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Abstract

A new method, the Dynamical Systems Method (DSM), justified recently, is applied to

solving ill-conditioned linear algebraic system (ICLAS). The DSM gives a new approach to

solving a wide class of ill-posed problems. In Chapter 1 a new iterative scheme for solving

ICLAS is proposed. This iterative scheme is based on the DSM solution. An a posteriori

stopping rules for the proposed method is justified. We also gives an a posteriori stopping

rule for a modified iterative scheme developed in A.G.Ramm, JMAA,330 (2007),1338-1346,

and proves convergence of the solution obtained by the iterative scheme. In Chapter 2 we

give a convergence analysis of the following iterative scheme:

uδn = quδn−1 + (1− q)T−1
an K

∗fδ, uδ0 = 0,

where T := K∗K, Ta := T+aI, q ∈ (0, 1), an := α0q
n, α0 > 0, with finite-dimensional

approximations of T and K∗ for solving stably Fredholm integral equations of the first kind

with noisy data. In Chapter 3 a new method for inverting the Laplace transform from the

real axis is formulated. This method is based on a quadrature formula. We assume that the

unknown function f(t) is continuous with (known) compact support. An adaptive iterative

method and an adaptive stopping rule, which yield the convergence of the approximate

solution to f(t), are proposed in this chapter.
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Preface

Consider the operator equation

Au = f, (1)

where A : X → Y is an operator mapping a Banach space X into a Banach space Y .

Problem (1) is called well-posed if A is bijective and A−1 is continuous. Then problem

(1) is ill-posed if it is not well-posed. In29 the following ill-posed problems that arise in

many applications are given: stable numerical differential of noisy data, stable summation

of the Fourier series and integrals with randomly perturbed coefficients, ill-conditioned linear

algebraic systems, Fredholm and Volterra integral equations of the first kind, deconvolution

problems, the Cauchy problem for Laplace’s equation and the backwards heat equation.

These problems can be reduced to equation (1). Therefore, it is important to develop a

stable numerical method for solving ill-posed problem (1).

In applications the operator A is known and instead of the exact data f the noisy data

fδ are given, where ‖f − fδ‖ ≤ δ and δ is the noise level. It is natural to require that a

numerical algorithm for solving problem (1) should have the following stability property:

the less the noise level δ is, the closer approximation to y can be obtained.

Many methods have been developed for solving ill-posed problems stably. For exam-

ple in29,30 the following methods are discussed: variational regularization, quasisolutions,

quasiinversion, iterative regularization method and the Dynamical Systems Method (DSM).

In many papers the variational regularization is used for solving linear ill-posed problems

Au = f . In this method one needs to minimize the functional

F (v) := ‖Av − fδ‖2 + α‖v‖2 = inf, (2)

where α > 0 is a fixed parameter. It is proved in23,29 that if Ay = f and y ⊥ N(A),

where N(A) := {u | Au = 0}, then there exists a unique minimizer of (2) which is uα(δ),δ =

xii



(A∗A + αI)−1A∗fδ, where I is the identity operator, and limδ→0 ‖uα(δ),δ − y‖ = 0 if δ → 0

and α(δ) is chosen such that
δ2

α(δ)
→ 0 as δ → 0. (3)

In many papers,23,29,30, the parameter α(δ) satisfying condition (3) is calculated by the

discrepancy principle, i.e., the regularization parameter α(δ) is obtained by solving the

nonlinear equation:

V (α) := ‖Auα,δ − fδ‖2 − δ2 = 0, (4)

for α, where uα,δ = (A∗A + αI)−1A∗fδ. The existence and uniqueness of the solution of

equation (4) are proved in29. Numerically, one may use the Newton’s method discussed in23

to solve equation (4). The drawback of this method consists of the following: if the initial

value of the regularization parameter α0 is far from the solution of (4), Newton’s method

may fail to converge, and one needs to compute the derivative of the function V (α) which

may be not easy.

The Dynamical Systems Method developed in29,30 is a new general method for solving

ill-posed problems. This method consists of finding an operator Φ(u, t) such that the Cauchy

problem

u̇ = Φ(u, t), u(0) = u0 (5)

has the following properties:

∃!u(t) ∀t ≥ 0, ∃u(∞), and Au(∞) = f. (6)

Some choices of the operator Φ(u, t) are given in29,30. For example when A is a linear

operator, one may use the following Φ(u, t):

Φ(u, t) = −u(t) + [A∗A+ a(t)I]−1A∗f, (7)

where I is the identity operator, a(t) > 0, a(t)↘ 0 as t→∞. It is proved in29 that Cauchy

problem (5) with Φ(u, t) is defined in (7) yields properties (6). When the data f are noisy
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we replace the exact data f in (7) with the noisy data fδ. In this case if tδ is chosen such

that
δ2

a(tδ)
→ 0 as δ → 0, lim

δ→0
tδ =∞, (8)

then ‖uδ(tδ)− u‖ → 0 as δ → 0, where

uδ(tδ) := u0e
−tδ +

∫ tδ

0

e−(tδ−s)(A∗A+ a(s)I)−1A∗fδds. (9)

Alternatively, one may use the following discrepancy-type principle for DSM developed

in28,33: ∫ tδ

0

e−(tδ−s)a(s)‖Q−1
a(s)fδ‖ds = Cδ, C ∈ (1, 2], (10)

where

Qa := AA∗ + aI. (11)

In this thesis we develop iterative methods for solving linear ill-posed problems based

on the DSM with Φ(u, t) defined in (7) which can be implemented easily numerically.

The main results of this thesis are:

(1) a new iterative scheme and discrepancy-type principle based on DSM for solving ill-

conditioned linear algebraic systems stably (see Chapter 1),

(2) a modified iterative scheme developed in32 (see Chapter 1),

(3) a new adaptive iterative scheme and adaptive discrepancy-type principle for solving

stably Fredholm integral equations of the first kind (see Chapter 2), and

(4) a modified adaptive iterative scheme developed in Chapter 3 which is applied to in-

version of the Laplace transform from the real axis (see Chapter 3).

The thesis is divided into three chapters. The first, second and third chapters are based

on the published papers16,17 and15, respectively. The thesis is organized as follows. In

Chapter 1 a new iterative method and iterative discrepancy-type principle for solving linear

ill-posed problem Au = f are derived. This iterative method is based on the Dynamical
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Systems Method (DSM) with Φ(u, t) defined in (7). The iterative discrepancy-type princi-

ple given in Section 2 is constructed from discrepancy-type principle for DSM (10). This

iterative discrepancy-type principle is simpler than (4) or (10), since we do not need to

solve the nonlinear equations (4) or (10). Another advantage of our iterative method is the

following one: the initial regularization parameter α0 can be chosen relatively large. Our

method is new, since a numerical method relating the solution of Cauchy problem (9) and

discrepancy-type principle (10) has not been developed in the literature, to our knowledge.

The iterative scheme and the iterative discrepancy-type principle, derived in this Chapter

are, respectively, of the form:

uδn+1 = quδn + (1− q)T−1
an+1

A∗fδ, u0 = 0, q ∈ (0, 1), (12)

and

nδ−1∑
j=0

(qnδ−j−1 − qn−j)aj+1‖Q−1
aj+1

fδ‖ds ≤ Cδε

<
n−1∑
j=0

(qn−j−1 − qn−j)aj+1‖Q−1
aj+1

fδ‖, 1 ≤ n < nδ,

(13)

where ‖fδ − f‖ ≤ δ, an = a0q
n,a0 > 0, Ta := A∗A + aI, Qa := Q + aI, Q := AA∗, I is

the identity operator, ε ∈ (0, 1) and C ∈ (1, 2). The convergence result for iterative method

(12) is formulated in Theorem 1.2.10. We apply this iterative scheme to solve ill-conditioned

linear algebraic system Au = f . In Section 3 we construct a modification of the following

iterative scheme

uδn+1 = aT−1
a uδn + T−1

a A∗fδ, u0 ⊥ N(A), (14)

where a > 0 is a fixed parameter. This iterative scheme is developed in32 and used for solving

any solvable linear equation in a Hilbert space, including equations with unbounded, closed,

densely defined linear operators. The numerical method for choosing the parameters a and

nδ, which yields the convergence result ‖unδ − y‖ → 0 as δ → 0, has not been discussed

in32. We modify iterative scheme (14) by replacing the fixed parameter a with the geometric
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series an = a0q
n, q ∈ (0, 1), a0 > 0, so that the following stopping rule can be used:

‖AT−1
qnδA

∗fδ − fδ‖ ≤ Cδε < ‖AT−1
qn A

∗fδ − fδ‖, 1 ≤ n < nδ, C > 1, ε ∈ (0, 1). (15)

The uniqueness and existence of the parameter nδ satisfying inequalities (15) are proved in

Lemma 1.2.5. We prove that iterative scheme (14) together with stopping rule (15) yield

the convergence of iterative solution (14). This main result is formulated in Theorem 1.3.6.

In Chapter 1 an example of ill-conditioned linear algebraic system constructed by a

projection method, is given. No method has been developed for choosing the number of

basis functions needed in the projection method. In many papers, e.g.,8,13,25, the number of

basis functions is fixed and is large. If one chooses a large number of basis functions then

the size of the linear system is also large. Therefore, if a large fixed matrix A is used in

iterative scheme (12) then the computation time will be large when nδ is large.

In Chapter 2 we develop an iterative method which allows us to choose the number of

basis functions needed in the projection method. In this iterative scheme the number of

basis functions may change in each iteration. Initially one may start with a small number

of basis functions and at each iteration the number of the basis functions is increased only if

some conditions hold (see pp.53-54) , so the computation time can be reduced. In Section 2

the adaptive iterative scheme is constructed for solving the linear operator equation Ku = f,

where

(Ku)(x) :=

∫ b

a

k(x, s)u(s)ds, a < x < b, (16)

k(x, s) is a smooth kernel and u ∈ L2[a, b]. This adaptive iterative scheme is constructed

by finite-dimensional approximation of the operators T := K∗K and K∗, where K∗ is the

adjoint operator of K. These approximations yield the following adaptive iterative scheme:

uδn,mn = quδn−1,mn−1
+ (1− q)T−1

an,mnK
∗
mnfδ, uδ0,m0

= 0, (17)

where an := α0q
n, α0 > 0, q ∈ (0, 1), Ta,m := T (m) + aI, ‖T (m) − T‖ → 0 as m → ∞,

Km is a finite-dimensional approximation of the operator K∗ and m is a parameter which
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measures the accuracy of the finite-dimensional approximations T (m) and Km. Lemma 2.2.2

gives a rule for choosing the parameter m such that the finite-dimensional operator Tan,mn

is invertible. In Theorem 2.2.8 conditions (2.50)-(2.53) are used to prove the convergence of

the iterative solution. The nontrivial task is to develop a stopping rule such that relation

(2.53) holds. In Section 3 we consider the following adaptive stopping rule:

Gnδ,mnδ
≤ Cδε < Gn,mn , 1 ≤ n < nδ, C > 2, ε ∈ (0, 1), (18)

where

Gn,mn = qGn−1,mn−1 + (1− q)an‖Q−1
an,mnfδ‖,

G0,m0 = 0, G1,m1 ≥ Cδε, an = qan−1, a0 = α0 = const > 0,
(19)

Qa,m := Q(m) + aI, and Q(m) is the finite-dimensional approximation of the operator KK∗.

Instead of using a fixed operator Q as in (13) we use the adaptive operator Q(mn) which

depends on the regularization parameter an. The existence and uniqueness of the parameter

nδ, satisfying (19), follows from Lemma 2.3.3 and definition (18). The convergence of the

iterative method is formulated in Theorem 2.3.7. In Section 4 we give a simple example of

finite-dimensional approximation operators T (m) and K∗m.

In Chapter 3 we introduce a different approach to solving the Fredholm integral equations

of the first kind described in Chapter 2. The advantage of this approach is: we only need

a finite-dimensional approximation of the operator K∗K. Therefore, the rule of choosing

the accuracy parameter m is much simpler than the one used in Chapter 2. In Section

2 an adaptive iterative scheme is constructed and applied to the inversion of the Laplace

transform:

Lf(p) :=

∫ ∞
0

e−psf(s)ds = F (p), 0 < p < d <∞, (20)

where f is a real valued function in X0,b, X0,b is defined in (3.2). A survey of the methods of

the Laplace transform inversion has been given in5. In all of these methods the inversion of

the Laplace transforms were taken from the complex axis. The methods mentioned in2,5,10,18

do not include regularization techniques and therefore they can not be used in the case of
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noisy data. In22 it is shown that the results of the inversion of the Laplace transform on the

Mellin contour are more accurate than these of the inversion of the Laplace transform from

the real axis. When f(t) is a real valued function and F (p) is known for all real and positive

values of p the ill-posedness of Laplace transform inversion can be investigated by means

of Mellin transform1,26. However, in practice F (p) is known only at a finite set of points.

Regularization methods where F (p) is known at a finite set of points have been considered

in3,4,22,36,37. In our method it is assumed that f(t) is real-valued and F (p) is known at a

finite set points. The method, constructed in Section 2, is based on approximation of the

kernel L∗L. The smoothness of the kernel allows one to use a simple quadrature formula:

the compound Simpson’s rule (see6). This approach yields the following approximation of

the function f(t):

f
(m)
δ (t) =

m∑
j=0

c
(m,δ)
j w

(m)
j e−pjt, pj = j

d

m
, j = 0, . . . ,m, (21)

where c
(m,δ)
j , j = 1, 2, . . . ,m, are parameters obtained by the adaptive iterative scheme and

w
(m)
j , j = 1, 2, . . . ,m are the weights of the compound Simpson’s rule with m subintervals.

In each iteration the number of basis functions used in (21) is obtained by rule (3.63). One

can see that this rule is much simpler than the rule given in Theorem 2.2.8. The following

iterative discrepancy-type principle is used as the stopping rule:

Gnδ,mnδ
≤ Cδε < Gn,mn , 1 ≤ n < nδ, C >

√
d, ε ∈ (0, 1), (22)

where

Gn,mn = qGn−1,mn−1 + (1− q)an‖c(mn,δ)‖Wmn , G0,m0 = 0, (23)

where an = a0q
n, a0 > 0, q ∈ (0, 1), ‖ · ‖Wm is defined in (3.7). The convergence of the

iterative scheme, derived in Section 2 with stopping rule (22), is claimed in Theorem 3.2.17.

The inversion method proposed in this Chapter is simpler than the methods given in4,22,24,36,

e.g., Fourier series expansion, regularized analytic continuation, eigenfunction expansion and

Gauss-Laguerre quadrature method, since we only need the compound Simpson’s quadrature

xviii



in the discretization where the weights of the quadrature can be easily obtained exactly.

Moreover, our representation of the approximation of the function f(t) is new and uses only

the weights of the compound Simpson’s rule and the specific form of the Laplace Transform.

The numerical results given in Section 3 show that our results are comparable with or better

than the existing methods.
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Chapter 1

Dynamical Systems Method for
Solving Ill-conditioned Linear
Algebraic Systems

1.1 Introduction

We consider a linear equation

Au = f, (1.1)

where A : Rm → Rm, and assume that equation (1.1) has a solution, possibly non-unique.

According to Hadamard30 p.9, problem (1.1) is called well-posed if the operator A is injec-

tive, surjective, and A−1 is continuous. Problem (1.1) is called ill-posed if it is not well-posed.

Ill-conditioned linear algebraic systems arise as discretizations of ill-posed problems, such

as Fredholm integral equations of the first kind,∫ b

a

k(x, t)u(t)dt = f(x), c ≤ x ≤ d, (1.2)

where k(x, t) is a smooth kernel. Therefore, it is of interest to develop a method for solving

ill-conditioned linear algebraic systems stably. In this Chapter we give a method for solving

linear algebraic system (1.1) with an ill-conditioned-matrix A. The matrix A is called ill-

conditioned if κ(A) >> 1, where κ(A) := ||A|||A−1|| is the condition number of A. If the

null-space of A, N (A) := {u : Au = 0}, is non-trivial, then κ(A) = ∞. Let A = UΣV ∗

be the singular value decomposition (SVD) of A, UU∗ = U∗U = I, V V ∗ = V ∗V = I, and

1



Σ = diag(σ1, σ2, . . . , σm), where σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0 are the singular values of A.

Applying this SVD to the matrix A in (1.1), one gets

f =
∑
i

βiui and y =
∑
i,σi>0

βi
σi
vi, (1.3)

where βi = 〈ui, f〉. Here 〈·, ·〉 denotes the inner product of two vectors. The terms with

small singular values σi in (1.3) cause instability of the solution, because the coefficients βi

are known with errors. This difficulty is essential when one deals with an ill-conditioned

matrix A. Therefore a regularization is needed for solving ill-conditioned linear algebraic

system (1.1). There are many methods to solve (1.1) stably: variational regularization,

quasisolutions, iterative regularization (see e.g,13,23,29,30). The method proposed in this

Chapter is based on the Dynamical Systems Method (DSM) developed in30 p.76. The DSM

for solving equation (1.1) with, possibly, nonlinear operator A consists of solving the Cauchy

problem

u̇(t) = Φ(t, u(t)), u(0) = u0; u̇(t) :=
du

dt
, (1.4)

where u0 ∈ H is an arbitrary element of a Hilbert spaceH, and Φ is some nonlinearity, chosen

so that the following three conditions hold: a) there exists a unique solution u(t) ∀t ≥ 0,

b) there exists u(∞), and c) Au(∞) = f.

In this Chapter we choose Φ(t, u(t)) = (A∗A+a(t)I)−1f−u(t) and consider the following

Cauchy problem:

u̇a(t) = −ua(t) + [A∗A+ a(t)Im]−1A∗f, ua(0) = u0, (1.5)

where

a(t) > 0, and a(t)↘ 0 as t→∞, (1.6)

A∗ is the adjoint matrix and In is an m×m identity matrix. The initial element u0 in (1.5)

can be chosen arbitrarily in N(A)⊥, where

N (A) := {u | Au = 0}. (1.7)
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For example, one may take u0 = 0 in (1.5) and then the unique solution to (1.5) with

u(0) = 0 has the form

u(t) =

∫ t

0

e−(t−s)T−1
a(s)A

∗fds, (1.8)

where T := A∗A, Ta := T + aI, I is the identity operator. In the case of noisy data we

replace the exact data f with the noisy data fδ in (1.8), i.e.,

uδ(t) =

∫ tδ

0

e−(tδ−s)T−1
a(s)A

∗fδds, (1.9)

where tδ is the stopping time which will be discussed later. There are many ways to solve the

Cauchy problem (1.5). For example, one may apply a family of Runge-Kutta methods for

solving (1.5). Numerically, the Runge-Kutta methods require an appropriate stepsize to get

an accurate and stable solution. Usually the stepsizes have to be chosen sufficiently small to

get such a solution. The number of steps will increase when tδ, the stopping time, increases,

see13. Therefore the computation time will increase significantly. Since limδ→0 tδ = ∞, as

was proved in30, the family of the Runge-Kutta method may be less efficient for solving

the Cauchy problem (1.5) than the method, proposed in this Chapter. We give a simple

iterative scheme, based on the DSM, which produces stable solution to equation (1.1). The

novel points of this Chapter are iterative schemes (1.12) and (1.13) (see below), which are

constructed on the basis of formulas (1.8) and (1.9), and a modification of the iterative

scheme given in32. Our stopping rule for the iterative scheme (1.13) is given in (1.85) (see

below). In30 p.76 the function a(t) is assumed to be a slowly decaying monotone function. In

this thesis instead of using the slowly decaying continuous function a(t) we use the following

piecewise-constant function:

a(n)(t) =
n−1∑
j=0

α0q
j+1χ(tj ,tj+1](t), q ∈ (0, 1), tj = −j ln(q), n ∈ N, (1.10)

where N is the set of positive integer, t0 = 0, α0 > 0, and

χ(tj ,tj+1](t) =

{
1, t ∈ (tj, tj+1];
0, otherwise.

(1.11)
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The parameter α0 in (1.10) is chosen so that assumption (1.17) (see below) holds. This

assumption plays an important role in the proposed iterative scheme. Definition (1.10)

allows one to write (1.8) in the form

un+1 = qun + (1− q)T−1
α0qn+1A

∗f, u0 = 0. (1.12)

A detailed derivation of the iterative scheme (1.12) is given in Section 2. When the data

f are contaminated by some noise, we use fδ in place of f in (1.8), and get the iterative

scheme

uδn+1 = quδn + (1− q)T−1
α0qn+1A

∗fδ, uδ0 = 0. (1.13)

We always assume that

‖fδ − f‖ ≤ δ, (1.14)

where fδ are the noisy data, which are known, while f is unknown, and δ is the level of

noise. Here and throughout this Chapter the notation ‖z‖ denotes the l2-norm of the vector

z ∈ Rm. In this Chapter a discrepancy type principle (DP) is proposed to choose the

stopping index of iteration (1.13). This DP is based on discrepancy principle for the DSM

developed in28,33, where the stopping time tδ is obtained by solving the following nonlinear

equation ∫ tδ

0

e−(tδ−s)a(s)‖Q−1
a(s)fδ‖ds = Cδ, C ∈ (1, 2]. (1.15)

It is a non-trivial task to obtain the stopping time tδ satisfying (1.15). In this Chapter

we propose a discrepancy type principle based on (1.15) which can be easily implemented

numerically: iterative scheme (1.13) is stopped at the first integer nδ satisfying the inequal-

ities:

nδ−1∑
j=0

(qnδ−j−1 − qn−j)α0q
j+1‖Q−1

α0qj+1fδ‖ds ≤ Cδε

<

n−1∑
j=0

(qn−j−1 − qn−j)α0q
j+1‖Q−1

α0qj+1fδ‖, 1 ≤ n < nδ,

(1.16)
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and it is assumed that

(1− q)α0q‖Q−1
α0q
fδ‖ ≥ Cδε, C > 1, ε ∈ (0, 1), α0 > 0. (1.17)

We prove in Section 2 that using discrepancy-type principle (1.16), one gets the convergence:

lim
δ→0
‖uδnδ − y‖ = 0, (1.18)

where uδn is defined in (1.13). About other versions of discrepancy principles for DSM we

refer the reader to29,27. In this Chapter we assume that A is bounded. If the operator A is

unbounded then fδ may not belong to the domain of A∗. In this case the expression A∗fδ

is not defined. In31,32 and34 solving (1.1) with unbounded operators is discussed. In these

papers the unbounded operator A is assumed to be linear, closed, densely defined operator

in a Hilbert space. Under these assumptions one may use the operator A∗(AA∗ + aI)−1 in

place of T−1
a A∗. This operator is defined for any f in the Hilbert space.

In32 an iterative scheme with a constant regularization parameter is given:

uδn+1 = aT−1
a uδn + T−1

a A∗fδ, (1.19)

but the stopping rule, which produces a stable solution of equation (1.1) by this iterative

scheme, has not been discussed in32. In this thesis the constant regularization parameter a

in iterative scheme (1.19) is replaced with the geometric series {α0q
n}∞n=1, α0 > 0, q ∈ (0, 1),

i.e.

uδn+1 = α0q
nT−1

α0qn
uδn + T−1

α0qn
A∗fδ. (1.20)

Stopping rule (1.85) (see below) is used for this iterative scheme. Without loss of generality

we use α0 = 1 in (1.20). The convergence analysis of this iterative scheme is presented in

Section 3. In Section 4 some numerical experiments are given to illustrate the efficiency of

the proposed methods.

1.2 Derivation of the proposed method

In this section we give a detailed derivation of iterative schemes (1.12) and (1.13). Let us

denote by y ∈ Rm the unique minimal-norm solution of equation (1.1). Throughout this
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thesis we denote Ta(t) := A∗A+ a(t)Im, where Im is the identity operator in Rm, and a(t) is

given in (1.10).

Lemma 1.2.1. Let g(x) be a continuous function on (0,∞), c > 0 and q ∈ (0, 1) be

constants. If

lim
x→0+

g(x) = g(0) := g0, (1.21)

then

lim
n→∞

n−1∑
j=1

(
qn−j−1 − qn−j

)
g(cqj+1) = g0. (1.22)

Proof. Let

ωj(n) := qn−j − qn+1−j, ωj(n) > 0, (1.23)

and

Fl(n) :=
l−1∑
j=1

ωj(n)g(cqj). (1.24)

Then

|Fn+1(n)− g0| ≤ |Fl(n)|+

∣∣∣∣∣
n∑
j=l

ωj(n)g(cqj)− g0

∣∣∣∣∣ .
Take ε > 0 arbitrary small. For sufficiently large l(ε) one can choose n(ε), such that

|Fl(ε)(n)| ≤ ε

2
, ∀n > n(ε),

because limn→∞ q
n = 0. Fix l = l(ε) such that |g(cqj)− g0| ≤ ε

2
for j > l(ε). This is possible

because of (1.21). One has

|Fl(ε)(n)| ≤ ε

2
, n > n(ε)

and ∣∣∣∣∣∣
n∑

j=l(ε)

ωj(n)g(cqj)− g0

∣∣∣∣∣∣ ≤
n∑

j=l(ε)

ωj(n)|g(cqj)− g0|+ |
n∑

j=l(ε)

ωj(n)− 1||g0|

≤ ε

2

n∑
j=l(ε)

ωj(n) + qn−l(ε)|g0|

≤ ε

2
+ |g0|qn−l(ε) ≤ ε,
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if n is sufficiently large. Here we have used the relation

n∑
j=l

ωj(n) = 1− qn+1−l.

Since ε > 0 is arbitrarily small, Lemma 1.2.1 is proved.

Let us define

un :=

∫ tn

0

e−(tn−s)T−1
a(n)(s)

A∗fds, tn = −n ln(q), q ∈ (0, 1). (1.25)

Note that

un =

∫ tn−1

0

e−(tn−s)T−1
a(n)(s)

A∗fds+

∫ tn

tn−1

e−(tn−s)T−1
a(n)(s)

A∗fds

= e−(tn−tn−1)

∫ tn−1

0

e−(tn−1−s)T−1
a(s)A

∗fds+

∫ tn

tn−1

e−(tn−s)T−1
a(n)(s)

A∗fds

= e−(tn−tn−1)un−1 +

∫ tn

tn−1

e−(tn−s)T−1
a(n)(s)

A∗fds.

Using definition (1.10), one gets

un = e−(tn−tn−1)un−1 + [1− e−(tn−tn−1)]T−1
α0qn

A∗f

=
qn

qn−1
un−1 + (1− qn

qn−1
)T−1

α0qn
A∗f.

Therefore, (1.25) can be rewritten as iterative scheme (1.12).

Lemma 1.2.2. Let un be defined in (1.12) and Ay = f . Then

‖un − y‖ ≤ qn‖y‖+
n−1∑
j=0

(
qn−j−1 − qn−j

)
α0q

j+1‖T−1
α0qj+1y‖, ∀n ≥ 1, (1.26)

and

‖un − y‖ → 0 as n→∞. (1.27)

Proof. By definitions (1.25) and (1.10) we obtain

un =

∫ tn

0

e−(tn−s)T−1
a(s)A

∗fds =
n−1∑
j=0

(
qn

qj+1
− qn

qj

)
T−1
α0qj+1A

∗f. (1.28)

7



From (1.28) and the equation Ay = f , one gets:

un =
n−1∑
j=0

(
qn

qj+1
− qn

qj

)
T−1
α0qj+1A

∗f

=
n−1∑
j=0

(
qn

qj+1
− qn

qj

)
T−1
α0qj+1(Tα0qj+1 − α0q

j+1Im)y

=
n−1∑
j=0

(
qn−j−1 − qn−j

)
y −

n−1∑
j=0

(
qn−j−1 − qn−j

)
α0q

j+1T−1
α0qj+1y

= y − qny −
n−1∑
j=0

(
qn−j−1 − qn−j

)
α0q

j+1T−1
α0qj+1y.

Thus, estimate (1.26) follows. To prove (1.27), we apply Lemma 1.2.1 with g(a) := a‖T−1
a y‖.

Since y ⊥ N (A), it follows from the spectral theorem that

lim
a→0

g2(a) = lim
a→0

∫ ∞
0

a2

(a+ s)2
d〈Esy, y〉 = ‖PN (A)y‖2 = 0,

where Es is the resolution of the identity corresponding to A∗A, and P is the orthogonal

projector onto N (A). Thus, by Lemma 1.2.1, (1.27) follows.

Let us discuss iterative scheme (1.13). The following lemma gives the estimate of the

difference of the solutions uδn and un.

Lemma 1.2.3. Let un and uδn be defined in (1.12) and (1.13), respectively. Then

‖uδn − un‖ ≤
√
q

1− q3/2
wn, n ≥ 0, (1.29)

where wn := (1− q) δ
2
√
q
√
α0qn

.

Proof. Let Hn := ‖uδn − un‖. Then from the definitions of uδn and un we get the estimate

Hn+1 ≤ q‖uδn − un‖+ (1− q)‖T−1
α0qn+1A

∗(fδ − f)‖ ≤ qHn + wn. (1.30)

Let us prove inequality (1.29) by induction. For n = 0 one has u0 = uδ0 = 0, so (1.29) holds.

For n = 1 one has ‖uδ1 − u1‖ ≤ (1 − q) δ

2
√
α0q2

, so (1.29) holds. If (1.29) holds for n ≤ k,
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then for n = k + 1 one has

Hk+1 ≤ qHk + wk ≤
(

q3/2

1− q3/2
+ 1

)
wk =

1

1− q3/2
wk

=
1

1− q3/2

wk
wk+1

wk+1 ≤
1

1− q3/2

√
qwk+1.

(1.31)

Hence (1.29) is proved for n ≥ 0.

1.2.1 Stopping criterion

In this section we give a stopping rule for iterative scheme given in (1.13). Let Q := AA∗,

Qa := Q+ aIm, and

Gn :=

∫ tn

0

e−(tn−s)a(s)‖Q−1
a(s)fδ‖ds

=
n−1∑
j=0

(qn−j−1 − qn−j)α0q
j+1‖Q−1

α0qj+1fδ‖, n ≥ 1,

(1.32)

where tn = −n ln q, q ∈ (0, 1) and α0 > 0. Then stopping rule (1.16) can be rewritten as

Gnδ ≤ Cδε < Gn, 1 ≤ n < nδ, ε ∈ (0, 1), C > 1, G1 > Cδε. (1.33)

Note that

Gn+1 =
n∑
j=0

(qn−j − qn+1−j)α0q
j+1‖Q−1

α0qj+1fδ‖

=
n−1∑
j=0

(qn−j − qn+1−j)α0q
j+1‖Q−1

α0qj+1fδ‖+ (1− q)α0q
n+1‖Q−1

α0qn+1fδ‖

= qGn + (1− q)α0q
n+1‖Q−1

α0qn+1fδ‖,

so

Gn = qGn−1 + (1− q)α0q
n‖Q−1

α0qn
fδ‖, n ≥ 1, G0 = 0. (1.34)

Lemma 1.2.4. Let Gn be defined in (1.34). Then

Gn ≤
1

1−√q
√
α0qn

‖y‖
2

+ δ, n ≥ 1, q ∈ (0, 1). (1.35)
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Proof. Using the identity

−aQ−1
a = AT−1

a A∗ − Im, a > 0, T := A∗A, Ta := T + aIm,

the estimates

a‖Q−1
a ‖ ≤ 1, ‖fδ − f‖ ≤ δ,

and

a‖AT−1
a ‖ ≤

√
a

2
,

where Q := AA∗, Qa := Q+ aIm, we get

Gn = qGn−1 + (1− q)‖AT−1
α0qn

A∗fδ − fδ‖

= qGn−1 + (1− q)‖AA∗Q−1
α0qn

fδ − fδ‖

= qGn−1 + (1− q)‖(AA∗ + α0q
nI − α0q

nI)Q−1
qn fδ − fδ‖

= qGn−1 + (1− q)α0q
n‖Q−1

α0qn
fδ‖

= qGn−1 + (1− q)α0q
n‖Q−1

α0qn
(fδ − f + f)‖

≤ qGn−1 + (1− q)α0q
n‖Q−1

α0qn
(fδ − f)‖+ (1− q)α0q

n‖Q−1
α0qn

f‖

≤ qGn−1 + (1− q)δ + (1− q)‖AT−1
α0qn

A∗f − f‖

= qGn−1 + (1− q)δ + (1− q)‖A(T−1
α0qn

A∗Ay − y)‖

= qGn−1 + (1− q)δ + (1− q)‖A(−α0q
nT−1

α0qn
y)‖

= qGn−1 + (1− q)δ + (1− q)α0q
n‖AT−1

α0qn
y‖

≤ qGn−1 + (1− q)δ + (1− q)α0q
n ‖y‖

2
√
α0qn

= qGn−1 + (1− q)δ + (1− q)
√
α0qn

‖y‖
2

= qGn−1 + (1− q)δ +
√
q

√
α0qn−1

2
‖y‖.

(1.36)

Therefore,

Gn − δ ≤ q(Gn−1 − δ) +
√
q

√
α0qn−1

2
‖y‖, n ≥ 1, G0 = 0. (1.37)

Let us prove relation (1.35) by induction. From relation (1.37) we get

G1 − δ ≤ −qδ +

√
α0q

2
‖y‖ ≤ −qδ +

1

1−√q

√
α0q

2
‖y‖ ≤ 1

1−√q

√
α0q

2
‖y‖. (1.38)
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Thus, for n = 1 relation (1.35) holds. Suppose that

Gn − δ ≤
1

1−√q

√
α0qn

2
‖y‖, 1 ≤ n ≤ k. (1.39)

Then by inequalities (1.37) and (1.39) we obtain

Gk+1 − δ ≤ q(Gk − δ) +
√
q

√
α0qk

2
‖y‖

≤ q
1

1−√q

√
α0qk

2
‖y‖+

√
q

√
α0qk

2
‖y‖

=

√
q

1−√q

√
α0qk

2
‖y‖ =

√
q

1−√q

√
α0qk

2
√
α0qk+1

√
α0qk+1‖y‖

≤ 1

1−√q

√
α0qk+1

2
‖y‖.

(1.40)

Thus, relation (1.35) is proved.

Lemma 1.2.5. Let Gn be defined in (1.34), q ∈ (0, 1), and α0 > 0 be chosen such that

G1 > Cδε, ε ∈ (0, 1), C > 1. Then there exists a unique integer nc such that

Gnc−1 < Gnc and Gnc > Gnc+1, nc ≥ 1. (1.41)

Moreover,

Gn+1 < Gn, ∀n ≥ nc. (1.42)

Proof. From Lemma 1.2.4 we have

Gn ≤
1

1−√q
√
α0qn

‖y‖
2

+ δ, n ≥ 1, q ∈ (0, 1).

Since G1 > Cδε and lim supn→∞Gn ≤ δ < Cδε, it follows that there exists an integer nc ≥ 1

such that Gnc−1 < Gnc and Gnc > Gnc+1. Let us prove the monotonicity of Gn, for n ≥ nc.

We have Gnc+1 −Gnc < 0. Using definition (1.34), we get

Gnc+1 −Gnc = qGnc + (1− q)α0q
nc+1‖Q−1

α0qnc+1fδ‖ −Gnc

= (1− q)
(
α0q

nc+1‖Q−1
α0qnc+1fδ‖ −Gnc

)
< 0.

(1.43)
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This implies

α0q
nc+1‖α0Q

−1
qnc+1fδ‖ −Gnc < 0. (1.44)

Note that

Gn+1 −Gn = (1− q)(α0q
n+1‖Q−1

α0qn+1fδ‖ −Gn).

Therefore, to prove the monotonicity of Gn for n ≥ nc, one needs to prove the inequality

α0q
n+1‖Q−1

α0qn+1fδ‖ −Gn < 0, ∀n ≥ nc.

This inequality is a consequence of the following lemma:

Lemma 1.2.6. Let Gn be defined in (1.34), and (1.44) holds. Then

α0q
n+1‖Q−1

α0qn+1fδ‖ −Gn < 0, ∀n ≥ nc. (1.45)

Proof. Let us prove Lemma 1.2.6 by induction. Let

Dn := α0q
n+1‖Q−1

α0qn+1fδ‖ −Gn

and

h(a) := a2‖Q−1
a fδ‖2.

The function h(a) is a monotonically growing function of a, a > 0. Indeed, by the spectral

theorem, we get

h(a1) = a2
1‖Q−1

a1
fδ‖2 =

∫ ∞
0

a2
1

(a1 + s)2
d〈Fsfδ, fδ〉

≤
∫ ∞

0

a2
2

(a2 + s)2
d〈Fsfδ, fδ〉 = a2

2‖Q−1
a2
fδ‖2 = h(a2),

(1.46)

where Fs is the resolution of the identity corresponding to Q := AA∗, because
a2
1

(a1+s)2
≤

a2
2

(a2+s)2
if 0 < a1 < a2 and s ≥ 0. By the assumption we have Dnc = α0q

nc+1‖Q−1
α0qnc+1fδ‖ −
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Gnc < 0. Thus, relation (1.45) holds for n = nc. For n = nc + 1 we get

Dnc+1 = α0q
nc+2‖Q−1

α0qnc+2fδ‖ − (1− q)α0q
nc+1‖Q−1

α0qnc+1fδ‖ − qGnc

=
√
h(α0qnc+2)−

√
h(α0qnc+1) + q

√
h(α0qnc+1)− qGnc

=
√
h(α0qnc+2)−

√
h(α0qnc+1) + q(

√
h(α0qnc+1)−Gnc)

=
√
h(α0qnc+2)−

√
h(α0qnc+1) + qDnc

=
√
h(α0qnc+2)−

√
h(α0qnc+1) + qDnc < 0.

(1.47)

Here we have used the monotonicity of the function h(a). Thus, relation (1.45) holds for

n = nc + 1. Suppose

Dn < 0, nc ≤ n ≤ nc + k − 1.

This, together with the monotonically growth of the function h(a) := a2‖Q−1
q fδ‖2, yields

Dnc+k = α0q
nc+k+1‖Q−1

α0qnc+k+1fδ‖ −Gnc+k

=
√
h(α0qnc+k+1)− (1− q)

√
h(α0qnc+k)− qGnc+k−1

=
√
h(α0qnc+k+1)−

√
h(α0qnc+k) + q(

√
h(α0qnc+k)−Gnc+k−1)

=
√
h(α0qnc+k+1)−

√
h(α0qnc+k) + qDnc+k−1

=
√
h(α0qnc+k+1)−

√
h(α0qnc+k) + qDnc+k−1 < 0.

(1.48)

Thus, Dn < 0, n ≥ 1. Lemma 1.2.6 is proved.

Let us continue with the proof of Lemma 1.2.5. From relation (1.34) we have

Gn+1 −Gn = (q − 1)Gn + (1− q)α0q
n+1‖Q−1

α0qn+1fδ‖

= (1− q)
(
α0q

n+1‖Q−1
α0qn+1fδ‖ −Gn

)
.

Using assumption (1.44) and applying Lemma 1.2.6, one gets

Gn+1 −Gn < 0, ∀n ≥ nc.

Let us prove that the integer nc is unique. Suppose there exists another integer nd such that

Gnd−1 < Gnd and Gnd > Gnd+1. One may assume without loss of generality that nc < nd.

Since Gn > Gn+1, ∀n ≥ nc, and nc < nd, it follows that Gnd−1 > Gnd . This contradicts the

assumption Gnd−1 < Gnd . Thus, the integer nc is unique. Lemma 1.2.5 is proved.
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Lemma 1.2.7. Let Gn be defined in (1.34). If α0 is chosen such that relations G1 > Cδε,

C > 1, ε ∈ (0, 1), holds then there exists a unique nδ satisfying inequality (1.33).

Proof. Let us show that there exists an integer nδ so that inequality (1.33) holds. Applying

Lemma 1.2.4, one gets

lim sup
n→∞

Gn ≤ δ. (1.49)

Since G1 > Cδε and lim supn→∞Gn ≤ δ < Cδε, it follows that there exists an index nδ

satisfying stopping rule (1.33). The uniqueness of the index nδ follows from the monotonicity

of Gn, see Lemma 1.2.5. Thus, Lemma 1.2.7 is proved.

Lemma 1.2.8. Let Ay = f , y ⊥ N (A), and nδ be chosen by rule (1.33). Then

lim
δ→0

qnδ = 0, q ∈ (0, 1), (1.50)

so

lim
δ→0

nδ =∞. (1.51)

Proof. From rule (1.33) and relation (1.34) we have

qCδε + (1− q)α0q
nδ‖Q−1

α0q
nδfδ‖ < qGnδ−1 + (1− q)α0q

nδ‖Q−1
α0q

nδfδ‖

= Gnδ ≤ Cδε,
(1.52)

so

(1− q)α0q
nδ‖Q−1

α0q
nδfδ‖ ≤ (1− q)Cδε. (1.53)

Thus,

α0q
nδ‖Q−1

α0q
nδfδ‖ < Cδε. (1.54)

Note that if f 6= 0 then there exists a λ0 > 0 such that

Fλ0f 6= 0, 〈Fλ0f, f〉 := ξ > 0, (1.55)

where ξ is a constant which does not depend on δ, and Fs is the resolution of the identity

corresponding to the operator Q := AA∗. Let

h(δ, α) := α2‖Q−1
α fδ‖2.

14



For a fixed number c1 > 0 we obtain

h(δ, c1) = c21‖Qc1fδ‖2 =

∫ ∞
0

c21
(c1 + s)2

d〈Fsfδ, fδ〉 ≥
∫ λ0

0

c21
(c1 + s)2

d〈Fsfδ, fδ〉

≥ c21
(c1 + λ0)2

∫ λ0

0

d〈Fsfδ, fδ〉 =
c21‖Fλ0fδ‖2

(c1 + λ0)2
, δ > 0.

(1.56)

Since Fλ0 is a continuous operator, and ‖f − fδ‖ < δ, it follows from (1.55) that

lim
δ→0
〈Fλ0fδ, fδ〉 = 〈Fλ0f, f〉 > 0. (1.57)

Therefore, for the fixed number c1 > 0 we get

h(δ, c1) ≥ c2 > 0 (1.58)

for all sufficiently small δ > 0, where c2 is a constant which does not depend on δ. For

example one may take c2 = ξ
2

provided that (1.55) holds. Let us derive from estimate (1.54)

and the relation (1.58) that qnδ → 0 as δ → 0. From (1.54) we have

0 ≤ h(δ, α0q
nδ) ≤ (Cδε)2.

Therefore,

lim
δ→0

h(δ, α0q
nδ) = 0. (1.59)

Suppose limδ→0 q
nδ 6= 0. Then there exists a subsequence δj → 0 such that

α0q
nδj ≥ c1 > 0, (1.60)

where c1 is a constant. By (1.58) we get

h(δj, α0q
nδj ) > c2 > 0, δj → 0 as j →∞. (1.61)

This contradicts relation (1.59). Thus, limδ→0 q
nδ = 0. Lemma 1.2.8 is proved.

Lemma 1.2.9. Let nδ be chosen by rule (1.33). Then

δ√
α0qnδ

→ 0 as δ → 0. (1.62)
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Proof. Relation (1.35), together with stopping rule (1.33), implies

Cδε < Gnδ−1 ≤
1

1−√q

√
α0qnδ−1

2
‖y‖+ δ. (1.63)

Then
1√

α0qnδ−1
≤ ‖y‖

2(1−√q)δε(C − 1)
, ε ∈ (0, 1). (1.64)

This yields

lim
δ→0

δ√
α0qnδ

= lim
δ→0

δ√
α0qqnδ−1

≤ lim
δ→0

δ1−ε

2
√
q(1−√q)(C − 1)

‖y‖ = 0. (1.65)

Lemma 1.2.9 is proved.

Theorem 1.2.10. Let y ⊥ N (A), ‖fδ − f‖ ≤ δ, ‖fδ‖ > Cδε, C > 1, ε ∈ (0, 1). Suppose nδ

is chosen by rule (1.33). Then

lim
δ→0
‖uδnδ − y‖ = 0, (1.66)

where uδn is given in (1.13).

Proof. Using Lemma 1.2.2 and Lemma 1.2.3, we get the estimate

‖uδnδ − y‖ ≤ ‖u
δ
nδ
− unδ‖+ ‖unδ − y‖ ≤

√
q

1− q3/2
(1− q) δ

2q
√
α0qnδ

+ ‖unδ − y‖

:= I1 + I2,

(1.67)

where I1 :=
√
q

1−q3/2 (1 − q) δ
2q
√
α0q

nδ
and I2 := ‖unδ − y‖. Applying Lemma 1.2.9, one gets

limδ→0 I1 = 0. Since nδ → ∞ as δ → 0, it follows from Lemma 1.2.2 that limδ→0 I2 = 0.

Thus, limδ→0 ‖uδnδ − y‖ = 0. Theorem 1.2.10 is proved.

The algorithm based on the proposed method can be stated as follows:

Step 1. Assume that (1.14) holds. Choose C ∈ (1, 2) and ε ∈ (0.9, 1). Fix q ∈ (0, 1), and

choose α0 > 0 so that (1.17) holds. Set n = 1, and u0 = 0.

Step 2. Use iterative scheme (1.13) to calculate un.

Step 3. Calculate Gn, where Gn is defined in (1.34).

Step 4. If Gn ≤ Cδε then stop the iteration, set nδ = n, and take uδnδ as the approximate

solution. Otherwise set n = n+ 1, and go to Step 1.

16



1.3 Iterative scheme 2

In32 the following iterative scheme for the exact data f is given:

un+1 = aT−1
a un + T−1

a A∗f, u1 = u1 ⊥ N (A), (1.68)

where a is a fixed positive constant. It is proved in32 that iterative scheme (1.68) gives the

relation

lim
n→∞

‖un − y‖ = 0, y ⊥ N (A).

In the case of noisy data the exact data f in (1.68) is replaced with the noisy data fδ, i.e.

uδn+1 = aT−1
a uδn + T−1

a A∗fδ, u1 = u1 ⊥ N (A), (1.69)

where ‖fδ − f‖ ≤ δ for sufficiently small δ > 0. It is proved in32 that there exist an integer

nδ such that

lim
δ→0
‖uδnδ − y‖ = 0, (1.70)

where uδn is the approximate solution corresponds to the noisy data. But a method of

choosing the integer nδ has not been discussed. In this section we modify iterative scheme

(1.68) by replacing the constant parameter a in (1.68) with a geometric sequence {qn−1}∞n=1,

i.e.

un+1 = qnT−1
qn un + T−1

qn A
∗f, u1 = 0, (1.71)

where q ∈ (0, 1). The initial approximation u1 is chosen to be 0. In general one may choose

an arbitrary initial approximation u1 in the set N (A)⊥. If the data are noisy then the exact

data f in (1.71) is replaced with the noisy data fδ, and iterative scheme (1.69) is replaced

with:

uδn+1 = qnT−1
qn u

δ
n + T−1

qn A
∗fδ, uδ1 = 0. (1.72)

We prove convergence of the solution obtained by iterative scheme (1.71) in Theorem 1.3.1

for arbitrary q ∈ (0, 1), i.e.

lim
n→∞

‖un − y‖ = 0, ∀q ∈ (0, 1).
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In the case of noisy data we use discrepancy-type principle (1.85) to obtain the integer nδ

such that

lim
δ→0
‖uδnδ − y‖ = 0. (1.73)

We prove relation (1.73), for arbitrary q ∈ (0, 1), in Theorem 1.3.6.

Let us prove that the sequence un, defined by iterative scheme (1.71), converges to the

minimal norm solution y of equation (1.1).

Theorem 1.3.1. Consider iterative scheme (1.71). Let y ⊥ N (A). Then

lim
n→∞

‖un − y‖ = 0. (1.74)

Proof. Consider the identity

y = aT−1
a y + T−1

a A∗f, Ay = f. (1.75)

Let wn := un−y and Bn := qnT−1
qn . Then wn+1 = Bnwn, w1 = y−u1 = y. One uses (1.75)

and gets

‖y − un‖2 = ‖Bn−1Bn−2 . . . B1w1‖2 = ‖Bn−1Bn−2 . . . B1y‖2

=

∫ ∞
0

(
qn−1

qn−1 + s

qn−2

qn−2 + s
. . .

q

q + s

)2

d〈Esy, y〉

=

∫ ∞
0

(
qn−1

qn−1 + s

)2(
qn−2

qn−2 + s

)2

. . .

(
q

q + s

)2

d〈Esy, y〉

≤
∫ ∞

0

q2n

(q + s)2n
d〈Esy, y〉,

(1.76)

where Es is the resolution of the identity corresponding to the operator T := A∗A. Here we

have used the identity (1.75) and the monotonicity of the function φ(x) := x2

(x+s)2
, s ≥ 0.

From estimate (1.76) we derive relation (1.74). Indeed, write∫ ∞
0

q2n

(q + s)2n
d〈Esy, y〉 =

∫ b

0

q2n

(q + s)2n
d〈Esy, y〉+

∫ ∞
b

q2n

(q + s)2n
d〈Esy, y〉, (1.77)

where b is a sufficiently small number which will be chosen later. For any fixed b > 0 one

has q
q+s
≤ q

q+b
< 1 if s ≥ b. Therefore, it follows that∫ ∞

b

q2n

(q + s)2n
d〈Esy, y〉 → 0 as n→∞. (1.78)
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On the other hand one has∫ b

0

q2n

(q + s)2n
d〈Esy, y〉 ≤

∫ b

0

d〈Esy, y〉. (1.79)

Since y ⊥ N (A), one has limb→0

∫ b
0
d〈Esy, y〉 = 0. Therefore, given an arbitrary number

ε > 0 one can choose b(ε) such that∫ b(ε)

0

q2n

(q + s)2n
d〈Esy, y〉 <

ε

2
. (1.80)

Using this b(ε), one chooses sufficiently large n(ε) such that∫ ∞
b(ε)

q2n

(q + s)2n
d〈Esy, y〉 <

ε

2
, ∀n > n(ε). (1.81)

Since ε > 0 is arbitrary, Theorem 1.3.1 is proved.

As we mentioned before if the exact data f are contaminated by some noise then iterative

scheme (1.72) is used, where ‖fδ − f‖ ≤ δ. Note that

‖uδn+1 − un+1‖ ≤ qn‖T−1
qn (uδn − un)‖+

δ

2
√
qn
≤ ‖uδn − un‖+

δ

2
√
qn
. (1.82)

To prove the convergence of the solution obtained by iterative scheme (1.72), we need the

following lemmas:

Lemma 1.3.2. Let un and uδn be defined in (1.71) and (1.72), respectively. Then

‖uδn − un‖ ≤
√
q

1−√q
δ

2
√
qn
, n ≥ 1. (1.83)

Proof. Let us prove relation (1.83) by induction. For n = 1 one has uδ1 − u1 = 0. Thus, for

n = 1 the relation holds. Suppose

‖uδl − ul‖ ≤
√
q

1−√q
δ

2
√
ql
, 1 ≤ l ≤ k. (1.84)

Then from (1.82) and (1.84) we have

‖uδk+1 − uk+1‖ ≤ ‖uδk − uk‖+
δ

2
√
qk
≤

√
q

1−√q
δ

2
√
qk

+
δ

2
√
qk

≤ √q δ

(1−√q)2
√
qk+1

.
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Thus,

‖uδn − un‖ ≤
√
q

δ

(1−√q)2
√
qn
, n ≥ 1.

Lemma 1.3.2 is proved.

Let us formulate our stopping rule: the iteration in iterative scheme (1.72) is stopped at

the first integer nδ satisfying

‖AT−1
qnδA

∗fδ − fδ‖ ≤ Cδε < ‖AT−1
qn A

∗fδ − fδ‖, 1 ≤ n < nδ, C > 1, ε ∈ (0, 1), (1.85)

and it is assumed that ‖fδ‖ > Cδε.

Lemma 1.3.3. Let uδn be defined in (1.72), and Wn := ‖AT−1
qn A

∗fδ − fδ‖. Then

Wn+1 ≤ Wn, n ≥ 1. (1.86)

Proof. Note that

Wn = ‖AA∗Q−1
qn fδ − fδ‖ = ‖(Qqn − qnIm)Q−1

qn fδ − fδ‖ = ‖qnQ−1
qn fδ‖, (1.87)

where Q := AA∗, and Qa := Q+ aIm. Using the spectral theorem, one gets

W 2
n+1 =

∫ ∞
0

q2(n+1)

(qn+1 + s)2
d〈Fsfδ, fδ〉 ≤

∫ ∞
0

q2n

(qn + s)2
d〈Fsfδ, fδ〉 = W 2

n , (1.88)

where Fs is the resolution of the identity corresponding to the operator Q := AA∗. Here we

have used the monotonicity of the function g(x) = x2

(x+s)2
, s ≥ 0. Thus,

Wn+1 ≤ Wn, n ≥ 1. (1.89)

Lemma 1.3.3 is proved.

Lemma 1.3.4. Let uδn be defined in (1.72), and ‖fδ‖ > Cδε, ε ∈ (0, 1), C > 1. Then there

exists a unique index nδ such that inequality (1.85) holds.
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Proof. Let en := AT−1
qn A

∗fδ − fδ. Then

en = qnQ−1
qn fδ, (1.90)

where Qa := AA∗ + aI. Therefore,

‖en‖ ≤ ‖qnQ−1
qn (fδ − f)‖+ ‖qnQ−1

qn f‖

≤ ‖fδ − f‖+ ‖qnQ−1
qn Ay‖ ≤ δ +

√
qn

2
‖y‖,

(1.91)

where the estimate ‖Q−1
a A‖ = ‖AT−1

a ‖ ≤ 1
2
√
a

was used. Thus,

lim sup
n→∞

‖en‖ ≤ δ.

This shows that the integer nδ, satisfying (1.85), exists. The uniqueness of nδ follows from

its definition.

Lemma 1.3.5. Let uδn be defined in (1.72). If nδ is chosen by rule (1.85) then

lim
δ→0

δ√
qnδ

= 0. (1.92)

Proof. From (1.91) we have

‖AT−1
qn−1A

∗fδ − fδ‖ ≤ δ +

√
qn−1

2
‖e1‖, (1.93)

where e1 := u1 − y = −y. It follows from stopping rule (1.85) and estimate (1.93) that

Cδε ≤ ‖AT−1
qnδ−1A

∗fδ − fδ‖ ≤
√
qnδ−1

2
‖e1‖+ δ. (1.94)

Therefore,

(C − 1) δε ≤
√
qnδ−1

2
‖e1‖, (1.95)

and so
1√
qnδ−1

≤ ‖e1‖
2(C − 1)δε

, ε ∈ (0, 1). (1.96)

This implies
δ√
qnδ

=
δ√
qqnδ−1

≤ ‖e1‖δ
2q1/2(C − 1)δε

=
‖e1‖

2q1/2(C − 1)
δ1−ε. (1.97)

Thus, δ√
qnδ
→ 0 as δ → 0. Lemma 1.3.5 is proved.
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The proof of convergence of the solution obtained by iterative scheme (1.72) is given in

the following theorem:

Theorem 1.3.6. Let uδn be defined in (1.72), y ⊥ N (A), ‖fδ‖ > Cδε, ε ∈ (0, 1), C >

1, q ∈ (0, 1). If nδ is chosen by rule (1.85), then

‖uδn − y‖ → 0 as δ → 0. (1.98)

Proof. From Lemma 1.3.2 we get the following estimate:

‖uδnδ − y‖ ≤ ‖u
δ
nδ
− unδ‖+ ‖unδ − y‖ ≤

√
q

1−√q
δ

2
√
qnδ

+ ‖unδ − y‖ := I1 + I2, (1.99)

where I1 :=
√
q

1−√q
δ

2
√
qnδ

and I2 := ‖unδ − y‖. By Lemma 1.3.5 one gets I1 → 0 as δ → 0. To

prove limδ→0 I2 = 0 one needs the relation limδ→0 nδ =∞. This relation is a consequence of

the following lemma:

Lemma 1.3.7. If nδ is chosen by rule (1.85), then

qnδ → 0 as δ → 0, (1.100)

so

lim
δ→0

nδ =∞. (1.101)

Proof. Note that

AT−1
a A∗fδ − fδ = AA∗Q−1

a fδ − fδ = (AA∗ + aIm − aIm)Q−1
a fδ − fδ

= fδ − aQ−1
a fδ − fδ = −aQ−1

a fδ,

where a > 0, Q := AA∗ and Qa := Q + aI. From stopping rule (1.85) we have 0 ≤

‖AT−1
qnδA

∗fδ − fδ‖ ≤ Cδε. Thus,

lim
δ→0
‖AT−1

qnδA
∗fδ − fδ‖ = lim

δ→0
‖qnδQ−1

qnδfδ‖ = 0. (1.102)

Using an argument given in the proof of Lemma 1.2.8, (see formulas (1.54)-(1.61) in which

α0 = 1), one gets limδ→0 q
nδ = 0, so limδ→0 nδ =∞. Lemma 1.3.7 is proved.

Lemma 1.3.7 and Theorem 1.3.1 imply I2 → 0 as δ → 0. Thus, Theorem 1.3.6 is

proved.
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1.4 Numerical experiments

In all the experiments we measure the accuracy of the approximate solutions using the

relative error:

Rel.Err =
‖uδnδ − y‖
‖y‖

,

where ‖.‖ is the Euclidean norm in Rn. The exact data are perturbed by some noises so

that

‖fδ − f‖ ≤ δ,

where

fδ = f + δ
e

‖e‖
,

δ is the noise level, and e ∈ Rn is the noise taken from the Gaussian distribution with mean

0 and standard deviation 1. The MATLAB routine called ”randn” with seed 15 is used to

generate the vector e. The iterative schemes (1.13) and (1.72) will be denoted by IS1 and

IS2, respectively. In the iterative scheme IS1, for fixed q ∈ (0, 1), one needs to choose a

sufficiently large α0 > 0 so that inequality (1.17) hold, for example one may choose α0 ≥ 1.

The number of iterations of IS1 and IS2 are denoted by Iter1 and Iter2, respectively. We

compare the results obtained by the proposed methods with the results obtained by using

the variational regularization method (VR). In VR we use the Newton method for solving

the equation for regularization parameter. In23 the nonlinear equation

‖AuV R(a)− fδ‖2 = (Cδ)2, C = 1.01, (1.103)

where uV R(a) := T−1
a A∗fδ, is solved by the Newton’s method. In this thesis the initial

value of the regularization parameter is taken to be α0 = α0

2kδ
, where kδ is the first integer

such that the Newton’s method for solving (1.103) converges. We stop the iteration of

the Newton’s method at the first integer nδ satisfying the inequality |‖AT−1
an A

∗fδ − fδ‖2 −

(Cδ)2| ≤ 10−3(Cδ)2, a0 := α0. The number of iterations needed to complete a convergent

Newton’s method is denoted by IterV R.
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1.4.1 Ill-conditioned linear algebraic systems

Table 1.1: Condition number of some Hilbert matrices

n κ(A) = ‖A‖‖A−1‖
10 1.915× 1013

20 1.483× 1028

70 8.808× 10105

100 1.262× 10150

200 1.446× 10303

Consider the following system:

H(m)u = f, (1.104)

where

H
(m)
ij =

1

i+ j + 1
, i, j = 1, 2, ...,m,

is a Hilbert matrix of dimension m. The system (1.104) is an example of a severely ill-

posed problem if m > 10, because the condition number of the Hilbert matrix is increasing

exponentially as m grows, see Table (1.1). The minimal eigenvalues of Hilbert matrix of

dimension m can be obtained using the following formula

λmin(H(m)) = 215/4π3/2
√
m(
√

2 + 1)−(4m+4)(1 + o(1)). (1.105)

This formula is proved in20. Since κ(H(m)) = λmax(H(m))

λmin(H(m))
, it follows from (1.105) that the

condition number grows as O( e
3.5255m
√
m

). The following exact solution is used to test the pro-

posed methods:

y ∈ Rm, where yk =
√
.5k, k = 1, 2, . . . ,m.

The Hilbert matrix of dimension m = 200 is used in the experiments. This matrix has

condition number of order 10303, so it is a severely ill-conditioned matrix. In Table 2

one can see that the number of iterations of the iterative scheme IS1 and IS2 increases

as the value of q increases. The relative errors start to increase at q = .125. By these
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Table 1.2: Hilbert matrix problem: the number of iterations and the relative errors with
respect to the parameter q (α0 = 1, δ = 10−2).

q IS1 IS2

REl.Err Iter1 REl.Err Iter2.

.5 0.031 24 0.032 23

.25 0.031 13 0.032 13

.125 0.032 9 0.032 9

observations, we suggest to choose the parameter q in the interval (.125, .5). In Table 3 the

results of the experiments with various values of δ are presented. Here the parameter ε

Table 1.3: ICLAS with Hilbert matrix: the relative errors and the number of iterations

δ IS1 IS2 VR

REl.Err Iter1 REl.Err Iter2 REl.Err IterV R.

5% 0.038 11 0.043 11 0.055 13

3% 0.037 12 0.034 12 0.045 14

1% 0.031 13 0.032 13 0.034 15

was .99. The geometric sequence {.25n−1}∞n=1 was used in the iterative schemes IS1 and

IS2. The parameter C in (1.16) and (1.85) were 1.01. The parameter kδ in the variational

regularization method was 1. One can see that the relative errors of IS1 and IS2 are smaller

than these for the VR. The relative error decreases as the noise level decreases which can

be seen on the same table. This shows that the proposed method produces stable solutions.

1.4.2 Fredholm integral equations of the first kind (FIEFK)

Here we consider two Fredholm integral equations :

a)

f(s) =

∫ 3

−3

k(t− s)u(t)dt, (1.106)
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where

k(z) =

{
1 + cos(π

3
z), |z| < 3;

0, |z| ≥ 3,
(1.107)

and

f(z) =

{
(6 + z)

[
1− 1

2
cos(π

3
z)
]
− 9

2π
sin(πz

3
), |z| ≤ 6;

0, |z| > 6.
(1.108)

b)

f(s) =

∫ 1

0

k(s, t)u(t)dt, s ∈ (0, 1), (1.109)

where

k(s, t) =

{
s(t− 1), s < t;
t(s− 1), s ≥ t,

(1.110)

and

f(s) = (s3 − s)/6. (1.111)

The problem a) is discussed in25 where the solution to this problem is u(x) = k(x). The

second problem is taken from7 where the solution is u(x) = x. The Galerkin’s method is

used to discretized the integrals (1.106) and (1.109). For the basis functions we use the

following orthonormal box functions

φi(s) :=

{ √
m
c1
, [si−1, si] ;

0, otherwise,
(1.112)

and

ψi(t) :=

{ √
m
c2
, [ti−1, ti] ;

0, otherwise,
(1.113)

where si = d1 + id2
m

, ti = d3 + id4
m
, i = 0, 1, 2, . . . ,m. In the problem a) the parameters

c1, c2, d1, d2, d3 and d4 are set to 12, 6, −6, 12, −3 and 6, respectively. In the second

problem we use d1 = d3 = 0 and c1 = c2 = d2 = d4 = 1. Here we approximate the solution

u(t) by ũ =
∑m

j=1 cjψj(t). Therefore solving problem (1.106) is reduced to solving the linear

algebraic system

Ac̃ = f, c̃, f ∈ Rm, (1.114)
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where in problem a)

Aij =

∫ 3

−3

∫ 6

−6

k(t− s)φi(s)ψj(t)dsdt

and fi =
∫ 6

−6
f(s)φi(s)ds, i, j = 1, 2, . . . ,m, and in problem b)

Aij =

∫ 1

0

∫ 1

0

k(s, t)φi(s)ψj(t)dsdt

and fi =
∫ 1

0
f(s)φi(s)ds, and c̃j = cj i, j = 1, 2, . . . ,m.

Table 1.4: Problem a): the number of iterations and the relative errors with respect to the
parameter q (α0 = 2, δ = 10−2).

q IS1 IS2

REl.Err Iter1 REl.Err Iter2.

.5 0.008 12 0.007 11

.25 0.009 7 0.007 7

.125 0.009 5 0.008 5

Table 1.5: Problem a): the relative errors and the number of iterations

δ IS1 IS2 VR

REl.Err Iter1 REl.Err Iter2 REl.Err IterV R.

5% 0.018 6 0.014 6 0.016 11

3% 0.013 6 0.011 6 0.013 12

1% 0.009 7 0.007 7 0.008 15

The parameter m = 600 is used in problem a). In this case the condition number of the

matrix A with m = 600 is 3.427×109, so it is an ill-conditioned matrix. Here the parameter

C in IS1 and IS2 are 2 and 1.01, respectively. For problem b) the parameter m is 200. In

this case the condition number of the matrix A is 4.863× 104. The parameter C is 1.01 in

the both iterative schemes IS1 and IS2. In Tables 4 and 6 we give the relation between the

parameter q and the number of iterations and the relative errors of the iterative schemes

IS1 and IS2. The closer the parameter q to 1, the larger number of iterations we get, and
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Table 1.6: Problem b): the number of iterations and the relative errors with respect to the
parameter q (α0 = 4, δ = 10−2).

q IS1 IS2

REl.Err Iter1 REl.Err Iter2.

.5 0.428 17 0.446 15

.25 0.421 9 0.436 9

.125 0.439 6 0.416 7

Table 1.7: Problem b): the relative errors and the number of iterations

δ IS1 IS2 VR

REl.Err Iter1 REl.Err Iter2 REl.Err IterV R.

5% 0.618 7 0.621 7 0.627 12

3% 0.541 8 0.559 8 0.584 13

1% 0.421 9 0.436 9 0.457 13

the closer the parameter q to 0, the smaller the number of iterations we get. But the relative

error starts to increase if the parameter q is chosen too small. Based on the numerical results

given in Tables 4 and 5, we suggest to choose the parameter q in the interval (0.125, 0.5).

In the iterative schemes IS1 and IS2 we use the geometric sequence {2 × .25n−1}∞n=1 for

problem a). The geometric series {4× .25n−1}∞n=1 is used in problem b). In the variational

regularization method we use α0 = 2 and α0 = 4 as the initial regularization parameter of

the Newton’s method in problem a) and b), respectively. Since the Newton’s method for

solving (1.103) is locally convergent, in problem b) we need to choose a smaller regularization

parameter α0 than for IS1 and IS2 methods. Here kδ = 8 was used. The numerical results

on Table 5 show that the solutions produced by the proposed iterative schemes are stable.

In problem a) the relative errors of the iterative scheme IS2, are smaller than these for the

iterative scheme IS1 and than these for the variational regularization, VR. In Table 7 the

relative errors produced by the three methods for solving problem b) are presented. The

relative error of IS1 is smaller than the one for the other two methods.
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1.5 Conclusion

We have demonstrated that the proposed iterative schemes can be used for solving ill-

conditioned linear algebraic systems stably. The advantage of the iterative scheme (1.13)

compared with iterative scheme (1.72) is the following: one applies the operator T−1
a only

once at each iteration. Note that the difficulty of using the Newton’s method is in choosing

the initial value for the regularization parameter, since the Newton’s method for solving

equation (1.103) converges only locally. In solving (1.103) by the Newton’s method one

often has to choose an initial regularization parameter a0 sufficiently close to the root of

equation (1.103) as shown in problem b) in Section 4.2. In our iterative schemes the initial

regularization parameter can be chosen in the interval [1, 4] which is larger than the initial

regularization parameter used in the variational regularization method. In the iterative

scheme IS1 we modified the discrepancy-type principle∫ t

0

e−(t−s)a(s)‖Q−1
a(s)‖ds = Cδ, C ∈ (1, 2),

given in28,33, by using (1.10) to get discrepancy-type principle (1.33), which can be easily

implemented numerically. In Section 3 we used the geometric series {α0q
n}∞n=1 in place of

the constant regularization parameter a in the iterative scheme

un+1 = aT−1
a un + T−1

a A∗fδ

developed in32. This geometric series of the regularization parameter allows one to use the

a posteriori stopping rule given in (1.85). We proved that this stopping rule produces stable

approximation of the minimal norm solution of equation (1.1). In all the experiments stop-

ping rules (1.33) and (1.85) produce stable approximations to the minimal norm solution

of equation (1.1). It is of interest to develop a method for choosing the parameter q in the

proposed methods which gives sufficiently small relative error and small number of iterations.
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Chapter 2

An iterative method for solving
Fredholm integral equations of the
first kind

2.1 Introduction

We consider a linear operator

(Ku)(x) :=

∫ b

a

k(x, z)u(z)dz = f(x), a ≤ x ≤ b, (2.1)

where K : L2[a, b] → L2[a, b] is a linear compact operator. We assume that k(x, z) is a

smooth function on [a, b]× [a, b]. Since K is compact, the problem of solving equation (2.1)

is ill-posed. Some applications of the Fredholm integral equations of the first kind can be

found in19,29,30. There are many methods for solving equation (2.1): variational regular-

ization, quasi-solution, iterative regularization, the Dynamical Systems Method (DSM). A

detailed description of these methods can be found in23,29,30. In this Chapter we propose

an iterative scheme for solving equation (2.1) based on the DSM. We refer the reader to29

and30 for a detailed discussion of the DSM. When we are trying to solve (2.1) numerically,

we need to carry out all the computations with finite-dimensional approximation Km of the

operator K, limm→∞ ‖Km−K‖ = 0. One approximates a solution to (2.1) by a linear com-

bination of basis functions vm(x) :=
∑m

i=1 ζ
(m)
j φj(x), where ζ

(m)
j are constants, and φi(x) are

orthonormal basis functions in L2[0, 1]. Here the constants ζ
(m)
j can be obtained by solving
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the ill-conditioned linear algebraic system:
m∑
j=1

(Km)ijζ
(m)
j = gi, i = 1, 2, . . . ,m, (2.2)

where (Km)ij :=
∫ b
a

∫ b
a
k(x, s)φj(s)dsφi(x)dx, 1 ≤ i, j ≤ m, and gi :=

∫ b
a
f(x)φi(x)dx. In

applications, the exact data f may not be available, but noisy data fδ, ‖fδ − f‖ ≤ δ, are

available. Therefore, one needs a regularization method to solve stably equation (2.2) with

the noisy data gδi :=
∫ b
a
fδ(x)φi(x)dx in place of gi. In the variational regularization (VR)

method for a fixed regularization parameter a > 0 one obtains the coefficients ζ
(δ,m)
j by

solving the linear algebraic system:

aζ
(δ,m)
i +

m∑
j=1

(K∗mKm)ijζ
(δ,m)
j = gδi , i = 1, 2, . . . ,m, (2.3)

where

(K∗mKm)ij :=

∫ b

a

∫ b

a

k(s, x)φi(x)

∫ b

a

k(s, z)φj(z)dzdsdx,

‖f − fδ‖ ≤ δ, and k(s, x) is the complex conjugate of k(s, x). In the VR method one has

to choose the regularization parameter a. In23 the Newton’s method is used to obtain the

parameter a which solves the following nonlinear equation:

F (a) := ‖Kmζm − gδ‖2 = (Cδ)2, C ≥ 1, (2.4)

where ζm = (aI + K∗mKm)−1K∗mg
δ, and K∗m is the adjoint of the operator Km. In Chapter

1 the following iterative scheme for obtaining the coefficients ζ
(m)
j is studied:

ζδn,m = qζδn−1,m + (1− q)T−1
an,mK

∗
mg

δ, dδ0 = 0, an := α0q
n, (2.5)

where α0 > 0, q ∈ (0, 1),

Ta,m := T (m) + aI, T (m) := K∗mKm, a > 0, (2.6)

and I is the identity operator. Iterative scheme (2.5) is derived from a DSM solution of

equation (2.1) obtained in29 p.44. In iterative scheme (2.5) adaptive regularization param-

eters an are used. A discrepancy-type principle for DSM is used to define the stopping rule

for the iteration processes.
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The value of the parameter m in (2.4) and (2.5) is fixed at each iteration, and is usually

large. The method for choosing the parameter m has not been discussed in Chapter 1. In

this Chapter we choose the parameter m as a function of the regularization parameter an,

and approximate the operator T := K∗K (respectively K∗) by a finite-rank operator T (m)

(respectively K∗m):

lim
m→∞

‖T (m) − T‖ = 0. (2.7)

Condition (2.7) can be satisfied by approximating the kernel g(x, z) of T ,

g(x, z) :=

∫ b

a

k(s, x)k(s, z)ds, (2.8)

with the degenerate kernel

gm(x, z) :=
m∑
i=1

wik(si, x)k(si, z), (2.9)

where {si}mi=1 are the collocation points, and wi,1 ≤ i ≤ m, are the quadrature weights.

Quadrature formulas (2.9) can be found in6. Let K∗m be a finite-dimensional approximation

of K∗ such that

lim
m→∞

‖K∗ −K∗m‖ = 0. (2.10)

One may choose K∗m = PmK
∗, where Pm is a sequence of orthogonal projection operators

on L2[a, b] such that Pmx→ x as m→∞, ∀x ∈ L2[a, b]. We propose the following iterative

scheme:

uδn,mn = quδn−1,mn−1
+ (1− q)T−1

an,mnK
∗
mnfδ, uδ0,m0

= 0, (2.11)

where an := α0q
n, α0 > 0, q ∈ (0, 1), ‖fδ − f‖ ≤ δ, Ta,m is defined in (2.6) with T (m)

satisfying condition (2.7), K∗m is chosen so that condition(2.10) holds, and mn in (2.11) is a

parameter which measures the accuracy of the finite-dimensional approximations T (mn) and

K∗mn at the n−th iteration. We propose a rule for choosing the parameters mn so that mn

depend on the parameters an. This rule yields a non-decreasing sequence mn. Since mn is

a non-decreasing sequence, we may start to compute T−1
an,mnK

∗
mnfδ using a small size linear

algebraic system

Tan,mng
δ = K∗mnfδ, (2.12)
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and increase the value of mn only if Gn,mn > Cδε, C > 2, ε ∈ (0, 1), where Gn,mn is defined

below, in (2.74). Parameters mn may take large values for n ≤ nδ, where nδ is defined

below, in (2.73). The choice of the parameters mi, i = 1, 2, . . ., in (2.11), which guarantees

convergence of the iterative process (2.11), is given in Section 2. We prove in Section 3

that the discrepancy-type principle, proposed in Chapter 1, with T (m) and K∗m in place of

T and K∗ respectively, guarantees the convergence of the approximate solution uδn,mn to the

minimal norm solution of equation (2.1). Throughout this Chapter we assume that

y ⊥ N (K), (2.13)

and

Ky = f, (2.14)

where N (K) is the nullspace of K.

Throughout this Chapter we denote by K∗m the operator approximating K∗, and define

Ta := T + aI, T := K∗K, (2.15)

where a = const > 0 and I is the identity operator.

The main result of this Chapter is Theorem 2.3.7 in Section 3.

2.2 Convergence of the iterative scheme

In this section we derive sufficient conditions on the parameters mi, i = 1, 2, . . . , for the

iterative process (2.11) to converge to the minimal-norm solution y. The estimates of the

following Lemma are known (see, e.g.,30), so their proofs are omitted.

Lemma 2.2.1. One has:

‖T−1
a ‖ ≤

1

a
(2.16)

and

‖T−1
a K∗‖ ≤ 1

2
√
a
, (2.17)

for any positive constant a.
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While Ta is boundedly invertible for every a > 0, Ta,m may be not invertible. The

following lemma provides sufficient conditions for Ta,m to be boundedly invertible.

Lemma 2.2.2. Suppose that

‖T − T (m)‖ < εa, a = const > 0, (2.18)

where ε ∈ (0, 1/2]. Then the following estimates hold

‖T−1
a,m‖ ≤

2

a
, (2.19)

‖T−1
a,mK

∗‖ ≤ 1√
a

(2.20)

and

‖T−1
a,mK

∗K‖ ≤ 2. (2.21)

Proof. Write

Ta,m = Ta
[
I + T−1

a (T (m) − T )
]
. (2.22)

It follows from (2.18) and (2.16) that

‖T−1
a (T (m) − T )‖ ≤ ‖T−1

a ‖‖(T (m) − T )‖ ≤ ε < 1. (2.23)

Therefore the operator I + T−1
a (T (m) − T ) is boundedly invertible. Since Ta is invertible, it

follows from (2.22) and (2.23) that Ta,m is invertible and

T−1
a,m =

[
I + T−1

a (T (m) − T )
]−1

T−1
a . (2.24)

Let us estimate the norm ‖T−1
a,m‖. We have 0 < ε ≤ 1/2, so∥∥∥[I + T−1

a (T (m) − T )
]−1
∥∥∥ ≤ 1

1− ‖T−1
a (T (m) − T )‖

≤ 1

1− ε
≤ 2. (2.25)

This, together with (2.16) and (2.24), yields

‖T−1
a,m‖ ≤

2

a
. (2.26)
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Thus, estimate (2.19) is proved. To prove estimate (2.20), write

T−1
a,mK

∗ =
[
I + T−1

a (T (m) − T )
]−1

T−1
a K∗.

Using estimates (2.25) and (2.17), one gets

‖T−1
a,mK

∗‖ ≤ 1√
a

which proves estimate (2.20). Let us derive estimate (2.21). One has:

T−1
a,mK

∗K =
[
I + T−1

a (T (m) − T )
]−1

T−1
a K∗K.

Using the estimates ‖T−1
a T‖ ≤ 1 and (2.25), one obtains

‖T−1
a,mT‖ ≤

1

1− ε
≤ 2.

Lemma 2.2.2 is proved.

Lemma 2.2.3. Let g(x) be a continuous function on (0,∞), c > 0 and q ∈ (0, 1) be

constants. If

lim
x→0+

g(x) = g(0) := g0, (2.27)

then

lim
n→∞

n−1∑
j=0

(
qn−j−1 − qn−j

)
g(cqj+1) = g0. (2.28)

Proof. Let

w
(n)
j := qn−j − qn+1−j, w

(n)
j > 0, (2.29)

and

Fl(n) :=
l−1∑
j=1

w
(n)
j g(cqj). (2.30)

Then

|Fn+1(n)− g0| ≤ |Fl(n)|+

∣∣∣∣∣
n∑
j=l

w
(n)
j g(cqj)− g0

∣∣∣∣∣ .
Take ε > 0 arbitrary small. For sufficiently large l(ε) one can choose n(ε), such that

|Fl(ε)(n)| ≤ ε

2
, ∀n > n(ε),
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because limn→∞ q
n = 0. Fix l = l(ε) such that |g(cqj)− g0| ≤ ε

2
for j > l(ε). This is possible

because of (2.27). One has

|Fl(ε)(n)| ≤ ε

2
, n > n(ε)

and ∣∣∣∣∣∣
n∑

j=l(ε)

w
(n)
j g(cqj)− g0

∣∣∣∣∣∣ ≤
n∑

j=l(ε)

w
(n)
j |g(cqj)− g0|+ |

n∑
j=l(ε)

w
(n)
j − 1||g0|

≤ ε

2

n∑
j=l(ε)

w
(n)
j + qn−l(ε)|g0|

≤ ε

2
+ |g0|qn−l(ε) ≤ ε,

if n is sufficiently large. Here we have used the relation

n∑
j=l

w
(n)
j = 1− qn+1−l.

Since ε > 0 is arbitrarily small, relation (2.28) follows.

Lemma 2.2.3 is proved.

Lemma 2.2.4. Let

un = qun−1 + (1− q)T−1
an K

∗f, u0 = 0, an := α0q
n, q ∈ (0, 1). (2.31)

Then

‖un − y‖ ≤ qn‖y‖+
n−1∑
j=0

(
qn−j−1 − qn−j

)
aj+1‖T−1

aj+1
y‖, ∀n ≥ 1, (2.32)

and

‖un − y‖ → 0 as n→∞. (2.33)

Proof. By induction, we obtain

un =
n−1∑
j=0

w
(n)
j T−1

aj+1
K∗f, (2.34)

where w
(n)
j = qn−j−1 − qn−j. This, together with the identities Ky = f ,

T−1
a K∗K = T−1

a (K∗K + aI − aI) = I − aT−1
a (2.35)
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and
n∑
j=0

w
(n)
j = 1− qn, (2.36)

yield

un =
n−1∑
j=0

w
(n)
j T−1

aj+1
(Taj+1

− aj+1I)y

=
n−1∑
j=0

w
(n)
j y −

n−1∑
j=0

w
(n)
j aj+1T

−1
aj+1

y

= y − qny −
n−1∑
j=0

w
(n)
j aj+1T

−1
aj+1

y.

Thus, estimate (2.32) follows. To prove (2.33), we apply Lemma 2.2.3 with g(a) := a‖T−1
a y‖.

Since y ⊥ N (K), it follows from the spectral theorem that

lim
a→0

g2(a) = lim
a→0

∫ ∞
0

a2

(a+ s)2
d〈Esy, y〉 = ‖PN (K)y‖2 = 0,

where Es is the resolution of the identity corresponding to K∗K, and P is the orthogonal

projector onto N (K). Thus, by Lemma 2.2.3, (2.33) follows.

Lemma 1.2.2 is proved.

Lemma 2.2.5. Let un and an = α0q
n, α0 > 0, q ∈ (0, 1) be defined in (2.31), Ta,m be

defined in (2.6), mi be chosen so that

‖T − T (mi)‖ ≤ ai
2
, 1 ≤ i ≤ n, (2.37)

and

un,mn = qun−1,mn−1 + (1− q)T−1
an,mnK

∗
mnf, u0,m0 = 0. (2.38)

Then

‖un,mn − un‖ ≤ qn‖y‖+ ‖y − un‖+ 2
n−1∑
j=0

w
(n)
j+1

‖(K∗mj+1
K − T (mj+1))y‖
aj+1

+ 2
n−1∑
j=0

w
(n)
j+1aj+1‖T−1

aj+1
y‖,

(2.39)

where w
(n)
j are defined in (2.29).
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Proof. One has w
(n)
i > 0, 0 < q < 1, and

n−1∑
j=0

w
(n)
j+1 = 1− qn → 1, as n→∞.

Therefore one may use w
(n)
j+1 for large n as quadrature weights. To prove inequality (2.39),

the following lemma is needed:

Lemma 2.2.6. Let un,mn be defined in (2.38). Then

un,mn =
n−1∑
j=0

w
(n)
j+1T

−1
aj+1,mj+1

K∗mj+1
f, n > 0, (2.40)

where wj are defined in (2.29).

Proof. Let us prove equation (2.40) by induction. For n = 1 we get

u1,m1 = qu0 + (1− q)T−1
a1,m1

K∗m1
f = (1− q)T−1

a1,m1
K∗m1

f

= w
(1)
1 T−1

a1,m1
K∗m1

f,

so equation (2.40) holds. Suppose equation (2.40) holds for 1 ≤ n ≤ k. Then

uk+1,mk+1
= quk,mk + (1− q)T−1

ak+1,mk+1
K∗mk+1

f

= q
k−1∑
j=0

w
(k)
j+1T

−1
aj+1,mj+1

K∗mj+1
f + (1− q)T−1

ak+1,mk+1
K∗mk+1

f

=
k−1∑
j=0

w
(k+1)
j+1 T−1

aj+1,mj+1
K∗mj+1

f + w
(k+1)
k+1 T−1

ak+1,mk+1
K∗mk+1

f

=
k∑
j=0

w
(k+1)
j+1 T−1

aj+1,mj+1
K∗mj+1

f.

(2.41)

Here we have used the identities qw
(n)
j = w

(n+1)
j and 1 − q = w

(j)
j . Equation (2.40) is

proved.

By Lemma 2.2.6, one gets:

un,mn − un =
n−1∑
j=0

w
(n)
j+1T

−1
aj+1,mj+1

K∗mj+1
Ky − un

=
n−1∑
j=0

w
(n)
j+1T

−1
aj+1,mj+1

(K∗mj+1
K − T (mj+1) + T (mj+1))y − un

:= I1 + I2,
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where

I1 :=
n−1∑
j=0

w
(n)
j+1T

−1
aj+1,mj+1

(K∗mj+1
K − T (mj+1) + T (mj+1))y,

and

I2 := −un.

We get

I1 =
n−1∑
j=0

w
(n)
j+1

[
T−1
aj+1,mj+1

(K∗mj+1
K − T (mj+1))y + T−1

aj+1,mj+1
T (mj+1)y

]
=

n−1∑
j=0

w
(n)
j+1

[
T−1
aj+1,mj+1

(K∗mj+1
K − T (mj+1))y + y − aj+1T

−1
aj+1,mj+1

y
]

=
n−1∑
j=0

w
(n)
j+1

[
T−1
aj+1,mj+1

(K∗mj+1
K − T (mj+1))y − aj+1T

−1
aj+1,mj+1

y
]

+ y − qny

=
n−1∑
j=0

w
(n)
j+1T

−1
aj+1,mj+1

(K∗mj+1
K − T (mj+1))y

−
n−1∑
j=0

w
(n)
j+1aj+1(T

−1
aj+1,mj+1

− T−1
aj+1

+ T−1
aj+1

)y + y − qny

= y − qny +
n−1∑
j=0

w
(n)
j+1T

−1
aj+1,mj+1

(K∗mj+1
K − T (mj+1))y

−
n−1∑
j=0

w
(n)
j+1

[
aj+1T

−1
aj+1,mj+1

(T − T (mj+1))T−1
aj+1

y + aj+1T
−1
aj+1

y
]
.

Therefore,

I1 + I2 = y − un − qny +
n−1∑
j=0

w
(n)
j+1T

−1
aj+1,mj+1

(K∗mj+1
K − T (mj+1))y

−
n−1∑
j=0

w
(n)
j+1

[
aj+1T

−1
aj+1

+ aj+1T
−1
aj+1,mj+1

(T − T (mj+1))T−1
aj+1

]
y.

(2.42)
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Applying the estimates ‖T (mi) − T‖ ≤ ai
2

and ‖T−1
ai,mi
‖ ≤ 2

ai
in (2.43), one gets

‖un,m − un‖ ≤ qn‖y‖+ ‖y − un‖+
n−1∑
j=0

w
(n)
j+1aj+1‖T−1

aj+1
y‖

+
n−1∑
j=0

w
(n)
j+1‖T−1

aj+1,mj+1
(K∗mj+1

K − T (mj+1))y‖

+
n−1∑
j=0

w
(n)
j+1‖aj+1T

−1
aj+1,mj+1

(T − T (mj+1))T−1
aj+1

y‖

≤ qn‖y‖+ ‖y − un‖+
n−1∑
j=0

w
(n)
j+1aj+1‖T−1

aj+1
y‖

+
n−1∑
j=0

w
(n)
j+1‖T−1

aj+1,mj+1
‖‖(K∗mj+1

K − T (mj+1))y‖

+
n−1∑
j=0

w
(n)
j+1aj+1‖T−1

aj+1,mj+1
‖‖T − T (mj+1)‖‖T−1

aj+1
y‖

≤ qn‖y‖+ ‖y − un‖+
n−1∑
j=0

w
(n)
j+1aj+1‖T−1

aj+1
y‖

+
n−1∑
j=0

w
(n)
j+1

2

aj+1

‖(K∗mj+1
K − T (mj+1))y‖

+
n−1∑
j=0

w
(n)
j+1aj+1‖T−1

aj+1
y‖.

(2.43)

Lemma 2.2.5 is proved.

Lemma 2.2.7. Under the assumptions of Lemma 2.2.5 if

‖K∗mn −K
∗‖ ≤

√
an
2

(2.44)

then

‖un,mn − uδn,mn‖ ≤
√
q

1− q3/2

2δ
√
q
√
an
. (2.45)

Proof. We have

un,mn − uδn,mn = q(un−1,mn−1 − uδn−1,mn−1
) + (1− q)T−1

an,mnK
∗
mn(f − fδ)

= q(un−1,mn−1 − uδn−1,mn−1
) + (1− q)T−1

an,mn(K∗mn −K
∗)(f − fδ)

+ (1− q)T−1
an,mnK

∗(f − fδ).

(2.46)
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Since ‖f − fδ‖ ≤ δ, ‖T−1
an,mnK

∗‖ ≤ 1√
an

and ‖K∗mn −K
∗‖ ≤

√
an
2

, it follows that

‖un,mn − uδn,mn‖ ≤ q‖un−1,mn−1 − uδn−1,mn−1
‖+ 2

δ
√
an
. (2.47)

Let us prove estimate (2.45) by induction. Define Hn := ‖un,mn −uδn,mn‖ and hn := 2 δ√
q
√
an
.

For n = 0 we get H0 = 0 <
√
q

1−q3/2h0. Thus (2.45) holds. Suppose estimate (2.45) holds for

0 ≤ n ≤ k. Then

Hk+1 ≤ qHk + hk ≤ q

√
q

1− q3/2
hk + hk =

(
q

√
q

1− q3/2
+ 1

)
hk

=
1

1− q3/2

hk
hk+1

hk+1 ≤
√
q

1− q3/2
hk+1.

(2.48)

Here we have used the relation

hk
hk+1

=
2 δ√

q
√
ak

2 δ√
q
√
ak+1

=

√
ak+1√
ak

=

√
qak√
ak

=
√
q. (2.49)

Lemma 2.2.7 is proved.

The following theorem gives the convergence of the iterative scheme (2.11).

Theorem 2.2.8. Let uδn,mn be defined in (2.11), mi be chosen so that

‖T − T (mi)‖ ≤ ai/2, (2.50)

‖T (mi) −K∗miK‖ ≤ a2
i , (2.51)

‖K∗mi −K
∗‖ ≤

√
ai/2, (2.52)

and nδ satisfies the following relations:

lim
δ→0

nδ =∞, lim
δ→0

δ
√
anδ

= 0. (2.53)

Then

lim
δ→0
‖uδnδ,mnδ − y‖ = 0. (2.54)
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Proof. We have

‖y − uδn,mn‖ ≤ ‖y − un‖+ ‖un − un,mn‖+ ‖un,mn − uδn,mn‖. (2.55)

From (2.39) and estimate (2.51) we get

‖un,mn − un‖ ≤ qn‖y‖+ ‖y − un‖+ 2
n−1∑
j=0

w
(n)
j+1aj+1‖y‖+ 2

n−1∑
j=0

w
(n)
j+1aj+1‖T−1

aj+1
y‖. (2.56)

This, together with Lemma 2.2.7, implies

‖y − uδn,mn‖ ≤ 2

(
J(n) +

δ

(1− q3/2)
√
an

)
, (2.57)

where

J(n) :=
qn

2
‖y‖+ ‖y − un‖+

n−1∑
j=0

w
(n)
j+1aj+1‖y‖+

n−1∑
j=0

w
(n)
j+1aj+1‖T−1

aj+1
y‖, (2.58)

and w
(n)
j are defined in (2.29). Since y ⊥ N (A), it follows that

lim
a→0

a2‖T−1
a y‖2 =

∫ ∞
0

a2

(a+ s)2
d〈Esy, y〉 = ‖PN (K)y‖2 = 0,

where Es is the resolution of the identity of the selfadjoint operator T , and PN (K) is the or-

thogonal projector onto the nullspace N (K). Applying Lemma 2.2.3 with g(a) := a‖T−1
a y‖,

one gets

lim
n→∞

n−1∑
j=0

w
(n)
j+1aj+1‖T−1

aj+1
y‖ = 0. (2.59)

Similarly, letting g(a) := a‖y‖ in Lemma 2.2.3, we get

lim
n→∞

2
n−1∑
j=0

w
(n)
j+1aj+1‖y‖ = 0. (2.60)

Relations (2.59) and (2.60), together with Lemma 1.2.2, imply

lim
n→∞

J(n) = 0. (2.61)

If we stop the iteration at n = nδ such that assumptions (2.53) hold then limδ→0 J(nδ) = 0

and limδ→0
δ√
anδ

= 0. Therefore, relation (2.54) is proved. This proves Theorem 2.2.8.
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2.3 A discrepancy-type principle for DSM

In this section we propose an adaptive stopping rule for the iterative scheme (2.11). Through-

out this section the parameters mi, i = 1, 2, . . . , are chosen so that conditions (2.50)-(2.52)

hold,

‖Q−Q(mi)‖ ≤ εai, ε ∈ (0, 1/2], ai = α0q
i, α0 = const > 0, (2.62)

where

Q := KK∗, (2.63)

and Q(m) is a finite-dimensional approximation of Q. One may satisfy condition (2.62) by

approximating the kernel q(x, s) of Q,

q(x, s) =

∫ b

a

k(x, z)k(s, z)dz, (2.64)

with

qm(x, s) =
m∑
i=1

γik(x, zi)k(s, zi), (2.65)

where γi, i = 1, 2, . . . ,m, are some quadrature weights and zi are the collocation points.

Lemma 2.3.1.

‖Q−1
a ‖ ≤

1

a
(2.66)

and

‖Q−1
a K‖ ≤ 1

2
√
a
, (2.67)

for any positive constant a.

Proof. Since Q = Q∗ ≥ 0, one uses the spectral theorem and gets:

‖Q−1
a ‖ = sup

s>0

1

s+ a
≤ 1

a
.

Inequality (2.67) follows from the identity

Q−1
a K = KT−1

a , T := K∗K, Ta := T + aI, (2.68)
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and the estimate

‖KT−1
a ‖ = ‖UT 1/2T−1

a ‖ ≤ ‖T 1/2T−1
a ‖ = sup

s≥0

s1/2

a+ s
≤ 1

2
√
a
, (2.69)

where the polar decomposition was used: K = UT 1/2, U is a partial isometry, ‖U‖ = 1.

Lemma 2.3.1 is proved.

Lemma 2.3.2. Suppose m is chosen so that

‖Q−Q(m)‖ ≤ εa, ε ∈ (0, 1/2], a > 0. (2.70)

Then the following estimates hold:

‖Q−1
a,m‖ ≤

2

a
, (2.71)

‖Q−1
a,mK‖ ≤

1√
a
. (2.72)

Proof of Lemma 2.3.2 is similar to the proof of Lemma 2.2.2 and is omitted.

We propose the following stopping rule:

Choose nδ so that the following inequalities hold

Gnδ,mnδ
≤ Cδε < Gn,mn , 1 ≤ n < nδ, C > 2, ε ∈ (0, 1), (2.73)

where

Gn,mn = qGn−1,mn−1 + (1− q)an‖Q−1
an,mnfδ‖,

G0,m0 = 0, G1,m1 ≥ Cδε, an = qan−1, a0 = α0 = const > 0,
(2.74)

and

Qa,m := Q(m) + aI. (2.75)

The discrepancy-type principle (2.73) is derived from the following discrepancy principle for

DSM proposed in28,33: ∫ tδ

0

e−(tδ−s)a(s)‖Q−1
a(s)fδ‖ds = Cδ, C > 1, (2.76)
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where tδ is the stopping time, and we assume that

a(t) > 0, a(t)↘ 0.

The derivation of the stopping rule (2.73) with Q(m) = Q is given in Chapter 1. Let us prove

that there exists an integer nδ such that inequalities (2.73) hold. To prove the existence of

such an integer, we derive some properties of the sequence Gn,mn defined in (2.74). Using

Lemma 2.3.2, the relation Ky = f , and the assumption ‖fδ − f‖ ≤ δ, we get

an‖Q−1
an,mnfδ‖ ≤ an‖Q−1

an,mn(fδ − f)‖+ an‖Q−1
an,mnf‖

≤ 2δ + 2
√
an‖y‖,

(2.77)

where estimates (2.71) and (2.72) were used. This, together with (2.74), yield

Gn,mn ≤ qGn−1,mn−1 + (1− q)2δ + (1− q)2
√
an‖y‖, (2.78)

so

Gn,mn − 2δ ≤ q(Gn−1,mn−1 − 2δ) + (1− q)2√q√an−1‖y‖, (2.79)

where the relation an = qan−1, a0 = α0 = const > 0, was used. Define

Ψn := Gn,mn − 2δ, (2.80)

where Gn,m is defined in (2.74), and let

ψn := (1− q)2
√
an‖y‖. (2.81)

Then

Ψn ≤ qΨn−1 +
√
qψn−1. (2.82)

Lemma 2.3.3. If (2.80) and (2.81) hold, then

Ψn ≤
1

1−√q
ψn, n ≥ 0. (2.83)
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Proof. Let us prove this lemma by induction. For n = 0 we get

Ψ0 = −2δ ≤ 1

1−√q
ψ0.

Suppose estimate (2.83) is true for 0 ≤ n ≤ k. Then

Ψk+1 ≤ qΨk +
√
qψk ≤

q

1−√q
ψk +

√
qψk =

√
q

1−√q
ψk

=

√
q

1−√q
ψk
ψk+1

ψk+1 ≤
√
q

1−√q
1
√
q
ψk+1 =

1

1−√q
ψk+1.

(2.84)

Here we have used the relation

ψk
ψk+1

=
(1− q)2√ak‖y‖

(1− q)2√ak+1‖y‖
=

√
ak√
ak+1

=

√
ak√
qak

=
1
√
q
. (2.85)

Thus, Lemma 2.3.3 is proved.

By definitions (2.80), (2.81), and Lemma 2.3.3, we get the estimate

Gn,mn ≤ 2δ +
1

1−√q
(1− q)2

√
an‖y‖, n ≥ 0, (2.86)

so

lim sup
n→∞

Gn,mn ≤ 2δ (2.87)

because limn→∞ an = 0.

Since G1,m1 ≥ Cδε, C > 2, ε ∈ (0, 1) and lim supn→∞Gn,mn ≤ 2δ, it follows that there exists

an integer nδ such that inequalities (2.73) hold. The uniqueness of the integer nδ follows

from its definition.

Lemma 2.3.4. If nδ is chosen by the rule (2.73), then

δ
√
anδ
→ 0 as δ → 0. (2.88)

Proof. From the stopping rule (2.73) and estimate (2.86) we get

Cδε < Gnδ−1,mnδ−1 ≤ 2δ +
1

1−√q
(1− q)2√anδ−1‖y‖. (2.89)
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This implies
1

√
anδ−1

≤ 1

(1−√q)(C − 2)δε
(1− q)2‖y‖, (2.90)

so
δ
√
anδ
≤ δ1−ε
√
q(1−√q)(C − 2)

(1− q)2‖y‖ → 0 as δ → 0. (2.91)

Lemma 2.3.4 is proved.

Lemma 2.3.5. If nδ is chosen by the rule (2.73), then

lim
δ→0

nδ =∞. (2.92)

Proof. From the stopping rule (2.73) we get

qCδε + (1− q)anδ‖Q−1
anδ ,mnδ

fδ‖ < qGnδ−1,mnδ−1 + (1− q)anδ‖Q−1
anδ ,mnδ

fδ‖

= Gnδ,mnδ
< Cδε.

(2.93)

This implies

0 ≤ anδ‖Q−1
anδ ,mnδ

fδ‖ < Cδε → 0 as δ → 0. (2.94)

Note that

0 ≤ anδ‖Q−1
anδ
fδ‖ ≤ anδ‖(Q−1

anδ
−Q−1

anδ ,mnδ
)fδ‖+ anδ‖Q−1

anδ ,mnδ
fδ‖

= anδ‖Q−1
anδ

(Qanδ ,mnδ
−Qanδ

)Q−1
anδ ,mnδ

fδ‖+ anδ‖Q−1
anδ ,mnδ

fδ‖

= anδ‖Q−1
anδ

(Q(mnδ ) −Q)Q−1
anδ ,mnδ

fδ‖+ anδ‖Q−1
anδ ,mnδ

fδ‖

≤ anδ‖Q−1
nδ
‖‖Q(mnδ ) −Q‖‖Q−1

anδ ,mnδ
fδ‖+ anδ‖Q−1

anδ ,mnδ
fδ‖

≤ anδ
2

anδ
εanδ‖Q−1

anδ ,mnδ
fδ‖+ anδ‖Q−1

anδ ,mnδ
fδ‖

≤ 2anδ‖Q−1
anδ ,mnδ

fδ‖,

(2.95)

where estimates (2.62), (2.71) and 0 < ε < 1
2

were used. This, together with (2.94), yield

lim
δ→0

anδ‖Q−1
anδ
fδ‖ = 0. (2.96)

To prove relation (2.92) the following lemma is needed:
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Lemma 2.3.6. Suppose condition ‖f − fδ‖ ≤ δ and relation (2.96) hold. Then

lim
δ→0

anδ = 0. (2.97)

Proof. If f 6= 0 then there exists a λ0 > 0 such that

Fλ0f 6= 0, 〈Fλ0f, f〉 := ξ > 0, (2.98)

where ξ is a constant which does not depend on δ, and Fs is the resolution of the identity

corresponding to the operator Q := KK∗. Let

h(δ, α) := α2‖Q−1
α fδ‖2, Q := KK∗, Qa := aI +Q.

For a fixed number c1 > 0 we obtain

h(δ, c1) = c21‖Qc1fδ‖2 =

∫ ∞
0

c21
(c1 + s)2

d〈Fsfδ, fδ〉 ≥
∫ λ0

0

c21
(c1 + s)2

d〈Fsfδ, fδ〉

≥ c21
(c1 + λ0)2

∫ λ0

0

d〈Fsfδ, fδ〉 =
c21‖Fλ0fδ‖2

(c1 + λ0)2
, δ > 0.

(2.99)

Since Fλ0 is a continuous operator, and ‖f − fδ‖ < δ, it follows from (2.98) that

lim
δ→0
〈Fλ0fδ, fδ〉 = 〈Fλ0f, f〉 > 0. (2.100)

Therefore, for the fixed number c1 > 0 we get

h(δ, c1) ≥ c2 > 0 (2.101)

for all sufficiently small δ > 0, where c2 is a constant which does not depend on δ. For

example one may take c2 = ξ
2

provided that (2.98) holds. It follows from relation (2.96) that

lim
δ→0

h(δ, anδ) = 0. (2.102)

Suppose limδ→0 anδ 6= 0. Then there exists a subsequence δj → 0 such that

α0anδj ≥ c1 > 0, (2.103)
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where c1 is a constant. By (2.101) we get

h(δj, anδj ) > c2 > 0, δj → 0 as j →∞. (2.104)

This contradicts relation (2.102). Thus, limδ→0 anδ = 0.

Lemma 2.3.6 is proved.

Applying Lemma 2.3.6 with anδ = α0q
nδ , q ∈ (0, 1), α0 > 0, one gets relation (2.92).

Lemma 2.3.5 is proved.

We formulate the main result of this chapter in the following theorem:

Theorem 2.3.7. Suppose mi are chosen so that conditions (2.50)-(2.52) and (2.62) hold,

and nδ is chosen by rule (2.73). Then

lim
δ→0
‖uδnδ,mnδ − y‖ = 0. (2.105)

Proof. From (2.57) we get the estimate

‖y − uδnδ,mnδ‖ ≤ 2

(
J(nδ) +

δ

(1− q3/2)
√
anδ

)
, (2.106)

where J(n) is defined in (2.58). It is proved in Theorem 2.2.8 that limn→∞ J(n) = 0. By

Lemma 2.3.5, one gets nδ → ∞ as δ → 0, so limδ→0 J(nδ) = 0. From Lemma 2.3.4 we get

limδ→0
δ√
anδ

= 0. Thus,

lim
δ→0
‖y − uδnδ,mnδ‖ = 0.

Theorem 2.3.7 is proved.

2.4 Numerical experiments

Consider the following Fredholm integral equation:

Ku(s) :=

∫ 1

0

e−stu(t)dt = f(s), s ∈ [0, 1]. (2.107)

The function u(t) = t is the solution to equation (2.107) corresponding to f(s) = 1−(s+1)e−s

s2
.

We perturb the exact data f(s) by a random noise δ, δ > 0, and get the noisy data
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fδ(s) = f(s) + δ. The compound Simpson’s rule (see6) with the step size 1
2m

is used to

approximate the kernel g(x, z), defined in (2.8). This yields

T (m)u :=
2m+1∑
j=1

β
(m)
j k(sj, x)

∫ 1

0

k(sj, z)u(z)dz,

where k(s, t) := e−st, β
(m)
j are the compound Simpson’s quadrature weights: β

(m)
1 = β

(m)
2m+1 =

1/3
2m
, and for j = 2, 3, . . . , 2m

β
(m)
j =

{
4/3
2m
, j is even;

2/3
2m
, otherwise,

(2.108)

and sj are the collocation points: sj = j−1
2m

, j = 1, 2, . . . , 2m + 1.

Let

γm := ‖(T − T (m))u‖,

h(s, x, z) := k(s, x)k(s, z)

and

c1 :=
1

180
max
x,z∈[0,1]

max
s∈[0,1]

∣∣∣∣∂4h(s, x, z)

∂s4

∣∣∣∣ =
16

180
. (2.109)

Then

γ2
m =

∫ 1

0

∣∣∣∣∣
∫ 1

0

(∫ 1

0

h(s, x, z)ds−
2m+1∑
j=1

β
(m)
j h(sj, x, z)

)
u(z)dz

∣∣∣∣∣
2

dx

≤
∫ 1

0

∣∣∣∣∫ 1

0

c1
24m

u(z)dz

∣∣∣∣2 dx ≤ ( c1
24m

)2

‖u‖2.

(2.110)

The upper bound c1 for the error of the compound Simpson’s quadrature can be found in6.

Thus,

‖T − T (m)‖ ≤ c1
24m
→ 0 as m→∞.

Similarly, we approximate the kernel q(x, s) defined in (2.64) by the Simpson’s rule with the

step size 1
2m

and get

‖Q−Q(m)‖ ≤ c1
24m
→ 0 as m→∞. (2.111)
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Let us partition the interval [0, 1] into 2m180, m > 0, equisized subintervals Dj, where

Dj = [dj−1, dj), j = 1, 2, . . . , 2m. Then |dj − dj−1| = 1
2m180

, j = 1, 2, . . . , 2m, and using the

Taylor expansion of est about s = dj−1, one gets

|e−st − e−dj−1t[1− t(s− dj−1)]| ≤
∞∑
l=2

(s− dj)l

l!
≤ (s− dj−1)

2

∞∑
j=0

(s− dj−1)
j

≤ 1

22m1802

∞∑
j=0

(
1

2m180

)j
=

1

22m1802

2m180

2m180− 1

=
1

2m180(2m180− 1)
≤ 1

22m180
, ∀s ∈ Dj, t ∈ [0, 1].

(2.112)

This allows us to define

K∗mu(t) =
2m∑
j=1

∫
Dj

e−dj−1t[1− t(s− dj−1)]u(s)ds. (2.113)

This, together with condition (2.112), yields

‖(K∗ −K∗m)u‖2 =

∫ 1

0

∣∣∣∣∣
2m∑
j=1

∫
Dj

(
e−st − e−dj−1t[1− t(s− dj−1)]

)
u(t)dt

∣∣∣∣∣
2

ds

≤ 1

22m1802

∫ 1

0

∣∣∣∣∣
2m∑
j=1

∫
Dj

|u(t)|dt

∣∣∣∣∣
2

ds ≤ 1

24m1802
‖u‖2.

(2.114)

Thus,

‖K∗ −K∗m‖ ≤
1

22m180
→ 0 as m→∞. (2.115)

Moreover

‖(T (m) −K∗mK)u‖ ≤ ‖(T (m) − T )u‖+ ‖(T −K∗mK)u‖

≤ c1
24m
‖u‖+ ‖K∗ −K∗m‖‖Ku‖

≤ 16

24m180
‖u‖+

1

22m180
‖u‖ ≤ 17

22m180
‖u‖.

(2.116)

Here we have used the constant c1 = 16/180 and the estimate |k(s, t)| ≤ maxs,t∈[0,1] |e−st| =

1. Thus,

‖T (m) −K∗mK‖ ≤
17

22m180
. (2.117)
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To satisfy condition (2.50) the parameter mi may be chosen by solving the equation

c1
24mi

=
ai
2
. (2.118)

To get mi satisfying condition (2.51), one solves the equation

17

22mi180
= ηa2

i , (2.119)

where η = const ≥ 10. Here we have used the estimate ‖T (mi) −K∗miK‖ ≤ ηa2
i instead of

estimate (2.51). This estimate will not change our main results. The reason of using the

constant η ≥ 10 than of 1 in (2.119) is to control the decaying rate of the parameter a2
i so

that the growth rate of the parameter mi in (2.119) can be made as slow as we wish. To

obtain the parameter mi satisfying condition (2.52), one solves

c1
22mi

=

√
ai
2
. (2.120)

Hence to satisfy all the conditions in Theorem 2.3.7, one may choose mi such that

mi := max

{⌈
ln(2c1/ai)

4 ln 2

⌉
,

⌈
ln( 17

180(ηa2
i )

)

2 ln 2

⌉
,

⌈
ln(2c1/

√
ai)

2 ln 2

⌉}
, (2.121)

where dxe is the smallest integer not less than x, c1 is defined in (2.109), ai = α0q
i, α0 >

0, q ∈ (0, 1). In all the experiments the parameter η in (2.121) is equal to 10 which is

sufficient for the given problem. To obtain the approximate solution to problem (2.107), we

consider a finite-dimensional approximate solution

uδn,mn(x) := Pmu(x) =
2m∑
j=1

ζ
(mn,δ)
j Φj(x), (2.122)

Pm : L2[0, 1]→ Lm,

Lm = span{Φ1,Φ2, . . . ,Φ2m}, (2.123)

where {Φi} are the Haar basis functions (see35): Φ1(x) = 1 ∀x ∈ [0, 1], and for j =

2l−1 + p, l = 1, 2, . . . ,m, p = 1, 2, . . . , 2l−1

Φj(x) =


2(l−1)/2, x ∈ [ p−1

2l−1 ,
p−1/2
2l−1 );

−2(l−1)/2, x ∈ [p−1/2
2l−1 ,

p
2l−1 );

0, otherwise.

(2.124)
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Let us formulate an algorithm for obtaining the approximate solution to (2.107) using

iterative scheme (2.11), where the discrepancy-type principle for DSM defined in Section 3

is used as the stopping rule.

(1) Given data: K, fδ, δ;

(2) initialization : α0 > 0, η ≥ 10, q ∈ (0, 1), C > 2, uδ0,m0
= 0, G0 = 0, n = 1;

(3) iterate, starting with n = 1, and stop until the condition (2.133) below holds,

(a) an = α0q
n,

(b) choose mn = max
{⌈

ln(2c1/an)
4 ln 2

⌉
,
⌈

ln(17/(180ηa2
n))

2 ln 2

⌉
,
⌈

ln(2c1/
√
an)

2 ln 2

⌉}
, where c1 is de-

fined in (2.109), and an are defined in (a),

(c) construct the vectors vδ and gδ:

vδi := 〈K∗mnfδ,Φi〉, i = 1, 2, . . . , 2mn , (2.125)

gδi = 〈fδ,Φi〉 i = 1, 2, . . . , 2mn , (2.126)

(d) construct the matrices Amn and Bmn :

(Amn)ij : =
2mn+1∑
l=1

β
(mn)
l 〈k(sl, ·),Φi〉〈k(sl, ·)Φj〉,

i, j = 1, 2, 3, . . . , 2mn ,

(2.127)

(Bmn)ij : =
2mn+1∑
l=1

η
(mn)
l 〈k(·, sl),Φi〉〈k(·, sl)Φj〉,

i, j = 1, 2, 3, . . . , 2mn ,

(2.128)

where β
(mn)
i and η

(mn)
l are the quadrature weights and sl are the collocation

points,

(e) solve the following two linear algebraic systems:

(anI + Amn)ζ(mn,δ) = vδ, (2.129)
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where (ζ(mn,δ))i = ζ
(mn,δ)
i and

(anI +Bmn)γ(mn,δ) = gδ, (2.130)

where (γ(mn,δ))i = γ
(mn,δ)
i ,

(f) update the coefficient 〈ζ(mn,δ),Φi〉 of the approximate solution un,mn(x) in (2.122)

by the iterative formula:

uδn,mn(x) = quδn−1,mn−1
(x) + (1− q)

2mn∑
j=1

ζ
(mn,δ)
j Φj(x), (2.131)

where

uδ0,m0
(x) = 0, (2.132)

until

Gn,mn = qGn−1,mn−1 + an‖γ(mn,δ)‖ ≤ Cδε. (2.133)

Since K is a selfadjoint operator, the matrix Bmn in step (d) is equal to the matrix Amn .

We measure the accuracy of the approximate solution uδmnδ
by the following average error

formula:

Avg :=

∑100
j=1 |u(tj)− uδmnδ (tj)|

100
, t1 = 0, tj = 0.01j, j = 2, 3, . . . , 99, (2.134)

where u(t) is the exact solution to problem (2.107). In all the experiments we use α0 = 1,

q = 0.25, C = 2.01 and ε = 0.99. The linear algebraic systems (2.129) and (2.130) are

solved using MATLAB. The levels of noise: 5%, 1%, and .05% are used in the experiments.

For the level of noise 5% the stopping condition is satisfied at mnδ = 2. The resulting

average error is 0.1095. When the noise level δ is decreased to the level of noise 1%, we get

the average error Avg = 0.0513, so the accuracy of the approximate solution is improved.

The parameter mnδ for this level of noise is 3, so one needs to solve a larger linear algebraic

system to get such accuracy. When the noise is .5% the average error is improved without

increasing the value of the parameter mn. In this level of noise we get Avg = 0.0452. The
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δ = 5%, mnδ = 2 δ = 1%, mnδ = 3

δ = .5%, mnδ = 3 δ = .05%, mnδ = 5

Figure 2.1: Reconstruction of the exact solution u(t) = t using the proposed iterative
scheme

value of the parameter mn increases to 4 as the level of noise δ decreases to 0.05%. The

average error is improved to 0.0250. Figure 1 shows the reconstructions with the proposed

iterative scheme for the noise levels: 5%, 1%, 0.5% and 0.05%.

We compare the results of the proposed iterative scheme with the iterative scheme pro-

posed in Chapter 2:

uδn = quδn−1 + (1− q)T−1
an K

∗fδ, u0 = 0, an = α0q
n, α0 > 0. (2.135)

In this iterative scheme we need to solve the following equation:

(anI + A)z = A∗fδ, (2.136)

where

(A)i,j :=

∫ 1

0

Φi(s)

∫ 1

0

e−stΦj(t)dtds, i, j = 1, 2, . . . , 2m, (2.137)

(fδ)i :=

∫ 1

0

fδ(s)Φi(s)ds, i = 1, 2, . . . , 2m, (2.138)
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δ = 5%, m = 4 δ = 1%, m = 4

δ = .5%, m = 4 δ = .05%, m = 4

Figure 2.2: Reconstruction of the exact solution u(t) = t using iterative scheme (2.135)

and Φi(x) are the Haar basis functions. In all the experiments the value of the parameter

m in (2.137) and (2.138) is 4, so the size of the matrix A in (2.136) is fixed to 16 × 16 at

each iteration.

In Table 1 we compare the results of the proposed iterative scheme with of iterative

scheme (2.135). Here the proposed iterative and iterative scheme (2.135) are denoted by It1

and It2, respectively. For the levels of noise 5%, 1%, 0.5% the CPU time of iterative scheme

(2.135) are larger than of these for the proposed iterative scheme, since at each iteration of

iterative scheme (2.135) one needs to solve linear algebraic system (2.136) with the matrix A

of the size 16×16 while in the proposed iterative scheme one only needs to use smaller sizes

of the matrix A at each iteration. In general the average errors of the proposed iterative

scheme are comparable to of these for iterative scheme (2.135).
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Table 2.1: Fixed vs adaptive iterative scheme

It1 It2

δ Avg mnδ CPU time Avg m CPUtime

(seconds) (seconds)

5% 0.1095 2 0.1563 0.1346 4 0.5313

1% 0.0513 3 0.2188 0.0339 4 0.5313

0.5% 0.0452 3 0.2344 0.0300 4 0.5469

0.05% 0.0250 5 0.8281 0.0206 4 0.5313

2.5 Conclusion

A stopping rule with the parameters mn depending on the regularization parameters an is

proposed. The mn is an increasing sequence of the regularization parameter an. This allows

one to start by solving a small size linear algebraic system (2.129), and one increases the

size of the linear algebraic system only if Gn > Cδε. In the numerical example it is demon-

strated that a simple quadrature method, compound Simpson’s quadrature, can be used for

approximating the kernel g(x, z), defined in (2.8). Our method yields convergence of the

approximate solution uδn,mδ to the minimal norm solution of (2.1). Numerical experiments

show that all the average errors of the proposed method are comparable to of these for

iterative scheme (2.135). Our numerical experiments demonstrate that the adaptive choice

of the parameter mn is more efficient, in the following sense: the value of the parameters mn

of the proposed iterative scheme at the noise levels 5%,1% and 0.5% are smaller than of the

parameter m, used in the iterative scheme (2.135). Therefore the computational time of the

proposed method at these levels of noise is smaller than the computational time for the iter-

ative scheme (2.135). The adaptive choice of the parameters mn may give a large size of the

matrix Amn in (2.129), since mn is a non-decreasing sequence depending on the geometric

sequence an, so the CPU time increases as the value of the parameter mn increases. In the

iterative scheme (2.135) the size of the matrix A in (2.136) is fixed at each iteration, so the

CPU time depends on the number of iterations. The drawback of using a fixed size 2m× 2m

of the matrix A in (2.136) at each iteration is: the solution uδn, defined by formula (2.135),
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where n = n(δ) is found by the stopping rule (2.73) with mn = m ∀n, may approximate

the minimal norm solution on the finite-dimensional space Lm = span{Φ1,Φ2, . . . ,Φ2m} not

accurately, so that for some levels of the noise the exact solution to problem (2.107) will

not be well approximated by any function from Lm. From Table 1 one can see that the

number of basis functions used for an approximation of the minimal norm solution with the

accuracy 0.1095 by the iterative scheme with the adaptive choice of mn is four times smaller

than the number of these functions used in the iterative scheme with a fixed m, while the

accuracy is 0.1095 in It1 and 0.1346 in It2 (see line 1 in Table 1).
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Chapter 3

Inversion of the Laplace transform
from the real axis using an adaptive
iterative method

3.1 Introduction

Consider the Laplace transform :

Lf(p) :=

∫ ∞
0

e−ptf(t)dt = F (p), Rep > 0, (3.1)

where L : X0,b → L2[0,∞),

X0,b := {f ∈ L2[0,∞) | suppf ⊂ [0, b)}, b > 0. (3.2)

We assume in (3.2) that f has compact support. This is not a restriction practically. Indeed,

if limt→∞ f(t) = 0, then |f(t)| < δ for t > tδ, where δ > 0 is an arbitrary small number.

Therefore, one may assume that suppf ⊂ [0, tδ], and treat the values of f for t > tδ as noise.

One may also note that if f ∈ L1(0,∞), then

F (p) :=

∫ ∞
0

f(t)e−ptdt =

∫ b

0

f(t)e−ptdt+

∫ ∞
b

f(t)e−ptdt := F1(p) + F2(p),

and |F2(p)| ≤ e−bpδ, where
∫∞
b
|f(t)|dt ≤ δ. Therefore, the contribution of the ”tail” fb(t)

of f ,

fb(t) :=

{
0, t < b,
f(t), t ≥ b,
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can be considered as noise if b > 0 is large and δ > 0 is small. We assume in (3.2) that

f ∈ L2[0,∞). One may also assume that f ∈ L1[0,∞), or that |f(t)| ≤ c1e
c2t, where

c1, c2 are positive constants. If the last assumption holds, then one may define the function

g(t) := f(t)e−(c2+1)t. Then g(t) ∈ L1[0,∞), and its Laplace transform G(p) = F (p+ c2 + 1)

is known on the interval [c2 +1, c2 +1+b] of real axis if the Laplace transform F (p) of f(t) is

known on the interval [0, b]. Therefore, our inversion methods are applicable to these more

general classes of functions f as well.

The operator L : X0,b → L2[0,∞) is compact. Therefore, the inversion of the Laplace

transform (3.1) is an ill-posed problem (see23,29). Since the problem is ill-posed, a regu-

larization method is needed to obtain a stable inversion of the Laplace transform. There

are many methods to solve equation (3.1) stably: variational regularization, quasisolutions,

iterative regularization (see e.g,23,29,30). In this Chapter we propose an adaptive iterative

method based on the Dynamical Systems Method (DSM) developed in29,30. Some methods

have been developed earlier for the inversion of the Laplace transform (see2,5,10,18). In

many papers the data F (p) are assumed exact and given on the complex axis. In22 it is

shown that the results of the inversion of the Laplace transform from the complex axis are

more accurate than these of the inversion of the Laplace transform from the real axis. The

reason is the ill-posedness of the Laplace transform inversion from the real axis. A survey

regarding the methods of the Laplace transform inversion has been given in5. There are

several types of the Laplace inversion method compared in5. The inversion formula for the

Laplace transform is well known:

f(t) =
1

2πi

∫ σ+i∞

σ−i∞
F (p)eptdp, σ > 0, (3.3)

is used in some of these methods, and then f(t) is computed by some quadrature formulas,

and many of these formulas can be found in6 and21. Moreover, the ill-posedness of the

Laplace transform inversion is not discussed in all the methods compared in5. The approx-

imate f(t), obtained by these methods when the data are noisy, may differ significantly

from f(t). There are some papers in which the inversion of the Laplace transform from the
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real axis was studied (see24,1,4,9,12,22,26,36,37). In1 and26 a method based on the Mellin

transform is developed. In this method the Mellin transform of the data F (p) is calculated

first and then inverted for f(t). In4 a Fourier series method for the inversion of Laplace

transform from the real axis is developed. The drawback of this method comes from the

ill-conditioning of the discretized problem. It is shown in4 that if one uses some basis func-

tions in X0,b, the problem becomes extremely ill-conditioned if the number m of the basis

functions exceeds 20. In12 a reproducing kernel method is used for the inversion of the

Laplace transform. In the numerical experiments in12 the authors use double and multiple

precision methods to obtain high accuracy inversion of the Laplace transform. The usage of

the multiple precision increases the computation time significantly which is observed in12,

so this method may be not efficient in practice. A detailed description of the multiple pre-

cision technique can be found in11 and14. Moreover, the Laplace transform inversion with

perturbed data is not discussed in12. In37 the authors develop an inversion formula, based

on the eigenfunction expansion for the Laplace transform. The difficulties with this method

are: a) the inversion formula is not applicable when the data are noisy, b) even for exact

data the inversion formula is not suitable for numerical implementation.

The Laplace transform as an operator from C0k into L2, where

C0k = {f(t) ∈ C[0,+∞) | suppf ⊂ [0, k)}, k = const > 0, L2 := L2[0,∞),

is considered in9. The finite difference method is used in9 to discretize the problem, where

the size of the linear algebraic system obtained by this method is fixed at each iteration, so

the computation time increases if one uses large linear algebraic systems. The method of

choosing the size of the linear algebraic system is not given in9. Moreover, the inversion of

the Laplace transform when the data F (p) is given only on a finite interval [0, d], d > 0, is

not discussed in9.

The novel points of this Chapter are:

1) the representation of the approximation solution (3.73) of the function f(t) which

depends only on the kernel of the Laplace transform,
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2) the adaptive iterative scheme (3.76) and adaptive stopping rule (3.87), which generate

the regularization parameter, the discrete data Fδ(p) and the number of terms in

(3.73), needed for obtaining an approximation of the unknown function f(t).

We study the inversion problem using the pair of spaces (X0,b, L
2[0, d]), where X0,b is defined

in (3.2), develop an inversion method, which can be easily implemented numerically, and

demonstrate in the numerical experiments that our method yields the results comparable in

accuracy with the results, presented in the literature, e.g., with the double precision results

given in12.

The smoothness of the kernel allows one to use the compound Simpson’s rule in ap-

proximating the Laplace transform. Our approach yields a representation (3.73) of the

approximate inversion of the Laplace transform. The number of terms in approximation

(3.73) and the regularization parameter are generated automatically by the proposed adap-

tive iterative method. Our iterative method is based on the iterative method proposed in

Chapter 2. The adaptive stopping rule we propose here is based on the discrepancy-type

principle, established in28,33. This stopping rule yields convergence of the approximation

(3.73) to f(t) when the noise level δ → 0.

A detailed derivation of our inversion method is given in Section 2. In Section 3 some

results of the numerical experiments are reported. These results demonstrate the efficiency

and stability of the proposed method.

3.2 Description of the method

Let f ∈ X0,b. Then equation (3.1) can be written as:

(Lf)(p) :=

∫ b

0

e−ptf(t)dt = F (p), 0 ≤ p. (3.4)

Let us assume that the data F (p), the Laplace transform of f , are known only for 0 ≤ p ≤

d <∞. Consider the mapping Lm : L2[0, b]→ Rm+1, where

(Lmf)i :=

∫ b

0

e−pitf(t)dt = F (pi), i = 0, 1, 2, . . . ,m, (3.5)
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pi := ih, i = 0, 1, 2, . . . ,m, h :=
d

m
, (3.6)

and m is an even number which will be chosen later. Then the unknown function f(t) can

be obtained from a finite-dimensional operator equation (3.5). Let

〈u, v〉Wm :=
m∑
j=0

w
(m)
j ujvj and ‖u‖Wm := 〈u, u〉Wm (3.7)

be the inner product and norm in Rm+1, respectively, where w
(m)
j are the weights of the

compound Simpson’s rule (see6 p.58), i.e.,

w
(m)
j :=


h/3, j = 0,m;
4h/3, j = 2l − 1, l = 1, 2, . . . ,m/2;
2h/3, j = 2l, l = 1, 2, . . . , (m− 2)/2,

h =
d

m
, (3.8)

where m is an even number. Then

〈Lmg, v〉Wm =
m∑
j=0

w
(m)
j

∫ b

0

e−pjtg(t)dtvj

=

∫ b

0

g(t)
m∑
j=0

w
(m)
j e−pjtvjdt = 〈g,L∗mv〉X0,b

,

(3.9)

where

L∗mv =
m∑
j=0

w
(m)
j e−pjtvj, v :=


v0

v1
...
vm

 ∈ Rm+1. (3.10)

and

〈g, h〉X0,b
:=

∫ b

0

g(t)h(t)dt. (3.11)

It follows from (3.5) and (3.10) that

(L∗mLmg)(t) =
m∑
j=0

w
(m)
j e−pjt

∫ b

0

e−pjzg(z)dz := (T (m)g)(t), (3.12)

and

LmL∗mv =


∫ b

0
e−p0t

∑m
j=0w

(m)
j e−pjtvjdt∫ b

0
e−p1t

∑m
j=0w

(m)
j e−pjtvjdt

...∫ b
0
e−pmt

∑m
j=0w

(m)
j e−pjtvjdt

 := Q(m)v, (3.13)
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where

(Q(m))ij := w
(m)
j

∫ b

0

e−(pi+pj)tdt = w
(m)
j

1− e−b(pi+pj)

pi + pj
, i, j = 0, 1, 2, . . . ,m. (3.14)

Lemma 3.2.1. Let w
(m)
j be defined in (3.8). Then

m∑
j=0

w
(m)
j = d, (3.15)

for any even number m.

Proof. From definition (3.8) one gets

m∑
j=0

w
(m)
j = w

(m)
0 + w(m)

m +

m/2∑
j=1

w
(m)
2j−1 +

(m−2)/2∑
j=1

w
(m)
2j

=
2h

3
+

m/2∑
j=1

4h

3
+

(m−2)/2∑
j=1

2h

3

=
2h

3
+

2hm

3
+
h(m− 2)

3
= hm =

d

m
m = d.

(3.16)

Lemma 3.2.1 is proved.

Lemma 3.2.2. The matrix Q(m), defined in (3.14), is positive semidefinite and self-adjoint

in Rm+1 with respect to the inner product (3.7).

Proof. Let

(Hm)ij :=

∫ b

0

e−(pi+pj)tdt =
1− e−b(pi+pj)

pi + pj
, (3.17)

and

(Dm)ij =

{
w

(m)
i , i = j;

0, otherwise,
(3.18)

w
(m)
j are defined in (3.8). Then 〈DmHmDmu, v〉Rm+1 = 〈u,DmHmDmv〉Rm+1 , where

〈u, v〉Rm+1 :=
m∑
j=0

ujvj, u, v ∈ Rm+1. (3.19)

64



We have

〈Q(m)u, v〉Wm =
m∑
j=0

w
(m)
j (Q(m)u)jvj =

m∑
j=0

(DmHmDmu)jvj

= 〈DmHmDmu, v〉Rm+1 = 〈u,DmHmDmv〉Rm+1

=
m∑
j=0

uj(DmHmDmv)j =
m∑
j=0

ujw
(m)
j (HmDmv)j

= 〈u,Q(m)v〉Wm .

(3.20)

Thus, Q(m) is self-adjoint with respect to inner product (3.7). We have

(Hm)ij =

∫ b

0

e−(pi+pj)tdt =

∫ b

0

e−pite−pjtdt

= 〈φi, φj〉X0,b
, φi(t) := e−pit,

(3.21)

where 〈·, ·〉X0,b
is defined in (3.11). This shows that Hm is a Gram matrix. Therefore,

〈Hmu, u〉Rm+1 ≥ 0, ∀u ∈ Rm+1. (3.22)

This implies

〈Q(m)u, u〉Wm = 〈Q(m)u,Dmu〉Rm+1 = 〈HmDmu,Dmu〉Rm+1 ≥ 0. (3.23)

Thus, Q(m) is a positive semidefinite and self-adjoint matrix with respect to the inner product

(3.7).

Lemma 3.2.3. Let T (m) be defined in (3.12). Then T (m) is self-adjoint and positive semidef-

inite operator in X0,b with respect to inner product (3.11).

Proof. From definition (3.12) and inner product (3.11) we get

〈T (m)g, h〉X0,b
=

∫ b

0

m∑
j=0

w
(m)
j e−pjt

∫ b

0

e−pjzg(z)dzh(t)dt

=

∫ b

0

g(z)
m∑
j=0

w
(m)
j e−pjz

∫ b

0

e−pjth(t)dtdz

= 〈g, T (m)h〉X0,b
.

(3.24)
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Thus, T (m) is a self-adjoint operator with respect to inner product (3.11). Let us prove that

T (m) is positive semidefinite. Using (3.12), (3.8), (3.7) and (3.11), one gets

〈T (m)g, g〉X0,b
=

∫ b

0

m∑
j=0

w
(m)
j e−pjt

∫ b

0

e−pjzg(z)dzg(t)dt

=
m∑
j=0

w
(m)
j

∫ b

0

e−pjzg(z)dz

∫ b

0

e−pjtg(t)dt

=
m∑
j=0

w
(m)
j

(∫ b

0

e−pjzg(z)dz

)2

≥ 0.

(3.25)

Lemma 3.2.3 is proved.

From (3.10) we get Range[L∗m] = span{w(m)
j k(pj, ·, 0)}mj=0, where

k(p, t, z) := e−p(t+z). (3.26)

Let us approximate the unknown f(t) as follows:

f(t) ≈
m∑
j=0

c
(m)
j w

(m)
j e−pjt = T−1

a,mL∗mF (m) := fm(t), (3.27)

where pj are defined in (3.6), Ta,m is defined in (3.34), and c
(m)
j are constants obtained by

solving the linear algebraic system:

(aI +Q(m))c(m) = F (m), (3.28)

where Q(m) is defined in (3.13),

c(m) :=


c
(m)
0

c
(m)
1
...

c
(m)
m

 and F (m) :=


F (p0)
F (p1)

...
F (pm)

 . (3.29)

To prove the convergence of the approximate solution f(t), we use the following estimates,

which are proved in30, so their proofs are omitted.
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Lemma 3.2.4. Let T (m) and Q(m) be defined in (3.12) and (3.13), respectively. Then, for

a > 0, the following estimates hold:

‖Q−1
a,mLm‖ ≤

1

2
√
a
, (3.30)

a‖Q−1
a,m‖ ≤ 1, (3.31)

‖T−1
a,m‖ ≤

1

a
, (3.32)

‖T−1
a,mL∗m‖ ≤

1

2
√
a
, (3.33)

where

Qa,m := Q(m) + aI Ta,m := T (m) + aI, (3.34)

I is the identity operator and a = const > 0.

Estimates (3.30) and (3.31) are used in proving inequality (3.92), while estimates (3.32)

and (3.33) are used in the proof of lemmas 2.9 and 2.10, respectively.

Let us formulate an iterative method for obtaining the approximation solution of f(t)

with the exact data F (p). Consider the following iterative scheme

un(t) = qun−1(t) + (1− q)T−1
an L

∗F, u0(t) = 0, (3.35)

where L∗ is the adjoint of the operator L, i.e.,

(L∗g)(t) =

∫ d

0

e−ptg(p)dp, (3.36)

(Tf)(t) := (L∗Lf)(t) =

∫ b

0

∫ d

0

k(p, t, z)dpf(z)dz

=

∫ b

0

f(z)

t+ z

(
1− e−d(t+z)

)
dz,

(3.37)

k(p, t, z) is defined in (3.26),

Ta := aI + T, a > 0, (3.38)

an := qan−1, a0 > 0, q ∈ (0, 1). (3.39)
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Lemma 3.2.5. Let Ta be defined in (3.38), Lf = F , and f ⊥ N (L), where N (L) is the

null space of L. Then

a‖T−1
a f‖ → 0 as a→ 0. (3.40)

Proof. Since f ⊥ N (L), it follows from the spectral theorem that

lim
a→0

a2‖T−1
a f‖2 = lim

a→0

∫ ∞
0

a2

(a+ s)2
d〈Esf, f〉 = ‖PN (L)f‖2 = 0,

where Es is the resolution of the identity corresponding to L∗L, and P is the orthogonal

projector onto N (L).

Lemma 3.2.5 is proved.

Theorem 3.2.6. Let Lf = F , and un be defined in (3.35) Then

lim
n→∞

‖f − un‖ = 0. (3.41)

Proof. By induction we get

un =
n−1∑
j=0

ω
(n)
j T−1

aj+1
L∗F, (3.42)

where Ta is defined in (3.38), and

ω
(n)
j := qn−j−1 − qn−j. (3.43)

Using the identities

Lf = F, (3.44)

T−1
a L∗L = T−1

a (T + aI − aI) = I − aT−1
a (3.45)

and
n−1∑
j=0

ω
(n)
j = 1− qn, (3.46)

we get

f − un = f −
n−1∑
j=0

ω
(n)
j f +

n−1∑
j=0

ω
(n)
j aj+1T

−1
aj+1

f

= qnf +
n−1∑
j=0

ω
(n)
j aj+1T

−1
aj+1

f.

(3.47)
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Therefore,

‖f − un‖ ≤ qn‖f‖+
n−1∑
j=0

ω
(n)
j aj+1‖T−1

aj+1
f‖. (3.48)

To prove relation (3.41) the following lemma is needed:

Lemma 3.2.7. Let g(x) be a continuous function on (0,∞), c > 0 and q ∈ (0, 1) be

constants. If

lim
x→0+

g(x) = g(0) := g0, (3.49)

then

lim
n→∞

n−1∑
j=0

(
qn−j−1 − qn−j

)
g(cqj+1) = g0. (3.50)

Proof. Let

Fl(n) :=
l−1∑
j=1

ω
(n)
j g(cqj+1), (3.51)

where ω
(n)
j are defined in (3.43). Then

|Fn+1(n)− g0| ≤ |Fl(n)|+

∣∣∣∣∣
n∑
j=l

ω
(n)
j g(cqj+1)− g0

∣∣∣∣∣ .
Take ε > 0 arbitrarily small. For sufficiently large fixed l(ε) one can choose n(ε) > l(ε), such

that

|Fl(ε)(n)| ≤ ε

2
, ∀n > n(ε),

because limn→∞ q
n = 0. Fix l = l(ε) such that |g(cqj)− g0| ≤ ε

2
for j > l(ε). This is possible

because of (3.49). One has

|Fl(ε)(n)| ≤ ε

2
, n > n(ε) > l(ε)

and ∣∣∣∣∣∣
n∑

j=l(ε)

ω
(n)
j g(cqj+1)− g0

∣∣∣∣∣∣ ≤
n∑

j=l(ε)

ω
(n)
j |g(cqj+1)− g0|+ |

n∑
j=l(ε)

ω
(n)
j − 1||g0|

≤ ε

2

n∑
j=l(ε)

ω
(n)
j + qn−l(ε)|g0|

≤ ε

2
+ |g0|qn−l(ε) ≤ ε,

69



if n(ε) is sufficiently large. Here we have used the relation

n∑
j=l

ω
(n)
j = 1− qn−l.

Since ε > 0 is arbitrarily small, relation (3.50) follows.

Lemma 1.2.1 is proved.

Lemma 3.2.5 together with Lemma 1.2.1 with g(a) = a‖T−1
a f‖ yield

lim
n→∞

n−1∑
j=0

ω
(n)
j aj+1‖T−1

aj+1
f‖ = 0. (3.52)

This together with estimate (3.48) and condition q ∈ (0, 1) yield relation (3.41).

Theorem 3.2.6 is proved.

Lemma 3.2.8. Let T and T (m) be defined in (3.37) and (3.12), respectively. Then

‖T − T (m)‖ ≤ (2bd)5

540
√

10m4
. (3.53)

Proof. From definitions (3.37) and (3.12) we get

|(T − T (m))f(t)| ≤
∫ b

0

∣∣∣∣∣
∫ d

0

k(p, t, z)dp−
m∑
j=0

w
(m)
j k(pj, t, z)

∣∣∣∣∣ |f(z)|dz

≤
∫ b

0

∣∣∣∣ d5

180m4
max
p∈[0,d]

(t+ z)4e−p(t+z)
∣∣∣∣ |f(z)|dz

=

∫ b

0

d5

180m4
(t+ z)4|f(z)|dz ≤ d5

180m4

(∫ b

0

(t+ z)8dz

)1/2

‖f‖X0,b

=
d5

180m4

[
(t+ b)9 − t9

9

]1/2

‖f‖X0,b
,

(3.54)

where the following upper bound for the error of the compound Simpson’s rule was used

(see6 p.58): for f ∈ C(4)[x0, x2l], x0 < x2l,∣∣∣∣∣
∫ x2l

x0

f(x)dx− h

3

[
f0 + 4

l∑
j=1

f2(j−1) + 2
l−1∑
j=1

f2j + fx2l

]∣∣∣∣∣ ≤ Rl, (3.55)

where

fj := f(xj), xj = x0 + jh, j = 0, 1, 2, . . . , 2l, h =
x2l − x0

2l
, (3.56)
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and

Rl =
(x2l − x0)

5

180(2l)4
|f (4)(ξ)|, x0 < ξ < x2l. (3.57)

This implies

‖(T − T (m))f‖X0,b
≤ d5

540m4

[
(2b)10 − 2b10

10

]1/2

‖f‖X0,b
≤ (2bd)5

540
√

10m4
‖f‖X0,b

, (3.58)

so estimate (3.53) is obtained.

Lemma 3.2.8 is proved.

Lemma 3.2.9. Let 0 < a < a0,

m = κ
(a0

a

)1/4

, κ > 0. (3.59)

Then

‖T − T (m)‖ ≤ (2bd)5

540
√

10a0κ4
a, (3.60)

where T and T (m) are defined in (3.37) and (3.12), respectively.

Proof. Inequality (3.60) follows from estimate (3.53) and formula (3.59).

Lemma 3.2.9 leads to an adaptive iterative scheme:

un,mn(t) = qun−1,mn−1 + (1− q)T−1
an,mnL

∗
mnF

(mn), u0,m0(t) = 0, (3.61)

where q ∈ (0, 1), an are defined in (3.39), Ta,m is defined in (3.34), AmL is defined in (3.5),

and

F (m) :=


F (p0)
F (p1)
. . .

F (pm)

 ∈ Rm+1, (3.62)

pj are defined in (3.6). In the iterative scheme (3.61) we have used the finite-dimensional

operator T (m) approximating the operator T . Convergence of the iterative scheme (3.61) to

the solution f of the equation Lf = F is established in the following lemma:
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Lemma 3.2.10. Let Lf = F and un,mn be defined in (3.61). If mn are chosen by the rule

mn =

⌈[
κ

(
a0

an

)1/4
]⌉

, an = qan−1, q ∈ (0, 1), κ, a0 > 0, (3.63)

where d[x]e is the smallest even number not less than x, then

lim
n→∞

‖f − un,mn‖ = 0. (3.64)

Proof. Consider the estimate

‖f − un,mn‖ ≤ ‖f − un‖+ ‖un − un,mn‖ := I1(n) + I2(n), (3.65)

where I1(n) := ‖f −un‖ and I2(n) := ‖un−un,mn‖. By Theorem 3.2.6, we get I1(n)→ 0 as

n→∞. Let us prove that limn→∞ I2(n) = 0. Let Un := un − un,mn . Then, from definitions

(3.35) and (3.61), we get

Un = qUn−1 + (1− q)
(
T−1
an L

∗F − T−1
an,mnL

∗
mnF

(mn)
)
, U0 = 0. (3.66)

By induction we obtain

Un =
n−1∑
j=0

ω
(n)
j

(
T−1
aj+1
L∗F − T−1

aj+1,mj+1
(Lmj+1

)∗F (mj+1)
)
, (3.67)

where ωj are defined in (3.43). Using the identities Lf = F , Lmf = F (m),

T−1
a T = T−1

a (T + aI − aI) = I − aT−1
a , (3.68)

T−1
a,mT

(m) = T−1
a,m(T (m) + aI − aI) = I − aT−1

a,m, (3.69)

T−1
a,m − T−1

a = T−1
a,m(T − T (m))T−1

a , (3.70)

one gets

Un =
n−1∑
j=0

ω
(n)
j aj+1

(
T−1
aj+1,mj+1

− T−1
aj+1

)
f

=
n−1∑
j=0

ω
(n)
j aj+1T

−1
aj+1,mj+1

(
T − T (mj+1)

)
T−1
aj+1

f.

(3.71)
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This together with the rule (3.63), estimate (3.32) and Lemma 3.2.8 yield

‖Un‖ ≤
n−1∑
j=0

ω
(n)
j aj+1‖T−1

aj+1,mj+1
‖‖T − T (mj+1)‖‖T−1

aj+1
f‖

≤ (2bd)5

540
√

10a0κ4

n−1∑
j=0

ω
(n)
j aj+1‖T−1

aj+1
f‖.

(3.72)

Applying Lemma 3.2.5 and Lemma 1.2.1 with g(a) = a‖T−1
a f‖, we obtain limn→∞ ‖Un‖ = 0.

Lemma 3.2.10 is proved.

3.2.1 Noisy data

When the data F (p) are noisy, the approximate solution (3.27) is written as

f δm(t) =
m∑
j=0

w
(m)
j c

(m,δ)
j e−pjt = T−1

a,mL∗mF
(m)
δ , (3.73)

where the coefficients c
(m,δ)
j are obtained by solving the following linear algebraic system:

Qa,mc
(m,δ) = F

(m)
δ , (3.74)

Qa,m is defined in (3.34),

c(m,δ) :=


c
(m,δ)
0

c
(m,δ)
1

. . .

c
(m,δ)
m

 , F
(m)
δ :=


Fδ(p0)
Fδ(p1)
. . .

Fδ(pm)

 , (3.75)

w
(m)
j are defined in (3.8), and pj are defined in (3.6).

To get the approximation solution of the function f(t) with the noisy data Fδ(p), we

consider the following iterative scheme:

uδn,mn = quδn−1,mn−1
+ (1− q)T−1

an,mnL
∗
mnF

(mn)
δ , uδ0,m0

= 0, (3.76)

where Ta,m is defined in (3.34), an are defined in (3.39), q ∈ (0, 1), F
(m)
δ is defined in (3.75),

and mn are chosen by the rule (3.63). Let us assume that

Fδ(pj) = F (pj) + δj, 0 < |δj| ≤ δ, j = 0, 1, 2, . . . ,m, (3.77)
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where δj are random quantities generated from some statistical distributions, e.g., the uni-

form distribution on the interval [−δ, δ], and δ is the noise level of the data F (p). It follows

from assumption (3.77), definition (3.8), Lemma 3.2.1 and the inner product (3.7) that

‖F (m)
δ − F (m)‖2Wm =

m∑
j=0

w
(m)
j δ2

j ≤ δ2

m∑
j=0

w
(m)
j = δ2d. (3.78)

Lemma 3.2.11. Let un,mn and uδn,mn be defined in (3.61) and (3.76), respectively. Then

‖un,mn − uδn,mn‖ ≤
√
dδ

2
√
an

(1− qn), q ∈ (0, 1), (3.79)

where an are defined in (3.39).

Proof. Let U δ
n := un,mn − uδn,mn . Then, from definitions (3.61) and (3.76),

U δ
n = qU δ

n−1 + (1− q)T−1
an,mnL

∗
mn(F (mn) − F (mn)

δ ), U δ
0 = 0. (3.80)

By induction we obtain

U δ
n =

n−1∑
j=0

ω
(n)
j T−1

aj+1,mj+1
(Lmj+1

)∗(F (mj+1) − F (mj+1)
δ ), (3.81)

where ω
(n)
j are defined in (3.43). Using estimates (3.78) and inequality (3.33), one gets

‖U δ
n‖ ≤

√
d
n−1∑
j=0

ω
(n)
j

δ

2
√
aj+1

≤
√
dδ

2
√
an

m∑
j=0

ω
(n)
j =

√
dδ

2
√
an

(1− qn), (3.82)

where ωj are defined in (3.43).

Lemma 3.2.11 is proved.

Theorem 3.2.12. Suppose that conditions of Lemma 3.2.10 hold, and nδ satisfies the fol-

lowing conditions:

lim
δ→0

nδ =∞, lim
δ→0

δ
√
anδ

= 0. (3.83)

Then

lim
δ→0
‖f − uδnδ,mnδ‖ = 0. (3.84)
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Proof. Consider the estimate:

‖f − uδnδ,mnδ‖ ≤ ‖f − unδ,mnδ‖+ ‖unδ,mnδ − u
δ
nδ,mnδ

‖. (3.85)

This together with Lemma 3.2.11 yield

‖f − uδnδ,mnδ‖ ≤ ‖f − unδ,mnδ‖+

√
dδ

2
√
anδ

(1− qn). (3.86)

Applying relations (3.83) in estimate (3.86), one gets relation (3.84).

Theorem 3.2.12 is proved.

In the following subsection we propose a stopping rule which implies relations (3.83).

3.2.2 Stopping rule

In this subsection a stopping rule which yields relations (3.83) in Theorem 3.2.12 is given.

We propose the stopping rule

Gnδ,mnδ
≤ Cδε < Gn,mn , 1 ≤ n < nδ, C >

√
d, ε ∈ (0, 1), (3.87)

where

Gn,mn = qGn−1,mn−1 + (1− q)‖Lmnz(mn,δ) − F (mn)
δ ‖Wmn , G0,m0 = 0, (3.88)

‖ · ‖Wm is defined in (3.7),

z(m,δ) :=
m∑
j=0

c
(m,δ)
j w

(m)
j e−pjt, (3.89)

w
(m)
j and pj are defined in (3.8) and (3.6), respectively, and c

(m,δ)
j are obtained by solving

linear algebraic system (3.74).

We observe that

Lmnz(mn,δ) − F (mn)
δ = Q(mn)c(mn,δ) − F (mn)

δ

= Q(mn)(anI +Q(mn))−1F
(mn)
δ − F (mn)

δ

= (Q(mn) + anI − anI)(anI +Q(mn))−1F
(mn)
δ − F (mn)

δ

= −an(anI +Q(mn))−1F
(mn)
δ = −anc(mn,δ).

(3.90)
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Thus, the sequence (3.88) can be written in the following form

Gn,mn = qGn−1,mn−1 + (1− q)an‖c(mn,δ)‖Wmn , G0,m0 = 0, (3.91)

where ‖ · ‖Wm is defined in (3.7), and c(m,δ) solves the linear algebraic system (3.74).

It follows from estimates (3.78), (3.30) and (3.31) that

an‖c(mn,δ)‖Wmn = an‖(anI +Q(mn))−1F
(mn)
δ ‖Wmn

≤ an‖(anI +Q(mn))−1(F
(mn)
δ − F (mn))‖Wmn

+ an‖(anI +Q(mn))−1F (mn)‖Wmn

≤ ‖F (mn)
δ − F (mn)‖Wmn

+ an‖(anI +Q(mn))−1Lmnf‖Wmn

≤ δ
√
d+
√
an‖f‖X0,b

.

(3.92)

This together with (3.91) yield

Gn,mn ≤ qGn−1,mn−1 + (1− q)
(
δ
√
d+
√
an‖f‖X0,b

)
, (3.93)

or

Gn,mn − δ
√
d ≤ q(Gn−1,mn−1 − δ

√
d) + (1− q)

√
an‖f‖X0,b

. (3.94)

Lemma 3.2.13. The sequence (3.91) satisfies the following estimate:

Gn,mn − δ
√
d ≤

(1− q)√an‖f‖X0,b

1−√q
, (3.95)

where an are defined in (3.39).

Proof. Define

Ψn := Gn,mn − δ
√
d (3.96)

and

ψn := (1− q)
√
an‖f‖X0,b

. (3.97)

Then estimate (3.94) can be rewritten as

Ψn ≤ qΨn−1 +
√
qψn−1, (3.98)

76



where the relation an = qan−1 was used. Let us prove estimate (3.95) by induction. For

n = 0 we get

Ψ0 = −δ
√
d ≤

(1− q)√a0‖f‖X0,b

1−√q
. (3.99)

Suppose estimate (3.95) is true for 0 ≤ n ≤ k. Then

Ψk+1 ≤ qΨk +
√
qψk ≤

q

1−√q
ψk +

√
qψk

=

√
q

1−√q
ψk =

√
q

1−√q
ψk
ψk+1

ψk+1

=

√
q

1−√q

√
ak√
ak+1

ψk+1 =
1

1−√q
ψk+1,

(3.100)

where the relation ak+1 = qak was used.

Lemma 3.2.13 is proved.

Lemma 3.2.14. Suppose

G1,m1 > δ
√
d, (3.101)

where Gn,mn are defined in (3.91). Then there exist a unique integer nδ, satisfying the

stopping rule (3.87) with C >
√
d.

Proof. From Lemma 3.2.13 we get the estimate

Gn,mn ≤ δ
√
d+

(1− q)√an‖f‖X0,b

1−√q
, (3.102)

where an are defined in (3.39). Therefore,

lim sup
n→∞

Gn,mn ≤ δ
√
d, (3.103)

where the relation limn→∞ an = 0 was used. This together with condition (3.101) yield the

existence of the integer nδ. The uniqueness of the integer nδ follows from its definition.

Lemma 3.2.14 is proved.

Lemma 3.2.15. Suppose conditions of Lemma 3.2.14 hold and nδ is chosen by the rule

(3.87). Then

lim
δ→0

δ
√
anδ

= 0. (3.104)
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Proof. From the stopping rule (3.87) and estimate (3.102) we get

Cδε ≤ Gnδ−1,mnδ−1 ≤ δ
√
d+

(1− q)√anδ−1‖f‖X0,b

1−√q
, (3.105)

where C >
√
d, ε ∈ (0, 1). This implies

δ(Cδε−1 −
√
d)

√
anδ−1

≤
(1− q)‖f‖X0,b

1−√q
, (3.106)

so, for ε ∈ (0, 1), and anδ = qanδ−1, one gets

lim
δ→0

δ
√
anδ

= lim
δ→0

δ
√
q
√
anδ−1

≤ lim
δ→0

(1− q)δ1−ε‖f‖X0,b

(
√
q − q)(C − δ1−ε

√
d)

= 0. (3.107)

Lemma 3.2.15 is proved.

Lemma 3.2.16. Consider the stopping rule (3.87), where the parameters mn are chosen by

rule (3.63). If nδ is chosen by the rule (3.87) then

lim
δ→0

nδ =∞. (3.108)

Proof. From the stopping rule (3.87) with the sequence Gn defined in (3.91) one gets

qCδε + (1− q)anδ‖c(mnδ ,δ)‖Wmnδ ≤ qGnδ−1,mnδ−1

+ (1− q)anδ‖c(mnδ ,δ)‖Wmnδ = Gnδ,mnδ
< Cδε,

(3.109)

where c(m,δ) is obtained by solving linear algebraic system (3.74). This implies

0 < anδ‖c(mnδ ,δ)‖Wmnδ ≤ Cδε. (3.110)

Thus,

lim
δ→0

anδ‖c(mnδ ,δ)‖Wmnδ = 0. (3.111)

If F (m) 6= 0, then there exists a λ
(m)
0 > 0 such that

E
(m)

λ
(m)
0

F (m) 6= 0, 〈E(m)
λ0

F (m), F (m)〉Wm := ξ(m) > 0, (3.112)

where E
(m)
s is the resolution of the identity corresponding to the operator Q(m) := LmL∗m.

Let

hm(δ, α) := α2‖Q−1
m,αF

(m)
δ ‖

2
Wm , Qm,a := aI +Q(m).
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For a fixed number a > 0 we obtain

hm(δ, a) = a2‖Q−1
m,aF

(m)
δ ‖

2
Wm

=

∫ ∞
0

a2

(a+ s)2
d〈E(m)

s F
(m)
δ , F

(m)
δ 〉Wm

≥
∫ λ

(m)
0

0

a2

(a+ s)2
d〈E(m)

s F
(m)
δ , F

(m)
δ 〉Wm

≥ a2

(a+ λ0)2

∫ λ
(m)
0

0

d〈E(m)
s F

(m)
δ , F

(m)
δ 〉Wm

=
a2‖E(m)

λ
(m)
0

F
(m)
δ ‖2Wm

(a+ λ
(m)
0 )2

.

(3.113)

Since E
(m)
λ0

is a continuous operator, and ‖F (m) − F (m)
δ ‖Wm <

√
dδ, it follows from (3.112)

that

lim
δ→0
〈E(m)

λ0
F

(m)
δ , F

(m)
δ 〉Wm = 〈E(m)

λ0
F (m), F (m)〉Wm > 0. (3.114)

Therefore, for the fixed number a > 0 we get

hm(δ, a) ≥ c2 > 0 (3.115)

for all sufficiently small δ > 0, where c2 is a constant which does not depend on δ. Suppose

limδ→0 anδ 6= 0. Then there exists a subsequence δj → 0 as j →∞, such that

anδj ≥ c1 > 0, (3.116)

and

0 < mnδj
=
⌈
[κ(a0/anδj )

1/4]
⌉
≤
⌈
[κ(a0/c1)

1/4]
⌉

:= c3 <∞, κ, a0 > 0, (3.117)

where the rule (3.63) was used to obtain the parameters mnδj
. This together with (3.112)

and (3.115) yield

lim
j→∞

hmnδj
(δj, anδj ) ≥ lim

j→∞

a2
nδj
‖E

(mnδj
)

λ
(mnδj

)

0

F
(mnδj

)

δj
‖2
W
mnδj

(anδj + λ
(mnδj

)

0 )2

≥ lim inf
j→∞

c21‖E
(mnδj

)

λ
(mnδj

)

0

F
(mnδj

)‖2
W
mnδj

(c1 + λ
(mnδj

)

0 )2

> 0.

(3.118)
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This contradicts relation (3.111). Thus, limδ→0 anδ = limδ→0 a0q
nδ = 0, i.e., limδ→0 nδ =∞.

Lemma 3.2.16 is proved.

It follows from Lemma 3.2.15 and Lemma 3.2.16 that the stopping rule (3.87) yields the

relations (3.83). We have proved the following theorem:

Theorem 3.2.17. Suppose all the assumptions of Theorem 3.2.12 hold, mn are chosen by

the rule (3.63), nδ is chosen by the rule (3.87) and G1,m1 > Cδ, where Gn,mn are defined in

(3.91), then

lim
δ→0
‖f − uδnδ,mnδ‖ = 0. (3.119)

3.2.3 The algorithm

Let us formulate the algorithm for obtaining the approximate solution f δm:

(1) The data Fδ(p) on the interval [0, d], d > 0, the support of the function f(t), and the

noise level δ;

(2) initialization : choose the parameters κ > 0, a0 > 0, q ∈ (0, 1), ε ∈ (0, 1), C >
√
d,

and set uδ0,m0
= 0, G0 = 0, n = 1;

(3) iterate, starting with n = 1, and stop when condition (2.133) ( see below) holds,

(a) an = a0q
n,

(b) choose mn by the rule (3.63),

(c) construct the vector F
(mn)
δ :

(F
(mn)
δ )l = Fδ(pl), pl = lh, h = d/mn, l = 0, 1, . . . ,m, (3.120)

(d) construct the matrices Hmn and Dmn :

(Hmn)ij :=

∫ b

0

e−(pi+pj)tdt =
1− e−b(pi+pj)

pi + pj
, i, j = 1, 2, 3, . . . ,mn (3.121)
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(Dmn)ij =

{
w

(mn)
i , i = j;

0, otherwise,
(3.122)

where w
(m)
j are defined in (3.8),

(e) solve the following linear algebraic system:

(anI +HmnDmn)c(mn,δ) = F
(mn)
δ , (3.123)

where (c(mn,δ))i = c
(mn,δ)
i ,

(f) update the coefficient c
(mn,δ)
j of the approximate solution uδn,mn(t) defined in (3.73)

by the iterative formula:

uδn,mn(t) = quδn−1,mn−1
(t) + (1− q)

mn∑
j=1

c(mn,δ)w
(mn)
j e−pjt, (3.124)

where

uδ0,m0
(t) = 0. (3.125)

Stop when for the first time the inequality

Gn,mn = qGn−1,mn−1 + an‖c(mn,δ)‖Wmn ≤ Cδε (3.126)

holds, and get the approximation f δ(t) = uδnδ,mnδ
(t) of the function f(t) by formula

(3.124).

3.3 Numerical experiments

3.3.1 The parameters κ, a0, d

From definition (3.39) and the rule (3.63) we conclude that mn →∞ as an → 0. Therefore,

one needs to control the value of the parameter mn so that it will not grow too fast as an

decreases. The role of the parameter κ in (3.63) is to control the value of the parameter

mn so that the value of the parameter mn will not be too large. Since for sufficiently

small noise level δ, namely δ ∈ (10−16, 10−6], the regularization parameter anδ , obtained by

the stopping rule (3.87), is at most O(10−9), we suggest to choose κ in the interval (0, 1].
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For the noise level δ ∈ (10−6, 10−2] one can choose κ ∈ (1, 3]. To reduce the number of

iterations we suggest to choose the geometric sequence an = a0δ
αn, where a0 ∈ [0.1, 0.2]

and α ∈ [0.5, 0.9]. One may assume without loss of generality that b = 1, because a scaling

transformation reduces the integral over (0, b) to the integral over (0, 1). We have assumed

that the data F (p) are defined on the interval J := [0, d]. In the case the interval J = [d1, d],

0 < d1 < d, the constant d in estimates (3.60), (3.78), (3.79), (3.82), (3.94), (3.95), and

(3.102) are replaced with the constant d− d1. If b = 1, i.e., f(t) = 0 for t > 1, then one has

to take d not too large. Indeed, if f(t) = 0 for t > 1, then an integration by parts yields:

F (p) = [f(0)− e−pf(1)]/p+O(1/p2), p→∞. If the data are noisy, and the noise level is δ,

then the data becomes indistinguishable from noise for p = O(1/δ). Therefore it is useless

to keep the data Fδ(p) for d > O(1/δ). In practice one may get a satisfactory accuracy of

inversion by the method, proposed in Section 2, when one uses the data with d ∈ [1, 20]

when δ ≤ 10−2. In all the numerical examples we have used d = 5. Given the interval [0, d],

the proposed method generates automatically the discrete data Fδ(pj), j = 0, 1, 2, . . . ,m,

over the interval [0, d] which are needed to get the approximation of the function f(t).

3.3.2 Experiments

To test the proposed method we consider some examples proposed in24,1,2,3,4,5,10,12,22

and37. To illustrate the numerical stability of the proposed method with respect to the noise,

we use the noisy data Fδ(p) with various noise levels δ = 10−2, δ = 10−4 and δ = 10−6. The

random quantities δj in (3.77) are obtained from the uniform probability density function

over the interval [−δ, δ]. In examples 1-12 we choose the value of the parameters as follows:

an = 0.1qn, q = δ1/2 and d = 5. The parameter κ = 1 is used for the noise levels δ = 10−2

and δ = 10−4. When δ = 10−6 we choose κ = 0.3 so that the value of the parameters mn

are not very large, namely mn ≤ 300. Therefore, the computation time for solving linear

algebraic system (3.123) can be reduced significantly. We assume that the support of the

function f(t) is in the interval [0, b] with b = 10. In the stopping rule (3.87) the following
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parameters are used: C =
√
d + 0.01, ε = 0.99. In example 13 the function f(t) = e−t is

used to test the applicability of the proposed method to functions without compact support.

The results are given in Table 13 and Figure 13.

For a comparison with the exact solutions we use the mean absolute error:

MAE :=

[∑100
j=1(f(ti)− f δmnδ (ti))

2

100

]1/2

, tj = 0.01 + 0.1(j − 1), j = 1, . . . , 100, (3.127)

where f(t) is the exact solution and f δmnδ
(t) is the approximate solution. The computation

time (CPU time) for obtaining the approximation of f(t), the number of iterations (Iter.),

and the parameters mnδ and anδ generated by the proposed method are given in each ex-

periment (see Tables 1-12). All the calculations are done in double precision generated by

MATLAB.

• Example 1. (see12)

f1(t) =

{
1, 1/2 ≤ t ≤ 3/2,
0, otherwise,

F1(p) =

{
1, p = 0,
e−p/2−e−3p/2

p
, p > 0.

Figure 3.1: Example 1: the stability of the approximate solution

The reconstruction of the exact solution for different values of the noise level δ is

shown in Figure 1. When the noise level δ = 10−6, our result is comparable with the

double precision results shown in12. The proposed method is stable with respect to

the noise δ as shown in Table 1.
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Table 3.1: Example 1.

δ MAE mnδ Iter. CPU time(second) anδ
1.00× 10−2 9.62× 10−2 30 3 3.13× 10−2 2.00× 10−3

1.00× 10−4 5.99× 10−2 32 4 6.25× 10−2 2.00× 10−7

1.00× 10−6 4.74× 10−2 54 5 3.28× 10−1 2.00× 10−10

• Example 2. (see4,12 )

f2(t) =


1/2, t = 1,
1, 1 < t < 10,
0, elsewhere,

F2(p) =

{
9, p = 0,
e−p−e−10p

p
, p > 0.

Figure 3.2: Example 2: the stability of the approximate solution

Table 3.2: Example 2.

δ MAE mnδ Iter. CPU time (seconds) anδ

1.00× 10−2 1.09× 10−1 30 2 3.13× 10−2 2.00× 10−3

1.00× 10−4 8.47× 10−2 32 3 6.25× 10−2 2.00× 10−6

1.00× 10−6 7.41× 10−2 54 5 4.38× 10−1 2.00× 10−12

The reconstruction of the function f2(t) is plotted in Figure 2. In12 a high accuracy

result is given by means of the multiple precision. But, as reported in12, to get such

high accuracy results, it takes 7 hours. From Table 2 and Figure 2 we can see that

the proposed method yields stable solution with respect to the noise level δ. The

reconstruction of the exact solution obtained by the proposed method is better than

the reconstruction shown in4. The result is comparable with the double precision
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results given in12. For δ = 10−6 and κ = 0.3 the value of the parameter mnδ is

bounded by the constant 54.

• Example 3. (see24,1,4,5,37)

f3(t) =

{
te−t, 0 ≤ t < 10,
0, otherwise,

F3(p) =
1− e−(p+1)10

(p+ 1)2
− 10e−(p+1)10

p+ 1
.

Figure 3.3: Example 3: the stability of the approximate solution

Table 3.3: Example 3.

δ MAE mnδ Iter. CPU time (seconds) anδ

1.00× 10−2 2.42× 10−2 30 2 3.13× 10−2 2.00× 10−3

1.00× 10−4 1.08× 10−3 30 3 3.13× 10−2 2.00× 10−6

1.00× 10−6 4.02× 10−4 30 4 4.69× 10−2 2.00× 10−9

We get an excellent agreement between the approximate solution and the exact so-

lution when the noise level δ = 10−4 and 10−6 as shown in Figure 3. The results

obtained by the proposed method are better than the results given in4. The mean

absolute error MAE decreases as the noise level decreases which shows the stability

of the proposed method. Our results are more stable with respect to the noise δ than

the results presented in37. The value of the parameter mnδ is bounded by the constant

30 when the noise level δ = 10−6 and κ = 0.3.

• Example 4. (see4,12)
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f4(t) =

{
1− e−0.5t, 0 ≤ t < 10,
0, elsewhere.

F4(p) =

{
8 + 2e−5, p = 0,
1−e−10p

p
− 1−e−(p+1/2)10

p+0.5
, p > 0.

Figure 3.4: Example 4: the stability of the approximate solution

As in our example 3 when the noise δ = 10−4 and 10−6 are used, we get a satisfactory

agreement between the approximate solution and the exact solution. Table 4 gives

the results of the stability of the proposed method with respect to the noise level δ.

Moreover, the reconstruction of the function f4(t) obtained by the proposed method is

better than the reconstruction of f4(t) shown in4, and is comparable with the double

precision reconstruction obtained in12.

Table 3.4: Example 4.
δ MAE mnδ Iter. CPU time (seconds) anδ

1.00× 10−2 1.59× 10−2 30 2 3.13× 10−2 2.00× 10−3

1.00× 10−4 8.26× 10−4 30 3 9.400× 10−2 2.00× 10−6

1.00× 10−6 1.24× 10−4 30 4 1.250× 10−1 2.00× 10−9

In this example when δ = 10−6 and κ = 0.3 the value of the parameter mnδ is bounded

by the constant 109 as shown in Table 4.

• Example 5. (see2,4,10)
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f5(t) = 2/
√

3e−t/2 sin(t
√

3/2)

F5(p) =
1− cos(10

√
3/2)e−10(p+0.5)

[(p+ 0.5)2 + 3/4]
− 2(p+ 0.5)e−10(p+0.5) sin(10

√
3/2)√

3[(p+ 0.5)2 + 3/4]
.

Figure 3.5: Example 5: the stability of the approximate solution

Table 3.5: Example 5.

δ MAE mnδ Iter. CPU time (seconds) anδ

1.00× 10−2 4.26× 10−2 30 3 6.300× 10−2 2.00× 10−3

1.00× 10−4 1.25× 10−2 30 3 9.38× 10−2 2.00× 10−6

1.00× 10−6 1.86× 10−3 54 4 3.13× 10−2 2.00× 10−9

This is an example of the damped sine function. In2 and10 the knowledge of the exact

data F (p) in the complex plane is required to get the approximate solution. Here we

only use the knowledge of the discrete perturbed data Fδ(pj), j = 0, 1, 2, . . . ,m, and

get a satisfactory result which is comparable with the results given in2 and10 when

the level noise δ = 10−6. The reconstruction of the exact solution f5(t) obtained by

our method is better than this of the method given in4. Moreover, our method yields

stable solution with respect to the noise level δ as shown in Figure 5 and Table 5 show.

In this example when κ = 0.3 the value of the parameter mnδ is bounded by 54 for

the noise level δ = 10−6 (see Table 5).

• Example 6. (see12)
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f6(t) =


t, 0 ≤ t < 1,
3/2− t/2, 1 ≤ t < 3,
0, elsewhere.

F6(p) =

{
3/2, p = 0,
1−e−p(1+p)

p2
+ e−3p+e2p(2p−1)

2p2
, p > 0.

Figure 3.6: Example 6: the stability of the approximate solution

Table 3.6: Example 6.

δ MAE mnδ Iter. CPU time (seconds) anδ

1.00× 10−2 4.19× 10−2 30 2 4.700× 10−2 2.00× 10−3

1.00× 10−4 1.64× 10−2 32 3 9.38× 10−2 2.00× 10−6

1.00× 10−6 1.22× 10−2 54 4 3.13× 10−2 2.00× 10−9

Example 6 represents a class of piecewise continuous functions. From Figure 6 the

value of the exact solution at the points where the function is not differentiable can

not be well approximated for the given levels of noise by the proposed method. When

the noise level δ = 10−6, our result is comparable with the results given in12. Table 6

reports the stability of the proposed method with respect to the noise δ. It is shown

in Table 6 that the value of the parameter m generated by the proposed adaptive

stopping rule is bounded by the constant 54 for the noise level δ = 10−6 and κ = 0.3

which gives a relatively small computation time.

• Example 7. (see12)
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f7(t) =


−te−t − e−t + 1, 0 ≤ t < 1,
1− 2e−1, 1 ≤ t < 10,
0, elsewhere,

F7(p) =

{
3/e− 1 + 9(1− 2/e), p = 0,

e−1−p e1+p−e(1+p)2+p(3+2p)
p(p+1)2

+ (e− 2)e−1−p−10p e10p−ep
p

, p > 0.

Figure 3.7: Example 7: the stability of the approximate solution

Table 3.7: Example 7.

δ MAE mnδ Iter. CPU time (seconds) anδ

1.00× 10−2 1.52× 10−2 30 2 4.600× 10−2 2.00× 10−3

1.00× 10−4 2.60× 10−3 30 3 9.38× 10−2 2.00× 10−6

1.00× 10−6 2.02× 10−3 30 4 3.13× 10−2 2.00× 10−9

When the noise level δ = 10−4 and δ = 10−6, we get numerical results which are

comparable with the double precision results given in12. Figure 7 and Table 7 show

the stability of the proposed method for decreasing δ.

• Example 8. (see3,4)

f8(t) =

{
4t2e−2t, 0 ≤ t < 10,
0, elsewhere.

F8(p) =
8 + 4e−10(2+p)[−2− 20(2 + p)− 100(2− p)2]

(2 + p)3
.

The results of this example are similar to the results of Example 3. The exact solution

can be well reconstructed by the approximate solution obtained by our method at
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Figure 3.8: Example 8: the stability of the approximate solution

the levels noise δ = 10−4 and δ = 10−6 (see Figure 8). Table 8 shows that the MAE

decreases as the noise level decreases which shows the stability of the proposed method

with respect to the noise. In all the levels of noise δ the computation time of the

proposed method in obtaining the approximate solution are relatively small. We get

better reconstruction results than the results shown in4. Our results are comparable

with the results given in3.

Table 3.8: Example 8.

δ MAE mnδ Iter. CPU time (seconds) anδ

1.00× 10−2 2.74× 10−2 30 2 1.100× 10−2 2.00× 10−3

1.00× 10−4 3.58× 10−3 30 3 3.13× 10−2 2.00× 10−6

1.00× 10−6 5.04× 10−4 30 4 4.69× 10−2 2.00× 10−9

• Example 9. (see24)

f9(t) =

{
5− t, 0 ≤ t < 5,
0, elsewhere,

F9(p) =

{
25/2, p = 0,
e−5p+5p−1

p2
, p > 0.

As in Example 6 the error of the approximate solution at the point where the function

is not differentiable dominates the error of the approximation. The reconstruction

of the exact solution can be seen in Figure 9. The detailed results are presented in

Table 9. When the double precision is used, we get comparable results with the results
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Figure 3.9: Example 9: the stability of the approximate solution

shown in24.

Table 3.9: Example 9.

δ MAE mnδ Iter. CPU time (seconds) anδ

1.00× 10−2 2.07× 10−1 30 3 6.25× 10−2 2.00× 10−6

1.00× 10−4 7.14× 10−2 32 4 3.44× 10−1 2.00× 10−9

1.00× 10−6 2.56× 10−2 54 5 3.75× 10−1 2.00× 10−12

• Example 10. (see5)

f10(t) =

{
t, 0 ≤ t < 10,
0, elsewhere,

F10(p) =

{
50, p = 0,
1−e−10p

p2
− 10e−10p

p
, p > 0.

.

Figure 3.10: Example 10: the stability of the approximate solution

Table 10 shows the stability of the solution obtained by our method with respect to

the noise level δ. We get an excellent agreement between the exact solution and the
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Table 3.10: Example 10.

δ MAE mnδ Iter. CPU time (seconds) anδ

1.00× 10−2 2.09× 10−1 30 3 3.13× 10−2 2.00× 10−6

1.00× 10−4 1.35× 10−2 32 4 9.38× 10−2 2.00× 10−9

1.00× 10−6 3.00× 10−3 54 4 2.66× 10−1 2.00× 10−9

approximate solution for all the noise levels δ as shown in Figure 10.

• Example 11. (see5,22)

f11(t) =

{
sin(t), 0 ≤ t < 10,
0, elsewhere,

F11(p) =
1− e−10p(p sin(10) + cos(10))

1 + p2
.

Figure 3.11: Example 11: the stability of the approximate solution

Here the function f11(t) represents the class of periodic functions. It is mentioned in22

that oscillating function can be found with acceptable accuracy only for relatively small

values of t. In this example the best approximation is obtained when the noise level

δ = 10−6 which is comparable with the results given in5 and22. The reconstruction

of the function f11(t) for various levels of the noise δ are given in Figure 11. The

stability of the proposed method with respect to the noise δ is shown in Table 11. In

this example the parameter mnδ is bounded by the constant 54 when the noise level

δ = 10−6 and κ = 0.3.
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Table 3.11: Example 11.

δ MAE mnδ Iter. CPU time (seconds) anδ

1.00× 10−2 2.47× 10−1 30 3 9.38× 10−2 2.00× 10−6

1.00× 10−4 4.91× 10−2 32 4 2.50× 10−1 2.00× 10−9

1.00× 10−6 2.46× 10−2 54 5 4.38× 10−1 2.00× 10−12

• Example 12. (see3,5)

f12(t) =

{
t cos(t), 0 ≤ t < 10,
0, elsewhere,

F12(p) =
(p2 − 1)− e−10p(−1 + p2 + 10p+ 10p3) cos(10)

(1 + p2)2

+
e−10p(2p+ 10 + 10p2) sin(10)

(1 + p2)2
.

Figure 3.12: Example 12: the stability of the approximate solution

Here we take an increasing function which oscillates as the variable t increases over

the interval [0, 10). A poor approximation is obtained when the noise level δ = 10−2.

Figure 12 shows that the exact solution can be approximated very well when the noise

level δ = 10−6. The results of our method are comparable with these of the methods

given in3 and5. The stability of our method with respect to the noise level is shown

in Table 12.

• Example 13.

f13(t) = e−t, F13(p) =
1

1 + p
.
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Table 3.12: Example 12.

δ MAE mnδ Iter. CPU time (seconds) anδ

1.00× 10−2 1.37× 100 96 3 9.38× 10−2 2.00× 10−6

1.00× 10−4 5.98× 10−1 100 4 2.66× 10−1 2.00× 10−9

1.00× 10−6 2.24× 10−1 300 5 3.44× 10−1 2.00× 10−12

Here the support of f13(t) is not compact. From the Laplace transform formula one

gets

F13(p) =

∫ ∞
0

e−te−ptdt =

∫ b

0

e−(1+p)tdt+

∫ ∞
b

e−(1+p)tdt

=

∫ b

0

f13(t)e
−ptdt+

e−(1+p)b

1 + p
:= I1 + I2,

where δ(b) := e−b. Therefore, I2 can be considered as noise of the data F13(p), i.e.,

F δ
13(p) := F13(p)− δ(b), (3.128)

where δ(b) := e−b. In this example the following parameters are used: d = 2, κ = 10−1

for δ = e−5 and κ = 10−5 for δ = 10−8, 10−20 and 10−30. Table 13 shows that the

error decreases as the parameter b increases. The approximate solution obtained by

the proposed method converges to the function f13(t) as b increases (see Figure 13).

Table 3.13: Example 13.

b MAE mδ Iter CPU time (seconds)

5 1.487× 10−2 2 4 3.125× 10−2

8 2.183× 10−4 2 4 3.125× 10−2

20 4.517× 10−9 2 4 3.125× 10−2

30 1.205× 10−13 2 4 3.125× 10−2

3.4 Conclusion

We have tested the proposed algorithm on the wide class of examples considered in the

literature. Using the rule (3.63) and the stopping rule (3.87), the number of terms in rep-
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Figure 3.13: Example 13: the stability of the approximate solution

resentation (3.73), the discrete data Fδ(pj), j = 0, 1, 2, . . . ,m, and regularization parameter

anδ , which are used in computing the approximation f δm(t) (see (3.73)) of the unknown

function f(t), are obtained automatically. Our numerical experiments show that the com-

putation time (CPU time) for approximating the function f(t) is small, namely CPU time

≤ 1 seconds, and the proposed iterative scheme and the proposed adaptive stopping rule

yield stable solution with respect to the noise level δ. The proposed method also works for

f without compact support as shown in Example 13. Moreover, in the proposed method we

only use a simple representation (3.73) which is based on the kernel of the Laplace transform

integral, so it can be easily implemented numerically.
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