any time, t, the DO saturation concei

deficit, D , yields the DO concentratloi

"oxygen sag" curve as shown in

,
and critical fclke, t , occur

cv;est value, C^. The critical

; between saturation concentration,

1 at the critical tine. I-n

.on exceeds the reaeration rate.

In Region II the reverse is true.

It is recognised that methods for measuring some of pa.ramete

namely A, k, and R, have not been perfected and in most cases

these are unavailable. If a., k and R are assumed to be zero,

the more general o:-y;-,m sag sqatibn (4) becomes the simpler

Streeter-Phelps [27] sag equation.

c
t

" CS - D

Eqtlaticm W r«Spre.;ents th(

Fig. 2. Th<: critical d(;ficit, !

DO conesent rat i(>n is; at its

defl lit, D
Q ,

,' is the difi'erence 1

CS, iand the actual c:onasitratloi

ie i on I th<; rate oi ' decJxygenati

D
t = k7---l^Bo (e-

*- 9
~2

) + D
o

and equation (3) is simplified to

-k?l



Fie. 2. Oxygen S<xZ Curve



3.3 MATHEMATICAL 70HKULATI0N

The purpose of this sectior

Linear oxygen sag equation {k) c

linear constraints. These lines

;o illustrate how thi

: recast into a serii

straints c be

icorporated into £

ist solutions of \

lathematical model for determining minimum

ious water quality control poticies in a

A stream in which there are N waste dischanges is considered

in the model as being divided into N reaches, the reach

being defined as the stretch of stream between i and

(i+l) st discharge.

Tributaries, if any are assumed to enter the top cf a reach.

The amount of flow from each discharge, the DO concentrations,

and the raw 30D loadings are assumed to be known.

The parameters of the equation relating DO to waste loading



are constant In each reach and known.

5. The stream flow in each reach is considered deterministic

and known.

6. The standards for minimum DO concentration In each reach

are specified.

7. A complete mixing is assumed at all points where a tributary

or wastewater effluent enters a stream.

8. The design flow used for determining the capacity of the

stream to assimilate wastes is usually the minimum average

consecutive seven-day flow expected once in 10 years on the

average [19].

3.3.2 Constraints

It is necessary to compute the BOD and DO concentrations at

the beginning and end of each reach. In the inventory equations

that follow, the subscript r denotes a particular reach.

In general the total flow, QS , in reach r is the sum of

the flow in the previous reach, QS ; the tributary flow entering

the reach, QT ; and the wastewater flow discharged into the

reach, QW .

Q3
r

= Q3 + QT^ + QW
r

(10)

complete mixing, the BOD concentration at the beginning

of each reach, EB , is equal to the sum of the BOD concentrations

at the end of the previous reach, BE ; in the tributary, BT ;

and in the wastewater effluent, BW , times their respectivs flows

divided by the total flow.



Sinilarly, the DO concentration at the beginning of each

reach, C3
r>

can be determined from the concentration at the end

of the previous reach, CE^j the tributary concentration CT j

and DO concentration in the wastewater effluent, CW .

CE
r_l ^.i + CT QT + CW„ qv

CB
r = __ E i__£

{12)

The DO deficit at the beginning of each reach, D3 , is the

difference between the saturation concentration CS , and the

initial DO concentration, C3 .

DB
r
= C3

r
- CH (yj

The BOD concentration and CO deficit at the end of each

reach can be computed from the initial BOD concentration and DO

deficit, using either equations (3) and (k) or equations (6) and

(7). The time, t, In these equations is understood to be equal

to the time required for water to flow from the beginning of

each reach to the end of that reach, T . Thus, BE , the BOD

concentration at the end of reach r and DE , the DO deficit at

the end of reach r, can be determined.

Using these equations It la possible to write constraints

that define the minimum allowable DO concentration within each

reach

.

The do deficit, Drt , at various points t along each reach r

;ould be constrained to
. to the maximum



allowable deficit In that reach, D
ir'ax

.

D
rt

< ^X
for various t , < t < T

r (W

3y reducing the interval between successive fa, the possibility

of violation between these points is reduced. If the time of

flow, T^, is less than the critical time, t , only one quality

constraint is necessary for that reach, namely

(15)

A few trial solutions will enable one to eventually place

these quality constraints, equation (1*0, at the points having

the lowest DO concentration. With these constraints, the solution

will yield the maximum amounts of 30D that can be released

into each reach without violating the standard for any reach.

Sometimes an additional constraint may be desired if each

treatment facility is required to remove the same fraction of BOD

from the wastewater influent. Such a requirement can be

expressed by equating for each reach the ratios of the BOD

concentration released into a reach, B'.^, over the total amount

available, BW
max

.

BW„ BW"



r = Reach number

O = Wastewater treatment facility

Fig. J. Hypothetical River Basin [19]



P = percentage treatment at r plant

Also, In general, F is constrained between two specified

limits.

i\f
n

< P
r < Pjf* (18)

3.3-3 Objective Function

Objective function should enable one to specify amount of

wastewater treatment required to meet at minimum cost a set of

quality standards for the river basin. The objective is to

minimize the total cost of wastewater treatment, mathematically,

it may be stated as

N
MINIMIZE ' E C (P ) (19)

r=l r r

where

C (P ) = the function representing the total cost of

providing the treatment P at the rth discharge,

given as an annual cost including anorlzation

and operating costs.

The objective is constrained by the quality standards as expressed

by (I*)-) and (15) and the Inventory equations discussed earlier.

3.^ DESCRIPTION OP SYSTEM

A hypothetical river basin shown In Pig. 3 was used by Loucks,

Hevelle and Lynn [19] to establish and evaluate various water

quality control policies. The same basin with all the necessary



data is used here. As a matter of fact this hypothetical system

was derived from a highly simplified representation of Willamette

River in Oregon. The main contributors of pollutents on this

stream are municipalities and pulp and paper Industries.

In this basin the quality of water in seven reaches is

affected by the amount of 30D released from six wastewater

treatment facilities. .It is assumed that these facilities exist

and are currently removing a sufficient amount of BOD to satlfy

the stream quality standards. It is anticipated, however, that

by 1980 the BOD load will increase considerably. This will

obviously necessitate additional treatment. It is required to

determine the additional treatment necessary and the minimum cost

required to meet the standards in 1980.

Table 1 provides all the necessary stream and wastewater

data. Table 2 gives wastewater treatment data. For all treatment

facilities, a minimum removal of 35,S has been imposed. The

intent of this constraint is to require each plant to provide at

least primary treatment, thus ensuring the abscence of floating

solids in the stream. The presence of these solids is usually

considered objectionable even though they may not reduce the

oxygen concentration below the minimum acceptable level.

.Because of technological difficulties in construction of facilities

that can remove over 90 4 of the BOD with certainty, $0% will be

assumed to be the maximum treatment required.

The treatment plant costs are usually convex within the

range from J$% to 90;! BOD removal. A typical cost curve is shown

in Fig. 4A. Loucks, Revelle and Lynn [19] assumed that oqsta are
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0.6677246 -2 1281730 1.6879880

1.086456 -2 5185540 2.8623040

0.2358398 -0 4570770 0.67469790

0.4561768 -o 8029786 1.1875000

0.6172485 -1 2800290 1.7590330

0.8294067 -1 1845700 1.9653320



linear within each segment. In this work, a quadratic fit was

obtained for treatment costs at each plant using the standard

regression analysis procedure [?]. A typical quadratic fit is

shown in Fig. 43. The general cost equation can be written as

a + bP + c?2 (20)

where F = percent treatment provided at a plant

The coefficients a, b and c for various plants are given in Table

3. This particular aspect is a significant change from [l°] and

represents a riore realistic situation. The problem no longer can

be solved by linear programming. It becomes one of nonlinear

programming where a nonlinear objective function is subjected to

linear constraints.

The objective function can now be written for the river

basin illustrated in Fig. 3.

MINIMIZE Za+bP+cP 2
(?1)

r=1 r r r r r

v-15

The constraints must bound all P
r
*s, define the J

final BOD and DO concentrations in each reach and limit the ROD

concentrations at the beginning of each reach so that the stream

standard is not violated.

3.5 SOLUTION

The problem formulated above was a nonlinear programming

problem with linear constraints. Application of the gradient

projection method seems quite justifiable to obtain the solution

of this problem.



Two different runs were made with the data of Tables 1 and

2. For each run, both Streeter-Phelps and Camp-Dobbins

formulations were used. Run 1 was used to find the optimum

(minimum) cost configuration of plants that will just meet the

DO standards specified for the stream. Run 2 duplicated the

conditions of Hun 1, except that the minimum DO standards in each

reach had been reduced by 0.5 rag/1.

A brief description of different computational aspects

involved in solution by the gradient projection method is not out

of place.

The various tolerances and limits are to be judiciously

selected. A very small value of £ may require a considerably

more computation time without actually contributing much to the

improvement of functional value. In general, the following

approach was used. Firstly, using a relatively large value of

£^0.005), the solutions were obtained starting with different

initial points. Using this information, a new starting point-

very close to optimal values of control variables was established.

The value of ^ was then considerably reduced (.0001) and an

accurate optimal solution was obtained.

The following values were assumed

£, = .005 and .00 01 MANU -.= 20 Y =

£ = -°05 MXHN = 3 ,,i =

The problem being one of minimiiiatlor



gradient projection maximization algorithm by maximizing the

negative of the original objective function. The constant U
appearing in the objective function given by (21) was not

considered in optimization. Thus,

while, the actual total minimum cost is given by

7
F' = 2 a - maximum (-F) (23)

r=l r

Five different initial points were used for each case.

This information is shown in Tables U- through 7 along with details

about execution times, number of iterations and number of

functional evaluations. The values of lip gjl at optimal are also

given. Tables 8 through 11 indicate the convergence rates

obtained for certain specific cases. The same information is

illustrated in Fig. 5 for one selected case.

The optimal (minimum) cost solutions obtained for each case

are presented in Tables 12 through 15. These tables also

provide the information regarding the maximum amount of EOD that

can be released to the stream and the resulting CO concentrations.

Tables 16 and 17 indicate the linear programming solutions

obtained by Loucks, Revelle and. Lynn [19].

3.6 DISCUSSION

The model presented in this work can be used to determine

the minimum total cost associated with any particular set of
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.589375 518 968

629450 038134

629820 026254

629944 001224

630128 001783

630222 000246

63059'+ 000725

630784 000076

Total No.
of Functional
Evaluations

No. of
mstraints
.n Basis



Table 9. A Typical C
Streeter-Ph
(Table 5, S

snverganoe Rat
sips Formulati
No. 1)

Ml for Reducec DO Standards

Iteratic
No.

n -P M •
Total No.

r Functional
Evaluations

No. of
Constraints

In Basis

0.?48938 0.934905 1 2

1 0.789650 0.445582 2 2

2 0.818794 0.081293 4 3

3 0.019835 0.046074 6 3

k 0.820168 0.026164 8 3

5 0.820330 0.001648 9 3



Formulation (Table 6, S. No. 1)

M Total No. No. of
of Functional Constraints
Evaluations in Basis

.626197 513754

.665749 044745

.666663 009781

.667031 006826

.667910 OO3167

668808 002297

6696W 002064

670485 000400



A Typical Convergence Rate
CaEp-Dobbins Formulation for Reduced DO Standards
(Table ?, S. Ho. 2)

Ml
Total No.

of Functional
Evaluations

652358 1 343425

83155? 511353

s'j-3963 158165

8U8863 012325

8^9896 080906

851011 00444?

851293 000385
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Fig. 5- A Typical Convergence Hate (Table k, S. No. 1)



% BOD Annual Maximum Minimum Minimum
BOD Release DO in minwMo

Removal Cost (» to Stream Reach DO in Reach
(mg/l/day) (mg/i) (mg/1)

1 66.5 S3. 00 9.50 7.00

2 63.0 631,200 152.70 7.61 7.50

3 48.0 171,921 124.80 8.15 7.00

'+ 90.0 695.350 lWj-.OO 6.01 6.00

5* - - - 7-95 6.50

6 90.0 890,057 218.00 6.91 6.00

7 63.8 873,718 101.00 4.0 4.00

Total 3,262,246 823. 50

3 wastewater effluent is released into Reach 5.



l^Tm/V'
3 °1Uti0n When D0 standards Are Reduced

Streeter-Phelps Formulation

Reach No.
% BOD

Removal

Annual

Cost (|)

Maximum
BOD Release
to Stream
(mg/l/day)

Minimum
DO in
Reach
(ns/D

Minimum
Allowable
CO in Reach

(mg/l)

1 65 85.90 9.50 6.50

2 56 575,890 178.20 7.41 7.00

3 . ^3 16^,365 136.20 8. 04 6.50

4 90 695,360 144.00 6. 01

7. 86

5.50

6.00

6 90 890, 042 218.00 6. 80 5.50

7 52 748,963 132.60 3. 50 3.50

Total 3,074,620 894.90

Mo wastewater effluent is released into Reach 5.



Reach No.
,? BOD

Removal Cost (3)

BOD Relase
to Stream
(mg/l/day)

I-'iniaun

DO In
Reach
(mg/1)

Minimum
Allowable
DO in Reach

(Dlg/1)

1 66 34.0 9.50 7.00

2 60 607,500 162.4 7.66 7.50

3 W.4 169,086 128.5 8.32 7.00

4

5*

90 695,368 144.0 6.04

8.19

6.00

6 .50

6 90 890,020 218.0 7.17 6 .00

7 62.8 860,762 103.8 4.12 4.00

Total 3,222,736 840.7

) wastewater effluent is released into Reach 5.



r'lninura Cost Solution When DO Standards Are Reduced
by 0.5 mg/1
Camp-Dobbins Formulation

BOD Annual Maximum Klnlmum Kinimua
-,

'

„ . ,,,
SOD Release DO in Allowable

Moval Cost ($) to Stream Reach DO in Beach
(rag/1/day) (r.g/1) (mg/1)

86.92 9.50 6.50

560,71^ I87. 95 7.^7 7.00

162,607 139.82 8.22 6.50

695,368 1W.00 6.0^ 5.50

- - 8.10 6.00

890,022 218.00 7.06 5.50

730,226 138.67 3.61 3.50

Total 3,038,937 915.56

3 wastewater effluent is released into Reach 5.



Table 16. Minimum Cost Solutlo..
Oxygen Standards by Loucks et.al. ^19]

intaininR: Dissolved

Reach No
* BODReleased Minimum MinimumReach No. to Stream DO in AllowableRemoval Cost (|) (mg/l/day) Reach DO (mg/1)

(mg/1)

608,500

170,000

690,000

900,000

902,000

Total 3.270,500 8^9

5 wastewater effluent is released into Reach 5.



Table 17. Minimum Cost £

-each Mo
% ^ ^^ ^Released Minimum KlnlmumKeach No. to stream 20 in AllowableRemoval Cost (*) (mg/l/day) Reach DO SI)

522,000 20^ 7.3 7.

170,000 120 8.2 6.5

690,000 1W 6.0 5.5

7.9 6.0

900,000 218 7.0 5.5

690,000 139 3.c , «
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minimum allowable DO concentrations in a river basin. This

model also provides an useful tool to determine sensitivity of

both the cost and the actual minimum' DO concentrations in reaches

to changes in the minimum allowable DO concentration In any

particular reach.

As the data for the problem was taken from the work of Loucks,

Hevelle and Lynn [19]. a comparison of the results is not out of

place. Discussion here is confined to only Gamp-Dobbins

formulation, but the same applies to Streeter-Phelps formulation.

The results of Loucks, Hevelle and Lynn are summarized in Tables

16 and 1?. These correspond to Tables Ht and 15, respectively

of this work. ,

Note that whereas Plants 2 and 3 provided 60% and b€>.5%

treatments (Table 1'+), these plants provided 55;s and 50;J (Table

16) in the linear programming solution presented by them. But it

is worth noting that the sum of costs at Plants 2 and 3 was

nearly identical in both cases. Note, also, that the costs for

the two solutions were nearly identical, this solution costing

:;',h7 ,7k'ir less than the linear programming solution. This small

difference, may well stem from the fact that they used linearized

cost curves while a quadratic fit was used in this solution.

Table 1J presents the optimal (minimum) cost solution when

the minimum allowable DO concentration is reduced by 0.5 rag/1 in

each reach. This reduction in DO standards results in an annual

cost savings of 5183,800 or about 6 percent of the total cost.

From Tables 14 and 15 , it is clear that the DO standards

for Reaches 2 and 7 dictate the actual concentrations in the



entire basin. In other words, a reduction in the minimum DO

concentrations in any but Reaches 2 and 7 would neither decrease

the minimum total cost nor the actual DO concentrations. Table

15 shows that once the DO standards have been reduced by 0.5 rag/1

in each reach, only the Reach ?, can be regarded as critical

and hence it can be said to determine the required treatment,

and therefore, the cost, throughout the basin.

It is evident from the results that a change in the minimum

CO concentration standards in several reaches may have no effect

on the DO concentrations in these reaches. Conversely, a change

in the minimum allowable DO concentration in a single reach may

affect the DO concentrations in every other reach.

A decrease in the minimum DO c ty 0.5 mg/1 in

each reach of the hypothetical basin only reduces the actual

minimum DO concentrations by 0.2 mg/1 in Reach 2, 0.1 mg/1 in

Reaches 3, 5 and 6 and 0.5 mg/1 in Reach 7. The change in annual

benefits resulting from these lower oxygen concentrations can be

compared to the annual cost savings of 3185,875 in order to

determine the desirability of this reduced standard.

In many basins, under present legislation, uniform standards

in terms of a final percentage removal of waste material are

imposed upon polluters. If such a standard is applied to the

every facility in this basin, it is evident that every facility

will have, to remove the same percentage as is required by the

treatment facility on Reach V namely 90*. Anything less than

90,1 waste removal from the effluent entering Reach h would result

in a minimum DO concentration less than the minimum allowable DO.



The same conclusion can not be drawn from noting that 90,£

treatment is required on Reach 6. Since in this case there

exists some control over the concentration of waste and DO in

the water entering that reach.

The gradient projection method did not encounter any trouble

in solution of the problem. The efficiency of method, of course,

depends upon a judicious choice of various limits and tolerances.



'
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AiiD CONTROL 0? RbS^RVOIR SYSTEMS

4.1 INTRODUCTION

The aathematioal models which are used to describe

resource systems often contain nonlinear mathematical relationships
that are difficult to analyze and optimize. Furthermore , a large
water-resource system is generally a multidimensional problem.

Pioneering work in water-resource systems and optimization

analysis has been carried out in the Harvard Water Program [l6,

20]. locations of recent research [16] imply that simulation
is still being used in the del died, final-stage optimization of
a given water-resource system.

Hall and others [13, lfc] Were the flrBt to propOGe the

application of dynamic programming to the optimization of

reservoir systems. Meyer [22] successfully used dynamic

programming approach in optimizing the operation of a multiple-
purpose reservoir. Dynamic programming has the advantage of

effecting the decomposition of a highly complex problem into a
series of far less complex problems. However, due to the

dimensionality difficulties, this procedure can not be extended
to more practical problems.

Linear programming is not generally useful, because

individual reservoir utility functions are in general definitely
nonlinear. Quite often, many of the restrictions on the operation
of a water-resource system are linear. This situation arising
from a nonlinear objective or utility function subjected to



linear constraints provides an useful field for nonlinear

programming techniques suoa us the gradient projection method.

Specifically, the gradlSnt projection method discussed

'-

:

'

', Is applied here to solve two simple problems. The
stress is on the method that ho;, a general nonlinear objective
can be treated without going into tedious details of H, ,

Both hypothetical systems are taken from [20] along with all the
relavent data needed to solve them.

Initially, the artificial system from which these two

hypothetical sytems are derived, is described. This includes a
brief description of streamflow data a,d certain basic assumptions
regarding irrigation and water power. Following this, both
models are described and solved by the gradient projection
method

.

4.2 DESCRIPTION Op SYSTEM

The simplified system ba.od on the Clearwater Silver Basin
in Idaho is described in detail in the Harvard Water Program

[20]. For this system, at least one of each major Kind of output
of a water-resource system was developed. These were, a with-
drawal - consumptive use; a nonwlthdrawal , essentially non-
consumptive use; and a retardation or Withholding use. For these
purposes, the irrigation of crops, the development of water
power and reduction of flood damage were considered.

4.2.1 Physical Layout of the System

The physical layout of the system chosen for development is



Point gL db Power plant
Power plant G A

§, Reservoir

C^3 Irrigable area

©9 Urban flood -clam?

Sketch of the Simplified River-Basin Sy8t«



shown in Fig. 6. There are fo , | , <au lding reservoirs A, B, and

C and Di two power plants, one at reservoir B and other at point

G. Also there is an irrigation diversion dan at point E. Only

reservoirs A and B can provide releases for irrigation.

Reservoir D lies on a tributary stream which joins the main stem

at point P. Irrigable areas lie on both banks of the main river

downstream from reservoirs A and B. Return flow reenters the

river channel below E but upstream from reservoir C
; none of

it can be reused within the irrigated areas. A flood damage

zone is situated just below point G.

The additional details have been purposely avoided in the

development of the system because these may unnecessarily

complicate operation studies, the computer programming and the

general analysis.

k.Z.Z Streanflow Data

A detailed description of the str mflow data is gin „ in

[20]. Table 13 identifies the magnitudes of mean monthly flows

observed at point E. The observed pattern is typical of the

hydrology of a catchment area in which the melting of winter
snows produces large spring runoffs, followed by low summer and
fall discharges. Such basins are found in wide regions of the

wastern United States. Data for other points also indicate the

^.2.3 Irrigatioi

Lve use and diversion requirement, for irrigatio

itological data and irrigation practices in the



region. The region is semiarid with a moderately long growing
season of 2G.5 days.

The unit irrigation-diversion requirement was assumed to

be 5.0 ft(op 5.0 acre ft per acre) yearly. This t* distributed
by months as shown in Table 19.

The estimate of return flow from irrigation diversion was
based on certain assumptions. Mo water would be lost by

evaporation from drainage and wasteway channels, that no return
flow would be consumed on nonlrrlgated land, and that no water
escape into neighbouring basing. Return flow would therefore
equal the difference between the irrigation diversion requirement
and the set consumptive use of irrigation water. In general,
it comes to about 50 to 60 percent of total irrigation diversion
requirement. The monthly distribution of this return flow in
years of full irrigation supply, shown in Table 20, is in

accordance with observations in several Bureau of Reclamation
projects.

Irrigation output of the system was set at 6 x 10
6
acre ft.

Unit annual gross irrigation benefits were taken as decreasing
from about % 6. 5 per acre feet at low levels of development
to about % 5.00 per acre feet at maximum development. Figure 7

shows the unit gross benefit function.

The losses cccuring from shortages are not discussed
bere. The estimates of capital costs and costs of operation,

maintainance. and replacement (OMH) for irrigation-diversion
works are given in [20]. They are based on data from Bureau



Table 18. Magnituc

«ont. ~ Flow
(10

Z
acre ft)

Percentage of
Mean Annual Runoff

January 1,698 3.00

February 1.778 3.10

March 3,066 5.40

April 3,939 15.80

Hay 18,100 32.00

June 12,618 22.10

July 3,469 6.20

August 1,079 1.80

September 845 1.50

October 1,264 2.20

November 1,813 3.30

December 1,989 3.60

Total 56,658 100.00



Assumed Monthly Distribution of Annual
Irrigation Diversion Requirement [20]
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tput for irrigation (10 acre ft)

Fig. 7. Assumed Unit Gross Irrigation Benefit Function [20]
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Table 21. Assumed Monthly Distribution of Annual
Energy Requirement [20]
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h.9 - y -
:

\l.8 + Y + ;

U-9 - Y - Z - 0.2751
\3.9 + X + Z - 0.1251

[20]
i of Configuration Use'-i in Two-I



of Reclamation projects.

'1.2.'! Water Power

The power-requirement of the system was selected to be

representative of a diversified agricultural-industrial, rural-

urban economy. The assumed monthly distribution of the load

is listed in Table 21. The maximum yearly target output for

energy for the system was set at k x 109 kw hr.

Unit energy benefits were assumed to be constant for all

levels of putput, namely. 9 mills per kw hr. of firm energy

and 1,5 mills per kw hr. of nonfirm energy. Assumed capital

costs an4 0MB costs for power plants are given in [20].

*.3 A MODEL WITH TWO SEASONS AND PREDICTABLE HYDROLOGY

This example deals with a relatively simple configuration

of uses and installations under conditions in which the pattern
of inflows repeats itself each year with certainty so that

overyear storage is not required. This is the simplest problem
that could be devised while retaining enough suvstance to

present some challenge.

The configuration shown in Fig. 8 has been abstracted from

simplified river basin discussed earlier. This configuration

retains two reservoir sites, an irrigation project, and a run-

of-the river power plant.

Most of the data are contained in the figure. The numbers



70

in braces give mean flows In the river in two seasons of the

year the wet season (top figure) and the dry (bottom figure).

The first topographic feature the river encounters is the

reservoir B, its active capacity, denoted by X, is one of the

unknowns of the problem. The amount of water, Y, will be

retained in the wet season and released in the dry.

Just below the confluence of the west branch with the main

stem an irrigation diversion canal takes off water to an Irrigated
area lying to the east'.' The total amount of irrigation, I, is

the second unknown of the problem. It is assumed that, whatever
I may be, k2. 5 percent of irrigation water must be provided in

the wet season and 57 . 5 percent in the dry. The resulting return
flows from the irrigated area are assumed to be 15 percent of I

in the wet season and ^5 percent in the dry.

It is also necessary to determine the usable capacity of

reservoir C, denoted by Z. The fourth and final variable is

the energy output of power plant, E. Half the annual output of

energy generated is assumed to be required in the wet season

and half in the dry.

h.J.X Constraints

The first group of constraints requires simply that none

of the four decision variables be negative.



The second group of constraints states that the flows in

all reaches of the system must be nonnegative. From the map

these constraints can be written down.

3-3-2 >

3.9 - X - 0.4251 >

1.8 + X - 0.5751 >

3.9 - Y - Z - 0.2751 >

Although there are other six flow constraints involving decisio:

variables, these are autometically satisfied if above four

constraints are satisfied.

The third group of constraints asserts that the flow at the

power plant must be adequate in both the wet and the dry seasons

to generate the amount of power that has been decided on.

The technical relationship between flow and energy output

is taken to be

E = O.l^P

E * energy generated in any period in 109 kw hrs.

and P = flow through turbines in 10
6

acre feet

As equal amount of energy is reguired in both n-aasons, the two

power constraints are

6.9 - Y - Z - 0.2751 > C.5E/0.133 = 3-^7E V

and

3.9 •[ Y - Z - 0.1251 > 0.5E/0.144 = 3.47E (1,



t i

.

,
these power oomstralnts for wet i

seasons, respectively oan be written as

Y + Z + o.2?5I + J.h'ni < 6.9 (H)

-Y - Z + 0.1251 4 3.^72 < 3-9 (12)

The design sought is assumed to be the one which, while

satisfying these constraints, yields the greatest possible present

value of net benefits.

'+•3.2 Objective Function

The objective function to be maximized is [20]

tt • 3
1
(E) + 3

2
(I) - Ca (Y) - C

2 (Z)
- C

3
(E) - c4(I) (13)

n = the present value of net benefits in 10 6
dollars

B
1
(E) = the present value of an output E x 10 9 kv; hr per

year in 10 dollars

E
2
(I) = the present value of an irrigation supply of

I x 10 acre ft per year in 10
6

dollars

C^Y) -, the capital cost of building reservoir 3 to capacity

Y in 10
6
dollars

C
2
(Z) = the capital cost of building reservoir C to

capacity Z in 10
6
dollars

C
3
(E) = the capital cost of build in? the power plant to

capacity E per year in 10
6
dollars

C
4
(I) = the capital cost of building the irrigation system



to capacity I per year in 10 dollars

The data for all these functions are given. Firstly, capital

cost functions arc discussed.

c (r) . 4jy/(i + 0.2Y) (14)

c
g
(z) = 4?z/(i + o.3z) (15)

C (E) = 20. 6E - E
2

(16)

It can be seen that the larger the reservoir capacity, the

higher is the cost. E is obviously restricted to a higher value

pf 4 x 105 kw hr as indicated earlier. The derivation of C. (I)

is a bit complicated because of the assumption that only 3 x 10

can be taken for irrigation without pumping. A pumping plant is

required if more than this amount is required for irrigation.

The data to be assumed are as follows.

The basic cost of the diversion works is $4,500,000 plus

$44,000,000 per 10 acre ft of Irrigation water. For I >

6
3 x 10 acre ft, a pumping olant must be constructed at a cost

6
of $500,000 plus $20,000,000 per 10 acre ft of water to be

pumped. Now if, I denotes non pumped portion and I denotes the

pumped portion, then the capital-cost function for the irrigation

works becomes -

C (I) o 441 + 641 + 4.51* + 0.51* (17)

I
x
<3



I = J if I >

4 - 1 if J
2 > °

The next step is to formulate the benefit functions 3 (E)

and Bg(I). The calculation of each of these proceeds in four

Express annual gross benefits as a function of E or I

.

Express annual operation, malntalnance, and replacement

(OKH) costs as a function of E or I.

Compute annual net benefits by subs traction.

Compute the present value of net benefits by applying

an appropriate present-value factor.

Assuming a planning period of 50 years and a discount rate

of 2 1/2 percent, a present value factor of 28.^ is obtained.

That is, under these assumptions the present value of a net

benefit of $1 per year for 50 years is $28 .40.

B (E) is derived as follows. Assuming that all the energy

Is on demand, a price of 9 mills per kw hr can be assumed.

Therefore, the gross benefits in 10 dollars are 9E. OKR costs

are assumed to be 0.2E per year. This leads to annual net

benefits of 8.8E from electric power. It follows that the

present value of electric power operations is

B
1
(E) = 28.^ x 8.8S = 250E (18)

The calculation of B (I) is comparatively more complicated

because of following reasons. The introduction of pumping plant
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causes discontinuity and also marginal value of irrigation water

can not be regarded as constant. The datum assumed for computing

the gross benefit from irrigation is

Marginal gross benefit = 2.1 + 3.2/(1 + 0.21) (19)

Integrating this from to I, total gross benefits in 10 dollars

can be obtained.

Total gross benefitsi 2.11 + 36.8log(l + 0.21) (20)

The OMR costs can be assumed to be 0.51. + l-56l
2

. Thus,

Annual net benefits = 1.6l, + 0.541 + 36.8 log (1 + 0.21)

(21)

Finally, applying the present-value factor 1

B
2
(I) ^ 45.41^ + 15.3I

2
+ 10451og(l + 0.21) (22)

The objective function can now be computed by adding expressions

(I»0, (15), (16). (17), (18) and (22). Hencei

rr = 229. 4E + E
2

+ 1.4l
1

- 48.7I
2

+ 1045105(1 + 0.21)

- ^-51^ - 3..-".I* - 43Y/(1 + 0.2Y) - 4725/(1 + 0.3Z) (23)

4.3.3 Solution

This problem requires finding the maximum of a nonlinear,

and indeed discontinuous, function of some decision variables

that are related by a number of linear constraints. Though

simple, such a formalization is appropriate for the initial

analysis of many water-resource design problems.

Apart from the complexity of the objective function, a



this sort can be BOJ forwardly by the well

.ational technique of linear programming. As the

objective function is 'separable', the replacement of nonlinear

expressions by linear segments is possible. This will, of course,

result in introduction of many new variables. Such a procedure,

though useful for an ultimate application of linear programming

is not recommended because that will considerably increase the

computation.

Instead of attempting the simplification of the objective

function, the applicability of the gradient projection method was

tested. A brief description of computational aspects follows.

The various tolerances and limits required for the applica-

tion of the method were selected in the same manner as discussed:thod were selected in the samis manner s

;ifically,

1005

the following value;

MXNU = 20 "T
)05 KXRN = 3 ^max

)05
f>max

= 1 Tmax

The- problem being one of maximization was solved by the

gradient projection maximization algarithm directly.

Number of runs were tried, each having different Initial

values for control variables. In selecting these initial stari

values, one has to be quite reasonable. If values selected are

quite far off the optimal values, a constraint violation may

result. This would require a re-inversion to continue and mor<

the number of re-inversions, less accurate is the solution.



Therefore, the following a; opt„d. ?or each variable a

range of value- was selecte", ftn Initial point then was selected

having bhe value for each variable within its specif led range.

This approach turned out to be more succeful than one of giving

uniform values to all variables. Results of these different runs

are summarized in Table 22.

The optimal solution is presented in Table 2.3. The solution

to the same problem was obtained in [20], by the method of chorda!

approximation. Table Zh indicates the details of that solution.

The gradient projection method did not encounter any diffi-

culty in reaching the optimal solution, though the objective

function involved logarithmic expressions. The method of chordal

approximation reduces the accuracy of the overall no- 5 el, because

approximate functions are introduced. Of course, the loss of

accuracy can be compensated for by employing a finer grid for

the straightline approximations. No doubt, the better approach

will be to treat the nonlinearity directly and this is done

quite efficiently by the gradient projection method.

k.''\ A MODEL WITH KOBE SEASONS A P I 3W T E TDIiOLOGY

The problem in the previous section indicates that

mathematical programming is quite helpful in finding the optimal

designs and operating procedures for a fairly comulex water-

resource system provided a short segment of time can be cor.sidere-"

In isolation. This limitation arises from the fact that the

programming computations rapidly become more difficult as the

number of constraints to be handled increases. An increase in
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Fig. 9. Sketch of Configuration used in Four-Period Problem [20]



number of periods increa; of constraints.

In the present section a problem involving four periods

and requiring- an overyear storage is considered. This latter

feature adds considerable complication to the analysis. Such

a situation is found in regions in which natural inflow is likely
to be deficient in some years, so that overyear storage is

required for efficient operation. Unpredictability of flows is

not considered. In other words, the problem is of designing
a system that makes efficient use of a sequence of unequal but

predictable flows.

The configuration shown in Fig. 9 is a modification of one

dealt with in the previous section. In order to emphasize the

effect of more periods, certain complicating features of last

section are dropped. The schematic representation indicates the

reservoir C has been suppressed and the irrigation supply has

been set at 3 x 10 6 acre ft per year.

h.h.l Constraints

The first set of constraints requires that the volume of

water released from the reservoir must be sufficient to meet the

period's irrigation demand, where the latter is a preassigned

proportion, k
fc

, of the annual irrigation demand. This requirment

% + f
2t * V * " !• ?- 3' * (2*>

where f^ denotes the flow from the tributary which joins the

main stem just above irrigation-diversion canal. The natual flows

are indicated in the figure while values of k, are given in



Enevsy demand



Table 25.

The second constraint is that the volume of water released

during any period can not kxcpJ the. contents of the reservoir

at the beginning of the period plus the flow in reservoir during

the period. Let S^ denote the contents of the reservoir at the

beginning of period I. Then the constraint is

a
t - S

t * f
lt •

t ' 1
'

2
- 3. * (25)

where f. is the preassigned natural flow into the reservoir

during time period t.

The third constraint is that the contents of the reservoir

at the beginning of any period can not exceed the amount left

over from the previous period, or

S
t * Vl + f

l,t-l
- Vl t 2, 3. 4 ( 2 6)

Also it is necessary to include a constraint which makes sure

that the contents of the reservoir at the end of any period, can

not exceed the capacity of the reservoir, or

l,t 1. 2, 3. *»

The last two requirements ensure that the contents of the

reservoir at the beginning of any period do not exceed its

capacity, hence it is not listed separately.

The last constraint is related to power generation. The

flew of water past the power plant must be sufficient to meet

the requirements of power generation. As in the previous sect:



it is assumed, that 9.5 xlo" acre ft of water are required to

generate 1 x 10' kw hr of electric enorzy. The flow available

at the power plant is the sun of the flow past the irrigated

area, the return flow frps the irrigated area, k' I (where the

return flow coefficients are given in Table 25) and the natural

flow from the eastern tributary, f . Therefore,

a
t

'•
f
zt ~ (k

t
" k

i
)J + f

3t ?-
6 - 95Ef * - 1. 2- 3, k

(28)

where E^ is equal to a specified proportion, C. (shown in Table

25)i of the annual energy output.

k.h-.Z Objective Function

Since the quantity of irrigation is prespecif led, it no

longer enters the objective function. The objective function

now consists of only two fcermsi the capital cost of construe kin:;

the reservoir 3 and the present value of the net hydrodectric

benefits. The expressions used in previous example are used

here. Thus

tt = 229. U-E + E
2

- 43Y/U + 0.2Y) (29)

The purpose is to obtain the optimal value- of control

variables a
fct

S
t>

Y and E which satisfy the constraints (24)

through (27).

k.h*3 Solution

Again, one approach to solve this nonlinear programming

problem involving linear constraints, would be by replacing the



8?

nonlinear expressions by linear segments. If a problem would

have been linear, a method that drastically reduces the number of

constraints that have to be handled at any one time can be used.

This is the decomposition principle developed by Dantzig and

Wolfe. [3]. Such an approach is very useful for a large problem

and is not required, here.

The gradient projection method was applied to solve this

problem. The following values for different limits and tolerances

£ x .0005 MXNU =20 Y =

£ 2
= .005 MXBN =3 -« =

fc
3

= .0005 B^^ =1 y = lc

The problem being one of maximization, the gradient

p 'jection maximization algorithm was applied directly without

A close look at the details of the problem indicates that

it is not necessary to have both S
t

and a in the optimization.

Inequality (26) is, in fact, an equality and hence knowing one of

these, other can be determined. Therefore, in actual procedure

&
%

were not considered but were derived from values of S .

Number of runs were tried with different Initial starting

points. The approach for selecting the starting points was

same as illustrated In the previous section. The details of

these runs are presented in Table 26. In two of these runs, the

value of the projected gradient is not within E^ but the value
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of the objective function is very close to optimal. A typical

convergence rate is Illustrated in Sable 2?.

The optimal solution is presented in Table 28. The solution

to the same problem as obtained, in [20] is shown in Table 29.

The value of the objective function can not be compared, because

different expressions were used. But one can observe the closeness

of the values of various decision variables in two solutions.

As car, be seen, the gradient projection approach proved quite

suitabl- for solution of this problem.

4.5 DISCUSSIOH

Two problems solved here relate to the situations far off

from those encountered in practice. But the approach provides

an insight to the problem in initial exploratory stages. It can

be seen that even with simplification, a mathematical programming

description of a problem can retain the crucial characteristics

of a fairly complicated system.

The first problem introduced an approach that can be used

when one or two tine periods can be isolated from the rest of a

project's life. This method was then extended to a problem with

more periods and involving an overyear storage. Both these

problems involved only deterministic aspects. A more realistic

representation of the system would include the unpredictibily of

water flows and other random factors.

With judicious selection of various limits, tolerances and

initial starting points, the gradient projection method proved

quite efficient. The convergence was quite fast and the solutions



were quite accurate. The overall approach can be

superior to one adopted in [20], beoause no approximations i



CONCLUSIOH

The different tost systems presented in this work suggest

the- usefulness of mathematical programing approach in the

iv- >' as; and management of water resource systems, Ihese exper-

iments demonstrate the fact that the crucial characteristics of a

fairly complicated system can be retained in a mathematleal-

programming description without redering the model unduly difficult.

The dissolved oxygen (DO) model presented for water quality

mo.na;;-3Si;rit can be used to determine the minimum total cost

associated with any particular set of minimum allowable DO

concentrations in a river basin. It can also provide the useful

information regarding sensitivity of both the cost and actual

minimum DO concentrations in the reaches to changes in minimum

allowable DO concentrations in any particular reach.

The example discussed in Chapter 4 were connected with

water quantity. Though the problems are simple, the approach

provides an insight to the problem of water resources planning in

initial exploratory stages. This is the beginning only. If more

complexity is desired the benefits from the flood control,

recreation, urban water supply etc. can be incorporated.

All models considered were deterministic in nature. A more

realistic approach would be to consider the stochastic nature

inhc-rant in inflows and water-demands.

All the problems fell into the nonlinear programming class

Characterized by linear constraints. The gradient projection



method developed by Rosen [>] proved quite efficient in solutio
of these problems. A rapid convereer.ee rate was observed in
solutions of all the problems. This implies computational

efficiency in terms of computer time for a prescribed accuracy.

No doubt, the success of the method is largely contingent
with a judicious selection of various limits and tolerences.

Also the results obtained are very dependent on the design of

the problem to be solved. Therefore, it is very essential to

have basic physical knowledge of the system. The program can
be used to solve problems with a large number of variables

(about 60) and constraints (about 150) but it is felt, that it

will be more efficient for fewer variables and constraints.
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APPENDIX A

GP NOMENCLATURE AND SUBPROGRAMS



NOMENCI,

a
-j coefficient of input constraint

b
1

right hand sta'e of a constraint

\* • t of the inverse matrix

e number of equalities

F value of objective function

S gradient in the direction of increasing F

H
..

a constraint (hyperplane)

3< total number of constraints

m nunber of variables

HXNU maximum number of steps

8XBN maximum number of re-inversions

n
i

constraint vector

N
k

constraint matrix

\ .

(NTM )~X inverse matrix
q q

pS projected, gradient

PD projected constraint vector

1 constraints in the basis

1 constraints added to the initial basis

u linearly dependent constraints

v constraints not in the basis with X = o

* constraints not in the basis with X. >

x variable vector

Z unit vector in the direction of step

P gradient interpolations for z
T
g =



gradient interpolations to inert

gradient tolerance

constraints tolerance

linear dependence tolerance

interior steps

normal distance to a constraint

step counter

temporary flag

step length



NAME FUNCTION

AKDA Calculates lambdas {X [::)).

CLASS Classifies constraints not in the bas'
and W.

COMMAT

PUUCT

MATCCX



i :-:i,o.sf mAnnrrs



i
Initializei p, y, KOUiJT

q, q*

Resdi t
J

, t 2
, 6 , MXRN, HXMJ

na:c'
Y
max'7nax' r ma;c

(7)
Head i Matrix m, k, s, e

Constraints + j , &1 .
\U

r?\
Headi 3 Vector-§ X Vector

!

I Normalize constrain 1

INPUT SECTION



©-

0-

Add H
±

to

all i in e

the initial basis,

i

JT,mpute all
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3-Point Extrapolatioi
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RSTUHF
|

I
List all 1^ in q*j
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. 11. Flow Chart for Subroutine HEII



To test HjL

ENTSH. 1 » adding to
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v = x, k:v=x. KD

MATRIX COMPUTATIONS

Fig. 12. Flow Chart for Subroutine KATCOK
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APPENDIX C

COMPUTER PROGRAM



PROGRAM FOR THE GRADIENI PRGJECTII

UN X2UO),D<13,101,DN(10,10),A<25,1 >),GU I,)

P«1 Uf.),n(25l,SD(2 r.),-'P,(lJ),7 11O|,XC(10),Ga(lf
XF(201,IH1 (10),R<10),AN8#*>25),Y( L0),PG( 1Q),1

Y, PN, AfBOA , M,G ,X, F , P , EPS 1 1 , NEXlT.KQ, D, IH.NB.l
r;PSI2,Ln,IU,R,KC;Q,MexiT,IV,KV,f,KMMi;,Il»,KW,K.
, I 'IT, LIT.

WATER/NFUNCKOUNI ,K1

! ICI (Y,PG), (PN.PGNCRM)

1=GRA0IE a tCLERENCE
2 = Cr.f:STKMNT 1CLERENCF
3M.INEAR DEPENDENCE TOLERENCE

05 FORI

C'j2 FORI',

CC3 FORI'

f OF VARIAULES'6XI2)
tf OF CONSTRAINTS • 3X12)
>l PF BOUNDS ' 8X12) .

« OF EQUALITIES' 5XI2I
BOUNDS' 1

COEFFICIENTS r F CONSTRAINTS'

I

NORMALISED COEFFICIENTS OF CONSTRAINT!
NORMALISED LIMITING VALUES OF CONSTRA!
LIMITING VALUES OF CONSTRAINTS')
INITIAL X-VECTOR'

I

I FOR NONLINEAf

AND PRINT LIMITS AND TOLEREf

12,EPSII,FPSI2.EPSI3,TMAX
AX6,MXRN t MXf

,

c l>SI2,i



KOUNT-C

K1 =

HUN-.C . !1*THAX

• NEK MATRIX ' READ C,

RE ".i: 1 ,M,K,NB,NI
PR If

N8P1=I
KM *B=I

ifinb: ,24,22

AND PRINT SUBSCRIPTS FOR BOUNBS

% IJXB( I ),I=l,Ne

I

REAC AND \C^KALIJE CGMSTRA I '-IT S

,D K'iSIHI l,J), J=1,M),I«1,KHNB)
NT 10 ".7

^T 1040, <(A(I,J),J=1,M),I=1,KPNB)

SIM I )=;(.:T(;,I'U I )

DO 26 J= I
,':

> Al I, J!--A( I ,J)/SOI :

ACD II TO INITIAL RASIS FOR ALL

2 7 If CIE) 30, 30 1 28
28 K«=0

IH*NB*1
DC 61C l«l,NE



640 PN=PN4Y( I) : ,'

PN=SC«T(PN)
IF(PN-CELTA) 650,650»-64!

645 DELTA=PN
INDEX-N

650 IFIN-NEI 625,655,655
655 IFUNCEX1 675,675,660
66 IH=INCEX+NI

CALL CATCOI !1 I

DO 6t'C 1 = 1, KC
DO 680 J=l,KC

680 DM« , J ) *D ( I , J

I

RFAC P-VECTO*

1 READ 1040, fB(I),I=l,Kl

PRINT 1040, (BUI, 1 = 1, K)

IF(KfNE) 4:<,^:,31

31 00 32 I*1»KMNB

3c1 3(J)=0(J)/SD(I)
PRINT 1009
PiUMT K.40,(P.(I 1,1 = 1, K)

4i CONTINUE
41 NFUNC=:

COf'i A(X

52 CALL AfOA
»F(NB] 54,54,64

64 DO 5 3 I = 1,W
IF<AMBCA(I»*E>S12) 59,53,53

5J CONTINUE
54 IF(NBP1-K>65,65,130
65 DO 57 J*NBP1,K

IFU-NBP1-NE) 55,56,56
55 IF(ABS(AM8DAU) I-EPSI21 57,57,59
56 IF(Af6CA(J)+EPSI21 59,57,57
57 CONTINUE

GO TC 13
-
'

59 PRINT 1040, IXU), I»l,M1
Ml^f 1040, (AfBDAIJ), J=1,K)
IF<KC) 80,80,60

6( DO 6 1 I=1,KC



CCS CTIGN COMPUTT

7. DO 71 J=1,M
71 VU) =XU)

CALL MiCO! ( i

-El'SI2) 62,62,110

1HK-2) 89,8,
86 DO 88 1*2,

K

IFIAMBCAI I I-

90 CALL PATC0M1)
GO TC HOO.l-CJSJiNEXIT

95 KQMl=KC-l
IF (KCM) 97,97,94

9'. CO 96 I»1,KQM1

: f F ( S I

G

i» A 1 !!',r.i,n:
L C\LL CCMMA1 IEPSI3I
GO TC 1105,1031 .MEXIT

NC FEASIBLE )

MSI 5001
NOT FEASIBLE )



RE-CHECK LAMBD)

•RINT : ,(X(J
NT 5.V

5004 FORMAT (• LAMMS' )

P.UNT 1040, (Af TDA( J) ,J=1,
CALL FUNCT<X,F,G,KQ)
IF(KGLM) 133,133,140

133 IFIKC-KFQ) 9999,138,134
134 CONTINUE
130 CONTINUE

ETA
. CLASS

CLASSIFY FOR

G»#ORW»C
DO 14 1 J*1,M

141 GNQRM»GN0RM+GIJ)**2
GNORM*SORTlGNORMJ
PRINT 5006 t RNORM, IG(J1,J»1,M

5CC6 FORMAT!' GRAO I EM , F 12 . 6/

IFIGNCRM-EPSU1 142,142,150

C PRCJOCT GRADIENT
C

17 DO 169 J*1,M
164 V(J)=G(J)

call catco? (2)

PGMORC*a.C
DO 171 J=1,M

171 P GNftR ^ PGNO RM+PG ( J ) * *2

PSNORF=SORT(PGNORMI
PRIN1 5007.PGNORM, IPGU), J=!

5C07 FORMATS PP.rj GRAO' .F12.6/I
IFIPGNCRW-FPSU ) 175,175,17;



1,173,180

: HOT ZERO .\T

I NUT ZERO AT \

IF(i EXI ' 745, 745, 4 60

ECL ss r-VH FOR t MOT IN Q

GO T

75 IF(S
C 1

? 76,177,17 6

P KCJ CT ON It RO AFTER ORCP

09 FORf
CO 1

77 IF(K
78 CALL

GO T

T 5

AT
C 1

CO
(

Q)

20

PRCJ

9999
(EPS
179)

ZERO

420,

AFTE

178

IT

R DRO

IFIKECP-KC) 1903,1903,1902
1903 CO 19C1 J-KEOP.KQ
1901 RRU)«RU)

914
GO TC 1925
l»ZU

GO TO 19?5
1915 KK=IVU)-NB

ZI»~Q.C
CO 192 J = 1,M

192 ZN=ZN+Z{J)*A(KK,J1
19,?-. IF(ZN-CELTA) 19 3,1935,1935
193 INDEX* IV (I

>



97 IF(KECF-KQ1 19"

946 LLL= :

GO TC 23T
200 [F(N: TA) 2C1, 20 A 201

201 [FlKf, -KE0I20; ,?v t 2C

202 CALL
GO H

CCVMATIS
l2 r>4,2C 3)f IEXI

203 NETA = C

FORMAT KX2H Q,I2,3H F

IFIKC>212,21?,211
PRINT 9211,111-1 U),J'
1F(LUC)214, 21^,213
PRINT 9213, (IU( J),J=1
IF(KV)216, 216, 21=5



[FIJ-M>)232,232,235

!F( n-[)238,23'

PRIN1 5G11.K0UN1
501 1 F03MA1 (• STEP" 1

140 on ?'. 1 ,i = i,;'

241 X(J)=Y(J)+l*ZtJ]
KMU0=PGNORN

2-.. C.Ll FL'lCTIX.F.C ,KU

00 251 J=1,M
251 ZG=ZG +ZU)*G(J)

P;U -

;T 5;i2,MU,IMT,NETA,L,T,F,ZG
5012 F0RMA1 <4X5l'" c

I.". = ,3XI3,4X6HGirNA=,3Xl3,4X5H''iFTA=,3XI3,3x;:
lX2HT=,F12.6,4XtftF = ,F12.6,4X3HZG*,F1.2.61
IF(T-Tf-IM)270,252,252

252 fF(MU)S999,253,257
2 5 3 [F (MUPAX) 9999, 27C, 254
25', IF( JG+EPSI] )-?55,255,270
255 DO 2f,6 J = l,"
256 X2( J)=Y(.J)

GO TO B255
2 57 I F ( HU-f UH*X 1258 ,270, 270
258 tF(ABS(ZG)-EPS! 1)8255,8255,8250



IF(ABS(AM8DA(J) I -6P5I 2)281 ,281,300

L CONTINUE
, DO 2 6 2 1 = 1,1-

T F ( A,- BCA( I ) +EPSI2 1292,282 ,282

Riio-Apatmi)
IFIK-21298, 2^9,299

) DO 295 T=2,K
[ F I AMBCAd )-RHO 1 294, 295 , 29

CALL KATC0M1I
CU 10(309,300,296), NEXIT

296 NETA*C
INV*1

30 C

60 TO 310
IFCSIGKA)301,31 ),301

5021 FORMAT!' CONSTRAINT VII

31 : siV.ma = siv-:a + i.O

5C32 FORMAT!' X-CORRECTION'
CO 311 J«1,M

311
CALL CATCQHt3)

312
DO 312 J=1,H
X ! J ) = V ( J )

INV-1
r.O TC 290

320 IF(SIGPA)321,325,321
321 CALL FL'ICT(X,F,G,KI,')

IF(F-FY)322, 325,325

5013 FORMAT! F DECREASE*

lF!NEXIT)325,325,46Ci

3 2(: PRINT 5014



51 ]'< i IMATI' / ^ A X

I

go ro /if
327 PRIN1 5 15,<X<J
15 FORMAT I6F12. 6)

GU TU IV

riON SCHEME

(J)=LCI.X
G=7G4Z( J

3n=zcc+z
t (ZGCI3
F<ZGC-Zi

\)332,332,33-

J)*Cri(J)
,33b, 338
33"5, 335,336

341 K2<J)*X(J)
PRINT 'Cl^.r.ZG, !Z(J),„=1,")

5C16 FU''MMC 3 PT. INTrRPCLAT ICV 5X2hT=F
1 5X3HZG»F12.3/' Z-VECTOR' / ( 6F 12.6

)

GU TC 351
35 r»TPRIME

PRINT 5. 17, r,7G,(Z{j) tJ'liM.)
5017 FORMATC 3 PT. EXTRAPOLATION' t 5X2HT=F

1 5X3HZG«F12.3/< Z-VECirv / (6F12.6 I

351 IF{T-Tf'AXI353,353,352
352 f=TMAX

'ECTOR GRADIEt

5020 FORMAT ( 13



'



DIMENSION X ? t 1 ? ) , D ( 1 1 , 1
'

) ,
r

,

J
( 1j , 1 ) , A ( 2 5 , I o ) , G 1 :

I IU(1C),1W(?5) ,l'<25) ,SD(2r.) ,RR(1 J I , ,'(10),XO(10),(
I I (

1
" ) , .• X." ( 2 "

) , I H I ( 10 ) , P. t 10 ) . AMtSDA ( 25 )

,

Y ( 10 >

,

PG (

IBEtXU )

CQWHCIS VfPN.APBOA.M.G.X.FtP.EPSIUNEXIT.KQ.CIH,
" 2tLD,IUiR,KE0tMEXITiIV,KV,B.KMNB,IW|l

1 3,23

3': 1F(KC(. > 36, 36,31
DO 3 5 1=1, KEC
DU 3 5 J=1,KI=Q

36 n)l'c
J)

KO«KEC
PRINT 935

935 FORMAT (• NEW BASH

IF (KbC) 54,54, 52
: DO 53 1*1, KEG
DO 53 J=l,KFC

INT =

LDC = C

Ka=KfcC
PRINT 935
INV = C

55 CONTIMiE
60 IH=II J I(K"*1)

CALL MTCQI i 1



DIMENSION X2(1J),D(1C,10) iDNI

V< LOI ,JXB{2 r IrlHI liC ) ,R(IC i ,A

IU(lC),IWt25J,e(25>,SD(25),RR

>SI2,ld,iu,r,keq,>
L
MU,NETA,JNT,LDC
FQlll «.M-MC:t (Y,I-'C.) , (PN.PC

; CCMP'JTAf IONS I

NEXI1 .KQtDi IHiNB t V,A,JX6i [HI,

PN=l.C
GO TO 261

3^ 1HIH-N6)

i «0 50 I • lil

GO TO

TC vun
GO TO

8C I FLAG
90 IF IK'



DO 150 I = l.KQ
KK - II It I

IF (KK) 15

co rc 150
1 IF IJ-JK)
I Y(J) - Y(.

GO TC, 150

li(L) LV
PRINT 9200,

1 FORMAT!' H ',\2,' LINEARLY DEP1
RETURN

: j = kc + l

DC1.J) = 1.0/YB2
IF (I-JI 24C.240.230
1 = 1-1
D(I,J) • D( I.J)+RU)*R( I 1/YE2
D ( J , I ) = D ( I , J )

GO TC 22'

IHIIKCI = IH

H(L) ADDEl

" 9260. 1

926 - FORMAT

(

ADDED PN«,F12.6I



SUBROU IME CCI

THIS SUPROI

136

RY MATRIX CCHPUTAT1
S

25, 1C >,GllO>,XtlO)i PUO),
),XOUC),GOI10>,Xl(
VI 10),PGI LOW IV (101

r,KQ,D,IH,NB,V,A,JX B.IHl,
INV,ON,

42 DELTA

« IF (L- KOI «

GO TC
45 IF INZ
«6 MEXIT

RETURfv

) 46

50 CO 60 I =

IH = I Mlli

NiZ-KO) 63,63.1

(I) = IHI ( If 11

(n;c) 75,75,65
7o J = l.NZM

:
, j i = D ( I +

1

, J )

105 DO 13C I

DO 13C J :

IF (I-J)

12. ( I , J )
-

13.' CONTINUE
IF (ICC)



SUBROUTINE AMOA 1

THIS SUbROUTINE CARRIES OUT CALCULATION OF LAMBDAS

DIMENSION X2<10),D(10,lu),DNtlO,10),A(25,10),G(10),X(10),PUO),
11 'J I 1 ),H (;") .' (?'. l.SUU'* ) , -I'M I - ! , / ! i. i. *Oi 1 ;) ,GU( 1 •.') .XI (1 J) .

IVI 10) , JX8I2C I ,IHI < 1C ) ,R( 10) , AMBDAC25) , Y 1 10 ) .PG11G ) , IV ( 10 >,

"r
|KHCN y.PN.AMBDA.M.G.X.F.P.EPSII.NEXU.KQ.D.IH.NB.V.A.JXB.IHI,

I
EPSI3,LeSI2,LD,tU,R,KE(M-'EXlT,lV,KV,B,KMr.,U',KW,K,MXiW,l\V,r .

lMU,NETA,tNT,LCC
[Fir i ,EQ. r )G0 TO '.0

10 DO 3C 1 = 1, NB
J=JXBU)
1FU .ir. osn to i'C

AHBOAd l«X(J)-B( I)

CO TO 30
20 AMBUAI [)=-X(-J)-B< I)

30 C0M1 IMC
4 I IV IKI NB)8( ,80,5

'

50 00 70 I=1,KMNB
TOTA--C.
KK*NB+I
DO 6C J = 1 , f

'

'

67 TCITA = TCTA + A( I,JI*X( J)

K AMBDA(KK)*TOTA-BIKK)
Bl RETURN



TIIS SUK<Jl..TI\i; CLASiiriES THE Ct\'SrKA

DIMENSII
I X2U0) ,;;(!• ,1 .) ,DN4 1SV10 ) , A ( >:,,

1 1 ui i c, ) , I .: (
z'->

) ,t (
.? >

) , sr. (
;•-.

)

,

rr i i ) ) , i ( i o , , X ;

1VI10) , IXB(2< I.IHI (10) ,R ( H I, A II
.'.( >1 Ml

XIT.KO.D, IH,N8,V

DU 20 J = l ,KU



AIER CUAL 1 1 v '

CULATES'TI ; VALl

1

D 1

1

10 FORMAT (

IC1 1
'•' t> •' 1 (

! 2 FORI AT

N X ( 1 '
1 . G ! 1

[1 11

1 1 2 . ' / '

11'!,' CO

i r,Ki

1 , C 1 ( i
•

) , C 2 1 1

I. •
• * ' 1 1 i .

'

nstraim: in

-VALUE' ,F12.6
5 T COEFFICIENT

i . .

« OF FONC
BASIS = • , H./

S Fn;< PLANTS' )

1,01(101,0

IONAI EVAt

**CCST,i -

C AND EC INFO IMATION**'

)

LC« FORM/ I • REACH S 1 :

; ! 1
•'

1
M COST K HX.BOC Ml

.
., FORMAT (7X1 2, 5F1 2.6)
FORMAT (• MIMtKUf TCIAL CCST' ,F1J

iCOC FORMAT (3F15. 71
.' A II ••AI(I'i,3F15.7»

0RMAT(7F8j3)

IFlNFtNCJl ',!',..
'

REAC AND PRINT CCST COEFFICIENTS

1 READ 1CI ', (CHI t,C2tU,C3(l ), I«1,K1

P R [NT 1 2

DC 11 1*1 tM

CHI I >*Xtf»*2.
LM.'.FL'X.KC
(I».lxl,KI,F

JRADIENT VECT<

rfac r nr: and co ini



2A B2UI

CA

t: 1 t 1 )

• U.-X3I I) ) r i |
I

)

LCULATt &C rUAL CO 11 P FACHC

D 1 ( A )

DK5I
114)

11.'!

dii n
I * X 1 4 1

.
I

j 151 "
1

'

•-1.9P8039 + C. 154961 *X<
i.324243*Xf51

16.7]
U4.5S ?280*XJ5)-t-2.895C

U . 5 3

1 + 1.2 75564 U 2

1

526 )23*X(

t crsrs

)**2

.. 163363*

.155779*

+ .2', 32 3;

N. 41732

X(i

CO 27
n ciin ) =CIU)*Q2(I )*X< I HC3I I )*X(

CO 2tf

28 cm i <] ) = C1 ( I )*C2( 1 K-x( I HC 3(1) * ( I )**2

3)+4.35! 409

CALCULATION OF TCTAl CCS

oltput cnsT,(- r c,n r information

IC5,I,X3( I),C11(!),C2(1)



SUBROUTINE FUNC1 (X,F,

TWC PERIOD PROBLEM FOR WATER P.
r

THIS SUBROUTINE CALCULATES THE FUNCT ION VALUE Ar

DIMENSION X(2C).G(20)
C0MMCN/WATER/NFUNC,K0UNT,K1

100 FORMAT (• ITERATION // = ',13,' #

1= ',I3t' # OF CONSTRAINTS IN BASIS
OF FUNCT 10

101 FO 1ATI5F12.6/' F-VALUF' , F12.6 )

lCGl FORMATdH-,' BENEFIT FROM ENERGY •,F12.6)
1C02 FORMATdH-,' BENEFIT FROM IRRIGATION ' ,F12.6)

1003 FORMATdH-,' COST OF RESERVOIR B •,F12.6)
1004 FORMATdH-,' COST OF RESERVUI'. C • , F 1 2 . 6 )

10 1C FORMATdH-,' MAXIMUM NET BENEFITS
IFIK1)10,10,20
NFUNC»NFUNC+1

•,F12.6)

CALCULATE THE FUNCTIG ILUE AND THE GRA0IEN1

453. 7*AL0Gd. +0.2*1

/(l

Gdl=2.*Xd>*229.4
G(2) = l. 4+1453. 7*0. 2/d.+0.2*(X(2) + XC
GI3)=-48.7+( 453. 7*0.2/ d.+O. 2*1 X(2)+)
G(4)=-43.*(l./(l.+.2*XI4)))+43.*(.2*)
G(5)=-47.*d./ll. + .3*X<5) ))+47.*I.3*>
PRINT 100,KOUNT,NFUNC,KQ
PRINT 101, tXU) ,I = 1,M),F
GO TO 40

,TE BENEFIT AND COST FUNCTIONS

X(8)=43

20 X(6)=229.4*X(l)+Xtl)**2
X(7)d.4*X(2)-48.7*X<3)+453.7*AL0Cd.+0.2*(X(2H

X!4)/d. + .2*X(4>

)

X(5>/< l.+.3*X(5)

)

PRINT 1001, X(6)
PRINT 1002, X(7)
PRINT 1003, X(8)
PRINT 1004, X(9»
PRINT 1G1C.F

40 RETURN
END



: iji Ci IX, F ,G,KG! 1*3

FOUR PERIOD PROBLEM FOR HAt6« RESOURCES

THIS SUBROUTINE CALCULATE? Flit FUNCTION VALUE ANO THE GRADIENT

DIMENSION X(20),G(20),XXI(20)tFH10»,F2(10l
CilMr'CH/l.'Al ER/NFUNC,KUUNT,K1

. FORMAT I' ITERATION K = ',13,' » OF FUNCTIONAL EVALUATIONS

02 FORMAT! IH-, • PERIODS 1 2

03 FORMATUII-,' STORAGES ', 4F8. 3 )

04 fli :'.: :.\T (11!-, OUTFLOWS', ',F8. 3)

05 FORMAT! 1H-,' ENERGY • , 4F 8. 3)

06 FORMATUII--,' TOTAL FNERGY • , F8 . 3 )

!C7 FURMATUH-,' CAPACITY OF RESERVOIR'
108 FORMAT ! It!--, ' BENEFIT FROM ENERGY',

f

:09 FORMATUII-,

•

COST OF RESERVO IR ' , F8.

!10 FORMATUH-,' MAXIMUM NET BENEFITS',

CALCULATE THE FUNCTION VALUE AND THE GRAOIENT VECTOR

F--2.2SA*X(6 ) +.01*<X<6 ) **2 ) -.43*X I 5 ) / 1 1 . + .2*X ( 5 ) )

CC. 1=0.0
G(5)=-.A3*(1./(1.+.2*XI5) ) 1+.43*

G(6) = 2.29<t+.02*X(6>
PRINT 100,K0UNT,NFUMC,KQ
PRINT 101, (X(I) ,1=1, M) ,F

GO TO 40

READ INFLOWS TO THE RESERVOIR

,TE OUTFLOWS FROM THE RESERVOIR

DO 22 1=1,3
! XIII I*A» =X1U
X11(8)=X11(4)

REAC ENERGY I

READ 1001, IF2U



CALULATE BE . l- i ; r

H16|-.':3*X1
INT 1002

LI 9 1 I

INT 1003, (XI till
INT 1004t(Xl '(').

INT 1005,1X1
INT 10Q6,Xll (10)
INT 1007, Xll
UNT 1008, Xll ( 15)

INT 1009, Xll ( 16)
INT 1010,

F

iMD cusr I

l.+0.2*Xll (91

1
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In recent years at tempts have been made to apply the

various mathematical programing techniques to the planning,

design and operation of water resource systems. Two general

types of models have been fruitful in the field of water resource

development! the simulation model and analytic model. In this

thesis, two deterministic models-one connected with water

quality and other connected with water quantity-are proposed

and solved within the framework of an analytical approach.

For each system that is considered, the procedure involves

the understanding of the basic physical systems; the development

of systems equations or mathematical models and the solution of

the i'V posed models. Data used in various models was drawn from

the literature wherever possible. This practice was adopted to

insure the realistic response behavior.

Like most of the models used to describe the water

resource systems, the models presented here are characterized

by a nonlinear objective function and linear constraints.

Rosen's gradient projection method appears to be a powerful

tool for this class of nonlinear programming problems characterised

by linear constraints. The specific purpose of this thesis is

to apply this technique to the various water resource models

and analyze the results to derive optimal design and operation

policies.

The method is initially described in some detail with an

eraphasis on conpv.fcaticnal aspects. Then the method is success-

fully applied to solve the various models describing water



The construction ,' id sclu! i >n ol r J 1 ati caJ tnc r] oj"

dissolved oxygen for a 8imp].ifled rive 5 basin indicates how

a mathematical model can generate useful water quality control

information.

Next a simplified river basin configuration is selected to

illustrate the mathematical programming approach to water quantity

aspects. Such an approach is useful in initial exploratory

stages of water resources planning.


