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ABSTRACT 

The modern use of data analytics is not new to production processes, however the 

substantial reliance of it in the ethanol industry has been increasing over recent years. 

Being able to pull larger amounts of data is important to monitor an ethanol plant’s KPI’s 

(key performance indicators). Taking data analysis to the next level of being able to run 

regression models and predictive type examination to accurately determine ethanol yield is 

the succeeding phase currently facing the ethanol business on the plant level. Using simple 

regressions and an industry survey to deliver data can help both ethanol plant personnel and 

vendor data scientists to work together to be able to use all the information on hundreds of 

ethanol plant variables that are gathered daily to provide predictive guidance. Over the 

years, the ethanol industry has also become a crucial business for imports and exports in 

countries, such as the United States, Canada, and Brazil. However, the ethanol industry 

does come with many risks and challenges and many of them are beyond an ethanol plant’s 

control. For this reason, the purpose of this thesis is to examine the importance and impact 

of data analytics in ethanol production, and to determine the value that predictive modeling 

of ethanol yield can have for an ethanol plant. An ethanol industry-aimed survey was 

developed, conducted, and data summarized. Dependent variable and independent variables 

for regression analyses were analyzed to see the trends for 2010 from an Excel extract 

provided by Plant ABC. A linear regression model of ethanol plant data was used in this 

thesis to be able to examine contemporaneous dependence of fifteen different variables 

with the dependent variable, ethanol yield. Regression modeling was also used to 

determine the factors that are statistically significant in predicting ethanol yield using other 



 
 

types of models with alternative functional forms, including the semi-log, double-log, and 

quadratic. Ethanol yield linear regression was estimated and showed that the independent 

variables of ratio milo, Drop pH, Drop DP4+, Drop Glucose, Drop Lactic Acid, and Drop 

Acetic Acid had p-values under 1% and have significant correlations to ethanol yield. The 

quadratic model yielded the lowest RMSE indicating the best predicted model out of the 

four models estimated.  
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CHAPTER I: INTRODUCTION 

 As the ethanol industry continues to offer new opportunities for the United States 

and countries all around the world, it has become an engine for agricultural growth, 

bringing many opportunities for employment, and economic development, especially in 

rural locations. With today’s environmental issues, it also provides a cleaner burning and 

potentially lower costing fuel alternative. Over the years, the ethanol industry has also 

become a crucial business for imports and exports in countries, such as the United States, 

Canada, and Brazil. However, the industry does come with many risks and challenges and 

many of them are beyond an ethanol plant’s control. For this reason, the purpose of this 

thesis is to examine the importance and impact of data analytics in ethanol production and 

the value predictive modeling of ethanol yield can have for an ethanol plant. 

The ethanol industry provides jobs and income in numerous states in the United 

States. Most ethanol producing states in 2017 were located in the Midwest (Table 1.1). In 

2017, the United States alone produced 15,856 million gallons of ethanol, producing an 

income of 24,087 million dollars, and provided around 358,780 jobs. Iowa, Nebraska, and 

Illinois are the top three ethanol producing states, with a 50.5% share of production (Figure 

1.1).    
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Table 1.1: Contribution of the Ethanol Industry to Individual State Economies, 2017  

Plants
Production
(Mil Gal)

Production 
Share

GDP
(Mil $)

Employment
(Jobs)

Income
(Mil $)

Iowa 4177 26.3% 3,868.00$          39018 3,010.00$          
Nebraska 2176 13.7% 2,015.00$          21685 1,664.00$          
Illinois 1659 10.5% 1,536.00$          16070 1,316.00$          
Minnesota 1204 7.6% 1,115.00$          11923 1,010.00$          
Indiana 1173 7.4% 1,086.00$          12127 990.00$             
South Dakota 1060 6.7% 982.00$             11051 913.00$             
Wisconsin 583 3.7% 540.00$             6505 593.00$             
Ohio 548 3.5% 508.00$             6172 569.00$             
Kansas 491 3.1% 455.00$             5629 531.00$             
North Dakota 465 2.9% 431.00$             5381 513.00$             
Texas 385 2.4% 357.00$             4619 459.00$             
Michigan 354 2.2% 328.00$             4323 439.00$             
Missouri 261 1.6% 242.00$             3437 376.00$             
Tennessee 225 1.4% 208.00$             3001 352.00$             
California 218 1.4% 202.00$             2937 347.00$             
New York 150 0.9% 139.00$             2317 301.00$             
Colorado 127 0.8% 118.00$             2107 286.00$             
Georgia 120 0.8% 111.00$             2044 281.00$             
Pennsylvania 110 0.7% 102.00$             1953 274.00$             
Oregon 98 0.6% 91.00$               1843 266.00$             
Virgina 64 0.4% 59.00$               1533 243.00$             
Idaho 60 0.4% 56.00$               1497 241.00$             
Mississippi 54 0.3% 50.00$               1442 237.00$             
Arizona 50 0.3% 46.00$               1406 234.00$             
Kentucky 36 0.2% 33.00$               1278 225.00$             
Florida 8 0.1% 7.00$                1023 206.00$             
All Other 29,771.00$         186,459 8,211.00$          

TOTAL U.S. 15,856 100.0% 44,456.00$         358780 24,087.00$          
Source:    (Urbanchuk 2017) 
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Figure 1.1: State Production Share, 2017 
 

Iowa Nebraska Illinois
Minnesota Indiana South Dakota
Wisconsin Ohio Kansas
North Dakota Texas Michigan

 
Source: (Urbanchuk 2017)    
 
 Plant operations operate in a risky environment as all inputs and outputs from ethanol 

production, as well as other coproducts are dependent on markets. Markets can be erratic 

and it is important for ethanol plants to be as efficient as possible to help manage their 

risks. Consistency and improving what happens in the production process is something 

plants and employees do have an influence on. Ethanol plants need to focus on the types of 

things they do have control over, such as process controls, maintenance schedules, lab 

testing, ingredient dosing, and other plant optimization tools, to do the best they can and be 

as efficient as possible.  

1.1 Thesis Objectives 

Innovation is constantly occurring in the industry, so even the few parts of the 

ethanol process that can be controlled, change over time and need to be consistently 

monitored and evaluated for efficiency. Most production type industries use data as a way 



4 
 

to observe and make changes for better plant results. For many years, ethanol plants have 

relied on vendors to occasionally analyze their data, and consequently, this does not 

provide the analysis needed to make day to day changes. The objective of this study are to:  

1. Survey the industry and understand how their data is being handled. 

2. Identify if plant changes are being made using data analytics and by whom. 

3. Formulate simple regressions to determine variable effects on ethanol yield. 

4. Develop predictive type regressions to examine marginal changes that might be 

made to increase ethanol yield in the future.     

1.2 Thesis Organization 

Contents following throughout this thesis include a literature review in chapter two 

used to review past literature and documentation that might be related to production 

industries, the ethanol industry, or similar studies. Data information that was collected for 

this thesis includes a ten question survey (full survey in appendix) that was aimed at 

ethanol plant management at the plant level. Data also included secondary data pulled from 

daily production data that is collected at all or most ethanol plants. Some data was pulled 

using technology software, while the rest was hand entered, which may result in inputting 

errors. Explanation of all variables and the theory will be presented in chapter three. 

Chapter four examines methods, including linear regression analysis to examine factors 

impacting ethanol yield. Survey data also is used to aid in defining the independent 

variables used in the regressions conducted. Simple regression models evaluated as 

prediction models were estimated to assess their use in predicting ethanol yield. Results are 

presented in chapter five. A concluding summary and explanation of future research will 

complete the thesis in chapter six.  
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CHAPTER II: LITERATURE REVIEW 

The literature review examines the relationship of different aspects of the research 

in the relevant literature. Literature on the ethanol industry related to the process and 

regression data analysis is sparse. Looking at similar production type processes though 

helps to understand concepts related to the ethanol industry and associated usefulness of 

data analytics.      

2.1 Putting Data to Work 

An article produced by Ethanol Producer Magazine was published around the same 

time that vendors started actively introducing JMP (pronounced jump) software to 

producers from the SAS Institute (Jessen 2014). A significant reason why ethanol plants 

historically didn’t do a lot of data analysis in-house was because of time constraints. The 

article describes how vendors and plant employees can easily use the software and that data 

analysis progressively gets easier and faster as it continues to be useful. Jessen (2014) 

discusses the price of the software in 2015 as: “An annual license for JMP is $1,540 in 

2015, JMP Pro, which has additional capabilities, has an annual license cost of $14,900, 

according to SAS representative” (Jessen 2014, p.1). Lastly, the article depicts a few real 

life experiences at an ethanol plant where they were able to troubleshoot a rising sulfate 

issue that ended up being affected by longer fermentation times using JMP to quickly 

model the problem and produce graphs that depicted the negative trend in sulfate levels 

(Coward-Kelly 2011). JMP can also be used to optimize dosing strategies based off data 

analytics.        

2.2 Observational Data-Driven Modeling and Optimization  

A paper by Sadati, Chinnam and Nezhad (2017) isn’t directly related to the ethanol 

industry, as it references biopharmaceutical production, but it has the same concepts as to 
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why data-driven decisions are important. “In the context of production, data-driven 

approaches can exploit observational data to model, control and improve process 

performance” (Sadati, Chinnam and Nezhad 2017, p.456). This quote, accurately expresses 

the main objective of this paper. The authors make a good point that even though 

technology continues to make data capturing much easier than before, there is still a need to 

conduct data analysis, and to be able to achieve improved yields in whatever industry 

production takes place in. The authors also present various modeling and higher level 

equations that can be used to optimize variables.  

2.3 Data-Driven Modeling and Monitoring for Plant-wide Industrial Processes 

Similar to the previous article, Ge (2017) recognizes the need and responsiveness 

that data modeling has in many industry processes. The author discusses the difficulties 

with data collection in industry processes, because of the hefty amount of data points that 

are being collected daily, creating a lot of data, which requires processing and sorting. As 

an industry, ethanol plant employees and data scientists are able to collect and extract more 

data than ever, but being able to organize it all and explain it all accurately is a struggle. Ge 

(2017) reviews the challenges facing different industries, such as data monitoring. He 

continues on to discuss potential future issues that data modeling might bring to light, such 

as the large volumes of data being able to be generated with today’s technology and the 

increasing complexity of production plant processes.        
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CHAPTER III: THEORY 

A profoundly overlooked part of every ethanol plant is the data that is being 

generated all over the facility. There are data points being pulled and stored from the grain 

entering the facility to the ethanol and co-products being produced on the backend. This 

makes it difficult to maintain efficiency when dealing with such numerous and meticulous 

processes and a vast array of data points. It is essential to be able to optimize using these 

data points to become as efficient as possible through the power of data analysis.   

3.1 Data Summary 

Due to the excessiveness of data being produced every day, there have been many 

different technology platforms and companies that are able to pull data, store data, and 

conduct data analysis. Plant management and staff normally have a very busy daily 

schedule, making time for data analysis a lower priority. Thus, many vendors in the 

industry have made this a priority as a customer service product, but more and more 

customers are realizing the value of analyzing data in-house. However, with so many 

variables effecting overall ethanol yield, it makes it difficult to evaluate. Ethanol plant 

employees are finding simple and quick ways to show simple control charts, but there is 

added value by use of other techniques, such as regressions to examine the ethanol 

production process and predictive methods to help predict how, say a fifty to seventy-hour 

fermenter might yield before it is complete. There are many plants, vendors, and companies 

working to find a tool or way to do these types of analyses, as it can be valuable for the 

future of the ethanol industry.  
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3.2 Theoretical Model 

Experience suggests that the relationship of the dependent variable ethanol yield 

percentage is a function of a number of independent variables, as follows:  

Ethanol Yield (%) = f (AGE, MILO, BACKSET, SLURRY, LIQ, pH, BRIX, TEMP, DP4+, 

DP3, MALTOSE, GLUCOSE, LACTIC, GLYCEROL, ACETIC)  

Table 3.1 represents the independent variables and their expected signs for the coefficients. 

Table 3.1: Theoretical Ethanol Yield Model Coefficient 
 

Coefficient Independent Variable Expected Sign

βAGE Fermentation Age Postive

βMILO Milo Grind Ratio Postive

βBACKSET Backset Negative

βSLURRY Slurry Solids Postive

βLIQ Liquefaction Solids Postive

βpH Drop pH Negative

βBRIX Drop Brix Negative

βTEMP Drop Temperature Negative

βDP4+ Drop DP4+ Negative

βDP3 Drop DP3 Negative

βMALTOSE Drop Maltose Negative

βGLUCOSE Drop Glucose Negative

βLACTIC Drop Lactic Acid Negative

βGLYCEROL Drop Glycerol Negative

βACETIC Drop Acetic Acid Negative  
 

Ethanol plants may chose fermentation times (age) based on a variety of reasons, 

but overall it seems the longer the better in terms of ethanol yield. Most plants typically run 

100% corn as a feedstock, so milo (via the milo grind ratio) may have a positive impact on 

ethanol yield beyond cost effectiveness. Backset may sometimes result in process 

contamination that might result in an infection (a bacterial infestation in the process), so it 
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is assumed it would generally have a negative effect on ethanol yield. Unless margins are 

tight, both slurry and liquefaction solids are ran at an optimized rate to help with ethanol 

yield, so in most cases these factors should be positively related to ethanol yield. 

Fermentation variables of drop pH, drop brix, and drop temperature may fluctuate quite 

often so could be negative. Fermentation variables of drop DP4+, drop DP3, drop maltose, 

and drop glucose are all sugars. The more percentage of these compounds left, means not 

all sugar was converted to ethanol, which would have a negative effect on ethanol yield. 

Fermentation variables of drop lactic acid and drop acetic acids are organic in nature and 

are likely detrimental to ethanol production. Drop glycerol is ideal to be as low as possible, 

but given it is formed during the fermentation process, it would be assumed to have a 

negative relationship with ethanol yield.       

3.3 Variables 

Figure 3.1 below, shows a basic diagram of a modern day dry mill ethanol plant 

facility. The following basic eight production steps used, will be referenced back to where 

the dependent and independent variables fit into the ethanol production process: 

1. Grain Receiving and Storage 

2. Milling (hammer mills) 

3. Cooking/Slurry  

4. Liquefaction 

5. Fermentation 

6. Distillation 

7. Centrifuges 

8. Ethanol Storage  
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Grain comes into the ethanol facility normally via truck and rail. The grain is stored 

until it is ready to use. The grain is milled through the hammer mill milling process to 

create ground grain. The ground grain is then mixed with water to make a mash. In the 

slurry (cooking) phase of the process, alpha amylase enzymes are added to break down the 

grain starch and the mash then goes through liquefaction. Liquefaction allows for residence 

time to continue to allow enzymes to convert and lower the viscosity of the mash. Mash 

then is pumped to fermentation tanks where it will stay for two to three days. After the 

fermentation process, the mash is sent through the distillation process to separate out the 

200 proof ethanol and the rest of the leftover mash. The ethanol is then sent through a 

molecular sieve to remove additional water (Renewable Fuels Association n.d.), (Figure 

3.1). The final product ethanol is either sent to ethanol storage or combined with other 

possible chemicals such as a denaturant and/or corrosion inhibitor to make the ethanol not 

consumable and to help reduce corrosion in storage. Denaturant may also be blended into 

the ethanol stream while loading a truck or rail car by use of an ethanol blending skid. The 

leftover mash is sent through large centrifuges to separate off the stillage from the solids. 

The solids are then used as the wetcake for wet distiller’s grains (WDG), typically for cattle 

feed end users. Wetcake may also be dried in what is normally a barrel dryer to produce 

distillers dried grains with solubles (DDGS), which also might be used for cattle feed or 

other uses such as poultry feed or extruded co-products. There are also additional 

technologies out in the industry that bolt on to the ethanol production process, such as the 

ability to capture CO2 off of the fermentation process, which is purified in another 

additional procedure to later become CO2 products. Oil production may also be added on 
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as a technology to create corn and/or milo oil used for feed products or to be used at 

biodiesel refineries.     

Figure 3.1: Dry Mill Ethanol Process Diagram 

 

Source: (Renewable Fuels Association n.d.) 

3.3.1 Dependent Variable - Fermentation Ethanol Yield 

The dependent variable in this analysis is ethanol yield at the end of the 

fermentation process or what is often referred to as a fermentation drop ethanol yield 

percentage. No matter what the ingredients used are, new technologies installed, co-

products produced and sold, or the way that a plant is ran, ethanol yield is the main goal for 

all plants. It is very important to produce efficiently and be cost effective. Ethanol yield can 

be measured in multiple ways. Much of the following data will come from data retrieved 

using HPLC “(High-performance liquid chromatography; formerly referred to as high-
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pressure liquid chromatography). HPLC is a technique in analytical chemistry used to 

separate, identify, and quantify each component in a mixture. It relies on pumps to pass a 

pressurized liquid solvent containing the sample mixture through a column filled with a 

solid adsorbent material” (Contributors 2019, p.1). 

3.3.2 Independent Variables 

The independent variables were chosen based off of the survey and internal 

interests from customers. (Table 3.1,) These variables may interact with each other, having 

an impact on regression results based on where the independent variables come into the 

process. Fermentation Age, Ratio Milo, Backset, Slurry Solids and Liquefaction Solids are 

all variables that are at the front side of the process. Drop pH, Drop Brix, Drop 

Temperature, Drop DP4+, Drop DP3, Drop Maltose, Drop Glucose, Drop Lactic Acid, 

Drop Glycerol, and Drop Acetic Acid are all variables that are captured at the end of the 

fermentation process.  

Fermentation Age (hours) – Fermentation age is a reference to the total hours that 

the fermentation process takes to complete before the batch goes through the distillation 

process. This time may be effected by various plant related changes such as throughput 

rates, cleaning times as well as plant mechanical or maintenance items either normal or out 

of the ordinary. Even though every plant has different operational procedures resulting in 

longer or shorter fermentation times, normally the range spans between 50-70 hours. 

Grind Ratio Milo (%) – Assumingly, most ethanol plants in the United States 

usually grind 100% corn as their feedstock for ethanol fermentation. Many of the plants in 

Kansas choose to grind sorghum, or milo, as well for the benefits of being readily grown 

and available logistically, with purchase costs typically being cheaper when compared to 

corn prices. Unfortunately, milo can be dirty, sandy, corrosive, and rough on the 
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maintenance side of the plant. Even with the additional costs that may occur due to running 

milo through the plant, most find the financial benefits to outweigh the negative effects or 

costs it might have. Given market dynamics, a corn/milo plant might make grind ratio 

adjustments as needed or warranted. These plants have the option of running whatever ratio 

of corn to milo they want, given what might make economic sense at the time. Grain 

procurement costs along with grain availability comes into play in most of these scenarios. 

Sometimes during fall crop harvest, it might be logical to run 100% corn. While other times 

throughout the winter, when it is not driving season and ethanol margins are lower, it’s 

possible it would be more profitable to run a higher milo blend. From experience, corn does 

seem to typically have a higher yielding pattern in general. However, the choice between 

corn and milo use always comes down to the profitability. Grind ratio would be adjusted at 

step 2 milling in Figure 3.1. Grind ratio data was analyzed by inputting when each change 

was made throughout the 2010 calendar year for the results data. 

Backset (%) – Backset is also referred to as Thin Stillage or Centrate and occurs at 

step 7 centrifuges from Figure 3.1. The definition of backset is sometimes hard to 

understand. Essentially, backset is the whole stillage leftover from the fermentation 

process, which is sent to multiple large centrifuges, on the backend of the ethanol process. 

The whole stillage is separated into a liquid, which is the backset, and solids, known as 

wetcake and can be used either as wet distiller’s grains or dried in a dryer to become 

Distillers Dried Grains with Solubles (DDGS) for cattle feed or other uses. The percentage 

of the backset/thin stillage stream is recycled back to the front of the process and can vary 

by plant. 
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Slurry Solids (%) – Slurry is also called “mash” and is produced in step 3 in Figure 

3.1. Most ethanol plants have only two slurry tanks. The mash made up of slurry solids is 

mainly ground grain, flour from the hammer mill process, and backset recycled back 

around. Alpha amylase is also added to slurry to help keep viscosity low and start 

converting the grain starch to sugar for the yeast to consume in fermentation. Generally, at 

ethanol plants, slurry solids running anywhere from 31-35% solids in mash depending on 

the plant.   

Liquefaction Solids (%) – The mash that leaves slurry moves onto two or three 

liquefaction tanks in step 4 of Figure 3.1, depending on the plant. Liquefaction mash 

normally stays in this stage long enough to let alpha amylase enzymes break down the 

starch in the flour into sugars for the yeast to consume. In the field, liquefaction solids 

constitute anywhere from 31-35% solids in mash depending on the plant. At times 

liquefaction solids may be slightly lower as a percent of mass than slurry solids for a 

specific plant and its production processes.   

Fermentation Drop pH – “Fermentation Drop” refers to the last sample that was 

taken at the end of fermentation time before the fermenter is pumped to the distillation side 

of the process. Drop pH is used to confirm that there was not an excursion of pH 

throughout the process. Actual physical pH levels are very important in the cooking phase 

when enzymes are working to convert starch. This independent variable is located at the 

end of step 5 in Figure 3.1 once fermentation is complete and a sample is taken for lab 

analysis.  

Fermentation Drop Brix (%) – Brix is a measure of sugar present in the 

fermentation drop sample. Traditionally measures are done using a refractometer. Now 
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there are digital reader options to make it much more consistent and accurate. This 

independent variable is located at the end of step 5 in Figure 3.1 once fermentation is 

complete and a sample is taken for lab analysis. 

Fermentation Drop Temperature (°F) – Fermentation temperature is very important 

for yeast health for ethanol production. The weather has a large influence on how hot 

fermentation mash temperatures may get in the summer or how low in the winter. Yeast 

cells can start stressing if temperature gets too hot. Temperature may cause enzymes to 

become unstable and denature, leading to inactivity. Individual ethanol plants may handle 

temperature fluctuations differently, but all plants monitor temperature throughout the 

fermentation process to keep yeast healthy. This independent variable is located at the end 

of step 5 in Figure 3.1 once fermentation is complete and a sample is taken for lab analysis. 

Fermentation Drop DP4+ (%) – DP means degree of polymerization and describes 

how many glucose molecules are bonded together in a chain. Starch starts out as very long 

chains of glucose and gets broken down into glucose throughout the ethanol process. That 

being said, DP4+ is known as a void peak by lab managers in the ethanol industry because 

it contains any compound that doesn’t stick to the HPLC column, hence the “plus” part. If 

there are dextrins left over in fermentation, DP4+ will be elevated at fermentation drop and 

identified in the HPLC fermentation drop sample when ran. This is why it is important to 

monitor. This independent variable is located at the end of step 5 in Figure 3.1 once 

fermentation is complete and a sample is taken for lab analysis. 

Fermentation Drop DP3 (%) – Similar to DP4+, DP3 is also a sugar. If there are 

dextrins leftover in fermentation, DP3 will also be elevated at fermentation drop and 

identified in the HPLC fermentation drop sample when conducted. This independent 
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variable is located at the end of step 5 in Figure 3.1 once fermentation is complete and a 

sample is taken for lab analysis. 

Fermentation Drop Maltose/DP2 (%) – DP2s are known as disaccharides and 

common disaccharides are maltose, sucrose, and lactose. In the ethanol industry as a whole, 

they monitor the Maltose/DP2 HPLC peak is monitored. It’s percentage decrease in 

fermentation and what is leftover is identified in the HPLC fermentation drop sample when 

ran. This independent variable is located at the end of step 5 in Figure 3.1 once 

fermentation is complete and a sample is taken for lab analysis.    

Fermentation Drop Glucose (%) – Dextrose is leftover at the end of the 

fermentation process. The lower the percentage of dextrose left, the more that was 

consumed and converted to ethanol. One of the main goals is for yeast to consume the 

fermentable sugars to get as much carbon to turn to ethanol as possible. In the industry, it is 

common knowledge that one molecule of glucose once broken down becomes two 

molecules of ethanol and two molecules of carbon dioxide. If sugars aren’t consumed in 

large enough quantities fermentation time has not been long enough, which lowers 

potential ethanol yield. In addition, extra sugar in the wetcake and DDGS distiller’s 

products could lead to other issues, so the less sugar leftover at the end of fermentation the 

better. This independent variable is located at the end of step 5 in Figure 3.1 once 

fermentation is complete and a sample is taken for lab analysis.      

Fermentation Drop Lactic Acid (%) – Lactic acid is an organic acid that has a three 

carbon chain with hydroxyl and carboxyl group and can be produced from yeast during 

fermentation. However, it is commonly introduced into the system by lactic acid bacteria 

produced as a product of carbohydrate catabolism. Lactic acid is monitored in 
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fermentation. If it becomes elevated, then infection will occur and stall out a fermenter 

early, resulting in lower ethanol yield. This independent variable is located at the end of 

step 5 in Figure 3.1 once fermentation is complete and a sample is taken for lab analysis.     

Fermentation Drop Glycerol (%) – Drop glycerol is monitored because reducing 

the glycerol percentage at the end of fermentation as much as possible, is the desired result. 

Glycerol retains moisture and represents carbon that could have been converted into 

ethanol. This independent variable is located at the end of step 5 in Figure 3.1 once 

fermentation is complete and a sample is taken for lab analysis.   

Fermentation Drop Acetic Acid (%) – Acetic acid is also an organic acid that has a 

single carbon carboxyl group. Acetic acid can be found in fermentation as a product of 

yeast or from lactic and acetic acid bacteria. Acetic acid is monitored in fermentation 

because if it becomes elevated, then infection will occur and stall out a fermenter early, 

resulting in lower ethanol yield. Acids may also cycle up over time, so monitoring trends 

help prevent issues. This independent variable is located at the end of step 5 in Figure 3.1 

once fermentation is complete and a sample is taken for lab analysis.     
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CHAPTER IV: DATA AND METHODS 

An ethanol industry aimed survey was developed, conducted, and data summarized. 

Dependent variable and independent variables for regression analyses were analyzed to see 

the trends for 2010 from an Excel extract provided by Plant ABC. A linear regression 

model of ethanol plant data was used in this thesis to be able to examine contemporaneous 

dependence of fifteen different variables with the dependent variable, ethanol yield. 

Regression modeling was also used to determine the factors that are statistically significant 

in predicting ethanol yield using other types of models with alternative functional forms, 

including the semi-log, double-log, and quadratic. Once all the data was organized and 

scanned for errors and zeros, regression modeling was estimated using JMP software by 

SAS Institute, Inc. and GRETL software. Plant ABC fermentation data from the year 2010 

was the only year used for all regressions. There were over 500 batches total in 2010, 

because this would have created too large of a table, the averages for each year were 

computed into an interpretable table for the data used in the regressions (Table 4.1). The 

dependent and independent variables are all represented in the table. It is important to note 

that this data represents the production process prior to production of corn oil and distillers 

grains, in order to examine the primary process for this thesis, the fermentation process.   
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Table 4.1: 2010 Plant ABC Regression Data 

2010
 Monthly Avg.

Ferm Age 
(Hours)

Grind 
Ratio
Milo

Backset
 (% )

Slurry
 Solids (% )

Liq
 Solids (% )

Drop
 pH

Drop
 Brix (% )

Drop
 Temp (°F)

January 64.43 80.00 45.91 34.24 33.62 4.81 11.22 85.23

February 64.83 85.00 45.01 34.19 33.15 4.83 11.06 85.22

March 62.38 85.00 44.86 33.68 33.29 4.89 10.89 85.10

April 62.10 85.00 42.89 34.20 33.58 4.61 10.91 85.46

May 63.93 80.45 44.89 33.95 33.54 4.73 11.17 85.65

June 65.24 70.00 45.09 34.07 33.86 4.72 11.06 86.76

July 62.88 64.32 44.01 34.04 34.50 4.60 11.01 87.30

August 63.79 53.18 45.36 34.29 34.23 4.62 10.93 86.83

September 64.02 35.00 42.95 34.22 33.51 4.60 11.39 86.80

October 63.28 50.00 43.20 34.97 33.64 4.66 11.32 86.70

November 64.24 70.00 42.70 35.46 34.22 4.58 10.96 86.31

December 63.58 70.00 40.92 35.33 34.50 4.59 10.89 86.21

Minimum 62.10 35.00 40.92 33.68 33.15 4.58 10.89 85.10

Maximum 65.24 85.00 45.91 35.46 34.50 4.89 11.39 87.30

Mean 63.72 69.00 43.98 34.39 33.80 4.69 11.07 86.13

Stand. Dev. 0.94 15.99 1.46 0.56 0.46 0.11 0.17 0.77
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Table 4.1: 2010 Plant ABC Regression Data Continued 

DP4+
 (%  w/v)

DP3 
(%  w/v)

Maltose 
(%  w/v)

Glucose 
(%  w/v)

Lactic
 Acid 

(%  w/v)
Glycerol 
(%  w/v)

Acetic
 Acid

(%  w/v)
Ethanol
(%  w/v) 

0.71 0.09 0.35 0.18 0.22 1.54 0.08 14.88

0.68 0.09 0.30 0.11 0.18 1.53 0.07 14.85

0.62 0.09 0.24 0.16 0.17 1.56 0.07 14.44

0.63 0.09 0.25 0.12 0.21 1.56 0.08 14.32

0.66 0.08 0.26 0.25 0.17 1.58 0.08 14.25

0.67 0.08 0.24 0.09 0.14 1.59 0.10 14.20

0.70 0.09 0.40 0.17 0.15 1.64 0.11 13.92

0.74 0.08 0.69 0.14 0.13 1.62 0.11 14.02

0.67 0.07 0.28 0.21 0.13 1.54 0.11 14.02

0.66 0.08 0.35 0.14 0.15 1.84 0.09 14.23

0.67 0.09 0.37 0.14 0.16 1.71 0.07 14.10

0.63 0.08 0.24 0.16 0.10 1.70 0.06 14.05

0.62 0.07 0.24 0.09 0.10 1.53 0.06 13.92

0.74 0.09 0.69 0.25 0.22 1.84 0.11 14.88

0.67 0.08 0.33 0.16 0.16 1.62 0.09 14.27

0.04 0.01 0.13 0.04 0.03 0.09 0.02 0.31
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4.1 Survey 

A ten question survey was developed and administered to meet thesis objectives. 

The survey was designed to help demonstrate the need for data analysis in ethanol 

production. The survey was also used to examine what kind of additional data analysis 

software or data analytics programs ethanol plants might be using in the industry. Lastly, 

the survey was designed to see how data might be used moving forward in the ethanol 

industry.  

The survey was administered on SurveyMonkey.com in order to protect the 

anonymity of respondents. It was conducted over a two-week period and was advertised on 

LinkedIn for network ethanol industry connections as an at-will survey targeted to ethanol 

plant management (plant managers, CEOs, operations managers, and lab managers). The 

survey yielded 46 responses. It was assumed all respondents were from different ethanol 

plants in the United States. The responses are trackable by random number identifier as 

provided in SurveyMonkey.com as #1-46, but not by name or plant name. The plant that 

was used for regression analysis was also one response included in the survey results. (See 

Appendix A.2 for full survey) The survey was developed to confirm the need for data 

analysis and analytics at the plant level and the potential future predictive modeling. 

Allowing comments for each question was problematic as many respondents had additional 

questions or questioned the original question. The survey should have been read by experts 

from the industry and by coworkers prior to sending it out as there were some useful 

comments from colleagues made after the survey was already live and results were being 

tallied. Some questions yielded results in the comments that resulted in rewording some of 

the response options and how results were matched for the final data analysis. Allowing for 
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more time for data collection would allow more possible data points as well. Overall, the 

survey was useful, considering what it was initially designed for, but there were many 

lessons learned for conducting professional surveys in the future. 

Overall, implications and findings from the survey were valuable. The survey 

reiterated the importance of analyzing data and confirmed analytics will continue to evolve 

in the ethanol industry. Only received partial results about what systems ethanol plants are 

currently using to run their plants and what software is being used in-house to analyze data 

due to how questions were worded at times. Certain survey data was not used due to 

incompleteness. An interesting finding was the amount of data analysis that was being 

conducted in-house versus relying on vendors, since time restrictions seem to make data 

analysis a low priority, historically. 

4.2 Data 

4.2.1 Dependent Variable 

Drop ethanol yield percentage is data that is collected from an HPLC instrument 

and measured in weight per volume percentage in a sample collected at the end of 

fermentation time. Data was provided in an excel data extract and summarized in monthly 

averages (Table 4.1) by Plant ABC. The data was then analyzed using JMP software 

(Figure 4.1). Assuming that the HPLC results were dialed in and calibrated correctly, 

fermentation drop ethanol percentage started off higher for the first quarter of 2010 and 

then dropped and remained consistent the rest of the year (Figure 4.1).  

Plant ABC is a batched dry mill ethanol production facility meaning even though it 

is a 24/7 operation, it is not a continuous type operation. Each fermentation that is 

completed is considered a batch. The X axis of Figure 4.1 is labeled as batches throughout 

the thesis and even though the time frame varies between ethanol batches, all fermenters 
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are fermenting at various time points at any given time so that batches are spaced out 

enough, they aren’t starting and finishing at the same time. Plant ABC had four total 

fermenters during the time this data was documented and was completing, also known as 

dropping, one or two fermenters a day.  

In addition to the fermenters, a lesser amount of mash is propagated in a 

propagation tank, where the yeast and a few other ingredients may be added depending on 

the recipe, that is 13,500 gallons for normally 7-9 hours and then that propagated mash is 

sent to a 730,000-gallon fermenter to be gradually added with the rest of mash for the rest 

of fermentation time. For this set of data, fermentation drop ethanol weight per volume 

percentage was 14.277% (Figure 4.1). This plant, in particular, did not record propagation 

times during this 2010 time frame and started recording them in later years, so the exact 

time is unknown for each batch in the data set.  

Table 4.2: Data Summary, 2010 
  

  

2010
 Monthly Avg.

Ferm Age 
(Hours)

Ethanol
(%  w/v) 

January 64.43 14.88

February 64.83 14.85

March 62.38 14.44

April 62.10 14.32

May 63.93 14.25

June 65.24 14.20

July 62.88 13.92

August 63.79 14.02

September 64.02 14.02

October 63.28 14.23

November 64.24 14.10

December 63.58 14.05

Minimum 62.10 13.92

Maximum 65.24 14.88

Mean 63.72 14.27

Stand. Dev. 0.94 0.31      
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Figure 4.1: Drop Ethanol (%) By Batch Number Data, 2010 
  

 
 
4.2.2 Independent Variables Data 

All data for the independent variables was provided by Plant ABC in the form of an 

Excel spreadsheet. Some data was automatically inputted into their system by the HPLC 

and some data was hand entered data from ethanol plant employees.  

4.2.2.1	Fermentation	Age	Data	2010	
 

Fermentation age stayed rather consistent over 2010, averaging 63.69 hours. Any 

outliers were most likely due to fermentations that were longer due to plant shut downs or 

emergency type situations where they could not drop at normal times. This variable was an 

added column using the formula of fermentation drop reading date/time subtracted from the 

fermentation start fill time all multiplied by twenty-four hours to get the actual 

fermentation age time.   
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Figure 4.2: Fermentation Age By Batch Number Data, 2010 
  

 
 
4.2.2.2	Grain	Grind	Ratio	2010	(Corn/Milo)	
 

For regression purposes, only the milo ratio is used. Plant ABC accounting keeps 

track of grind percentages of the ground grain throughout the year with an Excel 

spreadsheet that is summarized in Table 4.2 for per day usage. According to Figure 4.3, 

higher grinds of milo at 85% and 80% resulted in the most ethanol yield for 2010.  
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 Table 4.3: Calculated Grind Ratio Corn/Milo, 2010 
 

Date Per Day Usage % Corn % Milo Per Day Usage % Corn % Milo
01/01/10 58,744 21.34% 78.66% 57,846 21.46% 78.54%
01/04/10 59,538 19.15% 80.85% 58,938 19.21% 80.79%
02/01/10 59,002 15.49% 84.51% 58,295 15.64% 84.36%
03/01/10 59,312 14.80% 85.20% 58,701 14.86% 85.14%
04/05/10 60,739 16.04% 83.96% 60,087 16.15% 83.85%
05/03/10 59,621 22.99% 77.01% 58,911 23.12% 76.88%
06/01/10 59,062 30.60% 69.40% 58,444 30.74% 69.26%
07/02/10 59,450 34.74% 65.26% 58,944 34.93% 65.07%
07/30/10 58,458 44.07% 55.93% 58,077 44.18% 55.82%
08/30/10 59,217 65.78% 34.22% 58,805 65.85% 34.15%
10/01/10 60,409 52.39% 47.61% 60,272 52.49% 47.51%
11/01/10 61,463 28.73% 71.27% 61,268 28.82% 71.18%
11/29/10 59,405 30.05% 69.95% 59,305 30.10% 69.90%
01/03/11 59,567 28.51% 71.49% 59,520 28.51% 71.49%

Minimum 58,458 14.80% 34.22% 57,846 14.86% 34.15%
Maximum 61,463 65.78% 85.20% 61,268 65.85% 85.14%
Mean 59,571 30.33% 69.67% 59,101 30.43% 69.57%
Stand. Dev. 803 14.89% 14.89% 932 14.89% 14.89%

Calculated Using Gross Receipts Calculated Using Net Receipts

 
 

Figure 4.3: Drop Ethanol By Grind Ratio (Corn/Milo) Data, 2010 
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4.2.2.3	Backset	Percentage	Data	2010	
 

Backset could change for many reasons. For most of 2010, fermentation batches 

seemed to have carried a higher than normal backset (Figure 4.4) which lowered towards 

the end of the year, probably an indicator of plant rates slowed down for winter months or 

due to lower ethanol margins. Backset percentage data came from an Excel spreadsheet 

sent from the plant. The data points were originally hand entered by plant operators and 

may carry inputting errors.  

Figure 4.4: Backset % By Batch Number Data, 2010 
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4.2.2.4 Slurry	Solids	Data	2010	
 

Overall for the year, slurry solids maintained a 34.42% average. Based on previous 

lab experience, the slurry solids were measured by plant operators in the ethanol plant lab 

by NIR (near-infrared), or a microwave type instrument. Slurry solids data came from an 

Excel spreadsheet sent from the plant. The data points were originally hand entered by 

plant operators and may carry inputting errors. According to Figure 4.5, the slurry solids 

had an increasing trend in the last quarter of 2010.   

Figure 4.5: Slurry Solids By Batch Number Data, 2010 
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4.2.2.5	Liquefaction	Solids	Data	2010	
 

Overall for the year, liquefaction solids maintained a 33.83% average. These solids 

will normally be slightly lower than the slurry solids. Based on previous lab experience, the 

liquefaction solids were also measured by plant operators in the ethanol plant lab by NIR 

(near-infrared), or a microwave type instrument. Liquefaction solids data came from an 

Excel spreadsheet sent from the plant. The data points were originally hand entered by 

plant operators and may carry inputting errors. According to Figure 4.6, the liquefaction 

solids increased in the middle of the year from about the end of June to the beginning of 

September and then also in the last quarter of 2010. This could have been due to grind ratio 

changes for fall harvest new crop grain coming in.    

Figure 4.6: Liquefaction Solids By Batch Number Data, 2010 
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4.2.2.6	Fermentation	Drop	pH	Data	2010	
 

In the lab, pH is measured using a countertop pH probe setup. Plant operators run 

the fermentation drop sample for pH results. If the probe is not calibrated correctly or it is 

going out, then the results will be skewed. Drop pH data came from an Excel spreadsheet 

sent from the plant. The data points were originally hand entered by plant operators and 

may carry inputting errors. There seemed to have been very variable results the first half of 

the year, which then became more consistent and controlled later in the year.    

Figure 4.7: Drop pH By Batch Number Data, 2010 
  

 
 
4.2.2.7	Fermentation	Drop	Brix	Data	2010	
 

Today, they are newer and more consistent ways of measuring brix with a digital 

refractometer, but in this years’ worth of data, a handheld version that is held up to the light 
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was used to interpret the results, which may vary from plant operator to another shift plant 

operator. Brix percentage data came from an Excel spreadsheet sent from the plant. The 

data points were originally hand entered by plant operators and may carry inputting errors. 

Drop brix results did seem to fluctuate some during the year, but had a normal average of 

11.036% according to Figure 4.8. 

Figure 4.8: Drop Brix (%) By Batch Number Data, 2010 
  

 
 
4.2.2.8	Fermentation	Drop	Temperature	Data	2010	
 

 Figure 4.9, shows that drop temperature was very consistent the first part of 2010. 

Around summer time, temperatures seemed to increase and follow a more variable trend. 

Temperature is read off of temperature probes that are installed in fermentation tanks, so 

similar to lab probes, they are only as good as their calibration and maintenance. The 
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operators then record the probes results. Temperature data came from an Excel spreadsheet 

sent from the plant. The data points were originally hand entered by plant operators and 

may carry inputting errors.    

Figure 4.9: Drop Temperature By Batch Number Data, 2010 
  

 
 
4.2.2.9	Fermentation	Drop	DP4+	Data	2010	
 

DP4+ percentage is measured from the fermentation drop mash sample collected 

from an ethanol plant employee. Said employee extracts the liquid from the mash using a 

lab filtration procedure and running the sample on the HPLC. Figure 4.10 shows that the 

HPLC results fluctuated for DP4+ throughout the year, but just like the probes, an HPLC is 

only as good as its calibration and standards used to calibrate it with. The HPLC does 
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automatically send the results to the system, from which an Excel spreadsheet was 

extracted.   

Figure 4.10: Drop DP4+ By Batch Number Data, 2010 
  

 
 
4.2.2.10	Fermentation	DP3	Data	2010	
 

DP3 percentage is measured from the fermentation drop mash sample collected 

from an ethanol plant employee. Said employee extracts the liquid from the mash using a 

lab filtration procedure and running the sample on the HPLC. Figure 4.11 shows that the 

HPLC results fluctuated for DP3 throughout the year, but just like the probes, an HPLC is 

only as good as its calibration and standards used to calibrate it with. Due to the drastic up 

and down variable pattern, it could be that a calibration issue is present or that the DP3 

component wasn’t as calibrated as it should have been on the HPLC, meaning the DP3 
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sugar peak may not be registering correctly and creating an incorrect or slightly skewed 

result. It is not known the frequency of calibrations or calibration standards that were used 

at this time, but it was assumed it was being done correctly to ethanol industry standards. 

Daily calibration check standards should be ran on the HPLC to determine it is still 

calibrated. If it is not, then a full calibration should be ran before running anymore 

fermentation samples. DP3 may also change if the plant is trialing, switching enzymes or 

any other ingredients, which was information that was not able to be obtained for thesis 

purposes.   

Figure 4.11: Drop DP3 By Batch Number Data, 2010 
  

 
 
 
 
 



35 
 

4.2.2.11	Fermentation	DP2	(Maltose)	Data	2010	
 

DP2 is measured from the fermentation drop mash sample collected from an 

ethanol plant employee. Said employee extracts the liquid from the mash using a lab 

filtration procedure and running the sample on the HPLC. Figure 4.12 shows that the 

HPLC results fluctuated for DP4+ throughout the year, but just like the probes, an HPLC is 

only as good as its calibration and standards used to calibrate it with. It is concluded that 

the middle section of around batch number 1109 to batch number 1150 was all zero 

readings meaning the HPLC was not reading these results correctly during these times and 

may have needed calibration or the detection was not working properly on the instrument 

itself.  

Figure 4.12: Drop DP2/Maltose By Batch Number Data, 2010 
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4.2.2.12	Fermentation	Drop	Glucose	Data	2010	
 

Glucose is measured from the fermentation drop mash sample collected from an 

ethanol plant employee. Said employee extracts the liquid from the mash using a lab 

filtration procedure and running the sample on the HPLC. Overall, Figure 4.13 shows a 

rather consistent year for drop glucose. There are random higher spikes, indicating there 

may have been a lot of different reasons those fermentations did not convert glucose 

completely, such as infections or temperatures getting too high. The average for 2010 was 

0.153% glucose at the end of fermentation. 

Figure 4.13: Drop Glucose By Batch Number Data, 2010 
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4.2.2.13	Fermentation	Drop	Lactic	Acid	Data	2010	
 

Lactic acid is measured from the fermentation drop mash sample collected from an 

ethanol plant employee. Said employee extracts the liquid from the mash using a lab 

filtration procedure and running the sample on the HPLC. Figure 4.14 shows that lactic 

acid overall decreased and became more consistent over the year. A decrease in lactic acid 

is good news, as an increase may show an infection or some sort of negative impact on 

fermentation.  

Figure 4.14: Drop Lactic Acid By Batch Number Data, 2010 
  

 
 
4.2.2.14	Fermentation	Drop	Glycerol	Data	2010	
 

Glycerol is measured from the fermentation drop mash sample collected from an 

ethanol plant employee. Said employee extracts the liquid from the mash using a lab 
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filtration procedure and running the sample on the HPLC. Glycerol was rather steady in 

2010, as shown by Figure 4.15. There was some sort of excursion in the latter part of the 

year, which could have been caused by many different things such as the fall crop coming 

in from fall harvest or HPLC calibration issues that weren’t addressed right away. The 

plant did seem to be able to get it under control, but it did not go back down to the baseline 

level during the year.  

Figure 4.15: Drop Glycerol By Batch Number Data, 2010 
  

 
 
4.2.2.15	Fermentation	Drop	Acetic	Acid	Data	2010	
 

Acetic acid is measured from the fermentation drop mash sample collected from an 

ethanol plant employee. Said employee extracts the liquid from the mash using a lab 

filtration procedure and running the sample on the HPLC. Like lactic, acetic acid has a 
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negative effect on ethanol production and should be monitored extensively. Figure 4.16 

indicates that there seemed to be an acetic issue in the middle of the year, which may have 

been caused by warmer weather or HPLC issues. It is more difficult to keep both acetic and 

lactic acids in calibration because of how low their concentrations are. Both acids have 

gotten better detection wise in today’s industry compared to what they might have been in 

2010, nine years ago.  

Figure 4.16: Drop Acetic Acid By Batch Number Data, 2010 
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4.3 Linear Regression Modeling 

Regression analysis provides additional understanding for ethanol industry vendors 

and service suppliers to continue to improve yields and efficiency, as well as, be 

competitive with their services. Regression modeling allows one to capture the 

contemporaneous relationships between variables in the ethanol production process. 

Production type industries are able to generate a significant amount of data points. There 

are several software programs available for regression modeling. For the multiple linear 

regression analysis conducted here, JMP was used to estimate the model.  

The multiple linear regression estimated was as follows:  

Ethanol Yield (%) = β0 + β1AGE + β2MILO + β3BACKSET + β4SLURRY + β5LIQ + β6pH + β7BRIX + 

β8TEMP + β9DP4+ + β10DP3 + β11MALTOSE + β12GLUCOSE + β13LACTIC + β14GLYCEROL + 

β15ACETIC + u 

 

where u is a normally distributed, mean zero IID error term.   

 

4.4 Prediction Analysis 

Regression modeling helps to be able create prediction models to be able to predict 

yields before they take place. To be able to take all the historical data points and be able to 

conduct accurate prediction analysis is not only useful, but can change the way a 

production plant, such as an ethanol plant, runs. There are various functional forms that can 

be used for prediction models.  

For prediction, the regression model data was randomly sorted in Excel using the 

RAND function. The data was then sorted from smallest to largest and was randomly split 

into two datasets, representing 80% and 20% of the data. The 80% of the dataset was used 

to estimate the regressions, while the remaining 20% was used to test the out-of-sample 
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predictive power of the alternative models. All four predictive models were estimated using 

GRETL software.    

 

Functional forms used for estimation were: 

Linear Regression: Y = b0 + b1*X1 + b2*X2 + u 

Semi–Log Model: lnY = b0 + b1*X1 + b2*X2 + u 

Double–Log: lnY = b0 + b1*ln(X1) + b2*ln(X2) + u 

Quadratic: Y = b0 + b1*X1 + b2*X2 + b11*X1
2 + b12*X1*X2 + b21*X2

2 

 

Once, all regression models were estimated, the remaining 20% of data was used as 

a cross validation to test actual ethanol yield versus predicted ethanol yield. The actual 

values were subtracted from the predicted values to calculate the difference. The 

differences were then squared and summed. Using the number of observations and the 

difference sums, I was able to estimate the out-of-sample predictive ability for each model 

using the root mean square error (RMSE). RMSE shows how far off the prediction was 

from the actual and the model with the lowest RMSE is the best predictive model. RMSE is 

calculated as: 

𝑅𝑀𝑆𝐸 ൌ ඩ
1
𝑇𝑆

෍ሺ𝑌 ௥௨௘ െ 𝑌௉௥௘ௗ௜௖௧௘ௗሻଶ
்

௜ୀଵ

 

 
 

 

 

 



42 
 

CHAPTER V: RESULTS 

Data analysis has been offered from various vendors as a customer service bid or as 

a product in itself in the industry for many years from ethanol vendors such as Novozymes, 

Phibro, and Lallemand. Plants look at various data every day, but seemed to rarely be able 

to fully analyze it due to time and work constraints. Personal experience has showed that 

more and more plants are taking the time to do this internally to be able to make immediate 

or large decisions and the survey confirmed this as well. Linear regression and predictive 

modeling was examined to determine the relationship the different independent variables 

from the production process might have on fermentation ethanol yield.    

5.1 Survey Results  

The first question that was asked on the survey was “How would you rate the 

importance of the plant data analysis in today’s biofuels industry?”. The main intent of the 

question was to solidify the hypothesis that data analysis is indeed important and something 

to be looking at on a daily basis.  
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Figure 5.1: Question 1 Responses: “How would you rate the importance of the plant 
data analysis in today’s biofuels industry?” 
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As quantified in Figure 5.1, besides the one skipped result, 100% of the respondents feel 

that data is either extremely or very important in the ethanol industry.  

This leads to the second question, “Does your plant have an internal employee(s) 

analyzing plant data, rely on vendors, or use little to no analysis?”.  

Figure 5.2: Question 2 Responses: “Does your plant have an internal employee(s) 
analyzing plant data, rely on vendors, or use little to no analysis?” 
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Making plant changes is not only a large decision, it may also be a costly one. This is a 

main reason, in Figure 5.2, that plants have resulted in using more internal data analysis to 

confirm, deny, or back up decision-making. This is a possible explanation, but may not be 

definitive.  

The third question on the survey was, “Have you made large impacting plant 

decisions based on results from data analysis? If Yes, please provide examples in 

comments if willing to share.”. 

 Figure 5.3: Question 3 Responses: “Have you made large impacting plant decisions 
based on results from data analysis?” 
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Based off the Figure 5.3, some of the comments that stood out with the plants who did 

make decisions based on data include: “~$1,000,000 in annualized enzyme savings by just 

analyzing data!”; “We use data to drive almost every decision that is made within our 

organization. For example: When trialing new products, you compare production data 

(baseline vs trial) to measure trial success. If the production data suggest better 

performance, then we have to look at the financial data and see how it impacts our 
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conversion cost.”; and “We do all new product trials in house and don't use vendor data. 

Every decision we make, large and small, is dependent on the data analysis.”.  

Question 4, “Does your plant use Excel or another program for data analysis? (For 

example, JMP)” was written to understand what software plants are using for analysis 

tools. A popular software among vendors is the SAS program, JMP. Excel was used 

heavily prior, but there are more predictive modeling options when using JMP.   

Figure 5.4: Question 4 Responses: “Does your plant use Excel or another program for 
data analysis? (For example, JMP)” 
 

0

2

4

6

8

10

12

14

16

18

20

Excel Only JMP Another Program Skipped

  
 
Figure 5.4, is surprising to see how many plants don’t invest in newer, advanced software. 

Analysis can be a lot faster in software programs other than Excel. Excel can be time 

consuming sometimes. Based off personal experience, plant personnel have time 

constraints.  

Question 5 was, “Do you see the industry as a whole continuing to use data analysis 

in the future?”. There was 100% response to yes on this question, so no graph was 

depicted.  
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Question 6 was, “Would you find predictive modeling for ethanol yield useful as long as 

the modeling is relatively accurate?”. This question was used to examine if predictive 

modeling research and analysis for the industry would be valuable for the future of the 

ethanol industry. 

Figure 5.5: Question 6 Responses: “Would you find predictive modeling for ethanol 
yield useful as long as the modeling is relatively accurate?” 
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In Figure 5.5, it is encouraging to see that the industry overall believes that if 

accuracy is able to be upheld, that all the work going into predictive analytics currently 

could be an innovation for the industry. All comments that were associated with that 

question all recognize this as a benefit if the data is accurate. 

Question 7 was, “What inputs do you consider important while looking at the 

output of ethanol yield?”. 
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Figure 5.6: Question 7 Responses: “What inputs do you consider important while 
looking at the output of ethanol yield?” 
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  Given the high responses for some of these options in Figure 5.6, including them as 

variables was important in regression analysis.  

Question 8 was, “Does your plant have additional control/instrumentation systems 

beyond the DCS? (For example, Trident, Direct Automation, Pavilion, DataParc, etc.)”. 

DCS is the data control system used in the control room of an ethanol plant. The results 

from this question are questionable due to lack of information and knowledge when the 

survey was developed, so no analysis was conducted here.   

Question 9 was, “Do you plan to purchase new systems in the near future?”, was 

developed to confirm if plants would be willing to purchase new technology or software if 

market conditions improved.  
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Figure 5.7: Question 9 Responses: “Do you plan to purchase new systems in the near 
future?” 
 

 
 
Figure 5.7, depicts that the industry will likely or maybe purchase newer systems or 

technology in the future, assuming the high number of unlikely responses is related to the 

poor ethanol markets the industry has endured over the past 2 years. It would be interesting 

to poll this question again under different ethanol market conditions.   

Question 10 was, “Overall, how proactive is your plant when it comes to new 

technology that is available for the industry? (It can be big bolt on technologies, DCS and 

instrumentation technologies, Maintenance technologies, Safety technologies, etc.)”, 

examines if a plant is willing to make a plant change that may change the process 

significantly.  
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Figure 5.8: Question 10 Responses: “Overall, how proactive is your plant when it 
comes to new technology that is available for the industry?”   
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Figure 5.8 confirms, that overall, the ethanol industry is willing to make changes for 

innovation and to improve efficiency. 

5.2 Ethanol Yield Linear Regression  

The linear regression model was developed using the plant data from Plant ABC 

that was summarized in the monthly averages in Table 4.1. Results from the ethanol yield 

linear regression model are provided in Table 5.1. The independent variables of Ratio Milo, 

Drop pH, Drop DP4+, Drop Glucose, Drop Lactic Acid, and Drop Acetic Acid have p-

values < 0.01 (i.e. they are statistically significant at a 1% level of significance) (Figure 

5.1), meaning there is a very strong correlation with the dependent variable ethanol yield. 

The independent variables of Fermentation Age, Drop Brix, and Drop Glycerol are 
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statistically significant at a 5.0% level of significance (Figure 5.1), meaning there is 

correlation with the dependent variable ethanol yield. Lastly, the independent variables of 

Backset, Slurry Solids, Liquefaction Solids, Drop Temperature, DP3, and Maltose have p-

values >0.10 (Figure 5.1), meaning there is a little to no correlation with the dependent 

variable ethanol yield (i.e. they are not statistically different from zero). In the last column 

of Figure 5.1 is the standardized beta, which represents each independent variables relative 

importance. “The larger the absolute value of the standardized beta coefficient, the more 

important the variable” (Klimberg and McCullough 2016, p.95). The p-value for the F test 

is <0.0001, indicating that one or more of the fifteen independent variables is significantly 

correlated with ethanol yield. 

 “Each independent variable regression coefficient represents an estimate of the 

change in the dependent variable to a unit increase in that independent variable while all 

the other independent variables are held constant” (Klimberg and McCullough 2016, p.94). 

Based on this the interpretation of the slope coefficients on the independent variables is as 

follows: 

 Fermentation Age – Ethanol yield may increase by 0.0036424 and may be expected 

to result from a unit increase in fermentation drop age, holding all other variables 

constant. 

 Ratio Milo – Ethanol yield may increase by 0.0057071 and may be expected to 

result from a unit increase in ratio milo, holding all other variables constant. 

 Backset – Ethanol yield may increase by 0.0031789 and may be expected to result 

from a unit increase in backset percentage, holding all other variables constant. 
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 Slurry Solids – Ethanol yield may increase by 0.0139931 and may be expected to 

result from a unit increase in slurry solids percentage, holding all other variables 

constant. 

 Liquefaction Solids – Ethanol yield may decrease by 0.013676 and may be 

expected to result from a unit increase in liquefaction solids percentage, holding all 

other variables constant. 

 Drop pH – Ethanol yield may increase by 0.6272752, which may be expected to 

result from a unit increase in drop pH, holding all other variables constant. 

 Drop Brix – Ethanol yield may increase by 0.1244393 and may be expected to 

result from a unit increase in drop brix percentage, holding all other variables 

constant. 

 Drop Temperature – Ethanol yield may decrease by 0.010327 and may be expected 

to result from a unit increase in fermentation drop temperature in degrees 

Fahrenheit, holding all other variables constant. 

 Drop DP4+ – Ethanol yield may increase by 3.3567161 and may be expected to 

result from a unit increase in drop DP4+ percentage, holding all other variables 

constant. 

 Drop DP3 – Ethanol yield may decrease by 2.430599 and may be expected to result 

from a unit increase in drop DP3 percentage, holding all other variables constant. 

 Drop Maltose – Ethanol yield may decrease by 0.001593 and may be expected to 

result from a unit increase in drop maltose percentage, holding all other variables 

constant. 
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 Drop Glucose – Ethanol yield may decrease by 0.898206 and may be expected to 

result from a unit increase in drop glucose percentage, holding all other variables 

constant. 

 Drop Lactic Acid – Ethanol yield may increase by 1.325188 and may be expected 

to result from a unit increase in drop lactic acid percentage, holding all other 

variables constant. 

 Drop Glycerol – Ethanol yield may decrease by 0.391335 and may be expected to 

result from a unit increase in drop glycerol percentage, holding all other variables 

constant. 

 Acetic Acid – Ethanol yield may decrease by 4.255121 and may be expected to 

result from a unit increase in drop acetic acid percentage, holding all other variables 

constant. 

 

Referring back to the theoretical ethanol yield model in Table 3.1, six out of the 

fifteen variables did not meet the expected signs of their relationship with ethanol yield. 

Backset resulted in a positive coefficient and did not have a negative impact on ethanol 

during the time period examined. Backset percentage can be very variable depending on 

the process at a given time. Liquefaction solids resulted in a negative coefficient. With the 

large quantities of milo being used during most of 2010, it is possible that the liquefaction 

solids were not dialed in to reach the target percentage, having a negative impact on ethanol 

yield. Drop pH tends to be more controlled during the production process and it was no 

surprise that it had a positive relationship with ethanol yield. Drop Brix can fluctuate for 

unknown reasons and it was unexpected to see an overall positive relationship for an entire 
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year’s worth of data. Drop DP4+ had large percentage variation throughout the year. 

Experience suggests it can have a negative impact on ethanol yield, and in this case it did 

not. DP4+ had a significant number of peaks registering on the HPLC. It is hard to know 

why the peaks occurred without further analysis. In this case, it is likely these peaks 

resulted in the positive relationship found. Lactic acid is an organic acid and in too high of 

concentrations it is is very inhibitory to higher levels of ethanol yield. For most of 2010, 

lactic acid levels varied up and down and were never consistent until the very end of the 

year. While it was expected there would be a negative relationship between lactic acid and 

ethanol yield, a positive relationship resulted and further analysis would be needed to 

determine why.    

Table 5.1: Ethanol Yield Linear Regression, 2010  
 

Term Coefficient Std Error t -Ratio p -Values Std Beta
const 8.9731477 1.47289 6.09 <.0001* 0
Ferm Age 0.0036424 0.001619 2.25 0.0251* 0.096278
Ratio Milo 0.0057071 0.001711 3.34 0.0009* 0.208092
Backset 0.0031789 0.007565 0.42 0.6746 0.019644
Slurry Solids 0.0139931 0.017708 0.79 0.43 0.034314
Liq Solids -0.013676 0.016348 -0.84 0.4034 -0.03282
Drop pH 0.6272752 0.106316 5.9 <.0001* 0.265147
Drop Brix 0.1244393 0.051985 2.39 0.0172* 0.114666
Drop Temp -0.010327 0.013191 -0.78 0.4343 -0.0347
DP4+ 3.3567161 0.403871 8.31 <.0001* 0.496934
DP3 -2.430599 1.630186 -1.49 0.1369 -0.09752
Maltose -0.001593 0.224392 -0.01 0.9943 -0.00038
Glucose -0.898206 0.116992 -7.68 <.0001* -0.35419
Lactic Acid 1.325188 0.334903 3.96 <.0001* 0.229471
Glycerol -0.391335 0.173746 -2.25 0.0250* -0.12858
Acetic Acid -4.255121 0.993123 -4.28 <.0001* -0.22972
Number of Observations = 504 

R2 = 0.558196  
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5.3 Regression Predictive Models  

The following section examines each of the functional forms for the predictive analysis 

described in section 4.4. 

5.3.1 Linear Predictive Model 

Using 80% of the randomly selected data points, table 5.2 presents the estimation 

results for the linear predictive model estimated with 402 observations. Fermentation Age, 

Ratio Milo, Drop DP4+, Drop DP3, Drop Glucose, Drop Lactic Acid, Drop Glycerol, and 

Drop Acetic Acid were all significant at a 1% level of significance. Figure 5.11 shows the 

comparison of the out-of-sample predictive power of the model using remaining 20% of 

the data. 

Table 5.2: Linear Predictive Model, 2010 
 

Term Coefficient Std. Error t -Ratio p -Value
const −0.822384 0.399317 −2.059 0.0401 **
FermAge 0.0209484 0.00540963 3.872 0.0001 ***
RatioMilo 0.0182547 0.00317316 5.753 <0.0001 ***
Backset −0.00142220 0.00332005 −0.4284 0.6686
SlurrySolids 0.00204775 0.00555199 0.3688 0.7125
LiqSolids −0.00100358 0.00499596 −0.2009 0.8409
DroppH 0.273997 0.210508 1.302 0.1938
DropBrix 0.0126099 0.0337277 0.3739 0.7087
DropTemp 0.00736396 0.00855568 0.8607 0.3899
DP4 9.6939 0.766617 12.65 <0.0001 ***
DP3 −16.8521 3.03437 −5.554 <0.0001 ***
Maltose −0.111828 0.0754503 −1.482 0.1391
Glucose −1.15923 0.317918 −3.646 0.0003 ***
LacticAcid 5.66694 0.500802 11.32 <0.0001 ***
Glycerol 3.16713 0.335725 9.434 <0.0001 ***
AceticAcid −5.01729 1.54385 −3.250 0.0013 ***
Number of Observations = 402 

R2 = 0.933461  
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Figure 5.9: Linear Model Actual Ethanol vs. Predictive Ethanol 
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5.3.2 Semi-Log Predictive Model 

Using 80% of the randomly selected data points, figure 5.12 presents the results for 

the Semi-Log Predictive model estimated with 402 observations, with 9 observations 

dropped due to missing data. Fermentation Age, Ratio Milo, Drop DP4+, Drop Glucose, 

Drop Lactic Acid, Drop Glycerol, and Drop Acetic Acid were all statistically significant at 

the 1% level of significance. Figure 5.13 shows the comparison of the out-of-sample 

predictive power of the model using remaining 20% of the data. 
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Table 5.3: Semi-Log Predictive Model, 2010  
 

Term Coefficient Std. Error t -Ratio p -Value
const 2.52473 0.0290176 87.01 <0.0001 ***
FermAge 0.000339409 0.00010839 3.131 0.0019 ***
RatioMilo 0.000550546 9.97E-05 5.523 <0.0001 ***
Backset 0.000251327 0.00014087 1.784 0.0752 *
SlurrySolids 4.25E-05 0.00021574 0.197 0.844
LiqSolids −0.000213640 0.000192 −1.113 0.2665
DroppH 0.00559119 0.0055867 1.001 0.3176
DropBrix 0.00113525 0.00085812 1.323 0.1867
DropTemp −0.000215193 0.00029582 −0.7274 0.4674
DP4 0.201372 0.0209059 9.632 <0.0001 ***
DP3 −0.131304 0.0999411 −1.314 0.1897
Maltose 0.00728803 0.00833574 0.8743 0.3825
Glucose −0.0482434 0.00643224 −7.500 <0.0001 ***
LacticAcid 0.0910548 0.0213413 4.267 <0.0001 ***
Glycerol −0.0350937 0.0111576 −3.145 0.0018 ***
AceticAcid −0.321101 0.058819 −5.459 <0.0001 ***
Number of Observations = 393 

R2 = 0.507417  

Figure 5.10: Semi-Log Model Actual Ethanol vs. Predictive Ethanol 
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5.3.3 Double-Log Predictive Model 

Using 80% of the randomly selected data points, figure 5.14 presents the estimation 

results for the Double-Log Predictive Model estimated with 402 observations, with 123 

dropped because of missing or incomplete data. lnRatio Milo, lnDrop pH, lnDrop DP4+, 

lnDrop Glucose, lnDrop Lactic Acid, and lnDrop Acetic Acid were statistically significant 

at the 1% level of significance. Figure 5.15 shows the comparison of the out-of-sample 

predictive power of the model using remaining 20% of the data.  

Table 5.4: Double-Log Predictive Model, 2010  
 

Term Coefficient Std. Error t -Ratio p -Value
const 2.44192 0.542758 4.499 <0.0001 ***
lnFermAge 0.0216526 0.0105764 2.047 0.0416 **
lnRatioMilo 0.0217615 0.00802787 2.711 0.0072 ***
lnBackset 0.0213831 0.0232825 0.9184 0.3592
lnSlurrySolids −0.000661499 0.041147 −0.01608 0.9872
lnLiqSolids −0.0105790 0.043615 −0.2426 0.8085
lnDroppH 0.172249 0.0376984 4.569 <0.0001 ***
lnDropBrix 0.0117447 0.0541672 0.2168 0.8285
lnDropTemp −0.0623964 0.113006 −0.5521 0.5813
lnDP4 0.147254 0.0192087 7.666 <0.0001 ***
lnDP3 −0.00215558 0.0114894 −0.1876 0.8513
lnMaltose −0.00284923 0.00340201 −0.8375 0.4031
lnGlucose −0.00621492 0.00231395 −2.686 0.0077 ***
lnLacticAcid 0.0216141 0.00452191 4.78 <0.0001 ***
lnGlycerol −0.0358737 0.0196552 −1.825 0.0691 *
lnAceticAcid −0.0300725 0.00739641 −4.066 <0.0001 ***
Number of Observations = 279 

R2 = 0.543118  



58 
 

Figure 5.11: Double-Log Model Actual Ethanol vs. Predictive Ethanol 
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5.3.4 Quadratic Predictive Model 

Using 80% of the randomly selected data points, figure 5.16 presents the estimation 

results for the Quadratic Predictive Model estimated with 402 observations with 123 

dropped because of missing or incomplete data. Ratio Milo, Drop Glucose, and lnRatio 

Milo were statistically significant at the 1% level of significance. 
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Table 5.5: Quadratic Predictive Model, 2010 
 

Term Coefficient Std. Error t -Ratio p -Value
const 199.795 231.515 0.863 0.389
FermAge 0.00075846 0.00482004 0.1574 0.8751
RatioMilo 0.037947 0.011712 3.24 0.0014 ***
Backset 0.317482 0.180515 1.759 0.0799 *
SlurrySolids −0.581137 0.614463 −0.9458 0.3452
LiqSolids 0.180471 0.831943 0.2169 0.8284
DroppH 0.0444397 3.57892 0.01242 0.9901
DropBrix −2.09141 1.18236 −1.769 0.0782 *
DropTemp 0.731954 0.687431 1.065 0.288
DP4 −1.81935 3.62486 −0.5019 0.6162
DP3 2.71295 7.76467 0.3494 0.7271
Maltose 0.817799 0.631178 1.296 0.1963
Glucose −1.26777 0.221536 −5.723 <0.0001 ***
LacticAcid 1.31966 1.28177 1.03 0.3042
Glycerol 5.38901 2.99728 1.798 0.0734 *
AceticAcid 0.512198 4.01816 0.1275 0.8987
lnFermAge 0.337417 0.417471 0.8082 0.4197
lnRatioMilo −1.89455 0.663304 −2.856 0.0047 ***
lnBackset −13.3722 7.67973 −1.741 0.0829 *
lnSlurrySolids 20.2121 21.2401 0.9516 0.3422
lnLiqSolids −6.00053 27.7897 −0.2159 0.8292
lnDroppH 2.41254 16.8002 0.1436 0.8859
lnDropBrix 23.8824 13.36 1.788 0.0751 *
lnDropTemp −64.4154 60.7989 −1.059 0.2904
lnDP4 3.49335 2.45587 1.422 0.1562
lnDP3 −0.398331 0.605192 −0.6582 0.511
lnMaltose −0.166934 0.0969395 −1.722 0.0863 *
lnGlucose 0.122662 0.0497742 2.464 0.0144 **
lnLacticAcid 0.0143599 0.238962 0.06009 0.9521
lnGlycerol −9.05259 4.93283 −1.835 0.0677 *
lnAceticAcid −0.441504 0.347222 −1.272 0.2047
Number of Observations = 279 

R2 = 0.638176  
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Figure 5.12: Quadratic Model Actual Ethanol vs. Predictive Ethanol 
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5.3.5 Predictions Summary 

The root mean square error (RMSE) was estimated for each model for out-of-

sample prediction comparisons. Results are presented in Table 5.6. The quadratic 

predictive model (Table 5.5) had the lowest RMSE indicating the best predictive model. 

The quadratic RMSE was 0.3002. The double-log and semi-log predictive models were not 

that far behind in out-of-sample predictive performance.    

Table 5.6: RMSE Results Prediction Models, 2010 
 

Model RMSE  
Linear 0.560056717
Semi-Log 0.350227401
Double-Log 0.339503963
Quadratic 0.300233359
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CHAPTER VI: CONCLUSIONS AND FUTURE RESEARCH 

6.1 Conclusions 

The purpose of this thesis is to examine the importance and impact of data analytics 

in ethanol production and the value predictive modeling of ethanol yield can have for an 

ethanol plant. The objectives were to survey the industry, identify if plant changes were 

being made on the plan level based on data analytics, formulate simple regressions, and 

develop predictive regressions. Estimating multiple linear regression can help identify 

variables that have strong correlations for ethanol yield. Regression modeling may lead to 

prediction models that can help identify ways to fine-tune processes throughout the ethanol 

plant, helping to improve plant efficiency. The independent variables of ratio milo, Drop 

pH, Drop DP4+, Drop Glucose, Drop Lactic Acid, and Drop Acetic Acid were all 

statistically significant, pointing to processes that may help improve ethanol production and 

confirming that in 2010 there was a very strong correlation between these indicators and 

ethanol yield. Out of the four predictive regression models that were estimated, the 

quadratic model was the most accurate and best fit model for Plant ABC 2010 data set for 

prediction analysis.  

Many of the data points that are being collected on a daily basis at the ethanol plant 

level can be analyzed beyond control chart trends to investigate current plant conditions for 

ways to optimize and better improve ethanol plant efficiencies. I believe there is some 

value in exploring milo dosage and its effect on ethanol yield as well as fermentation age. 

Sugars and the organic acids concentrations in fermentation will always be a work in 

progress to continually make them lower at the end of the fermentation process. Regression 

and predictive modeling exemplify advancing steps during the ethanol production process 
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that could have economic value for plant managers. These models could provide valuable 

diagnostic information in addition to their expertise in managing their plants.  These type of 

analyses can provide plant managers with weekly reports of plant optimal efficiency. 

Overall, it may be difficult when dealing with so many variables at once, but statistical and 

analytical tools can help to provide opportunities to examine many facets of the ethanol 

production process and bring value-added modeling to ethanol plant customers. 

6.2 Future Research 

Being a production process, there are more areas of an ethanol plant to utilize 

regression analysis and other data analytic tools. Co-products could be another area to 

focus analysis and regression on. It might be worth analyzing Plant ABC’s newer data sets 

to include the latest technologies and how those might compare to a traditional set of data 

that was used. Plant ABC’s data representing year 2010 was from before their installment 

of corn oil extraction. If an updated model was estimated with newer plant data there could 

be differences in efficiency, depending where in the production process these technical 

advances have occurred. There is potential to look at this type of ethanol plant modeling in 

a sequential, step-by-step process as the production process advances. Future research can 

be used to conduct analysis for other ethanol plants, as well. There are opportunities to add 

in additional alternative functional form models such as the translog predictive model for 

predictive assessments. Another prospect, could be to focus solely on the fermentation step 

variables and possibly even do this for a full round of each fermenter or to help reduce bias 

from a specific fermenter. For example, most plants have around four fermenters and one 

of them may be performing at a lower level due to infection, a pipe leak, or some other 



63 
 

reason, resulting in the poorer performance. Data analytics may provide a way to identify 

this.      
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APPENDIX A 

A.1 Survey Description 
Once again, the ten question survey was conducted as a proof of concept to confirm 

the significance that data and data analysis still played in plants. It is more important than 

ever and is being observed by both internal employees and sourced out to vendors. The 

survey was also conducted to see what all was software and technology that might being 

utilized. The survey was anonymous, meaning all responses may be traced by computer IP 

address, but do not know the name, position, or plant the information came from. Survey 

was conducted through Survey Monkey and analyzed using Excel and it had 46 responses 

total.     

A.2 Survey Questions (As Conducted) 
1. How would you rate the importance of the plant data analysis in today’s biofuels industry?   

Extremely important  

Very important  

Somewhat important  

Not so important  

Not at all important  
 
2. Does your plant have an internal employee(s) analyzing plant data, rely on vendors, or 
use little to no analysis?   

Internal  

Vendors  

Little to No Analysis  
      Other (please specify)  
 
3. Have you made large impacting plant decisions based on results from data analysis? If 
Yes, please provide examples in comments if willing to share.   

Yes  

No  
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4. Does your plant use Excel or another program for data analysis? (For example, JMP)  

Excel Only  

JMP  

Another Program  

 

5. Do you see the industry as a whole continuing to use data analysis in the future?   

Yes  

No  
 
6. Would you find predictive modeling for ethanol yield useful as long as the modeling is 
relatively accurate?   

Yes  

No  
 
7. What inputs do you consider important while looking at the output of ethanol yield?   

Incoming Starch  

Solids  

Backset Ratio  

Fermentation Time  

Ingredients  

Other (please specify)  
 

8. Does your plant have additional control/instrumentation systems beyond the DCS? 
(For example, Trident, Direct Automation, Pavilion, DataParc, etc.)  

Yes, Please Comment Below Which Ones  

No  

9. Do you plan to purchase new systems in the near future?  

Likely  

Maybe, if market conditions get better  

Unlikely  
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10. Overall, how proactive is your plant when it comes to new technology that is 
available for the industry? (It can be big bolt on technologies, DCS and instrumentation 
technologies, Maintenance technologies, Safety technologies, etc.)   

Proactive  

Semi-Proactive  

Not Proactive  
 


