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Abstract 

Emission of particulate matter (PM) and various gases from open-lot beef cattle feedlots 

is becoming a concern because of the adverse effects on human health and the environment; 

however, scientific information on feedlot emissions is limited. This research was conducted to 

estimate emission rates of PM10 from large cattle feedlots. Specific objectives were to: (1) 

determine feedlot PM10 emission rates by reverse dispersion modeling using AERMOD; (2) 

compare AERMOD and WindTrax in terms of their predicted concentrations and back-

calculated PM10 emission rates; (3) examine the sensitivity of both AERMOD and WindTrax to 

changes in meteorological parameters, source location, and receptor location; (4) determine 

feedlot PM10 emission rates using the flux-gradient technique; and (5) compare AERMOD and 

computational fluid dynamics (CFD) in simulating particulate dispersion from an area source.  

PM10 emission rates from two cattle feedlots in Kansas were determined by reverse 

dispersion modeling with AERMOD using PM10 concentration and meteorological 

measurements over a 2-yr period. PM10 emission rates for these feedlots varied seasonally, with 

overall medians of 1.60 and 1.10 g /m2-day. Warm and prolonged dry periods had significantly 

higher PM emissions compared to cold periods. Results also showed that the PM10 emissions had 

a diurnal trend; highest PM10 emission rates were observed during the afternoon and early 

evening periods.  

Using particulate concentration and meteorological measurements from a third cattle 

feedlot, PM10 emission rates were back-calculated with AERMOD and WindTrax. Higher PM10 

emission rates were calculated by AERMOD, but their resulting PM10 emission rates were highly 

linear (R2 > 0.88). As such, development of conversion factors between these two models is 

feasible. AERMOD and WindTrax were also compared based on their sensitivity to changes in 

meteorological parameters and source locations. In general, AERMOD calculated lower 

concentrations than WindTrax; however, the two models responded similarly to changes in wind 

speed, surface roughness, atmospheric stability, and source and receptor locations. 

The flux-gradient technique also estimated PM10 emission rates at the third cattle feedlot. 

Analyses of PM10 emission rates and meteorological parameters indicated that PM10 emissions at 

the feedlot were influenced by friction velocity, sensible heat flux, temperature, and surface 



 

roughness. Based on pen surface water content measurements, a water content of at least 20% 

(wet basis) significantly lowered PM10 emissions at the feedlot. 

The dispersion of particulate from a simulated feedlot pen was predicted using CFD 

turbulence model (k-ε model) and AERMOD. Compared to CFD, AERMOD responded 

differently to wind speed setting, and was not able to provide detailed vertical concentration 

profiles such that the vertical concentration gradients at the first few meters from the ground 

were negligible. This demonstrates some limitations of AERMOD in simulating dispersion for 

area sources such as cattle feedlots and suggests the need to further evaluate its performance for 

area source modeling. 
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Abstract 

Emission of particulate matter (PM) and various gases from open-lot beef cattle feedlots 

is becoming a concern because of the adverse effects on human health and the environment; 

however, scientific information on feedlot emissions is limited. This research was conducted to 

estimate emission rates of PM10 from large cattle feedlots. Specific objectives were to: (1) 

determine feedlot PM10 emission rates by reverse dispersion modeling using AERMOD; (2) 

compare AERMOD and WindTrax in terms of their predicted concentrations and back-

calculated PM10 emission rates; (3) examine the sensitivity of both AERMOD and WindTrax to 

changes in meteorological parameters, source location, and receptor location; (4) determine 

feedlot PM10 emission rates using the flux-gradient technique; and (5) compare AERMOD and 

computational fluid dynamics (CFD) in simulating particulate dispersion from an area source.  

PM10 emission rates from two cattle feedlots in Kansas were determined by reverse 

dispersion modeling with AERMOD using PM10 concentration and meteorological 

measurements over a 2-yr period. PM10 emission rates for these feedlots varied seasonally, with 

overall medians of 1.60 and 1.10 g /m2-day. Warm and prolonged dry periods had significantly 

higher PM emissions compared to cold periods. Results also showed that the PM10 emissions had 

a diurnal trend; highest PM10 emission rates were observed during the afternoon and early 

evening periods.  

Using particulate concentration and meteorological measurements from a third cattle 

feedlot, PM10 emission rates were back-calculated with AERMOD and WindTrax. Higher PM10 

emission rates were calculated by AERMOD, but their resulting PM10 emission rates were highly 

linear (R2 > 0.88). As such, development of conversion factors between these two models is 

feasible. AERMOD and WindTrax were also compared based on their sensitivity to changes in 

meteorological parameters and source locations. In general, AERMOD calculated lower 

concentrations than WindTrax; however, the two models responded similarly to changes in wind 

speed, surface roughness, atmospheric stability, and source and receptor locations. 

The flux-gradient technique also estimated PM10 emission rates at the third cattle feedlot. 

Analyses of PM10 emission rates and meteorological parameters indicated that PM10 emissions at 

the feedlot were influenced by friction velocity, sensible heat flux, temperature, and surface 



 

roughness. Based on pen surface water content measurements, a water content of at least 20% 

(wet basis) significantly lowered PM10 emissions at the feedlot. 

The dispersion of particulate from a simulated feedlot pen was predicted using CFD 

turbulence model (k-ε model) and AERMOD. Compared to CFD, AERMOD responded 

differently to wind speed setting, and was not able to provide detailed vertical concentration 

profiles such that the vertical concentration gradients at the first few meters from the ground 

were negligible. This demonstrates some limitations of AERMOD in simulating dispersion for 

area sources such as cattle feedlots and suggests the need to further evaluate its performance for 

area source modeling. 
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k Turbulent kinetic energy 
kv von Karman constant (0.4), expressed as k in Chapter 6 
Kc Eddy diffusivity for PM10 (m

2/sec) 
Km Eddy diffusivity for momentum (m2/sec) 
L Monin-Obukhov length (m) 
N Number of cattle in thousand (e.g., 30 for 30,000 head) 
P Pressure force 
psd Particle size distribution 
Q, Qp  Emission rate (e.g., µg/m2-sec) 
QA Assumed emission rate in reverse modeling (e.g., µg/m2-sec) 
Qo Back-calculated emission rate in reverse modeling (e.g., µg/m2-sec) 
Qyr Mean emission rate (g/m2-day) 
Ra Aerodynamic resistance (sec/m) 
Rp Quasi-laminar sublayer resistance (sec/m) 
R2 Coefficient of determination 
S Generation term 
Sc Schmidt number 
SCF Slip correction factor 
TSP Total suspended particulate 
x Downwind direction; particle position in the Lagrangian stochastic technique for 

Chapter 2; fetch (m) for Chapter 5 
u Particle velocity in the Lagrangian stochastic technique for Chapter 2 
ux, u Downwind component of velocity/wind speed (m/sec), wind anemometer-based 

wind speed (m/sec) 
uy, v Crosswind component of velocity/wind speed (m/sec) 
uz, w  Vertical component of velocity/wind speed (m/sec) 



 xx

u* Friction velocity (m/sec) 
vi Sonic anemometer parameter (i.e., wind speed components, temperature) 
Vd Deposition velocity of particles (m/sec) 
Vg Settling velocity of particles (m/sec) 
wo Vertical touchdown velocity in the backward Lagrangian stochastic technique 
w* Convective velocity scale (m/sec) 
y Crosswind direction 
z Vertical direction 
zm Sampler measurement height, expressed as z in Chapter 7 (m) 
zo Surface roughness (cm, m) 
zu Length scale 
ε Turbulent dissipation rate 
φ Fluid property transported for the general transport equation 

φ  Average component for the fluid property 

φ’  Fluctuation component for the fluid property 
φm Nondimensional correction parameter 
ρ Particle density (g/cm3) for Chapter 3; air density for Chapter 7  
µ Air viscosity (g/cm-sec) 
µt Turbulent viscosity (g/cm-sec) 
σ Standard deviation for a wind velocity component (i.e., downwind, crosswind, 

vertical) 
σk Turbulent Prandtl number for turbulent kinetic energy 
σε Turbulent Prandtl number for turbulent dissipation rate 
τij  Viscous stress component for the Navier-Stokes equation 
Γ, ΓD Diffusion coefficient 
ΓL Laminar component of diffusion coefficient 
ΓT    Turbulent component of diffusion coefficient 
ψ Stability terms in vertical profiling of velocity 
< vi x vj > Mean product between two sonic anemometer-based parameters 
< v’i v’ j > Covariance between two sonic anemometer-based parameters 
< vi > Average of a sonic anemometer-based parameter (vi) 
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Introduction CHAPTER 1 - 

1.1 Background 

The beef cattle feeding industry in the U.S. is projected to grow in the coming years. 

Although U.S. Department of Agriculture (USDA) reported a slight decrease (6%) in the total 

number of beef cattle feedlots in the past three years, the number of large capacity-cattle feedlots 

has increased steadily. For example, the number of feedlots with more than 16,000 head-capacity 

increased by 6% in 2010 and was maintained in 2011; the number of 50,000+ head-capacity 

feedlots increased by 8 and 3% in 2010 and 2011, respectively (National Agricultural Statistics 

Service, 2010, 2011, 2012). Considering all feedlots, cattle inventory for the month of February 

increased by 3 and 1% for years 2010 and 2011, respectively; for 16,000+ head capacity feedlots, 

cattle inventory increased by 7% in 2010 and 5% in 2011 (National Agricultural Statistics 

Service, 2010, 2011, and 2012). Almost 78% of all cattle fed in 1,000+ head-capacity feedlots, 

approximately 9 million cattle, are located in the High Plains states of TX, KS, OK, NE, and CO 

(National Agricultural Statistics Service, 2010, 2011, and 2012). 

With the steady growth of the beef cattle feeding industry, air quality issues related to 

cattle feeding operations are also expected to rise (Midwest Plan Service, 2002). Pollutant 

emissions associated with open-lot beef cattle feedlots that can affect air quality include 

particulate matter (PM), gases such as ammonia (NH3), methane (CH4) and other greenhouse 

gases (GHGs), and odorous volatile organic compounds. Based on latest steps taken by U.S. 

Environmental Protection Agency (EPA) concerning concentrated animal feeding operations 

(CAFOs) (CFR, 2011), cattle feedlots may eventually be subjected to air pollutant emissions 

regulations. As stated by U.S. EPA, more research data on gaseous and PM emissions from 

CAFOs are needed (CFR, 2011; Purdue Applied Meteorology Laboratory, 2009). In 2005, U.S. 

EPA established the National Air Emissions Monitoring Study (NAEMS) and worked with 

several owners/stakeholders of various CAFOs to measure data on gaseous and PM emissions on 

several participating CAFOs units that would be used to collect science-based pollutant emission 

rates, and to develop and evaluate air pollutant emission estimation methodologies for CAFOs 

(U.S. Environmental Protection Agency, 2005; CFR, 2011). Having accurate pollutant emissions 

data and appropriate emission estimation techniques would benefit CAFOs as they can estimate 
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their emissions and evaluate their air pollutant abatement measures. None of the CAFO units 

monitored in NAEMS represented the beef cattle feeding operations.  

Clearly, data on gaseous and PM emissions are still limited for large open-lot cattle 

feedlots. More research is needed to quantify and characterize air emissions from cattle feedlots. 

Quantifying air emission rates from open feedlots is difficult, largely because of their unique 

characteristics, including surface heterogeneity, wide variation in source geometry, and temporal 

and spatial variability of emission rates. National Research Council (NRC) (2003) summarized 

various techniques appropriate for estimating air pollutant emission rates from area sources like 

cattle feedlots. Techniques suggested are (1) micrometeorological techniques (e.g., eddy 

covariance, flux-gradient, etc.), (2) mass balance technique, (3) atmospheric tracers, and (4) 

atmospheric dispersion models. Based on emission studies on open sources such as agricultural 

lands and feedlots, commonly used techniques in determining emission rates from open area 

sources include micrometeorological techniques and atmospheric dispersion models. For 

atmospheric dispersion model, the current U.S. EPA preferred model is the American 

Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD), a 

Gaussian-based model capable of modeling area sources (CFR, 2005; Cimorelli et al., 2004; 

Turner and Schulze, 2007). Despite being the U.S. EPA regulatory model, AERMOD’s use in 

emission studies on open area sources, like CAFOs, is limited compared to other techniques. 

Techniques that had been in used in most recent emission studies involving area sources are 

micrometeorological techniques (Myles et al., 2011; Muller et al., 2009; Prueger et al. 2005) and 

WindTrax dispersion model (Flesch et al., 2009; Galvin et al., 2006; Leytem et al., 2011).  

For PM emissions from cattle feedlots, several estimates of emission rates are available 

from previous studies. These estimates were determined either by mass balance techniques 

(Countess Environmental, 2006; San Joaquin Valley Unified Air Pollution Control District, 

2010) or atmospheric dispersion models (Wanjura et al., 2004; McGinn et al., 2010), which 

included ISCST3 (i.e., Gaussian model, the previous U.S. EPA preferred model) and WindTrax 

(i.e., Lagrangian model); the published U.S. EPA PM10 emission factor was derived using a 

simple Gaussian model (Midwest Research Institute, 1988). Comparison of these estimates, 

however, might not be meaningful due to their differences in derivation, which included 

differences in length of measurement periods (i.e., most were based on several measurement 

days only), feedlot characteristics (e.g., number of cattle, pen surface conditions), concentration 
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and meteorological measurements (e.g., equipment used, measurement design), and emission 

estimation technique. From these same reasons, use of these PM emission estimates on 

evaluating PM concentrations downwind might not always be appropriate for all feedlots. More 

important, limitations of these emission estimation and/or emission simulation techniques must 

be addressed.  One limitation is that air pollutant emission rates maybe model-specific, which 

means that the emission rate derived with one model may not be suitable for another (Hall et al., 

2002; Faulkner et al., 2007).  Another limitation is that studies on performances of these 

techniques in estimating emission and/or modeling dispersion from area sources are still limited, 

mainly to the fact that quantifying accurate emissions rates from open area sources is 

challenging. As a result, the identification of the technique that gives the most accurate estimate 

remains a challenge. 

This dissertation addresses several research issues concerning air pollutant emission 

estimation for open area sources, specifically for cattle feedlots. Using PM10 concentrations and 

micrometeorological/meteorological parameters measured at several commercial cattle feedlots 

in Kansas, PM10 emission rates were determined by various techniques that included two 

atmospheric dispersion models and a micrometeorological technique. As the current U.S. EPA 

regulatory model, AERMOD’s performance on area source modeling was assessed by comparing 

it to other derived PM10 emission rates, and its response to several meteorological parameters, 

and by evaluating its dispersion simulation. 

1.2 Research Objectives 

The overall goal of this dissertation was the development of science-based PM10 emission 

rates for large commercial beef cattle feedlots. The objectives were to: 

1. Determine PM10 emission rates from beef cattle feedlots by reverse dispersion 

modeling with AERMOD. 

2. Compare AERMOD (i.e., Gaussian model) and WindTrax (i.e., Lagrangian model) in 

terms of their predicted PM10 concentrations and emission rates. 

3. Investigate the sensitivity of AERMOD and WindTrax to changes in meteorological 

parameters and area source-receptor locations. 

4. Determine PM10 emission rates using the flux-gradient method. 

5. Simulate the dispersion of particulates from an area source using computational fluid 

dynamics (CFD) and compare predicted results from AERMOD. 
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1.3 Rationale 

Along with the growth of the beef cattle feeding industry in the U.S. is the expected rise 

in air quality concerns related to cattle feeding operations. To date, U.S. EPA has undertaken 

several actions to learn more about air emissions from CAFOs, which include cattle feedlots. 

Based on these developments, air pollutant emissions from CAFOs may eventually be regulated. 

As expressed by U.S. EPA, more science-based data are needed to gain more knowledge on 

CAFOs air pollutants, particularly from large beef cattle feedlots, and to serve as guidelines on 

establishing air regulations applicable for CAFOs. Several studies had been conducted to 

determine air pollutants from cattle feedlots; however, most of these focused on gaseous 

emissions and only a few dealt with PM. Starting December 2005, the U.S. EPA identified 

AERMOD as its current regulatory model for dispersion. With AERMOD capable of modeling 

almost all types of sources (i.e., point, area, and volume), standardization of atmospheric 

dispersion simulation and air emission rate determination is feasible. However, use of AERMOD 

in modeling area sources is limited. More study is needed on the use of AERMOD on area 

sources, such as cattle feedlots; performance of AERMOD should also be evaluated by 

comparing it to techniques commonly used in area source modeling. 

Work performed in this dissertation provides technical information on estimation of PM10 

emissions from cattle feedlots that will be useful to scientists, engineers, policy makers on air 

quality regulations, and CAFOs producers/operators. PM10 emission rates derived were based on 

measurement periods significantly longer than those in previous studies. Different approaches of 

estimating emission rates and/or simulating particle dispersion were presented and compared; 

results of comparison may be used in development of conversion factors between models and/or 

improvement of modeling performance of techniques used.  Findings presented in this 

dissertation will also be useful on research on air pollutant emissions other than PM10.  

 

1.4 Organization of the Dissertation 

This dissertation has eight chapters. Chapter 1 states the objectives and significance of 

the research. Chapter 2 is a review of literature on PM emissions from cattle feedlots and on 

different techniques on estimating emissions. Chapter 3 is a study that determined PM10 emission 

rates from two cattle feedlots in Kansas by reverse dispersion modeling with AERMOD. 

Chapters 4 and 5 compare AERMOD and WindTrax dispersion models in terms of their 
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estimated PM10 emission rates for a Kansas cattle feedlot and of their response to different 

modeling inputs, respectively. Chapter 6 estimates PM10 emission rates from cattle feedlots using 

the flux-gradient technique. Additional analyses on the flux-gradient technique are summarized 

in Appendices A, which is a verification of turbulent fluctuations of PM10 emissions at the 

studied feedlot, and B, which is a partial comparison of the flux-gradient technique to both 

AERMOD and WindTrax.  Chapter 7 is a study that evaluated the performance of AERMOD 

and CFD turbulence model in simulating particle transport/dispersion. Additional graphs for 

AERMOD and CFD dispersion simulations are included in Appendix C. And last, Chapter 8 

provides the conclusions and recommendations. 

 

1.5 References 

Cimorelli, A.J., S.G. Perry, A. Venkatram, J.C. Weil, R.J. Paine, R.B. Wilson, R.F. Lee, W.D. 

Peters, R.W. Brode, and J.O. Paumier. 2004. AERMOD: Description of Model 

Formulation, EPA-454/R-03-004. NC: U.S. Environmental Protection Agency.  

CFR. 2005. Code of Federal Regulations, 40 CFR, Part 51: Revision to the guideline of air 

quality models: Adoption of a preferred general purpose (flat and complex terrain) 

dispersion model and other revisions. 

CFR., 2011. Code of Federal Regulations, 40 CFR, Part 60: Call for Information: Information 

related to the development of emission-estimating methodologies for animal feeding 

operations. 

Countess Environmental. 2006. Western Regional Air Partnership (WRAP) Fugitive Dust 

Handbook, Contract No. 30204-111. Denver, CO: Western Governors’ Association. 

Faulkner, W. B., J.J. Powell, J.M. Lange, B.W. Shaw, R.E. Lacey, and C.B. Parnell. 2007. 

Comparison of dispersion models for ammonia emissions from a ground-level area 

source. Trans. ASABE 50:2189-2197. 

Flesch, T.K., L.A. Harper, J.M. Powell, and J.D. Wilson. 2009. Inverse-dispersion calculation of 

ammonia emissions from Wisconsin dairy farms. Trans. ASABE 52:253-265. 

Galvin, G., C. Henry, D. Parker, R. Ormerod, P. D’Abreton, and M. Rhoades. 2006. Efficacy of 

Lagrangian and a Gaussian model for back calculating emission rates from feedyard area 

sources. Paper presented at the Workshop on Agricultural Air Quality, Potomac, MD, 

June 5-8, 2006.   



  6

Hall, D.J., A.M. Spanton, M. Bennett, F. Dunkerley, R.F. Griffiths, B.E.A. Fisher, and R.J. 

Timmis. 2002. Evaluation of new generation atmospheric dispersion models. Int. J. 

Environmental and Pollution 18:22–32. 

Leytem, A.B., R.S. Dungan, D.L. Bjorneberg, and A.C. Koehn. 2011. Emission of ammonia, 

methane, carbon dioxide, and nitrous oxide from dairy cattle housing and manure 

management systems. J. Environ. Qual. 40:1383-1394. doi:10.2134/jeq2009.0515.  

McGinn, S.M., T.K. Flesch, D. Chen, B. Crenna, O.T. Denmead, T. Naylor, and D. Rowell. 

2010. Course particulate matter emissions from cattle feedlots in Australia. J. Environ. 

Qual. 39:791-798. doi:10.2134/jeq2009.0240. 

Midwest Plan Service. 2002. Outdoor air quality – Midwest Plan Service-18 Manure 

Management System Series 18. Section 18. Ames, IA: Midwest Plan Service. 

Midwest Research Institute. 1988. Gap Filling PM10 Emission Factors for Selected Open Area 

Dust Sources, EPA-450/4-88-003. NC: U.S. Environmental Protection Agency. 

Muller, J.B.A., M. Coyle, D. Fowler, M.W. Gallagher, E.G. Nemitz, and C.J. Percival. 2009. 

Comparison of ozone fluxes over grassland by gradient and eddy covariance technique. 

Atmos. Sci. Let. 10:164-169. doi:10.1002.asl.226. 

Myles, L., J. Kochendorfer, M.W. Heuer, and T.P. Meyers. 2011. Measurement of trace gas 

fluxes over an unfertilized agricultural field using the flux-gradient technique. J. Environ. 

Qual. 40:1359-1369. doi:10.2134/jeq2009.0386. 

National Agricultural Statistics Service. 2010. Cattle on Feed February 2010. Washington, DC: 

National Agricultural Statistics Service, U.S. Department of Agriculture. Available at 

www.nass.usda.gov.   

National Agricultural Statistics Service. 2011. Cattle on Feed February 2011. Washington, DC: 

National Agricultural Statistics Service, U.S. Department of Agriculture. Available at 

www.nass.usda.gov.   

National Agricultural Statistics Service. 2012. Cattle on Feed February 2012. Washington, DC: 

National Agricultural Statistics Service, U.S. Department of Agriculture. Available at 

www.nass.usda.gov.   

National Research Council. 2003. Air Emissions from Animal Feeding Operations: Current 

Knowledge, Future Needs. Washington, D.C.: National Academy of Sciences. 



  7

Prueger, J.H., T.J. Gish, L.L. McConnell, L.G. McKee, J.L. Hatfield, and W.P. Kustas. 2005. 

Solar radiation, relative humidity, and soil water effects on Metolachlor volatilization. 

Environ. Sci. Technol. 39:5219-5226. 

Purdue Applied Meteorology Laboratory. 2009. Qualtity Assurance Project Plan for the 

National Air Emissions Monitoring Study, Revision No. 3. West Lafayette, IN: Purdue 

University. 

Turner, D.B., and R.H. Schulze. 2007. Practical Guide to Atmospheric Dispersion Modeling. 

Dallas, TX: Trinity Consultants, Inc. and Air & Waste Management Association. 

U.S. Environmental Protection Agency. 2005. Consent Agreement and Final Order. Available at 

www.epa.gov/compliance/resources/agreements/caa/cafo-agr-050121.pdf. Accessed 

March 6, 2012. 

Wanjura, J.D., C.B. Parnell, B.W. Shaw, and R.E. Lacey. 2004. A protocol for determining a 

fugitive dust emission factor from a ground level area source. Paper presented at 

American Society of Agricultural Engineers (ASAE) Proceedings, Ontario, Canada. 

August 1-4, 2004. ASAE Paper Number 044018. 

 

 



  8

Literature Review CHAPTER 2 - 

2.1 Particulate Matter (PM) Emissions from Cattle Feedlots 

2.1.1 Sources and Control in Cattle Feedlots 

Commercial beef cattle feedlots are large open lots exposed to the outside environment, 

making particulate and gaseous emissions difficult to control and impossible to confine within 

the feedlot vicinity.  The primary PM source in feedlots are the pen surfaces composed mainly of 

soil and manure, with the amount of manure depending on feedlot practices (e.g., cattle stocking 

density, pen cleaning, and manure harvesting frequency). Frequent removal of this soil/manure 

layer by pen cleaning and manure harvesting will greatly reduce the PM emissions. PM 

generation from the pen surface is triggered by cattle activity through hoof action on the dry, 

loose soil/manure layer on the pen surface, and is influenced by the hoof’s speed, force and 

resulting penetration depth (Guo et al., 2011; Razote et al., 2006). Within a given day, cattle tend 

to be more active during the early evening period (Auvermann et al., 2006; Mitloehner, 2000); 

the increased cattle activity is likely one of the main factors contributing to high PM 

concentrations during this period (Bonifacio et al., 2011; Sweeten et al., 1988). Several studies 

suggested that limiting the cattle activity may lead to significant reduction in PM emissions; 

methods that can control cattle activity include increasing the stocking density (Romanillos and 

Auvermann, 1999) and manipulating the feeding schedule/practices (Mitloehner, 2000).  

The water content of the pen surface also influences the PM emissions; the higher the 

water content, the lower the PM emission potential (Miller and Woodbury, 2003). Water is 

added to the pen surface through cattle excretion of urine, precipitation and any water application 

system, and is removed through evaporation. Watering pen surfaces is one of the common 

practices of managing dusty conditions at open-lot feedlots and surrounding areas (Alberta Cattle 

Feeders’ Association, 2002; National Resources Conservation Service, 2003). Water can be 

applied using either solid-set sprinkler system or traveling gun sprinkler system/water trucks 

(Amosson et al., 2006; Amosson et al., 2007). Previous studies have quantified efficiencies of 

water application in suppressing dust emissions at cattle feedlots. Laboratory experiments on a 

simulated pen surface showed that application of 3.2 mm water had PM10 control efficiencies of 

at least 42% (Razote et al., 2006; Guo et al., 2011). Field measurements done at a Kansas feedlot 
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equipped with a solid-set sprinkler system, which had an application rate of 5 mm/day (L/m2-

day), revealed PM10 control efficiencies ranging from 32 to 80% (Bonifacio et al., 2011). 

Other sources of PM in cattle feedlots include unpaved roads, truck/equipment engine 

emissions, and feed mill operations. PM emissions from unpaved roads are generated during 

daytime because of road traffic; during this period, trucks travel around pens for cattle feeding 

and, trucks/tractors are used for manure harvesting operations. Manure harvesting operations can 

be year-long operations, depending on management practice, number of pens, and labor and 

equipment availability. Factors affecting unpaved road PM emissions are vehicle weight, miles 

travelled, traffic volume and unpaved road material properties (Midwest Research Institute, 

1988; U.S. Environmental Protection Agency, 2001). Another PM source is wind erosion. Based 

on a U.S. EPA document (1995), wind speeds greater than 19 km/hr (5.28 m/sec) can lead to 

significant dust generation from open sources; a feedlot study indicated that wind speeds of 3 to 

3.3 m/sec can already trigger significant dust generation from unpaved roads (McGinn et al., 

2010). 

 

2.1.2 Factors Affecting Particulate Matter Concentrations 

Three main variables influencing concentrations downwind of a pollutant source are: (1) 

pollutant emission rate at the source – the higher the emission rate, the higher the downwind 

concentration because more pollutant is released to the atmosphere; (2) wind speed – the higher 

the wind speed, the lower the concentration because of dilution effects; and (3) atmospheric 

conditions – the more stable the atmosphere, the higher the concentration because of less vertical 

mixing/dispersion (Cimorelli et al., 2004; Flesch et al., 1995). Effects of these three variables on 

concentrations can be observed at cattle feedlots by examining PM concentration trends within 

the day. Early evening period has the highest PM concentrations because of higher PM emissions 

from the pens brought about increased cattle activity during this period and stable atmospheric 

conditions (Auvermann et al. 2006). Because of unstable atmospheric conditions (i.e., stronger 

vertical mixing), afternoon period has relatively lower PM concentrations in spite of dust-

generating activities (e.g., cattle activity, cattle transfer, feeding, pen cleaning, feed milling) 

taking place. Lowest PM concentrations, on the other hand, can be observed during early 

morning hours, likely because of the absence of activities capable of dust generation. 
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To lower the PM concentration downwind of feedlots, variables affecting PM emission 

and dispersion must be controlled. As discussed, several measures can be implemented to reduce 

the amount of PM generated from different sources within the feedlot, such as pens and unpaved 

roads; these include control of the pen’s soil/manure layer depth, manipulation of cattle activity, 

and water application on both pen surfaces and unpaved roads. Installation of 

shelterbelts/windbreaks upwind and downwind of the feedlot can lessen effects of wind by 

reducing wind-generated PM and limiting the PM transport downwind of the source, respectively 

(Wang et al., 2001; Midwest Plan Service, 2002).  

 

2.1.3 Health and Environmental Concerns on Particulate Matter from Animal Feeding 

Operations 

PM is a criteria air pollutant primarily due to its adverse effects on human health (CFR, 

2010; Cooper and Alley, 2002).  PM pollution can be grouped as coarse (PM2.5 to PM10) and fine 

particulates (PM2.5) (U.S. Environmental Protection Agency, 2011). PM can also be classified 

based on its impact on human health, specifically on how far it penetrates the human respiratory 

system: particulates that cannot penetrate beyond the nose region are considered inhalable; 

coarse particles that can reach bronchiolar regions are called thoracic particles; and fine particles, 

referred to as respirable particles, can reach the alveolar regions of the lungs (Mitloehner and 

Calvo, 2008). Several health studies suggested that both PM10 and PM2.5 can cause 

cardiopulmonary problems to human population; some of the lung- and heart-related problems 

include difficulty in breathing, increased asthma attacks, chronic bronchitis, irregular heartbeat 

and nonfatal heart attacks (U.S. Environmental Protection Agency, 2011).  Development of these 

cardiopulmonary problems is also noted to be affected by other factors such as age, pre-existing 

health conditions, and length of exposure (Duzgoren-Aydin, 2008). 

PM has been an integral part of health studies done on CAFOs. Although most of these 

studies focused on CAFO workers’ health, potential risks presented are also applicable to public 

as PM in the air can be transported over long distances (Duzgoren-Aydin, 2008). PM from cattle 

feedlots are mainly soil and manure emitted from pen surfaces and silt materials generated from 

unpaved roads. And like in other CAFOs, feedlot PM emissions may contain microorganisms, 

endotoxins/toxins, animal dander and allergens that can trigger allergic reactions and endotoxin-
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related illnesses to high-risk population (Kirkhorn and Schenker, 2002; Mitloehner and Calvo, 

2008).  

 PM also has negative impacts on the environment. In large concentrations, PM, 

especially the fine particulates, reduces visibility as it can produce haze due to particle’s light 

scattering and absorption properties, and lead to fog/smog formation (Cooper and Alley, 2002). 

Atmospheric PM can affect the ecosystem as it settles on either ground or water, altering the 

physical and nutritional conditions of soil and water formations, and thus hindering plant growth 

(Cooper and Alley, 2002; U.S. Environmental Protection Agency, 2011). PM can also cause 

corrosion and erosion of structures and properties as it can adsorb and carry toxic chemicals 

amidst transport (Cooper and Alley, 2002). 

 

2.1.4 U.S. EPA National Air Emissions Monitoring Study on Concentrated Animal 

Feeding Operations  

Air pollutant emissions from cattle feedlots and other CAFOs are not regulated; as 

agricultural operations, CAFOs have been exempted from regulations concerning air quality 

(National Research Council, 2003; Lester, 2006). Recent developments, however, demonstrate 

the increasing concern on air quality issues associated with CAFOs. On January 21, 2005, U.S. 

EPA (2005) finalized the Consent Agreement and Final Order to address air pollutant emissions 

from CAFOs that included ammonia (NH3), hydrogen sulfide (H2S), particulate matter (TSP, 

PM10, PM2.5), and volatile organic compounds (VOCs) . With this agreement, U.S. EPA worked 

with owners/stakeholders in measuring air emissions from various CAFO facilities. 

Consequently, a two-year National Air Emissions Monitoring Study (NAEMS) was established 

to gather air pollutant emissions data that would be used in developing and improving emission 

estimation techniques, which can then be utilized by CAFOs to determine and control their air 

emissions (U.S. Environmental Protection Agency, 2005). A total of 25 CAFOs facilities 

participated in NAEMS, yet none of them represented the beef cattle feeding industry (Lester, 

2006; Purdue Applied Meteorology Laboratory, 2009). One facility monitored in NAEMS was a 

dairy facility with an open-lot setting similar to cattle feedlots; still, use of air emission 

measurements from this facility for cattle feedlots would be inappropriate as its animal capacity 

was very low (3,400 head) compared to typical commercial beef cattle feedlots (e.g., tens of 
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thousands) (Grant and Boehm, 2010). In addition, air emission data collected from this dairy 

facility were only on NH3 and H2S (Grant and Boehm, 2010). 

To obtain more data on CAFOs air pollutant emissions, on January 19, 2011, U.S. EPA 

released a Call for Information requesting for quality-assured emission data on NH3, H2S, TSP, 

PM10, PM2.5, and VOCs for swine, dairy, beef, egg-layer, broiler and turkey operations that can 

be added to the emission data collected through NAEMS (CFR, 2011). 

 

2.2 Emission Estimating Techniques 

The foundation of air pollutant transport simulation is the mass transfer equation written 

as: 
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where C is concentration, ux, uy and uz are components of wind speed in downwind (x-), 

crosswind (y-) and vertical (z-) directions, respectively, Dx, Dy, and Dz are effective diffusion 

coefficients in x-, y-, z-directions, respectively, and S is generation/source term (Heinsohn and 

Kabel, 1999). The left-hand side of the equation is composed of the accumulation term (∂c/∂t) 

and the three convective mass transport terms, whereas the right-hand side has the generation 

term (S) and the three diffusion (i.e., molecular and eddy) transport terms.  

Air emission estimation techniques appropriate for sources with surface areas of 102 to 

106 m2 include reverse atmospheric dispersion modeling and micrometeorological methods 

(National Research Council, 2003), and these techniques are developed using reduced forms of 

eq 2-1 (Flesch and Wilson, 2005; Heinsohn and Kabel, 1999; Meyers and Baldocchi, 2005). 

Common requirement for these emission estimation techniques are concentration measurements, 

meteorological measurements, and area source dimensions. Shortcomings shared by these 

techniques include assumption of surface homogeneity, which implies constant and uniform 

emission rate throughout the area source, and limitations in concentration and meteorological 

sensors (National Research Council, 2003). 
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2.2.1 AERMOD  

AERMOD is the latest dispersion model preferred by U.S. EPA for simulating 

atmospheric dispersion (CFR, 2005). Similar to the previous regulatory model (ISCST3; Pacific 

Environmental Services, Inc., 1995), AERMOD is based on the Gaussian plume model 

(Cimorelli et al., 2004). The following assumptions are applied to simplify eq 2-1: steady-state 

conditions (∂c/∂t = 0); mass is transported by convection in x-direction with constant downwind 

wind speed ux; in both y- and z-directions, mass is transported mainly by diffusion (i.e., 

molecular and eddy) with constant diffusion coefficients (Dy, Dz); and no reaction/generation (S 

= 0) (Heinsohn and Kabel, 1999). The governing equation for the Gaussian plume model is given 

by: 
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The analytical solution for eq 2-2 can be expressed as four separate factors: 

FFFQC vcwdw ×××=                                          (2-3) 

where C is concentration (µg/m3), Q is source emission rate, Fdw is downwind factor, which is 

the inverse of wind speed, (sec/m), and Fcw and Fv are crosswind and vertical factors, 

respectively (Turner, 1994). Eq 2-3 is commonly referred to as the Gaussian plume model since 

the last two factors, Fcw and Fv, are Gaussian (Heinsohn and Kabel, 1999; Turner, 1994). In 

reverse dispersion modeling, the emission flux is estimated using model-predicted and measured 

concentrations with the expression:  

                                                              CC
Q

Q O
A

A

O
×=                                                        (2-4) 

where Qo is calculated emission flux for the source (µg/m2-sec), Co is measured concentration 

downwind of the source (µg/m3), QA is assumed emission flux in the modeling (e.g., 1.0 µg/m2-

sec), and CA is concentration (µg/m3) predicted in the modeling using QA, with the assumption 

that the emission rate (Q in eq 2-3) is independent of the other three factors (Fdw, Fcw and Fv) 

(Calder, 1977). 

Similar to ISCST3, AERMOD is designed for modeling dispersion for point, area, and 

volume sources. Unlike in ISCST3, however, planetary boundary layer is well-characterized in 
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AERMOD (Cimorelli et al., 2004; Turner and Schulze, 2007). In ISCST3, only three boundary 

layer parameters (i.e., wind speed, mixing height, and stability class) are needed to run the 

modeling, whereas in AERMOD, several more parameters (i.e., friction velocity, convective 

velocity scale, potential temperature gradient, sensible heat flux) are required. For stable 

conditions, concentration distributions in both vertical and crosswind directions in AERMOD are 

Gaussian in form. For unstable conditions, the crosswind concentration distribution still has a 

Gaussian form but the vertical concentration distribution is represented with a bi-Gaussian form. 

This bi-Gaussian concept is assumed to be a more accurate approximation of actual vertical 

dispersion during unstable conditions (Cimorelli et al., 2004; Perry et al., 2005).  

The performance of AERMOD in modeling point sources had been evaluated using field 

measurements on power plants with known emission rates (Perry et al., 2005). In these field 

studies, concentrations of either sulfur dioxide (SO2) or atmospheric tracer were measured at 

several locations around the power plants, with downwind distances as far as 50 km (Perry et al., 

2005). In general, AERMOD performed well in predicting the upper end of the observed 

concentration distributions downwind of point sources (Perry et al., 2005) and this capability of 

predicting the highest concentrations is one quality desired for a regulatory model (Hanna et al., 

1999; Turner and Schulze, 2007). This success of AERMOD, which also performed better than 

ISCST3, is attributed to its better characterization of the atmospheric boundary layer, and its use 

of bi-Gaussian form to represent the vertical concentration distributions during unstable 

conditions (Perry et al., 2005).  

On the other hand, the performance of AERMOD in modeling area sources, such as beef 

cattle feedlots, still has to be assessed. Evaluation of AERMOD’s performance would require 

field measurements for area sources with known/measured emission rates, and measured 

downwind concentrations and meteorological conditions. However, having known emission rates 

would be formidable because direct measurement of air pollutant emissions for area sources is 

not feasible. Although static chambers and wind tunnels are indeed available, use of these direct 

techniques on area sources like cattle feedlots can have considerable uncertainties due to non-

capture of emission spatial variability, and alteration of environment during measurement 

(National Research Council, 2003). Preliminary studies investigating AERMOD’s performance 

in area source modeling used sources with several points of release; with all their points 

discharging emissions simultaneously, these sources were treated as area sources (Hanna et al., 
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1999; Perry et al., 2005). For a refinery plant with several point releases, AERMOD produced 

better results by predicting concentrations that differed from measured concentrations by 2% 

only, compared to ISCST3, whose predicted concentrations were higher by almost a factor 2. But 

the performance of AERMOD was not always good; at another site, AERMOD under-predicted 

the concentration by a factor of 2, although it must be noted that it still performed better than 

ISCST3, which overpredicted the concentration by a factor of 3. 

AERMOD and other Gaussian-based models have several limitations. One, AERMOD is 

not suitable for simulating low wind speed or calm conditions (Holmes and Morawska, 2006). 

And two, AERMOD does not give accurate downwind concentrations at locations less than 100 

m away from the source (Holmes and Morawska, 2006). Drawback of placing sampler far away 

from the feedlot property line is that it may lead to inaccurate concentration measurements due to 

presence of sources (e.g., agricultural lands, unpaved roads) other than the feedlot (Faulkner et 

al., 2007), and may contribute to larger uncertainties in calculated emission rates.  

 

2.2.2 WindTrax  

WindTrax is based on a reduced mass transport equation that works with accumulation 

and bulk motion transport terms. The governing equation can be written as: 
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with the assumption that all wind speed components (ux, uy, uz) are constant (Flesch and Wilson, 

2005). To solve eq 2-5, the approach chosen by the developers of WindTrax is the Lagrangian 

stochastic technique. The Lagrangian stochastic technique is composed of particle equations that 

describe the particle position and velocity evolutions (Pope, 2000) and are given by:     

ξdtbdttadu jjiii ),,(),,( , uxux +=                                    (2-6a) 

dtudx ii =                                                           (2-6b) 

where x is particle position, u is particle velocity, ai and bi,j are functions of (x,u,t), and dξj is a 

random parameter (Thomson, 1987). Equation for the concentration is based on particle 

trajectory, expressed in terms of its ‘touchdown’ location (xo, yo) and vertical ‘touchdown’ 

velocity (wo, m/sec) (Flesch and Wilson, 2005). The concentration equation is given by: 
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where C is predicted concentration (µg/m3) at a given location, Q is source emission rate (µg/m2-

sec), and N is total number of particles released from the specified location (Flesch et al., 2004; 

Flesch et al., 1995). The summation term in eq 2-7 is equivalent to the average concentration at 

the location (x, y, z). A backward time frame is also applied in solution, therefore the name 

backward Lagrangian stochastic (bLS) method.  

WindTrax is a graphical dispersion tool developed based on the bLS technique described 

as an effective tool for modeling emissions from surface area sources (Flesch et al., 1995). 

Emission rate can be determined with WindTrax either by inverse dispersion modeling (eq 2-4), 

in which emission rate is estimated from WindTrax-predicted and corresponding measured 

concentrations, or just using the measured concentration as modeling input, from which 

WindTrax can directly estimate the emission rate (Crenna, 2006).  

The performance of WindTrax in modeling area sources had been verified using a field 

experiment. Using a 36 m2 PVC manifold as the area source, results showed that predicted 

concentrations were higher than observed concentrations by just 2% on the average, excluding 

conditions with either very stable or very unstable atmospheric conditions (Flesch et al., 2004). 

Results also revealed that WindTrax underpredicted (by 13%) the observed concentrations 

during unstable conditions, and overpredicted during near-neutral (by 12%) and stable (by 38%) 

conditions. The large inaccuracy in concentration predicted for stable conditions was attributed 

to uncertainties in meteorological measurements during these conditions (Flesch et al., 2004; 

Massman and Lee, 2002). 

WindTrax has been used for cattle feedlot studies on gases (odor, Galvin et al., 2006; 

NH3, Flesch et al., 2009; greenhouse gases, Leytem et al., 2011) and PM (PM10, McGinn et al., 

2010). WindTrax was also one of the techniques employed in NAEMS in computing gas 

emissions from waste storage structures in swine and dairy (Purdue Applied Meteorology 

Laboratory, 2009). In addition, WindTrax is designed to model downwind distances within 1 km 

of the area source (Crenna, 2006), therefore, unlike AERMOD, it can model downwind locations 

very close to the cattle feedlot. Another appealing quality of WindTrax is that it simulates 

dispersion based on wind and turbulence statistics of the atmosphere (Flesch et al., 2009). The 
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use of these statistics was described by Wilson and Sawford (1996) as a natural and effective 

approach of simulating atmospheric processes, such as pollutant transport.    

 

2.2.3 Flux-Gradient Method  

The transport of trace gases and aerosols between the surface and the atmosphere is a 

result of turbulent transfer processes near the surface (National Research Council, 2003). 

Micrometeorological techniques are considered the most direct, unobtrusive methods of 

measuring this surface-atmosphere exchange (Ham and Baum, 2007), which comprises of mass 

(e.g., trace gases) and energy (e.g., sensible heat) transfers between the surface and the 

atmosphere (Myles et al., 2011; Prueger et al., 2005). Different micrometeorological techniques 

include eddy covariace/eddy correlation, eddy accumulation, relaxed eddy accumulation, flux-

gradient, integrated horizontal flux, and bowen ratio-energy balance methods (Kanemasu et al., 

1979; Meyers and Baldocchi, 2005; National Research Council, 2003). 

The flux-gradient method is a widely used emission estimation technique. The governing 

equation of this method can derived from eq 2-1 by accounting only the diffusion transport in z-

direction (Prueger and Kustas, 2005), given by: 
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Assuming that the effective diffusivity, Dz, is constant, integration with respect to z leads to 

Fick’s first law of diffusion given by:  

dz

dc
DQ zz −=                                                      (2-9) 

where Qz is vertical emission flux (µg/m2-sec), Dz is effective diffusivity (m2/sec), and dc/dz is 

vertical concentration gradient (µg/m3-m) (Prueger and Kustas, 2005; Muller et al., 2009). 

Computation for the concentration gradient, dc/dz, requires concentration measurements from at 

least two different heights/levels (National Research Council, 2003), although use of more than 

two measurement heights is recommended to produce the essential flux profile (Meyers and 

Baldocchi, 2005). The effective diffusivity, Dz, is estimated from eddy diffusivity momentum 

that can in turn be estimated using eddy covariance measurements (Prueger et al, 2005). 
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Compared to the eddy correlation method, the most direct among the 

micrometeorological techniques (Kanemasu et al., 1979), one positive characteristic of the flux-

gradient method is it does not require fast-response sensors (e.g., more than 1 Hz sampling 

frequency) in concentration measurements (National Research Council, 2003). And still, the 

flux-gradient method produced very similar results to the eddy correlation method if based on 

longer sampling intervals (e.g., less than 1 Hz sampling frequency) (Muller et al., 2009). One 

concern with this technique, however, is its sampling procedure. As mentioned, concentration 

measurements can be done at several heights. One way is to allocate one instrument for each 

height but the downside of having several instruments is it is costly, and requires cross-

calibration among instruments to reduce sampling bias (Wagner-Riddle et al., 2005). Another 

approach to conduct sampling is to use a single instrument equipped with an air sampling system 

such that it can sample through different intake ports alternately; here, the instrument must have 

high sensitivity to detect small concentration differences (Wagner-Riddle et al., 2005). 

The flux-gradient method has been used to determine gaseous emissions from 

agricultural soils; it has been used to calculate emissions for NH3 (Myles et al., 2011), nitric acid 

(Myles et al., 2011), ozone (Muller et al., 2009), SO2 (Myles et al., 2011), and pesticides 

(Prueger et al., 2005). Although rarely used, the flux-gradient technique had been applied in 

cattle feedlot studies estimating emissions of NH3 (Todd et al., 2007) and nitrogen gases (Todd 

et al., 2005).  

 

2.2.4 Turbulence Modeling with Computational Fluid Dynamics 

Almost all flows in practical engineering applications are turbulent. Turbulence in a fluid 

develops when the fluid flows past an obstruction or when streamlines of the fluid pass or 

overlap one another; turbulence also develops as a consequence of the complex interaction 

between advection and diffusion processes involved in fluid transport (Wilcox, 1994). In 

analyzing turbulent fluid transport problems, the accepted technique is the use of turbulence 

models.  

The general form for transport equation can be written as: 
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where φ is fluid property being transported (e.g., mass, momentum, kinetic energy, dissipation 

rate), ρ is air density, i is subscript denoting x (downwind), y (crosswind) and z (vertical) 

directions, xi is direction, ui represents the velocity component in xi direction, Γφ  is diffusion 

coefficient, and Sφ  is source term (Predicala and Maghirang, 2003). In eq 2-10, the first, second 

and third terms (at the left-hand side) are accumulation, convection and diffusion terms for φ, 

respectively. Definitions for Γφ  and Sφ  based on the fluid property, φ, are presented in detail by 

Predicala and Maghirang (2003). The Navier-Stokes equation is an equation of motion derived 

from eq 2-10 and is given by: 
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where i is subscript for all three directions (x, y, and z), j is subscript for the direction evaluated 

(x, y, or z), µ is air viscosity, P is pressure force in j-direction evaluated, τij is viscous stress 

component, and gj is gravitational force in j-direction (Glasgow, 2010). The viscous stress 

component, τij, is given by (Feistauer et al. 2003; Ferziger and Peric, 2002): 
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In deriving the Navier-Stokes equation, both density and viscosity are assumed to be constant 

(Glasgow, 2010).  

Turbulence can be incorporated in transport equations using Reynolds decomposition, in 

which the instantaneous value of φ is expressed in terms of its corresponding average and 

fluctuation components (Ferziger and Peric, 2002). The equation for Reynolds decomposition is 

given by: 

φφφ ,
+=                                                          (2-13) 

where φ  is the average component, and φ’  is the fluctuation component that represents 

turbulence. Applying Reynolds decomposition to the Navier-Stokes equation and averaging in 

terms of φ  lead to the Reynolds-averaged Navier-Stokes (RANS) equation, from which a 

number of turbulence models are based (k-ε model, k-ω model; Ferziger and Peric, 2002). 
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Incorporating eq 2-13 into eq 2-11 and 2-12 and then averaging φ variables, RANS equations can 

be written as: 
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with the average viscous stress component given by (Ferziger and Peric, 2002; Glasgow, 2010):  
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Implementing the same steps described above, the resulting continuity equation is given by: 

0=
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The new terms, uu ji

''ρ , in eq 2-14 are called Reynolds stresses and represent the 

turbulent momentum transport by turbulence itself (Glasgow, 2010). Addition of these new terms 

in the transport equations, however, leads to a closure problem as the number of unknown 

variables is now more than the number of available equations (Ferziger and Peric, 2002; 

Glasgow, 2010). Turbulence models, which are approximations involving Reynolds stresses and 

turbulent scalar fluxes, are developed to ‘close’ problems on turbulent flows.  

Similar to transport equations presented above, turbulence models are defined by partial 

differential equations that are approximated numerically (Ferziger and Peric, 2002). This 

application of solving partial differential equations for transport problems numerically is referred 

to as computational fluid dynamics (CFD) (Feistauer et al., 2003). CFD has been used to 

simulate air transport within and outside CAFO buildings. CFD had been employed in studies 

that simulated air flow (Blanes-Vidal et al., 2008), and transport of gaseous (Bjerg et al., 2008; 

Li and Guo, 2006) and particulate (Maghirang and Manbeck, 1993; Predicala and Maghirang, 

2003) emissions for CAFO facilities. The commonly-used turbulence model, as demonstrated by 

these studies, is the k-ε turbulence model (Wilcox, 1994). The k-ε turbulence model is a two-

equation model composed of transport equations for turbulent kinetic energy, k, and dissipation 

rate, e, developed as closure for turbulent flow problems (Ferziger and Peric, 2002; Wilcox, 

1994).  
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2.3 Summary 

Air quality issues from CAFOs are becoming more important because of their adverse 

effects on human health and environment. More data are needed to establish air pollutant 

emission rates for CAFOs and improve emission estimation techniques. Additional research is 

needed to quantify PM emission rates from commercial beef cattle feedlots. The evaluation of 

the performance of AERMOD in determining emissions from area sources such as cattle feedlots 

is also important.  
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Particulate Matter Emission Rates from Beef Cattle CHAPTER 3 - 

Feedlots in Kansas – Reverse Dispersion Modeling1 

3.1 Introduction 

Open beef cattle feedlots face air quality challenges, including emissions of particulate 

matter (i.e., PM10 and PM2.5), odorous volatile organic compounds, ammonia, and greenhouse 

gases. The long-term sustainability of feedlots and neighboring rural communities that are 

economically dependent on these operations will depend in part on overcoming these air quality 

challenges. In addition, open cattle feedlots may be subject to new regulations on air emissions. 

However, limited data on gaseous and PM emissions exist for large cattle feedlots (National 

Research Council, 2003), especially for those in the Great Plains region that comprises a large 

percentage of the U.S. beef cattle production. For example, as of July 2011, the Southern Great 

Plains states of Texas, Kansas, Nebraska, Colorado, Oklahoma, and New Mexico combined 

accounted for about 78% of the 10.5 million head of cattle on feed for feedlots with a capacity of 

1,000 or more head (U.S. Department of Agriculture, 2011). Gaseous and PM emission rates 

need to be determined from large feedlots to provide realistic assessment of their environmental 

impacts. Estimates of emission rates are also critical in emission inventories and abatement 

measures development. As stated in the report on air emissions from animal feeding operations 

(AFOs) by the National Research Council (NRC) (2003): “While concern has mounted, research 

to provide the basic information needed for effective regulation and management of these 

emissions has languished… Accurate estimation of air emissions from AFOs is needed to gauge 

their possible adverse impacts and the subsequent implementation of control measures.” 

In response to the NRC report, the National Air Emissions Monitoring Study (NAEMS) 

was conducted on several swine, dairy, layer, and broiler facilities (National Research Council, 

2003; Purdue Applied Meteorology Laboratory, 2009). There is also a need to measure and 

monitor air emissions from open beef cattle feedlots. Quantifying air emission rates from open 

feedlots is challenging, largely because of their unique characteristics, including surface 

heterogeneity, wide variation in source geometry, and temporal and spatial variability of  

 

 

1 Bonifacio, H.F., R.G. Maghirang, B.W. Auvermann, E.B. Razote, J.P. Murphy, and J.P. Harner III. 2012. 

Particulate matter emission rates from beef cattle feedlots in Kansas – reverse dispersion modeling. J. Air 

& Waste Manage. Assoc. 62:350-361. doi:10.1080/10473289.2011.651557. 
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emission rates. A widely used approach involves measuring upwind and downwind 

concentrations combined with reverse modeling with atmospheric dispersion models (National 

Research Council, 2003; Wanjura et a., 2004; McGinn et al., 2010; Faulkner et al., 2009; 

Goodrich et al., 2009). Currently, several dispersion models are available, with the American 

Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) as the 

latest Gaussian model recommended by the U.S. Environmental Protection Agency (EPA) for 

regulatory purposes (CFR, 2005). 

Several PM emission estimates for cattle feedlots are available from studies using 

dispersion models, including simple box models (e.g., San Joaquin Valley Air Pollution Control 

District, 2010), Gaussian dispersion models (e.g., Wanjura et al., 2004), and Lagrangian 

stochastic models (e.g., McGinn et al.,  2010). For inventory purposes, U.S. EPA is currently 

using a PM10 emission factor of 17 tons/1,000 head (hd) throughput (equivalent to 82 kg/1,000 

hd-day at 2 throughput/yr) (Midwest Research Institute, 1988); this factor was apparently 

obtained using a simple Gaussian model and PM measurements from California feedlots 

(Grelinger and Lapp, 1996; U.S. Environmental Protection Agency, 2001). California Air 

Resources Board (CARB) has recently published PM10 emission factor of 13.2 kg/1,000 hd-day 

for cattle feedlots (Countess Environmental, 2006; San Joaquin Valley Air Pollution Control 

District, 2010).  The emission factor was determined by the San Joaquin Valley Air Pollution 

Control District (SJVAPCD) using Linear Profile model, Block Profile model, Logarithmic 

Profile model, and Box model (Countess Environmental, 2006; San Joaquin Valley Air Pollution 

Control District, 2010). Correspondence with SJVAPCD revealed that selection of model 

depended on the vertical profile of measured downwind concentrations. Wanjura et al.(2004) 

reported a PM10 emission factor of 19 kg/1,000 hd-day for a Texas feedlot using the Industrial 

Source Complex – Short Term (ISCST3) model; however, no information was given on 

inclusion of gravitational settling in the modeling. McGinn et al. (2010) calculated PM10 

emission rates at two cattle feedlots in Australia using a Lagrangian stochastic (LS) dispersion 

model (i.e., WindTrax, Thunder Beach Scientific) modified to include effects of gravitational 

settling and surface deposition; PM10 emission rates were 31 kg/1,000 hd-day and 60 kg/1,000 

hd-day for the two feedlots. 

Most of the above emission rate values were based on relatively short-term measurements 

– usually only several days of measurement. Also, some were conducted during periods in which 
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pens were dry (i.e., Grelinger and Lapp, 1996), while others were based on measurement periods 

in which pens were relatively wet, due to either rain event or water sprinkling (i.e., Wanjura et 

al., 2004; San Joaquin Valley Air Pollution Control District, 2010). The U.S. EPA PM10 

emission factor of 82 kg/1,000 hd-day (17 tons/1,000 hd- throughput) was also based on the 

assumption that PM emitted from cattle feedlot had the same size distribution as PM emitted 

from agricultural soils and that the PM10/TSP ratio was equal to 0.64 (Midwest Research 

Institute, 1988). From field measurements on a cattle feedlot in Kansas (Gonzales, 2010), mean 

PM10/TSP ratio was 0.35, suggesting that the size distribution assumed for the US EPA emission 

factor may not be suitable for cattle feedlots and the derived US EPA PM10 emission factor could 

be overestimated.  

A limited number of studies have been carried out quantifying and characterizing PM10 

emission rates from cattle feedlots, particularly for feedlots in Kansas; clearly, more research is 

needed. This research was conducted to determine PM10 emission rates from cattle feedlots by 

reverse modeling using AERMOD combined with extended measurement period for PM10 

concentrations. 

3.2 Materials and Methods 

Emission rates of PM10 were determined using the following general procedure: (1) PM10 

concentrations at the downwind and upwind edges of two cattle feedlots were monitored; (2) 

atmospheric dispersion modeling with AERMOD using a unit emission flux (i.e., 1.0 µg/m2-sec) 

was used to predict PM10 concentrations in the feedlots; and (3) emission fluxes were calculated 

from measured concentrations and AERMOD-predicted concentrations. From emission fluxes 

and cattle population in the feedlots, emission factors (i.e., kg/1000 hd-day) were determined.   

3.2.1 Field Measurements of PM10 Concentration 

3.2.1.1 Feedlot Description   

Two commercial cattle feedlots in Kansas, herein referred to as KS1 and KS2, were 

considered. Feedlots KS1 and KS2 are 35 km apart, surrounded by agricultural lands. Another 

feedlot is located about 3 km south-southwest of KS1 with several rows of trees separating the 

two feedlots. A feedlot is also located about 3 km east-southeast of KS2 with a row of trees 

between the two feedlots. Table 3-1 summarizes the general characteristics of feedlots KS1 and 

KS2. Prevailing wind directions at the feedlots were south-southeast during summer and north-
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northwest during winter. Feedlot KS1 had approximately 30,000 head of cattle with total pen 

area of about 50 ha. It had a water sprinkler system with maximum application rate of 

approximately 5.0 mm/day. The water sprinkler system was normally operated during prolonged 

dry periods from April through October. Manure on pen surfaces were scraped and 

piled/compacted to one location in the pen (i.e., center mound) 2 to 3 times per year per pen, and 

were hauled from each pen at least once a year. Feedlot KS2, on the other hand, had 

approximately 25,000 head of cattle and total pen area of approximately 68 ha. For each pen, 

scraping/manure piling was done 5 to 6 times per year while manure hauling was scheduled 2 to 

3 times per year.  

 

Table 3-1. Description of feedlot KS1 and KS2 

Parameter Feedlot KS1 Feedlot KS2 

Capacity, head 30,000 25,000 

Area, ha 50 68 

Dust control 
methods 

Water sprinkler 
system 
 

< 5 mm/day none 
 

Pen cleaning 
 

2 to 3 
times/year-pen 

5 to 6 
times/year-pen 

Weather 
conditions 

Prevailing wind 
Direction 
 

South-southeast South-southeast 
 

Average annual 
precipitation (mm) 

679 757 

 

Cattle were fed 3 times a day at both feedlots. For KS1, feeding periods were 6:00 a.m.-

8:30 a.m., 11:00 a.m.-1:30 p.m., and 3:00 p.m.-5:30 p.m. For KS2, feeding periods were 5:30 

a.m.-7:30 a.m., 9:30 a.m.-11:30 a.m., and 12:30 p.m.-4:30 p.m. 

Table 3-1 indicates that KS2 received about 10% more precipitation than KS1 in 2007 

and 2008. For KS1, the total amount of water applied through the sprinkler system and number 

of days the sprinkler system was operated varied from year to year depending on weather 

conditions. The total amounts of water used by the sprinkler system in 2007 and 2008 were 333 

and 209 mm, respectively. The sprinkler system was operated for a total of 102 days in 2007 and 

57 days in 2008. 
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3.2.1.2 Measurement of PM10 Concentration and Weather Conditions   

PM10 mass concentrations were measured at the north and south edges of the feedlots. 

The north and south sampling locations for KS1 (Figure 3-1a) were approximately 5 m and 30 

m, respectively, away from the closest pens; those for KS2 (Figure 3-1b) were approximately 40 

m and 60 m, respectively, away from the closest pens. Note that the sampling locations at each 

feedlot were selected based on feedlot layout, power availability, and access. 

 

 

Figure 3-1. Schematic diagram showing locations of PM10 samplers and weather station at 

feedlots (a) KS1 and (b) KS2.  

 

PM10 concentration at each sampling location was measured with a tapered element 

oscillating microbalance (TEOM) PM10 monitor (Series 1400a, Thermo Fisher Scientific, East 

Greenbush, NY; federal equivalent method designation No. EQPM-1090-079). The PM10 size-

selective inlet was positioned 2.3 m above the ground. PM10 concentrations were recorded 

continuously at 20-min intervals. During sampling and measurement, the sampled air and TEOM 

filter were heated to 50°C. Maintenance of TEOMs (i.e., leak checks, flow audits, and inlet 

cleaning) was performed monthly. For cases of low flow audit results, either the TEOM pump 

was replaced or software calibration was done to correct the sampling flow rate. The TEOM 
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collection filters were replaced if the filter loading indicated by the TEOM reached the 90% 

value; TEOM in-line filters were replaced when the amount of dust collected was significant. 

Each feedlot was equipped with a weather station (Campbell Scientific, Inc., Logan, 

Utah) to measure and record at 20-min intervals wind speed and direction (Model 05103-5), 

atmospheric pressure (Model CS100), precipitation (Model TE525), and air temperature and 

relative humidity (Model HMP45C). 

The PM10 dataset from the TEOMs was screened based on wind direction. Datasets in 

which downwind was either the north sampling site (180° wind direction) or the south sampling 

site (0°/360° wind direction) were considered (Figures 3-1a and 3-1b). The working range for 

wind direction was set at + 45° in accordance with guideline on air quality models (CFR, 2005). 

Data outside the acceptable range were then excluded from the analysis. Large negative 20-min 

PM10 concentrations (i.e., < -10 µg/m3) were not used in the analysis in accordance with the 

TEOM manufacturer’s recommendations. Only datasets with both concentrations (downwind, 

upwind) and complete meteorological data were considered in this study. The 20-min downwind 

and upwind PM10 concentrations were integrated to hourly averages before computing the hourly 

net concentrations (i.e., downwind concentration – upwind concentration). Negative net 

concentrations were also excluded in the analysis as they could indicate negligible PM10 

emission from the feedlots. In this study, upwind (background) concentration was assumed to be 

uniformly distributed over the measurement time interval. 

3.2.2 Reverse Dispersion Modeling 

Modeling involved preparation of meteorological inputs, and then running AERMOD 

(version 09292, US EPA; www.epa.gov/ttn/scram) to predict concentrations downwind of each 

feedlot (Pacific Environmental Services, 2004; MACTEC Federal Programs, Inc., 2009). This 

version accounts for particle losses due to gravitational settling. 

3.2.2.1 Meteorological Data  

In AERMOD modeling, meteorological parameters should be specified and/or calculated 

that include the following: wind speed and direction, temperature, Monin-Obukhov length, 

friction velocity, sensible heat flux, mixing heights, and surface roughness length.  Wind speed, 

wind direction, and temperature were obtained from measurements by the weather stations at the 

feedlots. The Monin-Obukhov length data were obtained from an Atmospheric Radiation 
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Measurement (ARM) research site approximately 16 km and 48 km away from feedlot KS1 and 

KS2, respectively. The 30-min eddy covariance measurements at the ARM research site were 

first averaged to be hourly values before computing Monin-Obukhov length. It was assumed that 

the same Monin-Obukhov length can be applied to the two feedlots.  This assumption was based 

on a preliminary analysis of data from two other ARM sites about 80 km apart, with significantly 

different wind speeds (p < 0.001) that showed the two sites did not significantly differ (p = 0.15) 

in Monin-Obukhov length. Friction velocity, sensible heat flux, and mixing heights were 

calculated from the measured wind speed, measured temperature, and calculated Monin-

Obukhov length using equations in AERMOD formulation (Cimorelli et al., 2004). Surface 

roughness length, defined to be related to the height of wind flow obstacles, was set at 5.0 cm 

based on the classification table by EPA (U.S. Environmental Protection Agency, 2008) and also 

on a study by Baum (2003) that reported a surface roughness value of 4.1 ± 2.2 cm for a cattle 

feedlot in Kansas. These parameters were then formatted as surface and profile data files that can 

be read by AERMOD. In addition, wind speed threshold was set at 1.0 m/sec based on the wind 

speed monitor’s threshold sensitivity; data with wind speed less than the threshold were not 

considered in the modeling. 

3.2.2.2 AERMOD Dispersion Modeling   

The model used in this study was AERMOD, which is the current EPA preferred 

regulatory dispersion model (CFR, 2005). AERMOD is a steady-state Gaussian plume model 

that simulates dispersion based on a well-characterized planetary boundary layer structure 

(Cimorelli et al., 2004). For stable conditions, AERMOD applies Gaussian distribution to both 

vertical and lateral/horizontal distributions of concentrations (Cimorelli et al., 2004). For 

unstable conditions, Gaussian distribution still applies for lateral distribution of concentration; 

however, a bi-Gaussian distribution is now used by AERMOD to approximate the vertical 

concentration distribution (Cimorelli et al., 2004). This bi-Gaussian concept, which is a more 

accurate approximation of actual vertical dispersion, is another feature of AERMOD that makes 

it different from other models (Cimorelli et al., 2004; Perry et al., 2005). Based on AERMOD 

guidelines, the concentration can be expressed as: 

PPuQzyxC zy)/(},,{ =                                                   (3-1) 
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where C{x,y,z} is the concentration (µg/m3) predicted for coordinate/receptor given by x 

(downwind distance from the source), y (lateral distance perpendicular to the plume downwind 

centerline) and z (height from the ground); Q is the source emission rate; u is the wind speed; and 

Py and Pz are the probability density functions that describe the lateral and vertical  distributions 

of concentration, respectively (Cimorelli et al., 2004). For dispersion modeling involving several 

area sources (e.g., pens in a feedlot), the total concentration is assumed equal to the sum of the 

concentrations predicted for each source (Calder, 1977). 

The effects of gravitational settling of particles were considered (U.S. Environmental 

Protection Agency, 2009). Algorithms in AERMOD for modeling particle settling and removal 

are similar to those for ISCST3 (Pacific Environmental Services, Inc., 1995) U.S. Environmental 

Protection Agency, 2009). Settling velocity, Vg, is calculated using eq 3-2: 
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where ρ  is particle density (g/cm3), ρair  is air density (g/cm3), g is the acceleration due to 

gravity (9.8 m/sec2), µ is absolute air viscosity (g/cm-sec), c2 is conversion constant, and SCF is 

slip correction factor (U.S. Environmental Protection Agency, 2009). Particle deposition velocity 

(m/sec), Vd, is computed from Vg and is given by: 
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where Ra is aerodynamic resistance (sec/m) and Rp is quasi-laminar sublayer resistance (sec/m) 

(U.S. Environmental Protection Agency, 2009). From Vd, the source depletion factor, Fq(x), is 

obtained, that is,  
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where Q(x) is adjusted source strength at distance x (g/sec), Qo is initial source strength (g/sec), u 

is transport wind speed (m/sec), and D(x) is crosswind integrated diffusion function (1/m). 

In this study, a unit emission flux (1.0 µg/m2-sec) was used in AERMOD modeling to 

predict hourly concentrations at the downwind sampling location for each feedlot.  The following 

assumptions were specified: (1) feedlots were area sources with flat terrain, (2) all pens had same 
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and constant emission flux for the 1-hr averaging time,  (3) dry depletion of particles was the 

only removal mechanism (i.e., depletion due to precipitation not considered), and (4) 

concentration was the variable modeled. Inclusion of particle depletion required specifying 

particle size distribution (psd) in terms of particle size categories (as mass-mean aerodynamic 

diameters), their corresponding mass fractions, and particle densities (Cimorelli et al., 2004). The 

psd used in modeling was based on field measurements at KS1 using micro-orifice uniform 

deposit impactor (MOUDI, Model 100-R, MSP Corporation, Shoreview, MN) (Gonzales, 2010). 

For the 2-yr study period, there were 11 psd measurements at KS1, with 9 measurements for the 

May to November period and 2 measurements for the December to April period. From these 

measurements, considering particles that are smaller than approximately 10 µm to represent 

PM10, mean mass percentages for the different particle size ranges were as follows: 52% for 6.20 

µm – 9.90 µm; 27% for 3.10 µm – 6.20 µm; 7% for 1.80 µm - 3.10 µm; and 14% for < 1.80 µm. 

Other required inputs were SFC and PFL meteorological files, height (i.e., 2.3 m) and location of 

the receptor, and locations of area sources (i.e., pens). The locations of area sources and receptor 

in each feedlot were specified by encoding vertices of the area sources and receptor in the 

AERMOD runstream file. Vertices were determined using the DesignCAD 3M Max18 

(IMSIDesign, Novato, CA) software.  

3.2.3 Calculation of Emission Rates 

Assuming that the emission rates are independent of Py, Pz, and u in eq. 3-1 (Calder, 

1977), the emission flux was calculated from the assumed emission flux (1.0 µg/m2-sec) and 

predicted and measured net PM10 concentrations using eq 3-5:  

CC
Q

Q O
A

A

O
×=                                                                 (3-5) 

where Qo is the calculated 1-hr emission flux (µg/m2-sec), Co is the measured 1-hr net PM10 

concentration (µg/m3), QA is 1.0 µg/m2-sec, and CA is the model-predicted 1-hr PM10 

concentration (µg/m3) for an emission flux of 1.0 µg/m2-sec.  

In computing emissions, only days with at least 50% of the hourly emission fluxes were 

considered (U.S. Environmental Protection Agency, 2003). For a given day, the average of 

hourly emission fluxes was used to represent the flux for that day. Medians were used to 
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represent the monthly and annual emission fluxes because of the non-normality of the data sets. 

Annual emission fluxes were converted to emission factors using the following relationship: 

   
N
AQ

EF
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×

×
=
10

3
                                                          (3-6) 

where EF is calculated emission factor (kg/1,000 hd-day), Qyr is mean annual emission flux 

(g/m2-day), A is total pen area (m2), and N is number of cattle in thousands (i.e., 30 for KS1, 25 

for KS2).  

Data were analyzed with statistical tools of SAS software (SAS Institute Inc., 2004). 

Statistical tests on normality showed all of the data sets (i.e., wind speed, temperature, 

concentration, emission flux and factor) had non-normal distribution. Consequently, in 

comparing data sets of different groups (e.g., feedlot KS1 vs. KS2), nonparametric test (e.g., 

nonparametric one-way analysis of variance) was used and median values were then reported. 

Removal of outliers and computation of standard deviations were based on the procedure 

proposed by Schwertman et al. (2004) for data with non-normal distribution. A 5% level of 

significance was used in all comparisons.   

3.3 Results and Discussion  

3.3.1 Weather Conditions and PM10 Concentrations 

During the study period (January 2007 to December 2008), 44% and 41% of the 

measurements at KS1 and KS2, respectively, had wind direction from the south (135° to 225°); 

23% and 21% of the measurement had wind direction from the north (0° to 45°, 315° to 360°) at 

KS1 and KS2, respectively. Wind usually came from the south, particularly during the months of 

May to November (Figure 3-2). Non-parametric tests indicated that the two feedlots did not 

significantly differ in temperature (p = 0.34) but differed significantly (p<0.05) in wind speed.  
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Figure 3-2. Wind speed and wind direction distributions at the feedlots for the 2-yr period: (a) 

KS1 May to November; (b) KS1 December to April; (c) KS2 May to November; (d) KS2 

December to April. 

 

For each feedlot, measured PM10 concentrations varied diurnally. Figure 3-3 plots the 

hourly concentrations for the two feedlots. The two feedlots showed similar diurnal trends: 

concentrations were generally lowest during the early morning period (2:00 a.m.-7:00 a.m.) and 

generally highest between 5:00 p.m. and 11:00 p.m. – in this study, this period was referred to as 

evening dust peak (EDP) period. The PM10 concentrations are summarized in Table 3-2 as 

medians of hourly concentrations for the EDP and non-EDP (12:00 a.m. – 4:00 p.m.) periods. 

Comparison of the two feedlots indicated that 24-hr PM10 concentrations at KS1 and KS2 were 

not significantly different (p = 0.10). Comparing non-EDP and EDP periods for each feedlot, the 

EDP period had significantly (p < 0.001) higher concentration. These higher concentrations 
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could be attributed to the high emission rate possibly due to high cattle activity (Mitloehner, 

2000), low wind speed, and relatively stable atmospheric conditions during the EDP period 

(Auvermann et al., 2006). 

 

 

Figure 3-3. Median hourly net PM10 concentrations for feedlots (a) KS1 and (b) KS2. Median 

values were based on days with emission data. Error bars represent upper standard deviation 

estimates. 
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Table 3-2. Median PM10 concentrations at feedlot KS1 and KS2 for 2007 and 2008a 

Concentrations 
(µg/m3) 

Feedlot KS1 Feedlot KS2 

12a.m.-4p.m. 5p.m.-11p.m. 
(EDP) 

12a.m.-4p.m. 5p.m.-11p.m. 
(EDP) 

Number of Hourly 
Values 

4,376 2,066 3,751 1,607 

Downwind concentration 
 

49  82 38 53 

Upwind concentration 
 

23 27 13 17 

Net concentration 
 

32 47 22 37 

a For each feedlot (i.e., KS1, KS2) and location (i.e., downwind, upwind, net), median 
concentration values for the 12 a.m. – 4 p.m. and 5 p.m. – 11 p.m. periods are not significantly 
different at the 5% level of significance. 
 

For the sampling days with at least 18 hourly PM10 concentration measurements, 

measured downwind concentrations exceeded US EPA National Ambient Air Quality Standards 

(NAAQS) for PM10 (150 µg/m3 for 24-hr) (U.S. Environmental Protection Agency, 2008) 51 (out 

of 74) times in 2007 and 33 (out of 71) times in 2008 for KS1 and 19 (out of 62) times in 2007 

and 14 (out of 50) times 2008 for KS2; if contribution of background (upwind) concentration 

was considered, the numbers of days in which the net concentrations exceeded the U.S. EPA 

NAAQS were fewer by 2 – 8 days. Higher non-attainment for KS1 could be explained by the 

difference in sampler location; as mentioned earlier, the sampler was closer to the pens at KS1 

than at KS2. At the property lines, few hundred meters away from the pens, PM10 concentrations 

would likely be smaller than the PM10 NAAQS because of particle dispersion and settling.  

3.3.2 Emission Rates 

The two feedlots differed significantly (p = 0.04) in daily emission fluxes for the 2-yr 

period (Table 3-3), with KS1 having higher emission fluxes. In 2007, median PM10 emission 

fluxes were 1.68 g/m2-day (101 days) and 1.08 g/m2-day (91 days) for KS1 and KS2, 

respectively; in 2008, median PM10 emission fluxes were 1.58 g/m2-day (140 days) for KS1 and 

1.13 g/m2-day (95 days) for KS2. Overall median emission fluxes were 1.60 g/m2-day for KS1 

and 1.10 g/m2-day for KS2. Note that KS1 had a water sprinkler system for dust control and was 

expected to have smaller emission rate than KS2, which did not have any sprinkler water 

application.  However, as stated earlier, pens were cleaned more frequently at KS2 than at KS1. 
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In addition, KS2 received more rain than KS1 (Table 3-1); during the 2-yr period, for KS1, 20% 

of the days with measurements had rainfall events; for KS2, on the other hand, 26% of the days 

with measurements received rainfall.  

Equivalent PM10 emission factors for the 2-yr period were 27 kg/1,000 hd-day and 30 

kg/1,000 hd-day for KS1 and KS2, respectively (Table 3-3). Unlike emission fluxes, the two 

feedlots did not differ significantly (p = 0.53) in emission factors. The computed emission factors 

for both feedlots were smaller than the US EPA PM10 emission factor (82 kg/1,000 hd-day) but 

were within the range of published values (Wanjura et al., 2004; Countess Environmental, 2006; 

McGinn et al., 2010). Compared to other studies, difference in calculated emission rates could be 

due to differences in measurement design (e.g., measurement period) and methods (e.g., 

samplers), measurement conditions (e.g., time of year, weather), meteorological data set (e.g., 

instrument, type), emission rate estimation technique (e.g., dispersion model), and feedlot 

characteristics (e.g., location, pen surface conditions). 

 

Table 3-3. PM10 emission fluxes and factors at feedlot KS1 and KS2 

Year Parameters Emission flux 
(g/m2-day) 

Emission factor 
(kg/1,000 hd-day) 

  KS1 KS2 KS1 KS2 

January to 
December 
2007 

Number of Daily Values 101 91 101 91 

Minimum 0.04 0.09 1 2 

Maximum 9.70 6.84 162 187 

Median 1.68 1.08 28 30 

January to 
December 
2008 

Number of Daily Values 140 95 140 95 

Minimum 0.07 0.06 1 2 

Maximum 9.04 6.86 151 188 

Median 1.58 1.13 26 31 

Overall Minimum 0.04 0.06 1 2 

Maximum 9.70 6.86 162 188 

Mediana 1.60 a 1.10 b 27 c 30 c 
a Overall median emission fluxes or emission factors followed by the same letters are not 
significantly different at the 5% level of significance. 
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Monthly emission rates are plotted with monthly average temperatures and monthly 

cumulative rain amounts in Figures 3-4a to 3-4d. Monthly consumption of water for the sprinkler 

system operation is also shown in Figure 3-4e. Statistical analysis showed that the temperature 

significantly (p < 0.05 for KS1and KS2) affected the emission rate whereas rainfall amount (p = 

0.47 for KS1, p = 0.77 for KS2) and number of days with rainfall events (p = 0.14 for KS1, p = 

0.71 for KS2) did not. Further analysis of the data for the May to November period (i.e., months 

with highest temperatures; 20 + 9 °C for KS1, 21 + 8 °C for KS2), however, revealed that the 

number of days with rainfall events significantly (p = 0.03) influenced emission fluxes for 

feedlot KS1. May to November period had relatively higher emission rates (2.55 + 3.66 g/m2-day 

for KS1, 2.35 + 1.82 g/m2-day for KS2) than the December to April period (0.43 + 1.32 g/m2-

day for KS1, 0.50 + 0.57 g/m2-day for KS2), which had lower temperatures (2 + 10 °C). This 

was expected since high temperatures should result in high evaporation of water from pen 

surfaces and consequently, dryer pen surfaces, which would then have higher PM emission 

potential (Miller and Berry, 2005; Razote et al., 2006). Cool months, with temperatures several 

degrees above freezing, could still have high emission rates. An example would be the month of 

November in 2007. Even with low temperature (6 + 9 °C), it had an emission flux of 4.62 g/m2-

day. This emission flux was close to that of the month of August, which was the hottest month 

(27 + 7 °C) and had the highest emission flux (5.69 g/m2-day) for the year. High emission rates 

for the month of November could be due to prolonged dry periods; during this month, KS1 only 

had 0.25 mm (1 day) of precipitation and the sprinkler system was not used.  
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Figure 3-4. Monthly trends of emission flux plotted with temperature at feedlot (a) KS1 and (b) 

KS2; with amount of rain at (c) KS1 and (d) KS2; and with amount of sprinkler water at (d) KS1.  

 

Hourly PM10 emission fluxes for KS1 and KS2 are shown in Figure 3-5. Highest PM10 

concentrations of the day were measured during the EDP period for both KS1 (47 + 243 µg/m3) 

and KS2 (34 + 125 µg/m3). Relatively high concentrations can be brought about by three 

conditions: high emission rate, low wind speed, and/or stable atmosphere (Cimorelli et al., 2004). 

All these conditions were observed at the feedlots during the EDP period: (1) computed PM10 

emission fluxes were relatively high during the EDP period for KS1 (16 + 68 µg/m2-sec) and 

KS2 (11 + 38 µg/m2-sec), specifically from 8:00 p.m. to 10:00 p.m.; (2) wind speed generally 

started to decrease around early evening (KS1: 3.5 + 2.8 m/sec; KS2: 3.0 + 2.2 m/sec); and (3) 

atmospheric conditions were generally stable during the EDP period based on the Monin-

Obukhov length and on the classification by Seinfeld and Pandis (2006). High PM10 emission 

fluxes during this period were also calculated by McGinn et al. (2010) using a non-Gaussian 



  44

model (i.e., Lagrangian stochastic model). Although increase in emission rate was observed for 

both feedlots during the EDP period, emission fluxes at KS2 were relatively lower than at KS1. 

The degree of increase in emission rate could be affected by several factors such as PM control 

methods implemented (i.e., sprinkler system, pen cleaning) and management practice (i.e., 

stocking density). Even with a water sprinkler system, feedlot KS1 still had a higher emission 

flux than KS2, a non-sprinkled feedlot, possibly due to the greater amount of manure on the pen 

surface associated with less frequent pen cleaning/manure hauling at KS1. Water application 

would lower PM emission rate as shown previously for rainfall events; however, removal of 

manure from pen surfaces could also be effective in lowering PM emissions from feedlots. 

 

 

Figure 3-5. Median hourly PM10 emission fluxes at feedlots (a) KS1 and (b) KS2. Median values 

were based on days with emission data. Error bars represent upper standard deviation estimates.  
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For the late morning and afternoon periods (10:00 a.m.-5:00 p.m.), relatively lower PM10 

concentrations (39 + 95 µg/m3 for KS1, 38 + 79 µg/m3 for KS2) were measured at the two 

feedlots. From dispersion modeling, PM10 emission fluxes were generally high during this period 

(27 + 66 µg/m2-sec for KS1 and 27 + 59 µg/m2-sec for KS2). For KS2, highest emission fluxes 

in the day were from this period. This high emission flux at KS2 could be due to feedlot set-up 

and activities. However, even with high PM10 emission fluxes in the afternoon period, PM10 

concentrations were relatively low possibly because of unstable atmospheric conditions and 

higher wind speeds (KS1: 4.8 + 2.9 m/sec; KS2: 4.0 + 2.4 m/sec). 

Figure 3-6 plots the mean percentage contribution of each hour to the daily PM10 

emission flux. For KS1, the afternoon period had the highest contribution (average of 61%) to 

the overall daily PM10 emission flux; same was observed for KS2 (average of 66%). Average 

contributions of EDP period to the overall daily emission flux were 32% and 25% for KS1 and 

KS2, respectively. Still, emission flux for the EDP period was observed to increase during 8:00 

p.m. to 10:00 p.m. period when the PM10 concentration reached its peak. For days with a least 18 

hourly PM10 emission fluxes, non-parametric tests showed that emission fluxes during the 

afternoon period were higher than and significantly different (p < 0.001 for KS1 and KS2) from 

those for the EDP period.  
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Figure 3-6. Percentage contribution of each hour to the daily PM10 emission flux for feedlots 

KS1 and KS2 based on mean hourly PM10 emission fluxes for the 2-yr period using days with 

emission data. 

 

There were several limitations in this study that relate to PM monitoring and inherent 

weaknesses of atmospheric dispersion modeling. One limitation was the assumption that the 

emission flux was uniform throughout the feedlot and that the mass concentration, particularly 

on the downwind side of the feedlot, was also uniform so that a single point measurement of the 

concentration would be adequate. Another limitation is related to the atmospheric dispersion 

model (Holmes and Morawska, 2006; Turner and Schulze, 2007). Some studies have suggested 

that dispersion modeling results were model specific (Hall et al., 2002; Faulkner et al., 2007). In 

addition, due to limitations of on-site weather stations, atmospheric stability (i.e., Monin-

Obukhov length) was obtained from a meteorological instrumentation tower located almost 50 

km away from one of the feedlots. Despite these limitations, the emission rates presented here 

could serve as basis for estimating emission rates for cattle feedlots and for evaluating abatement 

measures. 

3.4 Conclusions 

PM10 emission rates at two cattle feedlots (KS1 and KS2) in Kansas were determined 

from measured PM10 concentrations using inverse dispersion modeling with AERMOD. For the 

2-yr period, daily average PM10 concentration downwind exceeded 150 µg/m3 84 out of 145 days 
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for KS1 (downwind locations of 5 m and 30 m) and 33 out of 112 days for KS2 (downwind 

locations of 40 m and 60 m) for days with at least 18 hourly concentration measurements. Based 

on the 2-yr study period, feedlot KS1, equipped with a sprinkler system, had a median PM10 

emission flux of 1.60 g/m2-day (241 days) and emission factor of 27 kg/1,000 hd-day. KS2, a 

non-sprinkled feedlot but with more frequent pen cleaning, had a median PM10 emission flux of 

1.10 g/m2-day (186 days) and emission factor of 30 kg/1,000 hd-day. These emission factors 

were considerably smaller than published EPA PM10 emission factor for cattle feedlots.  

Emission fluxes were greater during warm season and prolonged dry periods, generally 

because of the presence of dry, uncompacted manure layer on pen surfaces. Hourly emission 

rates varied during a given day. Highest emission fluxes were observed for the 10:00 a.m. to 5:00 

p.m. period; possibly because of unstable atmospheric conditions, however, measured PM10 

concentration during this period was not high. Emission flux also increased in the evening from 

8:00 p.m. to 9:00 p.m., possibly due to greater animal activity during this period. Due to stable 

atmospheric conditions, very high PM10 concentration was measured for this period. 
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Comparison of AERMOD and WindTrax Dispersion CHAPTER 4 - 

Models in Determining PM10 Emission Rates from a Beef Cattle 

Feedlot2 

4.1 Introduction 

Air emissions from animal feeding operations (AFOs) have been a primary interest of 

research because of their potential impact on human health and the environment. Particulate 

matter (PM) from AFOs has been cited as both a health and environmental hazard (Mitloehner 

and Calvo, 2008; National Research Council, 2003; Von Essen and Auvermann, 2006). 

Assessing the full impact of PM emissions from AFOs on local communities is difficult, due to 

the lack of data and the cost of monitoring programs. Open cattle feedlots make monitoring 

efforts even more challenging because of their size and the variable nature of emissions from 

open sources. Reverse-dispersion modeling is a potential tool to solve this problem; it estimates 

emissions from open sources by measuring only upwind and downwind concentrations followed 

by back-calculation of emission rates using an atmospheric dispersion model.  

Two dispersion models that have been applied in recent cattle feedlot emission studies 

are AERMOD, the choice for the American Meteorological Society and the U.S. EPA’s 

preferred regulatory model (CFR, 2005), and WindTrax (Flesch and Wilson, 2005). WindTrax, a 

backward Lagrangian stochastic-based (bLS) model, has been used to estimate emission rates for 

PM10
 (McGinn et al., 2010), odor (Galvin et al., 2006), ammonia (Faulkner et al., 2007; McGinn 

et al., 2007; Price et al., 2004), and greenhouse gases (Denmead et al., 2008) from cattle feedlots. 

AERMOD, a Gaussian-based model, has also been used for simulating feedlot emissions on 

PM10
 (Bonifacio et al., 2012) and ammonia (Faulkner et al., 2007).  

A concern on estimating emission rates from area sources is that calculated values maybe 

model-specific, that is, emission rates determined with one model (e.g., WindTrax) may not be 

suitable for other models (e.g., AERMOD). For example, a feedlot study (Faulkner et al., 2007) 

 

 

 

2 Bonifacio, H.F., R.G. Maghirang, E.B. Razote, S.L. Trabue, and J.H. Prueger. 2013. Comparison of 

AERMOD and WindTrax dispersion models in determining PM10 emission rates from a beef cattle 

feedlot. J. Air & Waste Manage. Assoc. doi:10.1080/10962247.2013.768311. 
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reported that AERMOD and WindTrax modeling results were significantly different, with 

AERMOD predicting higher emission rates than WindTrax during daytime and lower during 

nighttime. The said study indicated that developing conversion factors between models was not 

feasible.  

A vital component of dispersion modeling is the type of meteorological data because they 

can significantly affect modeling results (Dai et al., 2003). Although several approaches to 

specifying meteorological measurements in WindTrax are available, using sonic anemometer 

measurements is recommended to achieve higher accuracy. Many more meteorological 

parameters are required to characterize the atmospheric boundary layer in AERMOD. Because 

on-site measurement of all these parameters can be expensive, a number of them can be obtained 

from National Oceanic and Atmospheric Administration (NOAA) stations (U.S. EPA, 2009) 

and/or generated using prognostic meteorological models (Touma et al., 2007). 

Evidently, more research is needed to evaluate and compare AERMOD and WindTrax in 

determining emission rates for ground-level area sources such as open cattle feedlots. This 

research was conducted to compare AERMOD and WindTrax in terms of their back-calculated 

PM10 emission rates for a beef cattle feedlot in Kansas using an extended measurement period. 

The effect of the type of meteorological data on the performance of both models was also 

verified. 

4.2 Materials and Methods 

The reverse dispersion modeling technique in this study involved three major steps in 

computing PM10 emission flux. As shown in Figure 4-1a, the first step involved field 

measurements of PM10 concentrations and weather conditions; the second step was dispersion 

modeling using either AERMOD or WindTrax for an assumed unit emission flux (1µg/m2-sec) 

to calculate unit-flux concentrations; and in the last step, PM10 emission flux was back-calculated 

using values obtained from the first two steps (i.e., measured and calculated unit-flux 

concentrations from the first and second steps, respectively).  
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Figure 4-1. Reverse dispersion modeling technique steps. 

4.2.1 Field Measurements 

4.2.1.1 Feedlot Description   

Field measurements were conducted at a commercial cattle feedlot that was surrounded 

by agricultural lands in Kansas from May 2010 through September 2011. The feedlot had 

approximately 30,000 head of cattle with a total pen area of about 59 ha. Manure on pen surfaces 

was scraped two to three times per year per pen and was hauled from each pen at least once a 

year. During prolonged dry periods, water was applied to unpaved roads, alleys, and/or pens 

using water trucks to control dust emission.  

4.2.1.2 Micrometeorological Conditions   

A 5.3-m tower equipped with micrometeorological and eddy covariance (EC) 

instrumentations was installed inside the feedlot. The pen in which the tower was installed was 

approximately 0.4 km and 1.3 km away from north and south edges of the feedlot, respectively 

(Figure 4-2). The EC instrumentation included a 3D sonic anemometer (CSAT3, Campbell 

Scientific, Inc., Logan, UT) for measuring the three orthogonal wind velocity components (u, v, 

w) and temperature, and an infrared hygrometer (Model LI-7500A, LICOR, Inc., Lincoln, NE) 

for measuring water vapor density. The sampling frequency for the EC instrumentation was 20 

Hz. A data logger (Model CR5000, Campbell Scientific, Inc., Logan, UT) was used to record the 

EC measurements as 15-min averages and was programmed to compute and record friction 

velocity, sensible heat, resultant horizontal wind speed, wind direction, and variances and 

covariances of wind components and temperature. 
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Figure 4-2. Locations of PM10 samplers and eddy covariance tower at the feedlot. 

 

4.2.1.3 PM10 Concentrations   

Tapered element oscillating microbalance (TEOM) PM10 monitors (Series 1400a, 

Thermo Fisher Scientific, East Greenbush, NY; federal equivalent method designation No. 

EQPM-1090-079) were used to measure PM10 mass concentration at three locations 

simultaneously: (1) within the feedlot, approximately 5.5 m north of the EC tower; (2) 5 m away 

from the north edge of the feedlot; and (3) 800 m away from the feedlot south edge (Figure 4-2). 

For the sampling location within the feedlot, PM10 concentrations were measured at four heights 

(i.e., 2.0, 3.81, 5.34, and 7.62 m), as shown in Figure 4-1b. For the north and south edge 

sampling locations, PM10 concentration was measured at 2.0 m. TEOM PM10 monitor’s 

recording interval was set at 20 min. PM10 concentrations measured within the feedlot were used 

as downwind concentrations, whereas PM10 concentrations at the north and south edges of the 

feedlot were used as upwind concentrations, depending on the wind direction (i.e., upwind at 

north site if wind was coming from the north, south site if wind was from the south). Selection of 

sampling locations was based on feedlot layout, power availability, and feedlot management 

approval. 
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4.2.1.4 Data Screening   

Measured values were screened based on the following: (1) accuracy of the measured 

meteorological parameters; (2) wind direction; and (3) completeness of meteorological and PM10 

concentration data. The first screening was based on the criteria suggested by Flesch et al. 

(2005). Measurements made during periods with very strong stability (absolute value of L, |L|, < 

10 m), low wind speed (friction velocity, u*, < 0.15 m/sec), and/or unrealistic wind profile 

(surface roughness, zo, > 1 m) were removed because they could have been unreliable.  

Second, data points were screened based on wind direction. Because upwind PM10 

samplers were located at the north and south edges of the feedlot, only data points with north 

wind (wind from north) or south wind (from south) were considered. In addition, the north and 

south wind direction ranges were optimized to resolve data completeness issues due to several 

equipment problems (Table 4-1). From preliminary analysis using EC measurements, it was 

determined that wind directions within 0° + 67.5° (north wind) and 180° + 67.5° (south wind) 

met the fetch requirement based on the sampler location inside the feedlot and the feedlot layout. 

Therefore, only data points with wind directions within these ranges were included in the 

analysis. 
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Table 4-1. Completeness of eddy covariance (EC) and TEOM PM10 concentration 

measurementsa 

  EC TEOM PM10 concentration  Reasons for lack of data  
Inside the 
feedlot b, c 

North 
site c 

South 
site c 

 

2010 May 66% 14% 12% no data Severe weather in April resulting in 
late monitoring in May 

June 100% 58%  no data 58% 
 

Equipment availability issue as a 
result of severe weather in April 

July 100% 84%   no data 90% 
 

August 96% 11% no data 12% Experimental set-up and equipment 
damaged by severe storms. 

September 100% no data no data no data Equipment repair and calibration 
after severe weather 

October 100% 36% 1% no data Start of PM10 monitoring late 
October; equipment availability 
issue 

November 54% 77% 89% no data 
 

Equipment availability issue 

December 91% 91% 50% 35% 
 

Equipment availability issue 

2011 January 96% 100% 44% 75% 
 

Remote connection problem for the 
N and S sites 

February 92% 94% 98% 98% 
 

 

March 59% 58% 98% 99% 
 

Power supply problem for the 
sampling site inside the feedlot 

April 98% 77% 76% 78% 
 

 

May 98% 96% 92% 98% 
 

 

June 99% 82% 97% 100% 
 

 

July 100% 98% 48% 52% 
 

Remote connection problem for the 
N and S sites 

August 66% 40% 70% 97% Hot weather – temperature control 
issue for the samplers inside the 
feedlot 

September 73% 14% 14% 54% Hot weather – temperature control 
issue for the samplers inside the 
feedlot 

Overall 
 

87% 61% 46% 55%  

a Completeness based on hourly measurements; b equipped with remote connection for 
downloading data; c data points with negative net concentrations already removed. 
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For the last screening, only data points with complete meteorological and PM10 

concentration (downwind, upwind) data were included in the analyses. TEOM PM10 

concentration data were missing/incomplete in several months as shown in Table 4-1. Data 

points with large negative 20-min PM10 concentrations (< -10 µg/m3) were also not used in 

accordance with the TEOM manufacturer’s recommendations (Rupprecht & Patashnick Co., 

Inc., 2011). The 20-min downwind and upwind sampler concentrations were integrated into 

hourly averages before computing the hourly net concentrations (i.e., downwind concentration – 

upwind concentration). Prior to data screening, the four heights had more than 4,000 hourly data 

points with a complete set of downwind and upwind PM10 concentrations; however, an average 

of 21% (n = 855) of the data points had negative net PM10 concentrations. Forty-five percent 

(45%) of these negative values had net concentrations ranging from 0 to -10 µg/m3; 28% from -

10 to -50 µg/m3; 12% from -50 to -100 µg/m3; and 15% were lower than -100 µg/m3. Negative 

net PM10 concentrations were excluded in the analyses because they could indicate presence of a 

significant PM10 emission source outside the feedlot. Also, they could be due to negligible PM10 

emissions from the feedlot; based on precipitation data (rain gage TE525, Campbell Scientific, 

Inc., Logan, UT), close to 40% of the negative net concentrations could be due to effects of 

rainfall on PM emissions.   

4.2.2 AERMOD Modeling 

4.2.2.1 Dispersion Modeling  

AERMOD is a Gaussian plume model based on the general equation for concentration, c, 

given by:  
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where the overall mass transport is defined by the convective mass transport in x-direction 

(downwind) with constant wind speed u, and the diffusion (i.e., molecular and eddy) transport in 

y (crosswind) and z (vertical) directions with constant effective diffusion coefficients (Dy, Dz) 

(Heinsohn and Kabel, 1999). The general analytical solution to eq 4-1 is commonly referred to as 

the Gaussian plume model (Heinsohn and Kabel, 1999). AERMOD, however, is different from 

other Gaussian models in way it simulates dispersion as it uses a well-characterized planetary 

boundary layer structure, and applies a bi-Gaussian distribution to represent vertical 
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concentration distribution for unstable conditions rather than a Gaussian distribution (Cimorelli 

et al., 2004; Perry et al., 2005). 

In this study, the following were applied in AERMOD modeling: an emission flux of 1.0 

µg/m2-sec was assumed in the simulation, the feedlot was treated as a flat terrain, and all pens 

had same and constant emission for the 1-hr averaging period. Particle settling was not 

considered because the available WindTrax version does not include the gravitational settling of 

particles. From preliminary analysis (n = 4,161 hourly data points) using PM10 particle size 

distribution for the feedlot (55% for 6.20 µm–9.90 µm; 26% for 3.10 µm–6.20 µm; 8% for 1.80 

µm–3.10 µm; and 11% for <1.80 µm) measured with a micro-orifice uniform deposit impactor 

(MOUDI, Model 100-R, MSP Corporation, Shoreview, MN), concentrations calculated with 

AERMOD would be higher by 4% if settling effects were neglected. 

4.2.2.2 Meteorological Data   

A critical component of dispersion modeling is the meteorological data applied in the 

simulation. Two approaches of generating meteorological files required in AERMOD were 

evaluated in this study. The first approach, herein referred to as AERMOD-PD, utilized 

AERMET, which is the AERMOD meteorological preprocessor (U.S. EPA, 2009). Three 

meteorological data sets (i.e., upper air, surface hourly, on-site) were provided to AERMET. 

Upper air and surface hourly data were obtained from the NOAA sites, which were about 90 km 

and 29 km, respectively, from the feedlot, and were described as pseudo data (Dai et al., 2003). 

On-site data consisted of wind speed, wind direction, and temperature measured by the EC 

instrumentation at the feedlot. Values for the three site characteristics required in estimating 

other meteorological parameters, such as friction velocity (u*), sensible heat and Monin-

Obukhov length (L) were as follows: albedo (0.2) and Bowen ratio (2.0) were based on the U.S. 

EPA (2008) classification table; and surface roughness, zo, was set at 5.0 cm based on the U.S. 

EPA classification table and on a previous study on the same feedlot by Baum (2003). 

In the second approach, herein referred to as AERMOD-EC, u*, and sensible heat 

measured by EC instrumentation were now used in addition to wind speed, wind direction, and 

temperature. Without the need for albedo and Bowen ratio, other parameters necessary in 

running AERMOD were derived using equations discussed by Cimorelli et al. (2004). The 15-

min averages of the measured parameters were first integrated into hourly averages before using 

them in the modeling. 
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4.2.3 WindTrax Modeling 

4.2.3.1 Dispersion Modeling   

WindTrax is based on a reduced transport equation given by:  
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where the overall mass transport is defined by the convective mass transport in all directions (x, 

y, z) with constant wind speeds (u, v, w) and the accumulation term (dc/dt) (Flesch and Wilson, 

2005). The method selected to solve eq 4-2 is the bLS approach that describes the evolution of 

particle position and particle velocity in a backward time frame. The derivation of concentration 

equation for the bLS approach is explained in detail by Flesch et al. (1995) and Flesch and 

Wilson (2005).  

This study used WindTrax version 2.0.8.4. Similar to AERMOD, a unit emission flux 

(1.0 µg/m2-sec) was used in the modeling; modeling inputs (receptor heights and location, pen 

locations) were similar to the inputs in AERMOD modeling. The number of particles released 

was set at 50,000, which is the default value to shorten simulation time. Based on preliminary 

analysis (n = 192) comparing particle number settings of 50,000 and 1 million, the mean 

percentage difference in predicted concentration was less than 1% (maximum of 5%).  

4.2.3.2 Meteorological Data   

In simulating dispersion, WindTrax requires seven meteorological parameters to 

characterize the surface boundary layer. These include u*, wind direction, zo, L, and the standard 

deviations for the three wind components (σu for u, σv for v, σw for w) (Crenna, 2006a, 2006b). 

Two of the four basic approaches to providing meteorological parameters in WindTrax were 

evaluated in this study. The first approach (WindTrax-SD) was using the sonic anemometer data 

and was input as mean products of u, v, w, and temperature. Expression for the mean product is 

given by:  

><><+><>×< = vvvvvv jijiji ''                                       (4-3) 

where < vi x vj > is the mean product, < v’i v’ j > is the covariance (or variance if i =  j), and < vi > 

and < vj > are the averages of parameters vi and vj (wind components, temperature). All seven 

parameters could be derived by WindTrax from the sonic anemometer data following equations 
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in Flesch et al. (2004). Use of sonic anemometer data in WindTrax is described as the most 

accurate. 

The second approach (WindTrax-3V), which was based on the Monin-Obukhov length 

theory, applied a 3-variable meteorological data set composed of wind speed, zo, and L. Wind 

speed and wind direction were derived from the sonic anemometer data; zo was set at 5.0 cm, 

similar to AERMOD modeling in this study; and L was computed using the original Monin-

Obukhov length equation (Cimorelli et al., 2004). The rest of the parameters were then computed 

by WindTrax: u* was derived from wind speed and L, and σu, σv, and σw  were estimated using 

empirical relationships shown below:  
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and 
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where z is measurement height, and w* is convective velocity scale calculated from L and height 

of boundary layer during unstable conditions, H, using eq 4-5 (Crenna, 2006b; Flesch et al., 

2004). 
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4.2.4 Modeling Height   

For one height with at least 10,000 15-min data points, WindTrax simulation (using PC 

with 2.99 GHz processor and 1.99 GB RAM) took approximately 31 days using sonic 

anemometer and 7 days using 3-variable data sets. AERMOD, on the other hand, only took a few 

seconds in modeling the whole measurement period (17 months, ~12,000 hourly data points). 

Due to extremely long modeling time required in running WindTrax, comparison between the 

two models was completed using only one receptor height. With the capability of giving 

modeling results instantly, AERMOD was used to determine which receptor height would be 

best used in the comparisons. Data used in the preliminary analysis were from January through 

August 2011, and meteorological parameters in the modeling were from the EC measurement. 

Given that the area source was ground-level and the downwind samplers were located within the 

area source, data points were further screened using the criteria PM10,2.0m > PM10,3.81m > 

PM10,5.34m > PM10,7.62m (i.e., the higher the receptor height, the lower the concentration). Using 

376 hourly data points from 2011, the back-calculated PM10 emission fluxes are plotted in a 

scatter plot matrix (Figure 4-3). Linearity in back-calculated emission fluxes existed among the 

receptor heights, with the highest linearity (R2 > 0.86) observed between adjacent heights. In 

terms of PM10 emission fluxes, statistical comparison showed that the 2.0-m receptor height was 

significantly different (P < 0.05) from the other heights, whereas the other three heights were not 

significantly different (P > 0.14) from each other. Combination of sampler placement (i.e., inside 

a feedlot pen) and short receptor height could have contributed to higher PM10 emission fluxes 

(28 to 49%) estimated for the 2.0-m height. 
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Figure 4-3. Back-calculated PM10 emission fluxes (µg/m2-sec, n = 376) for the four receptor 

heights using AERMOD and eddy covariance meteorological data. 

 

Therefore, in comparing AERMOD and WindTrax, the receptor height was set at 3.81 m. 

The 3.81-m setting was not significantly different from 5.34- and 7.62-m heights and had the 

lowest percentage difference (22%) with the 2.0-m height setting (27% for 5.34 m, 33% for 7.62 

m) in terms of back-calculated emission fluxes.   

4.2.5 Calculation of Emission Flux 

Based on the reverse dispersion modeling technique, the emission flux was calculated 

from the assumed emission flux (1.0 µg/m2-sec), unit-flux concentrations, and measured net 

PM10 concentrations using the equation:  
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where Qo is calculated 1-hr emission flux (µg/m2-sec), Co is measured 1-hr net PM10 

concentration (µg/m3), QA is 1.0 µg/m2-sec, and CA is calculated unit-flux PM10 concentration 

(µg/m3). Turner and Schulze (2007) indicated that dispersion modeling can be conducted in 

situations with at least 50% of the period with measurements; thus, in this study, daily emission 

fluxes were derived for days with at least 12 hourly emission fluxes, and overall PM10 emission 

fluxes were then computed using derived daily emission fluxes. 

Data were analyzed using SAS (2004). Normality tests showed that all data sets (i.e., 

measured PM10 concentrations, unit-flux PM10 concentrations, and back-calculated PM10 

emission fluxes) had non-normal distributions. Accordingly, nonparametric test (e.g., 

nonparametric one-way analysis of variance) was used in all comparisons (5% level of 

significance), and median values were reported. Standard deviation computation followed the 

procedure by Schwertman et al. (2004) for non-normal distributed data. Removal of outliers in 

the emission flux data sets was based on the boxplot method applicable for non-normal data 

distribution (Schwertman et al., 2004). Variation between PM10 emission fluxes was measured 

using interquartile range (IQR). In this study, four dispersion model-meteorological data 

combinations were evaluated: (1) AERMOD using the on-site EC measurement data 

(AERMOD-EC); (2) AERMOD using the AERMET-generated data (pseudo data) (AERMOD-

PD); (3) WindTrax using the sonic anemometer data (WindTrax-SD); and (4) WindTrax using 

the three variable (wind, zo, L)-data (WindTrax-3V).  

4.3 Results and Discussion 

4.3.1 Measured PM10 Concentrations 

Based on hourly data points that had net PM10 concentration values for the four 

measurement heights (n = 2,612), PM10 concentrations at the feedlot generally followed a diurnal 

trend (Figure 4-4). For all receptor heights, PM concentrations were generally highest during the 

early evening period (7:00 p.m. to 9:00 p.m.), possibly due to high cattle activity and stable 

atmospheric conditions during that period. Concentrations were generally lowest from the 2:00 

a.m. to 5:00 a.m. period. Overall hourly net PM10 concentrations were as follows: 102 + 208 

µg/m3 for the 2.0-m receptor height; 81 + 152 µg/m3 for the 3.81-m height; 61 + 128 µg/m3 for 

the 5.34-m height; and 53 + 112 µg/m3 for the 7.62-m height. These values are similar to those 

previously reported in the literature for net PM10 concentrations (2.0 m height) at cattle feedlots 
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ranging from 16 to 233 µg/m3, with the lowest value associated with rain events (Sweeten et al., 

1988; McGinn et al., 2010). Although the 2.0-m height-net PM10 concentration presented was 

well within the range of published values, comparing these PM10 concentrations would not be 

meaningful due to considerable differences in measurement design (i.e., PM10 sampler used, 

sampler downwind location, length of measurement period, feedlot characteristics, etc.). 

 

Figure 4-4. Hourly median net PM10 concentrations (n = 2,612) for the four receptor heights. 

Concentrations were measured with a tapered element oscillating microbalance (TEOM) PM10 

monitor. 

4.3.2 AERMOD-WindTrax Comparison 

4.3.2.1 Meteorological Conditions   

Based on the EC measurement, 66% and 34% of the hourly data points accepted for the 

analysis (n = 2,269) had wind coming from the south (180° + 67.5°) and the north (0° + 67.5°), 

respectively. Hourly meteorological parameters for these hourly data points were as follows: 

overall wind speed was 5.24 + 2.23 m/sec, with the highest wind speed observed in the month of 

June (5.71 + 1.76 m/sec in 2010, 6.09 + 2.21 m/sec in 2011); overall temperature was 13 + 15 

°C, with July and August (28 + 5 °C) as the warmest months, and December, January and 

February (-5 + 9 °C) as the coldest months; overall friction velocity was 0.42 + 0.17 m/sec, with 

the highest friction velocity observed in May and June 2011 (0.47 + 0.17 m/sec); overall sensible 
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heat flux was 63 W/m2 (range: -1,425 to 2,802 W/m2), with the highest sensible heat flux 

measured for the month of July (mean values of 101 and 90 W/m2 in 2010 and 2011, 

respectively) and the lowest for the November through February period (mean value of 28 

W/m2). Based on the atmospheric stability classification for L (Seinfeld and Pandis, 2006), 36% 

of the data points had very unstable conditions (-100 m < L < 0 m), 30% had unstable conditions 

(-105 m < L < -100 m), 17% had very stable conditions (0 m < L < 100 m), 16% had stable 

conditions (100 m < L < 105 m), and 1% had neutral conditions (|L| > 105 m).  

4.3.2.2 Calculated Unit-Flux PM10 Concentrations   

After data screening, a total of 2,553 hourly data points had all four emission flux values; 

approximately 260 hourly data points were not included due to missing/incomplete upper 

air/surface hourly data files for June and December in 2010 and February through September in 

2011. After removing the outliers, 2,269 hourly data points remained for analyses. Calculated 

unit-flux PM10 concentrations from the four dispersion model-meteorological data combinations 

are plotted in a scatter plot matrix (Figure 4-5). Based on linear regression, WindTrax calculated 

higher concentrations than AERMOD, with the difference ranging from 4 to 28% depending on 

meteorological data sets implemented in the dispersion simulations. 
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Figure 4-5. Hourly calculated unit-flux PM10 concentrations (µg/m3, n = 2,269) for the four 

dispersion model-meteorological data combinations. 

 

Nonparametric tests indicated that the calculated unit-flux concentrations of the 

dispersion model-meteorological data combinations were significantly different (P < 0.05) from 

each other. Between the two dispersion models, higher concentrations were obtained with 

WindTrax. Based on the comparison, 96% and 90% of the data points had WindTrax-SD 

predicting higher concentrations than AERMOD-EC and AERMOD-PD, respectively; 97% and 

88% had WindTrax-3V having higher concentrations than AERMOD-EC and AERMOD-PD, 

respectively. This relationship between concentrations of AERMOD and WindTrax could be 

explained by the difference in their governing equations. In WindTrax (eq 4-2), mass is 

transported mainly by convection in all directions (downwind, crosswind, vertical). In AERMOD 

(eq 4-1), downwind mass transport is by convection, but crosswind and vertical mass transports 

are both governed by diffusion, a much slower transport process (Glasgow, 2010).  
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4.3.2.3 Back-Calculated PM10 Emission Rates.   

Hourly median PM10 emission fluxes obtained by the four dispersion model-

meteorological data combinations are shown in Figure 4-6. A similar trend was obtained for all 

combinations. The trend was comparable to those from a previous cattle feedlot study. Emission 

fluxes obtained with AERMOD-EC and AERMOD-PD were both higher than those with 

WindTrax-SD and WindTrax-3V, particularly in the daytime (e.g., 7:00 a.m. to 7:00 p.m.), when 

atmospheric conditions were normally unstable due to solar radiation. 

 

Figure 4-6. Hourly median PM10 emission fluxes estimated for the feedlot using the four 

dispersion model-meteorological data combinations. 

 

Figure 4-7 is the scatter plot matrix for PM10 emission fluxes from the four dispersion 

model-meteorological data combinations. Based on the scatter plots, PM10 emission fluxes back-

calculated with AERMOD were higher by 32 to 69% compared with those estimated with 

WindTrax. In terms of PM10 emission fluxes, there was a strong linear relationship (R2 > 0.88) 

among the four combinations (i.e., AERMOD-EC and AERMOD-PD, AERMOD-EC, and 

WindTrax-SD, etc.). This high linearity in back-calculated emission fluxes suggests the 

possibility of developing conversion factors between: (1) two meteorological data sets evaluated 

for each model (i.e., locally measured and pseudo data sets for AERMOD; sonic anemometer 

and wind-zo-L data sets for WindTrax); and (2) the two dispersion models. Linearity among 
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combinations as a function of atmospheric stability was also verified. In general, linearity 

between any two combinations was similar for all atmospheric stability conditions (Table 4-2). 

 

Figure 4-7. Back-calculated PM10 emission fluxes (µg/m2-sec, n = 2,269) for the four dispersion 

model-meteorological data combinations. 
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Table 4-2. Linear regression between AERMOD and WindTrax back-calculated emission fluxes 

as a function of atmospheric stabilitya 

  AERMOD-EC 
 

AERMOD-PD 
 

WindTrax-SD 
 

All data 
(n = 2,269) 

AERMOD-PD 
 

1.12 
(0.91) 

- - 

WindTrax-SD 
 

0.69 
(0.96) 

0.59 
(0.88) 

- 

WindTrax-3V 
 

0.76 
(0.98) 

0.65 
(0.90) 

1.09 
(0.98) 

Stable 
(n = 366) 

AERMOD-PD 
 

1.08 
(0.91) 

- - 

 WindTrax-SD 
 

0.70 
(0.98) 

0.62 
(0.89) 

- 

 WindTrax-3V 
 

0.77 
(0.98) 

0.68 
(0.90) 

1.09 
(0.99) 

Very 
Stable 

(n = 386) 

AERMOD-PD 
 

1.09 
(0.86) 

- - 

WindTrax-SD 
 

0.70 
(0.93) 

0.59 
(0.77) 

- 

WindTrax-3V 
 

0.79 
(0.97) 

0.67 
(0.86) 

1.08 
(0.97) 

Unstable 
(n = 674) 

AERMOD-PD 
 

1.12 
(0.94) 

- - 

WindTrax-SD 
 

0.68 
(0.97) 

0.59 
(0.91) 

- 

WindTrax-3V 
 

0.75 
(0.99) 

0.65 
(0.93) 

1.09 
(0.99) 

Very 
Unstable 
(n = 821) 

AERMOD-PD 
 

1.14 
(0.91) 

- - 

WindTrax-SD 
 

0.70 
(0.96) 

0.58 
(0.87) 

- 

WindTrax-3V 
 

0.77 
(0.97) 

0.64 
(0.89) 

1.09 
(0.97) 

Neutral 
(n = 22) 

AERMOD-PD 
 

1.01 
(0.97) 

- - 

 WindTrax-SD 
 
 

0.79 
(0.95) 

0.77 
(0.94) 

- 

 WindTrax-3V 
 

0.76 
(1.00) 

0.74 
(0.97) 

0.93 
(0.97) 

a Values presented are slopes; values in parentheses are R2 values. 
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Statistical analyses suggested that PM10 emission fluxes derived using same dispersion 

model but different meteorological data sets were not significantly different (P = 0.12 for 

AERMOD-EC and AERMOD-PD and P = 0.30 for WindTrax-SD and WindTrax-3V). Variation 

in PM10 emission fluxes, however, was smaller between WindTrax-SD and WindTrax-3V (IQR 

= 2 µg/m2-sec) than between AERMOD-EC and AERMOD-PD (IQR = 5 µg/m2-sec). In general, 

PM10 emission fluxes derived by AERMOD were significantly different (P < 0.05) from those by 

WindTrax; differences in PM10 emission fluxes were smallest between AERMOD-EC and 

WindTrax-3V (IQR = 6 µg/m2-sec) and largest between AERMOD-PD and WindTrax-SD (IQR 

= 12 µg/m2-sec). Correlation analysis indicated the potential to develop conversion factors for 

any pair of dispersion model-meteorological data sets. Within models, AERMOD-

EC/AERMOD-PD factor had a mean value of 0.9 (range of 0.05 to 9.5), whereas WindTrax-

SD/WindTrax-3V factor had a mean value of 0.9 (range of 0.4 to 3.5). Although the factors 

between meteorological data sets in each model were close to 1.0, one must always consider the 

difference resulting from the use of pseudo meteorological data in AERMOD (20 + 22%) and the 

use of empirically derived parameters in WindTrax (10 + 10%). Between models, mean 

AERMOD/WindTrax factors derived in this study ranged from 1.3 to 1.6 (Table 4-3). The 

smallest AERMOD/WindTrax factor was obtained between AERMOD-EC and WindTrax-3V, 

the pair with the smallest PM10 emission flux difference. Aside from measured wind speed and 

assumed zo, AERMOD-EC and WindTrax-3V both used L determined at the facility rather than 

derived within the models (i.e., using pseudo data in AERMOD, sonic anemometer 

measurements in WindTrax).   

 

Table 4-3. AERMOD/WindTrax factor as a function of AERMOD and WindTrax 

meteorological data sets in the modelinga 

 AERMOD-EC AERMOD-PD 

WindTrax-SD 1.4 

(0.4 to 7.0) 

1.6 

(0.1 to 25.8) 

WindTrax-3V 1.3 

(0.6 to 5.3) 

1.4 

(0.1 to 20.8) 

a Values in parentheses are ranges. 
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The hourly trend of AERMOD/WindTrax factor within the day was also examined. 

Using AERMOD-EC and WindTrax-SD, hourly mean AERMOD/WindTrax factors within the 

day ranged from 1.2 to 1.5 (R2 > 0.90), with the highest factors occurring from 7:00 a.m. to 7:00 

p.m. Slightly lower AERMOD/WindTrax factors (range of 1.1 to 1.4, R2 > 0.94) were observed 

if WindTrax-3V was used. 

Based on days with at least 12 hourly emission fluxes (n = 89), overall PM10 emission 

fluxes were 1.85 g/m2-day for AERMOD-EC, 2.10 g/m2-day for AERMOD-PD, 1.32 g/m2-day 

for WindTrax-SD, and 1.43 g/m2-day for WindTrax-3V. These values were within the range of 

published PM10 emission fluxes for cattle feedlots. Using AERMOD, Bonifacio et al. (2012) 

reported PM10 emission fluxes of 1.10 and 1.60 g/m2-day for two Kansas cattle feedlots. If 

effects of particle settling were incorporated, PM10 emission flux derived with AERMOD-EC 

would be approximately 1.92 g/m2-day. Higher emission flux was expected, because pens at the 

studied feedlot were neither consistently watered nor frequently scraped as at feedlots presented 

in the previous study. Using WindTrax, McGinn et al. (2010) derived PM10 emission fluxes of 

1.45 g/m2-day and 1.61 g/m2-day for two cattle feedlots in Australia, which were slightly higher 

than figures derived for WindTrax-SD (similar procedure). Notably, effects of particle settling 

were not incorporated in WindTrax-SD. Difference of PM10 emission fluxes presented in this 

study from published values can easily be explained by differences in feedlot characteristics 

(feedlot layout and design, feedlot practices), design of study (sampler type and locations, 

meteorological instrumentations), and length of measurement period (days with measurements).  

Limitations in this study were related to measurements and dispersion modeling. 

Instrument-related biases due to PM10 samplers and micrometeorological instrumentation would 

likely introduce some uncertainties in PM10 emission fluxes presented. Although cross-

calibration of PM samplers indicated slight variations between measured concentrations, it was 

conducted only at PM10 concentrations less than 120 µg/m3. Dispersion models also had inherent 

limitations due to their many assumptions. Values derived with Gaussian modeling could differ 

from true values by at least a factor of two (National Research Council, 2003; Turner, 1994); this 

could also be the case for WindTrax modeling (Flesch et al., 2004). Effects of gravitational 

settling as dry and wet depositions were not incorporated in estimating PM10 emission fluxes in 

this study. Estimated emission rates may also differ among different measurement heights; as 

shown, emission rates derived for the 3.81-m height varied from those for other heights by at 
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least 22%. Note that AERMOD/WindTrax factors presented may be applicable only to modeling 

with meteorological data sets derived in similar manners. 

4.4 Conclusions 

AERMOD and WindTrax were compared in terms of unit flux PM10 concentrations and 

back-calculated PM10 emission fluxes using PM10 concentration and micrometeorological 

measurements from a beef cattle feedlot in Kansas. From the comparisons, the following 

conclusions were made.  

• In general, for the same emission flux, PM10 concentrations calculated by WindTrax were 

higher than those by AERMOD, with mean percentage difference between the two 

models ranging from 4 to 28%. Conversely, for the same measured concentration, 

AERMOD gave higher back-calculated PM10 emission fluxes than WindTrax, with mean 

percentage difference ranging from 32 to 69%.  

• For AERMOD, modeling results derived using pseudo data (i.e., NOAA) differed by 20 

+ 22% from those determined using eddy covariance measurements. For WindTrax, use 

of empirically derived meteorological parameters resulted in 10 + 10% difference in 

modeling results compared with the use of sonic anemometer measurements. 

• In terms of back-calculated PM10 emission fluxes, high linearity was observed between 

the two dispersion models (R2 > 0.88), and between the two meteorological data sets 

evaluated for each model (R2 = 0.91 for AERMOD, R2 = 0.98 for WindTrax). As such, 

conversion factors can be developed between the two models and between 

meteorological data sets. In this study, mean conversion factors between models (i.e., 

AERMOD/WindTrax factors) ranged from 1.3 to 1.6, with the smallest factor observed if 

same set of wind speed, surface roughness, and atmospheric stability were implemented 

in both models. For each model, mean conversion factor between the two meteorological 

data sets was 0.9. 

    

With limited study of AERMOD and WindTrax models, it is left to the user’s judgment 

which model provides the most accurate emission flux computation for area sources such as beef 

cattle feedlots. Nevertheless, this study indicated that development of conversion factors between 
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AERMOD and WindTrax is feasible. The procedure and results presented in this study could 

serve as basis for developing conversion factors between AERMOD and WindTrax.   
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Simulating Particulate Emissions from Area Sources CHAPTER 5 - 

Using AERMOD and WindTrax: Effects of Meteorological 

Parameters  

5.1 Introduction 

Air emissions from animal feeding operations (AFOs), including open-lot beef cattle 

feedlots, and other ground-level area sources, can adversely affect human health and the 

environment. Previous studies have characterized and estimated air pollutant emissions from 

AFOs. In 2005, the U.S. Environmental Protection Agency (EPA) established the National Air 

Emissions Monitoring Study (NAEMS) to gather pollutant emission data from AFOs and to 

develop emission estimating methodologies for AFOs (CFR, 2011; Purdue Applied Meteorology 

Laboratory, 2009). In the NAEMS, one of the methodologies was WindTrax (Thunder Beach 

Scientific, Alberta, Canada), a dispersion model based on backward Lagrangian stochastic (bLS) 

method (Crenna, 2006a; Flesch and Wilson, 2005).  

For cattle feedlots, WindTrax has been used on emission studies on odor (Galvin et al., 

2006), gases (Denmean et al., 2008; McGinn et al., 2007), and particulate matter (McGinn et al., 

2010). This model also has been employed on emission studies on broiler (Harper et al., 2010), 

swine (Flesch et al., 2005), and dairy cattle (Bjorneberg et al., 2009; Leytem et al., 2011). 

WindTrax is appealing as it has a graphical interface and can process modeling inputs such as 

concentration and meteorological parameters in several ways. One major shortcoming of this 

model is relatively long simulation time. Several techniques have been advanced to possibly 

reduce the computational time for WindTrax (Crenna, 2006a). For example, the number of 

particles released in the simulation can be fewer; however, this introduces higher uncertainty in 

modeling results. In addition, data from previous simulations, referred to as touchdown catalogs, 

can be saved; however, this consumes at lot of computer memory. 

The current U.S. EPA preferred dispersion model is the American Meteorological 

Society/Environmental Protection Agency Regulatory Model or AERMOD (CFR, 2005), which 

is Gaussian-based. AERMOD can model emission dispersion for point, area and volume sources 

(Turner and Schulze, 2007). AERMOD has been extensively evaluated for simulating emissions 

from industrial area sources (Hanna et al., 2001; Perry et al., 2005); however, its performance on 
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modeling ground-level area sources still needs to be evaluated. Several studies have utilized this 

model to calculate emission rates from area sources – AERMOD had been used to calculate 

ammonia (Faulkner et al., 2007b) and particulate (Bonifacio et al., 2012) emission rates from 

cattle feedlots, to assess dispersion of ammonia and odor emissions from a swine facility (Sarr et 

al., 2010), and to estimate particulate emission rates from almond farms (Faulkner et al., 2009; 

Goodrich et al., 2009). Notably, the computational time period for AERMOD is relatively short. 

This study was conducted to evaluate the performance of AERMOD and WindTrax in 

estimating concentrations downwind of ground-level area sources, such as cattle feedlots. These 

two dispersion models were compared based on their sensitivity to changes in modeling inputs, 

including meteorological parameters, area source and receptor locations.  

5.2 Methods 

5.2.1 Dispersion Modeling 

5.2.1.1 AERMOD  

As a Gaussian plume model (Cimorelli et al., 2004), AERMOD is based on several 

assumptions that include steady-state conditions, downwind (x-direction) mass transport through 

convection with constant wind speed, crosswind (y-direction) and vertical (z-direction) mass 

transport through diffusion with constant effective diffusion coefficients for crosswind and 

vertical, and no reaction/generation (Heinsohn and Kabel, 1999). The general expression for 

Gaussian plume models is given by: 
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where c is concentration, u is wind speed along-wind (i.e., downwind) direction, and Dy and Dz 

are diffusion coefficients for crosswind and vertical directions, respectively. The general solution 

for equation 5-1 is referred to as the Gaussian plume model.  

The planetary boundary layer in AERMOD is well-characterized using a number of 

meteorological parameters such as sensible heat, friction velocity, and Monin-Obukhov length 

(Turner and Schulze, 2007; U.S. EPA, 2009). For stable conditions (i.e., defined by positive 

Monin-Obukhov lengths), concentration in both vertical and crosswind directions has 
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Gaussian/normal distribution (Cimorelli et al., 2004).  For unstable conditions (i.e., negative 

Monin-Obukhov lengths), concentration in crosswind direction still has Gaussian distribution; 

however, concentration in vertical direction has a bi-Gaussian distribution (Cimorelli et al., 

2004). Similar to other Gaussian-based models, AERMOD is not suitable for modeling low wind 

speed or calm conditions as it tends to overestimate concentrations (Holmes and Morawska, 

2006). Furthermore, AERMOD is considered ideal for middle-scale (100 – 500 m) and large-

scale (500 m - tens of kilometer) modeling; it is not recommended for predicting concentrations 

at locations close to the source (< 100 m) (Holmes and Morawska, 2006; CFR, 2010). As such, if 

AERMOD were applied in reverse dispersion modeling to quantify emission rates, sampler 

placement of at least 100 m downwind of the source might be required. This could be a challenge 

if applied as an emission estimation tool for ground-level area sources like AFOs. For sources 

such as cattle feedlots, placing samplers far downwind could result in concentration 

measurements contaminated by outside sources, such as unpaved roads and agricultural lands 

(Faulkner et al., 2007a). 

In this study, AERMOD (version 09292, U.S. EPA; www.epa.gov/ttn/scram) was run 

using a unit emission flux (1.0 µg/m2-sec) to calculate hourly concentrations at specified receptor 

locations downwind of a feedlot-like area source with several pens. Assumptions of flat terrain 

and constant emission flux (for the 1-hr averaging period) were applied in the modeling.  

5.2.1.2 WindTrax   

For WindTrax, mass transport in all directions (x, y, z) is governed by convection or bulk 

motion, and is therefore expressed by the mass continuity equation:  
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where t is time, and u, v, and w are wind velocities in x-, y-, and z-directions, respectively (Flesch 

and Wilson, 2005). The first term on the left-hand side of equation 5-2 stands for accumulation 

and the last three terms represent convective transport in the x-, y-, and z-directions. Wind speeds 

(u, v and w) are assumed constant during the averaging period. For WindTrax, the method used 

to solve equation 5-2 is the Lagrangian stochastic technique that described the evolution of 

particle position and velocity in a backward timeframe.  
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WindTrax can predict concentrations downwind of an area source using known emission 

rates; alternatively, it can be used to estimate emission rates from concentrations measured 

downwind of the source. The recommended modeling downwind distance for WindTrax is 

within 1 km from the area source (Crenna, 2006a). As such, WindTrax is ideal for micro- (less 

than 100 m) and middle- (100 – 500 m) scale modeling (CFR, 2010). Compared to AERMOD, 

WindTrax may be more suitable for emission studies on AFOs especially if sampler placement 

was restricted to locations near the sources.  

Similar to AERMOD modeling, a unit emission flux (1.0 µg/m2-sec) was used to predict 

downwind concentrations. Pen and receptors locations were similar to AERMOD inputs. To 

shorten simulation time, the number of particles released was set at the default value (50,000) 

(Crenna, 2006a). 

5.2.2 Meteorological Parameter Inputs 

AERMOD and WindTrax use different sets of meteorological parameters to characterize 

the atmospheric boundary layer, with AERMOD having the larger meteorological data 

requirement. Required meteorological parameters common for the two models are wind speed, 

temperature, surface roughness, and Monin-Obukhov length. Meteorological inputs evaluated in 

this study were wind speed (u), surface roughness (zo), and Monin-Obukhov length (L). 

Temperature was not considered as preliminary analysis revealed it had little effects on 

calculated concentration in this study. 

To simulate meteorological conditions at ground-level area sources, year-long 

measurements at cattle feedlots were used as reference in setting values for u, zo, and L used in 

the comparison. Wind speed measurements were from a 2.5-m high anemometer installed at a 

Kansas cattle feedlot where u ranged from 0.5 to 14.6 m/sec and had an overall value of 4.7 

m/sec in 2008 (Table 5-1). Values for zo and L were derived from eddy covariance measurements 

obtained at another Kansas cattle feedlot from May 2010 to April 2011. Overall zo value 

computed was 4.1 cm (Table 5-1). Summarized in Table 5-2 are hourly L values classified using 

the atmospheric stability grouping presented in Seinfeld and Pandis (2006) (i.e., -105 m < L < -

100 m for unstable, -100 m < L < 0 m for very unstable, 0 m < L < 100 m for very stable, 100 m 

< L < 105 m for stable, and L > 105 m, L < -105 m for neutral).  
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Table 5-1. Wind speed (u) and surface roughness (zo) measurements at cattle feedlots 

 u a, c  

(m/sec) 
zo 

b, d 
(cm) 

# of hourly data points 8,734 7,463 

Overall 4.7 4.1 

Lowest 0.5 ~ 0.0 

Highest 14.6 22.4 
a 
From 2.5-m high wind anemometer measurement 

b 
From eddy covariance measurements 

c 
Normally distributed data, with average as overall value, minimum as lowest  value and 

maximum as highest value 
d 
Non-normally distributed data with median as overall value, lower fence/limit as lowest value 

and upper fence/limit as highest value  
 

Table 5-2. Atmospheric stability classification of hourly feedlot measurementsa 

 Unstable Very Unstable Very Stable  Stable  Neutral 

L values -105 to 100 m -100 to 0 m 0 to 100 m 100 to 105 m  >105 m, <-105 m 

# of hourly 
data points 

1,859 2,850 1,503 1,082 169 

Percentage 25% 38% 20% 14% 2% 

a Stability classification based on Seinfeld and Pandis (2006).  

 

Settings for u, zo, and L in this study are shown in Table 5-3. Each parameter had several 

values specified, namely minimum, maximum, and base values. When assessing how the 

calculated concentration responded to a specific parameter, settings evaluated for that parameter 

included its base, minimum, and maximum values while settings applied for other parameters 

were their corresponding base values. For u and zo, a number of values within the range of their 

minimum and maximum values were also tested. Values for u and zo evaluated were based on 

feedlot meteorological measurements shown in Table 5-1. The base, minimum, and maximum 

values of u were 5.0, 0.5 and 15.0 m/sec, respectively, with the measurement height for u set at 

2.5 m. From the measured value of 4.1 cm, the base value of zo was set at 5.0 cm, whereas its 

minimum (2.5 cm) and maximum (20.0 cm) values were based on the computed lower and upper 

limits, respectively. Influence of atmospheric stability on the calculated concentration was 

examined using the five atmospheric stability conditions mentioned. Settings of L for four of the 



  82

atmospheric stability conditions were based on the mean of their defined ranges: -5,000 m for 

unstable, -50 m for very unstable, 50 m for very stable, and 5,000 m for stable. For neutral 

condition, in which L can have either a very large positive value (L > 105 m) or a very large 

negative value (L < -105 m), L was arbitrarily set at 500,000 m. Its corresponding negative value 

(L = -500,000 m) was not evaluated as AERMOD does not simulate conditions with L < -99,999.  

Note that evaluation of u and zo were performed using L = 5,000 m and L = -5,000 m to 

demonstrate difference in calculated concentrations between stable (i.e., L > 0 m) and unstable 

(i.e., L < 0 m) conditions. In total, there were 23 test cases. A fixed setting of 180° removed the 

influence of wind direction in the simulation.  

 

Table 5-3. Wind speed (u), surface roughness (zo) and Monin-Obukhov length (L) settings for 

AERMOD and WindTrax comparison 

 u 

(m/sec) 
zo 

(cm) 
L 

(m) 
 L > 0 m L < 0 m 

Minimum 0.5 2.5 50
b
 -50

c
 

Maximum 15.0 20.0 500,000
d
 N/A  

Base value
a
 5.0 5.0 5,000

e 
 -5,000

f 
 

Resolution 0.5 for 0.5 – 1.0 

1.0 for 1.0 – 5.0 

2.5 for 5.0 – 15.0 

2.5 N/A 

 

N/A 

 

# of test cases 10 8 3 2 

N/A = not applicable 
a 
Value used when evaluating a specific parameter. In evaluating effects of L, atmospheric 

stability conditions considered were: 
b 
very stable condition; 

c 
very unstable condition; 

d 
neutral 

condition; 
e 
stable condition; 

f 
unstable condition.  

 

WindTrax can be run using only u, zo, L, and temperature (Crenna, 2006a; 2006b). 

AERMOD, on the other hand, requires a lot more meteorological parameters to characterize the 

atmospheric boundary layer (U.S. EPA, 2004a; 2004b). AERMOD requires two meteorological 

files called profile data file (PFL) and surface data file (SFC). Parameter u is specified in PFL, 

together with wind direction and temperature. In SFC, a much larger data file, u, zo, and L are all 
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included with other parameters, such as wind direction, temperature, sensible heat, friction 

velocity, and mixing height. For this evaluation, other parameters in SFC were derived from u, L, 

and temperature using formulations in AERMOD (Cimorelli et al., 2004). 

5.2.3 Area Source Layout 

Prior to evaluating calculated concentration’s sensitivity to changes in u, zo, and L, effects 

of downwind and crosswind distances between the area source and the receptor were first 

assessed. Two feedlot-area source layouts were initially evaluated. The first layout had five 200 

m x 200 m adjoining feedlot pens aligned along the north-south direction parallel to the wind 

direction set in the simulation, with Pen 1 as the southernmost pen and Pen 5 as the northernmost 

pen (Figure 5-1a).  In this layout, downwind distances of the pens to a receptor varied while their 

corresponding crosswind distances were negligible as all pens lie directly upwind of the receptor. 

The second layout had five 200 m x 200 m adjoining feedlot pens aligned in west-east direction 

perpendicular to wind direction, with Pen 1 as the westernmost pen and Pen 5 as the easternmost 

pen (Figure 5-1b). Here, crosswind distances of the pens to a receptor varied while their 

downwind distances were the same. Influence of area source-receptor downwind and crosswind 

distances on downwind concentrations were assessed using first and second layouts, 

respectively. At a given receptor location, the contribution of each pen on the total concentration 

was determined by computing its corresponding predicted concentration and weighing it against 

the sum of concentrations contributed by all pens (Calder, 1977). 
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Figure 5-1. Area source layouts: a) pens aligned along wind direction (north-south); and b) pens 

aligned across wind direction (east-west). Wind direction was set at 180° from the north in the 

modeling. 

 

In both layouts, receptors were specified for three different downwind distances north of 

Pen 5. Shortest downwind distance was 5 m from the north edge of Pen 5; this represented the 

sampler placement near the source to minimize effects of outside sources. Next distance was 100 

m, which is the recommended minimum downwind distance for Gaussian models like 

AERMOD.  Farthest distance was 1,000 m, which is the longest modeling distance for 

WindTrax.  

In analyses of area source-receptor downwind and crosswind distances, receptor height 

was set at 7 m, a monitoring height valid for all three downwind distances evaluated (CFR, 

2010). Meteorological parameters were set at their base values (Table 5-3). The area source 

configuration for analyses of meteorological parameters would then be based on results of this 

analysis. 
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5.2.4 Receptor Heights 

AERMOD and WindTrax were also compared in terms of resulting vertical concentration 

profiles. Vertical concentration profile was obtained for two downwind distances, 5 and 100 m. 

Receptor heights specified for each downwind distance were based on recommendation by CFR 

(2010). For the 5-m downwind distance, receptor heights of 2 to 7 m, at 1-m interval, were used 

in profiling concentrations. For the 100-m downwind distance, heights of 7 to 15 m, also with 1-

m interval, were applied. In profiling concentration, settings for meteorological parameters were 

their respective base values (Table 5-3). 

5.2.5 Data Analysis 

Data were analyzed using SAS (release 9.1.3., SAS Institute Inc., NC). Paired t-test was 

used in comparing calculated concentrations between the two dispersion models. Linear 

regression was applied to determine the influence of u, zo, and L on calculated concentrations and 

was used to measure the linearity in concentrations predicted by the two dispersion models. A 

5% level of significance was implemented in all statistical analyses.   

5.3 Results 

5.3.1 Effects of Area Source-Receptor Downwind and Crosswind Distances 

For the first feedlot-area source layout (i.e., north-south direction), contributions of each 

pen to concentrations calculated for receptors at three downwind distances are summarized in 

Table 5-4.  In both AERMOD and WindTrax modeling, close to 90% of the total concentrations 

calculated for the three 7-m high downwind receptors was contributed by Pens 2 to 5, with Pen 5 

expectedly having the highest contribution. At 5, 100, and 1,000-m downwind distances, 

contributions of Pen 5 were 30%, 34%, and 24%, respectively, as modeled by AERMOD; with 

WindTrax, contributions were 38%, 40%, and 29%, respectively. The difference on how 

AERMOD and WindTrax simulate stable and unstable conditions was also notable. With 

AERMOD, pen contributions differed between stable and unstable conditions. Contributions of 

farthest pens on calculated concentrations increased with unstable atmosphere; Pen 1, which only 

had 10% contribution for stable condition, had a higher contribution, close to 20%, for unstable 

condition. On the other hand, there was no difference in results between stable and unstable 

conditions in WindTrax modeling. 
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Table 5-4. Pen contributions on predicted concentrations – Pens aligned along wind direction 

Downwind 
distance 

Stability Model Pen 5 a Pen 4 Pen 3 Pen 2 Pen 1 b 

5 m Stable AERMOD 34% 27% 17% 12% 10% 

WindTrax 38% 25% 17% 12% 8% 

Unstable AERMOD 26% 20% 18% 18% 18% 

WindTrax 38% 25% 17% 12% 8% 

100 m Stable AERMOD 41% 23% 15% 12% 9% 

WindTrax 40% 23% 17% 11% 9% 

Unstable AERMOD 25% 19% 19% 19% 18% 

WindTrax 40% 23% 17% 11% 9% 

1,000  m Stable AERMOD 27% 23% 19% 17% 14% 

WindTrax 29% 24% 16% 17% 14% 

Unstable AERMOD 21% 20% 20% 20% 19% 

WindTrax 29% 24% 16% 17% 14% 

a 
Closest to receptors; 

b 
farthest from receptors. 

 

Pen contributions computed for the second area source layout (i.e., east-west direction) 

are shown in Table 5-5. Contributions obtained in both AERMOD and WindTrax modeling were 

relatively the same. Pen 5, the pen closest to the receptors, was the only source of concentration 

calculated for receptors at downwind distances of 5 and 100 m. Pen 5 also was the main 

contributor (99% and 94% based on AERMOD and WindTrax, respectively) of concentration 

derived for the 1,000-m downwind distance receptor. Even the next closest pen (Pen 4), which 

had only 100-m crosswind distance from the receptor (measured from Pen 4’s edge), had no 

significant influence on calculated concentration.   
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Table 5-5. Pen contributions on predicted concentrations – Pens aligned across wind direction 

Downwind 
distance 

Stability Model Pen 5 a Pen 4 Pen 3 Pen 2 Pen 1 b 

5 m Stable AERMOD 100% - - - - 

WindTrax 100% - - - - 

Unstable AERMOD 100% - - - - 

WindTrax 100% - - - - 

100 m Stable AERMOD 100% - - - - 

WindTrax 100% - - - - 

Unstable AERMOD 100% - - - - 

WindTrax 100% - - - - 

1,000  m Stable AERMOD 99% 1% - - - 

WindTrax 94% 6% - - - 

Unstable AERMOD 99% 1% - - - 

WindTrax 94% 6% - - - 

a 
Closest to receptors; 

b 
farthest from receptors. 

 

Based on these findings, the first feedlot-area source layout, in which pens were aligned 

along the wind direction (180°), was used in analyzing sensitivity of the two models to changes 

in meteorological parameters.  

5.3.2 Effects of Meteorological Parameters 

5.3.2.1 Wind Speed 

Figure 5-2 shows calculated concentrations as a function of u for the three downwind 

distances evaluated. For stable conditions, AERMOD and WindTrax produced similar 

concentration profiles with respect to u and were highly correlated (R2 = 1.00) for all downwind 

distances. However, concentrations predicted during stable conditions were significantly 

different (P < 0.05) between AERMOD and WindTrax, with the latter generating higher 

concentrations. The ratio of calculated concentrations, expressed as WindTrax/AERMOD ratio, 

ranged from 1.13 to 1.24, 1.09 to 1.23, and 1.00 to 1.89 for the 5, 100, and 1,000 m downwind 

distances, respectively. Average WindTrax/AERMOD ratios as functions of u were as follows: 



  88

for the 5-m downwind distance, 1.13 for 1.0 m/sec < u < 3.0 m/sec and 1.20 for u > 4.0 m/sec; 

and for the 100-m downwind distance, 1.11 for 0.5 m/sec < u < 5.0 m/sec and 1.21 for u > 7.5 

m/sec. For the 1,000-m distance, no average value was obtained as WindTrax/AERMOD ratio 

was highly variable with respect to u. 

 

 

Figure 5-2. Calculated concentration as function of wind speed for downwind distances of: (a) 5 

m, (b) 100 m, and (c) 1,000 m.  

 

Calculated concentrations of AERMOD and WindTrax for unstable conditions were also 

highly correlated. Unlike for stable conditions, however, correlation decreased as downwind 

distance increased, with R2 of 0.96, 0.93, and 0.77 for 5, 100, and 1,000-m downwind distances, 

respectively. This decrease in correlation could be attributed to lower u settings included the 

evaluation.  If u < 1.0 m/sec was not included in concentration comparison for the 100-m 

distance, R2 would be close to 1.0. For the 1000-m distance, R2 would increase if u < 2.0 m/sec 

were excluded in the analysis. Higher difference between AERMOD and WindTrax was also 

observed for unstable conditions, with the latter producing higher concentrations (P < 0.05): 

WindTrax/AERMOD ratios of 0.98 to 1.50, 0.89 to 1.54, and 0.28 to 2.18 were computed for 5, 
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100, and 1,000-m distances, respectively. In terms of u, average WindTrax/AERMOD ratios for 

unstable conditions were as follows: for the 5-m downwind distance, 1.48 for 1.0 m/sec < u < 2.0 

m/sec and 1.39 for u > 3.0 m/sec; and for the 100-m downwind distance, 1.53 for 1.0 m/sec < u < 

2.0 m/sec and 1.44 for u > 3.0 m/sec. Similar to what was observed for stable conditions, 

WindTrax/AERMOD ratio at the 1,000-m downwind distance, with respect to u, was highly 

variable. 

5.3.2.2 Surface Roughness 

Figure 5-3 shows that calculated concentrations decreased with increasing values of zo for 

both stable and unstable conditions. Also, higher concentrations (P < 0.05) were predicted by 

WindTrax, and high linearity between AERMOD and WindTrax concentrations were modeled. 

WindTrax/AERMOD concentration ratios for stable and unstable conditions were as follows: at 

downwind distance of 5 m, ratios of 1.14 to 1.20 and 1.35 to 1.39, respectively; at 100 m, 1.12 to 

1.19 and 1.39 to 1.43, respectively; at 1,000 m, 1.36 to 1.65 and 1.64 to 1.86, respectively. 

Excluding the 1,000-m distance, WindTrax/AERMOD concentration ratio remained relatively 

stable with average values for stable and unstable conditions of 1.18 and 1.37, respectively, for 

the 5-m downwind distance, and 1.15 and 1.41, respectively, for the 100-m distance. Even 

though WindTrax gave higher concentrations, the two models’ concentrations still had high 

linear relationship: regression analyses between calculated concentrations showed R2 values 

greater than 0.96 for stable and 0.98 for unstable conditions.  
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Figure 5-3. Calculated concentration as function of surface roughness for downwind distances 

of: (a) 5 m, (b) 100 m, and (c) 1,000 m.  

 

Rates of decrease in concentration with respect to zo were relatively similar between 

AERMOD and WindTrax, and were much faster for longer downwind distances (Figure 5-3). 

When zo increased from 2.5 to 20 cm, concentration at the closest receptor was reduced by 36%; 

at the next receptor (100-m distance), concentration decreased by 46%; and at the farthest 

receptor, the decrease was about 60%. Regression analyses indicated high linearity (0.96 > R2 > 

0.88) between predicted concentration and zo, the lowest linearity (0.91 > R2 > 0.88) determined 

at the farthest sampler placement. 

5.3.2.3 Atmospheric Stability 

Influence of atmospheric stability on concentration was determined by evaluating several 

stability conditions. Plots of calculated concentration as a function of Monin-Obukhov length, L, 

are illustrated in Figure 5-4. High linearity (R2 > 0.89) in calculated concentrations was again 

observed between AERMOD and WindTrax. The smallest difference between the two models 

(WindTrax/AERMOD concentration ratio of 1.02 to 1.23) was observed for very stable condition 
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(L = 50 m) whereas the highest difference (ratio of 1.37 to 1.75) was observed for unstable 

condition (L = -5,000 m). The 100-m downwind distance had the lowest difference between the 

two models for conditions with L > 0: WindTrax/AERMOD ratios for very stable, stable, and 

near-neutral, stable conditions were 1.02, 1.14, and 1.16, respectively. The lowest difference for 

unstable and very unstable conditions was obtained for 5-m (ratio of 1.37) and 1,000-m (ratio of 

1.11) downwind distances, respectively.  

 

 

Figure 5-4. Calculated concentration as function of Monin-Obukhov length for downwind 

distances of: (a) 5 m, (b) 100 m, and (c) 1,000 m.  

 

Effects of atmospheric stability were further evaluated using additional L values (Figure 

5-5). This evaluation was done at the 100-m downwind distance to obtain the lowest difference 

between AERMOD and WindTrax. The lowest difference between the two models was again 

observed for stable conditions (L > 0 m), with WindTrax predicting significantly higher 

concentrations (P < 0.05). As a function of atmospheric stability, average WindTrax/AERMOD 

ratios were 1.05 (0.98 to 1.08) for 5 m < L < 1,000 m and 1.17 (1.16 to 1.18) for L > 1,000 m. 
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Unstable conditions (L < 0 m) had larger WindTrax/AERMOD ratios, implying larger difference 

in concentrations between the two models. For L > -50 m, WindTrax/AERMOD ratio ranged 

from 0.61 to 1.30, and starting L < -100 m, the ratio remained above 1.40 and had an average 

value of 1.44 (1.40 to 1.49).  

 

 

Figure 5-5. Calculated concentration as function of Monin-Obukhov length for the 100-m 

downwind distance – Higher resolution.  

 

Relationship between L and concentration was also checked. From regression analyses, 

high linearity existed between L and the logarithm of concentration. R2- values were 0.76 and 

0.71 for AERMOD and WindTrax, respectively, for stable conditions (L > 0 m), and were 0.83 

and 0.78, respectively, for unstable conditions (L < 0 m). Comparing stable and unstable 

conditions with same absolute values of L, AERMOD calculated higher concentrations for stable 

conditions. However, this was not the case for WindTrax. For |L| < 100 m, WindTrax modeled 

higher concentrations (at least 66%) for stable conditions. The difference in calculated 

concentration between stable and unstable conditions in WindTrax decreased as the value of |L| 

increased: for |L| = 500 m, concentration for stable condition (L = 500 m) was higher by just 13% 

than that of unstable condition (L = -500 m); and starting |L| > 500 m, concentrations for stable 

(L > 500 m) and unstable (L < -500 m) conditions were relatively the same (~ 0.15% difference). 
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5.3.3 Vertical Concentration Profile 

Vertical concentration profiles for downwind distances of 5 and 100 m are shown in 

Figure 5-6. Findings drawn from preceding analyses were also observed in evaluation of vertical 

concentration profile: (1) higher concentrations were calculated by WindTrax; (2) AERMOD 

calculated higher concentrations for stable conditions than for unstable conditions; and (3) with 

|L| = 5,000 m, WindTrax modeled almost same concentrations for both stable and unstable 

conditions. 

 

 

Figure 5-6. Vertical profiles of calculated concentrations at: (a) 5-m downwind distance, with 2 

to 7-m height settings, and (b) 100-m downwind distance, with 7 to 15-m height settings. 

 

For the 5-m downwind distance, WindTrax/AERMOD ratio was smaller for stable 

condition (L = 5,000 m) than for unstable condition (L = -5,000 m). As a function of height, 

average ratios were 1.27 (1.26 to 1.30) for heights of 2 to 4 m and 1.17 (1.16 to 1.19) for heights 

of 5 to 7 m for stable condition; for unstable condition, ratios were 1.50 (1.47 to 1.55) for heights 

of 2 to 4 m and 1.37 (1.36 to 1.38) for heights of 5 to 7 m. WindTrax/AERMOD ratio was also 

smaller during stable condition for the 100-m downwind distance. During stable condition, the 

ratio remained relatively constant with height at this distance, with an average value of 1.09 

(1.05 to 1.14). On the other hand, the ratio changed with height during unstable condition: for 7 

to 9-m heights, the ratio was 1.38 (1.36 to 1.41); for 10 to 12-m heights, the ratio was 1.29 (1.26 

to 1.33); for heights 13 to 14 m, the ratio was 1.24 (1.23 to 1.24); and the 15-m height had a ratio 

of 1.31. Based on these results, WindTrax/AERMOD ratio decreased with height in general. 
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As mentioned, WindTrax requires longer simulation time. Using a meteorological data 

set composed of u, zo, and L, and setting the number of particles released at 50,000, the average 

WindTrax simulation time for each data point (i.e., one set of meteorological data, one receptor) 

in this study was 2 min. Considerably longer simulation time should be expected if sonic 

anemometer measurements and/or higher number of particles released were used. Whereas the 

length of simulation was not a concern in AERMOD; as observed in this study, only a few 

seconds was required to complete a simulation. 

5.4 Discussion 

Difference in simulating dispersion might explain why AERMOD calculated lower 

concentrations than WindTrax. In WindTrax, mass transport in all directions (downwind, 

crosswind and vertical) is by convection (eq 5-2). In AERMOD, downwind mass transport is 

also by convection; however, both crosswind and vertical mass transports are by diffusion (eq 5-

1). As diffusion is a much slower transport process compared to convection (Glasgow, 2010),  

overall mass dispersion in AERMOD is modeled at a lower transport rate than in WindTrax 

resulting in lower downwind concentrations calculated with AERMOD modeling.  

In AERMOD, the concentration difference between stable (i.e., stable, very stable) and 

unstable (i.e., unstable, very unstable) conditions was expected as simulation of the vertical 

concentration distribution depends on atmospheric stability. The concentration in vertical 

direction for stable and unstable conditions has Gaussian and bi-Gaussian distributions, 

respectively (Cimorelli et al., 2004); given the same emission rate, AERMOD modeled lower 

concentrations for unstable conditions. On the other hand, WindTrax simulates dispersion in 

stable and unstable conditions similarly as only one set of concentration formulations is applied 

(Flesch et al., 1995). In WindTrax, atmospheric stability is used only to decide which equations 

will be used in characterizing wind flow; these include equations for Monin-Obukhov universal 

function, vertical velocity fluctuation stability correction function and dissipation rate stability 

correction factor (Flesch et al., 1995; Flesch et al., 2004). The difference in concentration 

between stable and unstable conditions in WindTrax simply depends on the degree of stability of 

the atmosphere. With L as the atmospheric stability parameter, the concentration difference was 

very large between very stable and very unstable conditions (e.g., 66% for |L| < 100 m) but was 
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almost negligible between stable and unstable atmospheric conditions (e.g., 0.15% for |L| > 500 

m).     

The rates of concentration decrease with height in AERMOD and WindTrax could 

explain why the concentration difference between the two models decreased with height. 

Overall, concentration decreased much faster with height in WindTrax than in AERMOD. 

Results showed that the rates of decrease for WindTrax-derived concentrations were 

approximately 0.83 and 0.19 µg/m3-m for 5 and 100-m downwind distances, respectively, for 

both stable and unstable conditions. The rates of decrease for AERMOD-derived concentrations 

during stable condition were 0.53 and 0.14 µg/m3-m for 5 and 100-m distances, respectively; 

during unstable conditions, the rates of decrease were 0.43 µg/m3-m for the 5-m downwind 

distance and 0.09 µg/m3-m for the 100-m distance. Based on these results, the rate of 

concentration decrease with height in WindTrax was faster than in AERMOD by at least 30%. 

Thus, this implies that smaller difference in calculated concentrations between the two models 

could be attained at higher receptor height settings. 

Perhaps, more important, concentrations calculated by AERMOD and WindTrax have 

high linear correlation. This suggests that correction/conversion factors between these two 

dispersion models can be developed. Still, several things can be considered to improve working 

with conversion factors. One is that development of new and use of available conversion factors 

can be based on sampler placement, as  sampler’s downwind location and sampling height affect 

the degree of concentration difference between the two models. As shown in this study, 

difference between AERMOD and WindTrax modeling results was lowest if the sampler was 

located close to the area source and placed at higher height settings. Other considerations may 

include using wind speed and atmospheric stability as criteria for conversion factors. 

5.5 Conclusions 

The performance of AERMOD and WindTrax in calculating concentrations downwind of 

ground-level area sources was evaluated by comparing their sensitivity to variations in modeling 

inputs. The following conclusions were drawn from this study: 

• AERMOD calculated lower concentrations than WindTrax, possibly due to the difference 

in their treatment of mass transport. Mass transport in WindTrax is based mainly on 

convection whereas in AERMOD, mass transport consisted of both convection and 
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diffusion. The two models also differ on how they model concentrations during stable 

and unstable conditions. AERMOD applies Gaussian and bi-Gaussian forms to model 

vertical concentration distribution for stable and unstable conditions, respectively. In 

contrast, WindTrax uses just one set of concentration formulations regardless of 

atmospheric stability. 

• Concentrations calculated by AERMOD and WindTrax responded similarly to area 

source and receptor/sampler locations, and to changes in wind speed, surface roughness, 

and atmospheric stability. In both models, a downwind receptor was mainly impacted by 

area sources directly upwind of its location. Profiles of calculated concentration as 

functions of wind speed, surface roughness, and atmospheric stability were highly 

comparable between the two models. Their modeled vertical concentration profiles were 

also similar. More important, concentrations calculated by these two models were highly 

linear.  

Indications are development of conversion factors between these two dispersion models 

is feasible. Results presented in this study can also be used as guidelines in designing studies 

aimed to develop factors between AERMOD and WindTrax, and/or to compare any other 

dispersion models. 
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Particulate Emissions from a Beef Cattle Feedlot CHAPTER 6 - 

Using Flux-gradient Technique 

 

6.1 Introduction 

Air pollutant emissions from concentrated animal feeding operations (CAFOs) such as 

open-lot beef cattle feedlots can adversely affect air quality locally in downwind areas.  

Emissions also may affect air quality on a regional basis in certain areas like the San Joaquin 

Valley of California.  Emissions from CAFOs generally include ammonia (NH3), methane 

(CH4), greenhouse gases (GHGs), volatile organic compounds, and particulate matter (PM). The 

National Research Council (2003) stated the need for accurate pollutant emissions estimates for 

CAFOs that can be used to assess their impact on the environment and regulate them effectively. 

In 2005, the U. S. Environmental Protection Agency (U.S. EPA) initiated the National Air 

Emissions Monitoring Study (NAEMS), a two-year study to continuously measure the emissions 

of regulated pollutants from different types of CAFOs and to develop and improve available 

emission quantifying techniques (CFR, 2011; Purdue Applied Meteorology Laboratory, 2009). 

Participating CAFOs in NAEMS represented the layer, broiler, swine and dairy industries but 

none came from the beef industry (Purdue Applied Meteorology Laboratory, 2009). In 2011, the 

U.S. EPA solicited quality-assured CAFO emissions data to supplement that collected through 

NAEMS (CFR, 2011). Requested data included emissions of PM (PM2.5, PM10, and TSP), 

hydrogen sulfide (H2S), NH3, and VOCs from broiler, layer, turkey, swine, dairy and beef 

operations (CFR, 2011). Clearly, more gaseous and PM emission estimates are needed for 

CAFOs, particularly for open-lot beef cattle feedlots.   

Techniques appropriate for estimating emission rates from area sources include 

micrometeorological techniques, mass balance techniques, atmospheric dispersion models and 

atmospheric tracers (National Research Council, 2003). Recently published pollutant emission 

rates for beef cattle feedlots were determined using atmospheric dispersion models such as 

WindTrax, a backward Lagrangian stochastic-based (bLS) model (Flesch and Wilson, 2005), and 

AERMOD, a Gaussian-based and the current U.S. EPA preferred regulatory model (CFR, 2005). 

WindTrax has been used in quantifying emission rates for NH3 (Flesch et al., 2005), odor 

(Galvin et al., 2006) and PM10 (McGinn et al., 2010) from beef cattle feedlots and GHGs from 
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dairy cattle facilities (Leytem et al., 2011). AERMOD also has been applied in feedlot studies on 

NH3 (Faulkner et al., 2007) and PM10 (Bonifacio et al., 2012). Whereas the use of atmospheric 

dispersion models maybe acceptable, derived emission rates may differ from actual values by at 

least a factor of two (Flesch et al., 2004; National Research Council, 2003; Turner, 1994).  

Micrometeorological techniques have long been used to quantify emission rates of 

various gases such as fumigants from agricultural croplands, which, like beef cattle feedlots, are 

open area sources. Although these techniques require complex and extensive instrumentations, 

they are the most direct, unobtrusive methods of measuring mass and energy transfer rates 

between the surface and the atmosphere (Ham and Baum, 2007). A commonly used 

micrometeorological method in determining emissions is the flux-gradient technique (Prueger 

and Kustas, 2005; Muller et al., 2009). The flux-gradient method has been used to estimate 

emissions for NH3 (Myles et al., 2011), nitric acid (Myles et al., 2011), ozone (Muller et al., 

2009), sulfur dioxide (Myles et al., 2011) and pesticides (Prueger et al., 2005) for agricultural 

lands. This method also has been applied to cattle feedlots to quantify emissions of amines 

(Hutchinson et al., 1982), NH3 (Baek et al., 2006; Hutchinson et al., 1982), H2S (Baek et al., 

2006), and, on a small scale, has simulated a cattle pen to measure CH4 (Harper et al., 1999). 

Limitations associated with the use of micrometeorological techniques on feedlots, however, 

were not directly addressed in these studies.  

Micrometeorological techniques are based on certain key assumptions. One key 

assumption is horizontal homogeneity of the source and consequently emission rates. Feedlots 

are non-ideal locations and are made up of different types of surfaces such as unpaved roads, 

lagoons, and buildings, but the largest surface area comprises pen areas. A recent paper by Baum 

et al. (2008) examined the feasibility of and presented guidelines on the use of 

micrometeorological techniques at challenging locations such as cattle feedlots. In implementing 

micrometeorological techniques on estimating cattle feedlot emissions, recommendations 

included using at least 20-Hz sampling frequency in measurements to lower flux estimate 

uncertainty, applying 70 to 80% modeled source area criterion in fetch calculation to minimize 

the effects of non-feedlot surfaces while retaining more data, and relating computed emission 

fluxes to pens closer to the measurement location. 

The present study was designed to quantify PM10 emission fluxes from an open-lot 

commercial beef cattle feedlot under a variety of meteorological and cattle pen moisture 
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conditions. It is the first use of the flux-gradient technique for PM from cattle feedlots. Vertical 

profiling of PM10 concentrations and high-resolution meteorological measurements were used to 

compute concentration gradients and particle eddy diffusivity, respectively, required in the flux-

gradient technique. Results of this work provide critical information for producers, conservation 

specialists and regulators on the magnitude of PM10 emissions, derived using a 

micrometeorological technique, from a cattle feedlot typical of those in much of the Western 

U.S.   

6.2 Materials and Methods 

6.2.1 Feedlot Description   

The commercial beef cattle feedlot studied is rectangular in shape, with lengths of 1.7 and 

0.5 km in north-south and east-west directions, respectively. Based on a previous study (Baum et 

al., 2008), this feedlot is relatively flat, with surface roughness of 4.1 + 2.2 cm. The feedlot has a 

capacity of 30,000 head in a total pen area of approximately 59 ha surrounded by agricultural 

crop lands. Field monitoring, which included PM10 concentrations and micrometeorological 

measurements, were conducted continuously from May 2010 through September 2011; however, 

measurement data, which were also used in another study (Bonifacio et al., 2013), were 

incomplete in some months due to several instrumentation- and/or weather-related problems. 

In 2010, the average head capacity at the feedlot was 27,000; for the whole year, the 

estimated mean percentage of empty pens was only about 10%. Dust emission controls for that 

year included manure scraping frequency of two to three times per pen, and water application on 

unpaved roads and alleys. In 2011, the average head capacity at the feedlot was lower at 25,000, 

so many more pens were empty (approximately 18%). In addition, manure scraping and water 

application practices were changed in 2011. Pen surfaces were scraped more frequently (> 3 

times per pen) than the previous year. More importantly, water was applied on pens rather than 

on unpaved roads and alleys to alleviate heat stress on cattle.  Mortality due to excessive heat 

was around 800 cattle in 2010 but was reduced significantly to just 20 in 2011. 

6.2.2 Micrometeorological Measurements   

A 5.3-m tower, equipped with micrometeorological and eddy covariance (EC) 

instrumentation, was installed to measure micrometeorological conditions at the feedlot. The 

tower was set up in a pen approximately 0.4 km and 1.3 km away from north and south edges of 
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the feedlot, respectively (Figure 6-1a). The EC instrumentation included a 3D sonic anemometer 

(Campbell Scientific, Inc., Logan, UT) for measuring the three orthogonal wind velocity 

components (ux,uy,uz) and temperature and an infrared hygrometer (LICOR, Inc., Lincoln, NE) 

for measuring water vapor density. A data logger (Campbell Scientific, Inc., Logan, UT) was 

used to measure and record variances and covariances of ux,uy and uz and temperature as 15-min 

averages. Friction velocity (u*), Monin-Obukhov length (L) and surface roughness (zo) were 

computed from these measurements using formulations presented by Flesch et al. (2004) and 

Baum et al. (2008). These three parameters were initially computed as 15-min values and then 

integrated to hourly values. 

 

Figure 6-1. Location of the instrumentation: a) sampling site inside the feedlot; and b) sampling 

heights for TEOM PM10 samplers. 

 

 

Starting in May 2011, the vertical profile of wind speed was also measured. Two wind 

anemometers (Model 05103-5, Campbell Scientific, Inc., Logan, UT) were installed, with one 

positioned at 3.81-m height and the other at 7.62-m height. A separate data logger (Campbell 

Scientific, Inc., Logan, UT) was used to record wind velocity measurements as 20-min and 

hourly averages. 
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6.2.3 PM10 Concentrations 

Tapered element oscillating microbalance (TEOM) PM10 monitors (Series 1400a, 

Thermo Fisher Scientific, East Greenbush, NY; federal equivalent method designation No. 

EQPM-1090-079) were used to measure PM10 mass concentration at three sites simultaneously: 

(1) within the feedlot, approximately 5.5 m north of the EC tower; (2) 5 m away from the north 

edge of the feedlot; and (3) 800 m away from the feedlot south edge. Selection of these sites was 

based on feedlot layout, power availability and feedlot management approval. PM10 

concentrations measured within the feedlot were used as downwind concentrations whereas 

PM10 concentrations at the north and south edges were used as upwind concentrations, depending 

on the wind direction (i.e., upwind at north site if wind was coming from the north, at south site 

if wind was from the south). Vertical profiling of PM10 concentrations was carried out at the 

sampling site within the feedlot by measuring PM10 concentrations at four heights (i.e., 2.0, 3.81, 

5.34 and 7.62 m) (Figure 6-1b). A previous study indicated that the vertical concentration 

gradient upwind of a source was negligible (Ryden and McNeill, 1984) and because of 

equipment availability issue, PM10 concentration was measured only at one height (i.e., 2.0 m) 

for the other two sampling sites. 

PM10 concentrations were measured at 20-min interval. In accordance with the TEOM 

manufacturer’s recommendations, large negative 20-min PM10 concentrations (< -10 µg/m3) 

were not considered. Remaining 20-min downwind and upwind PM10 concentrations were then 

integrated into hourly averages. For each height, net concentrations (i.e., downwind 

concentration – upwind concentration) were computed for hours with both downwind and 

upwind concentrations. In addition, only positive net PM10 concentrations were considered 

because negative values could indicate either negligible particulate emissions from the feedlot or 

the presence of significant PM emissions from sources other than the feedlot.  

6.2.4 Auxiliary Measurements 

Precipitation data were obtained from a weather station located 2 km from the north edge 

of the feedlot. The weather station was equipped with a rain gauge (Model TE525, Campbell 

Scientific, Inc., Logan, UT) that measured and recorded precipitation. 

Within the 17-month period, nine 4/5-day intensive sampling campaigns (n = 41 days) 

were performed to conduct pen surface water content measurements in addition to PM10 

concentration and micrometeorological measurements. The manure/soil layer from the pen 
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surface was randomly sampled from the pen in which the tower was installed and two other 

adjacent pens. Sampling of the upper layer of the pen surface, approximately 2.5 to 5.0 cm, was 

done twice each day, one in the morning and another in the afternoon. Manure/soil samples were 

placed in separate sealed plastic bags. Wet-based water content of the sample was determined 

using the ASTM D2216-98 oven drying method (American Society for Testing Materials, 2002).  

6.2.5 Data Screening 

Prior PM10 emission flux calculation, hourly data points, each composed of PM10 

concentration and micrometeorological measurements, were screened based on: (1) 

corresponding fetches of sampling heights with computed net PM10 concentrations; (2) number 

of sampling heights with net PM10 concentrations; and (3) vertical profile of net PM10 

concentrations. The first screening was based on the fetch of each sampling height. For the 

measured PM10 concentration to be representative of PM emitted by pens, its corresponding fetch 

should fall within the feedlot boundary. The fetch for each sampling height was computed using: 
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where x is fetch (m), |L| is absolute value of Monin-Obukhov length (m), F/So is 

assumed/desired normalized flux (dimensionless), zu is new length scale (m), k is von Karman 

constant (0.4), and D and P are similarity constants (Hsieh et al., 2000). New length scale, zu, 

was derived using the equation (Hsieh et al., 2000): 

( )( )zzzzzz moommu +−= 1ln                                (6-2) 

where zm is sampler measurement height. Both L and zo were derived from sonic anemometer 

measurements. Values for similarity constants D and P, which are both based on the atmospheric 

stability, are summarized by Hsieh et al. (2000). Normalized flux, F/So, was set at 0.7 to retain 

more data points without losing data quality (Baum et al., 2008). 

The second screening was based on the number of measurement heights with measured 

net PM10 concentrations. As the PM10 emission flux determination using the flux-gradient 

technique involved vertical concentration gradients, hourly data points with at least two sampling 

heights with net concentration data were considered in the analyses (National Research Council, 

2003). After the first two screenings, numbers of data points based on the number of sampling 
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heights with concentration data were 1,676 for data points with four net concentrations, 741 with 

three net concentrations, and 562 with two net concentrations; the total number of data points 

after the first two screenings was 2,979. 

Lastly, data points were screened according to the net PM10 concentration vertical profile. 

The concentration should be approximately linear with the logarithm of height and decreasing 

with increasing height (Ryden and McNeill, 1984). Linearity between the net PM10 concentration 

and the logarithm of height was verified using Pearson correlation. As practiced in biostatistics 

(Colton, 1974; Gherman and Mironiuc, 2012; Lehman et al., 2009) and other research areas 

(U.S. Department of Agriculture, 2012), a Pearson correlation criterion of 0.75 was applied to 

indicate strong and robust linearity. Thus, hourly data points with Pearson correlation 

coefficients greater than or equal to 0.75 were used in emission flux computation.  

6.2.6 Flux-Gradient Technique 

Using the flux-gradient technique, PM10 emission flux from pens, Qp, (µg/m2-sec) was 

estimated with the expression:  

dz

dc
KQ cp −=                                                       (6-3) 

where Kc is eddy diffusivity for PM10 (m
2/sec) and dc/dz is vertical net PM10 concentration 

gradient (µg/m3-m) (Meyers and Baldocchi, 2005; Myles et al, 2010; Prueger and Kustas, 2005; 

Prueger et al., 2005). Vertical concentration gradient, dc/dz, for each data point was estimated 

from net PM10 concentration data and their corresponding sampling heights. Eddy diffusivity for 

PM10, Kc, was derived from eddy diffusivity for momentum, Km, and Schmidt number, Sc, using 

the equation (Flesch et al., 2002; Prueger et al., 2005): 
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Eddy diffusivity for momentum, Km (m2/sec) was computed using the expression: 
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where k is von Karman constant (0.4), u* is friction velocity (m/sec), zm is mean geometric height 
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(m), and φm is nondimensional correction parameter. Friction velocity was obtained from 

micrometeorological measurements. The mean geometric height for each hour was computed 

using sampling heights with acceptable fetches and net PM10 concentrations. φm was calculated 

following the procedure by Flesch et al. (2002) and Prueger et al. (2005), as presented by 

Hogstrom (1996): 
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for unstable atmospheric conditions (L < 0) and:   
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for stable atmospheric conditions (L > 0). 

To calculate PM10 eddy diffusivity, Kc, Sc to be used for the feedlot’s PM10 was estimated 

in accordance with the experiment done by Flesch et al. (2002). Combining eq. 6-3 and eq. 6-4, 

Sc is given by: 
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PM10 emission flux, Qp, used in eq. 8 was determined using the integrated horizontal flux 

technique and was also reduced by 20% to compensate for the inherent error (Flesch et al., 

2002). Measurements used in deriving Qp by the integrated horizontal flux technique were 

anemometer-based wind speed and PM10 concentration measurements for 3.81 and 7.62-m 

heights from May through September 2011, and their corresponding fetches. Hourly medians and 

lower and upper standard deviations for Sc for this 5-month period (n = 291 hourly data points) 

are shown in Figure 6-2. Overall median Sc was 0.63; this value was comparable to Sc = 0.70 

applied in previous particle transport studies (Guo and Maghirang, 2012; Zhang et al., 2008) and 

Sc = 0.64 implemented in an area source dispersion model (Flesch et al., 2004). Therefore, in 

calculating PM10 emission fluxes using the flux-gradient technique (eq 6-3), Sc = 0.63 was 

applied for the whole measurement period. 
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6.2.7 Data Analysis 

Data were analyzed using SAS (2004; SAS Inst. Inc., Cary, NC). Mean values were 

presented for parameters that follow normal distribution (e.g., temperature, u*); on the other 

hand, median values were reported for those that did not follow the normal distribution (e.g., 

PM10 concentrations, PM10 emission fluxes, Sc, Kc). Outlier analysis and standard deviation 

calculation were based on the procedure by Schwertman et al. (2004) for non-normal datasets. In 

determining the influence of micrometeorological parameters on dc/dz, Kc and PM10 emission 

flux, backward elimination was applied with a 5% significance level. 

 

 

 

 

 

 

 

Figure 6-2. Hourly median PM10 Schmidt number, Sc, determined for May through 

September 2011 (n = 291). Error bars represent upper and lower standard deviations. 
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6.3 Results and Discussion 

6.3.1 Micrometeorological Conditions 

WindRose plots (WRPLOT View, Lakes Environmental) are provided to show wind 

speed and wind direction trends at 6-month intervals (Figure 6-3). For the first 6 months of the 

measurement period, most of the hourly data points (85%) had wind coming from the south 

(135° to 225°); for the second 6 months, 45% and 32% of the data points had wind from the 

north (0° to 45°, 315° to 360°) and the south, respectively; and for the last months, 19% and 59% 

from the north and the south, respectively. Overall, wind came from the south 55% of the time 

and from the north 25% of the time; wind coming from the east and west had occurrence 

percentages of only 14% and 6%, respectively.  

Fetches for the four sampling heights were within the feedlot boundary 98%, 87%, 76% 

and 62% of the time for 2.0, 3.81, 5.34 and 7.62 m heights, respectively. Median fetch values for 

the acceptable hourly data points (n = 1,626) for the four measurement heights were 84, 163, 189 

and 209 m, respectively (Table 6-1); note that the fetch of the instrumentation tower from the 

feedlot boundary ranged from 210 to 1,308 m.  
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Figure 6-3. Wind speed and wind direction distribution at the studied feedlot: a) May through 

October 2010 (n = 811 hourly data points); b) November 2010 through April 2011 (n = 832 

hourly data points); and c) May through September 2011 (n = 1,296 hourly data points). 
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Table 6-1. Fetch values (n = 1,626) for the four measurement heights as calculated using the 

procedure by Hsieh et al. (2000) 

 Fetches (m) 

 Feedlot a 2.0 m 3.81 m 5.34 m 7.62 m 

Count 1,626 1,626 1,626 1,397 1,104 

Median 420 84 163 189 209 

Minimum 210 7 12 16 21 

Maximum 1,308 401 1,214 1,281 1,246 

Standard deviation b      

        Lower range - 33 85 87 86 

        Upper range - 29 104 176 141 
a Feedlot fetch based on feedlot dimensions 
b Two values for standard deviations, for lower and upper ranges, because of non-normality of 
distribution. 

 

Overall values for micrometeorological parameters at the feedlot were as follows: 

temperature of 14 °C; wind speed of 5.0 m/sec; u* of 0.40 m/sec; and zo of 4.0 cm (Table 6-2). 

Sensible heat fluxes were 66 and -10 W/m2 for surface-to-atmosphere and atmosphere-to-surface 

heat flux directions, respectively (Table 6-2). During the 17-month measurement period, August 

was the hottest month in both 2010 (32 + 5 °C) and 2011 (27 + 5 °C); December was the coldest 

month in 2010 (-3 + 6 °C) and January was the coldest in 2011 (-5 + 7 °C). Highest wind speeds 

were observed in July (5.5 + 1.8 m/sec) and August (5.2 + 1.6 m/sec) in 2010, and May (5.6 + 

2.7 m/sec) and June (5.6 + 2.3 m/sec) in 2011; consequently, these months also had the highest 

friction velocities (0.43 + 0.17 m/sec). Lowest wind speeds were measured in October 2010 (2.5 

+ 0.5 m/sec), which also had the lowest friction velocities (0.22 + 0.04 m/sec). Overall median zo 

was 4.0 cm, which was comparable to the median value (3.6 cm) reported by Baum et al. (2008) 

for the same feedlot.  
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Table 6-2. Micrometeorological parameters at the feedlot for May 2010 through September 2011 

 Temperature 
(°C) 

Wind speed 
(m/sec) 

u* 
(m/sec) 

zo 
(cm) 

Sensible heat (W/m2) 
I a II  b 

Mean 14 5.0 0.40 4.0 c  66 c  -10 c  
Minimum -24 0.5 0.06 1.2 x 10-3 0.03 -0.05 
Maximum 39 28.9 3.00 100 772 -1,425 
Standard 
deviation 

14 2.3 0.18 1.9 / 7.1 d  71 / 158 d  16 / 8 d  

a Heat flux direction from surface to atmosphere 
b Heat flux direction from atmosphere to surface 
c Value based on median due to non-normal distribution for zo 
d Two values for standard deviations, for lower and upper ranges, due to non-normal distribution 
for zo. 

 

6.3.2 PM10 Concentration and Vertical Concentration Gradient 

PM10 concentrations measured at all four measurement heights exhibited diurnal trends, 

with highest concentrations measured during the early evening period (7:00 p.m. to 9:00 p.m.) 

and lowest during early morning period (2:00 a.m. to 5:00 a.m.) (Figure 6-4). Overall hourly net 

PM10 concentrations (SD = lower, upper) for the four heights were 96 (SD = 101, 197), 62 (SD = 

67, 126), 55 (SD = 58, 115) and 57 (SD = 59, 103) µg/m3 for 2.0-m (n = 1,965), 3.8-m (n = 

1,915), 5.3-m (n = 1,538) and 7.6-m (n = 1,148) heights, respectively. Although not significantly 

different (P = 0.44), PM10 concentration was slightly higher at the 7.6-m height than at the 5.34-

m height due to the difference in numbers of data points. Considering only points with 

concentrations for both heights (n = 1,088), median concentrations were 73 (SD = 68, 123) and 

61 (SD = 59, 104) µg/m3 for the 5.3-m and 7.6-m heights, respectively. For this set, statistical 

analyses showed that PM10 concentration was significantly higher (P < 0.05) at the 5.34-m 

height. Using overall concentration values, regression analysis between the logarithm of 

measurement height and PM10 concentration indicated a strong linear relationship (R2 = 0.82) as 

expected (Ryden and McNeill, 1984).  
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Figure 6-4. Hourly median net PM10 concentrations as measured from the four measurement 

heights for May through September 2011. Error bars represent upper standard deviation 

estimates. 

 

Calculation of hourly vertical concentration gradient, dc/dz, showed that PM10 

concentration decreased by approximately 10 µg/m3 for every meter increase in height (n = 

1,626). Within the day, the 7:00 p.m. to 9:00 p.m. period had the largest PM10 concentration 

gradient, 20 (SD = 49, 22) µg/m3-m, and the 2:00 a.m. to 5:00 a.m. period had the lowest 

gradient, 4 (SD = 7, 3) µg/m3-m. Also, the vertical concentration gradient for the mid-morning to 

late afternoon period (9:00 a.m. to 6:00 p.m.) was 12 (SD = 13, 10) µg/m3-m.   

Based on statistical analyses of daily values (n = 238), temperature had a significant 

influence (P < 0.05) on vertical PM10 concentration gradient whereas both u* (P = 0.96) had 

none. Analysis indicated that temperature and vertical PM10 concentration gradient were 

inversely correlated. For zo, analysis suggested that it also might have some effect (P = 0.11) on 

the resulting vertical concentration gradient. 
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6.3.3 PM10 Eddy Diffusivity 

With Sc = 0.63, overall mean hourly eddy diffusivity for PM10, Kc, was 1.10 + 0.60 

m2/sec for the 17-month period (n = 1,626 hourly values). Within the day, Kc was highest from 

12:00 p.m. to 3:00 p.m., and lowest and relatively steady from 8:00 p.m. to 8:00 a.m. (Figure 6-

5). The hourly variation of the different micrometeorological parameters might explain the 

observed trend for Kc. Figure 6-6 shows hourly trends of sensible heat, u*, temperature and zo for 

the entire measurement period. The first three parameters had the same trend as Kc: the 

parameter was highest in the mid-afternoon and was lowest and steady from evening to mid-

morning. Statistical analyses also showed that sensible heat, u* and temperature significantly 

affected Kc (P < 0.05). Atmospheric conditions within the day could help explain this trend. The 

presence of solar radiation in the afternoon results in higher heat flux and temperature that make 

atmospheric conditions unstable (i.e., strong vertical dispersion) whereas the absence of solar 

radiation keeps the atmosphere stable (i.e., minimum vertical dispersion) (Turner, 1994). 

Unstable atmospheric conditions could explain the high Kc values estimated for the afternoon 

period, and stable conditions could explain the low and stable Kc values at night. Compared with 

Kc and other micrometeorological parameters, zo was essentially stable the whole day, ranging 

from 2.7 to 5.8 cm (Figure 6-6); in addition, statistical analyses suggested that zo did not 

influence (P = 0.56) on Kc. 
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Figure 6-5. Hourly median PM10 eddy diffusivity, Kc, calculated for May 2010 through 

September 2011 (n = 1,626 hourly data points). Error bars represent upper and lower standard 

deviations. 
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Figure 6-6. Hourly trends of a) sensible heat; b) friction velocity, u*; c) temperature; and d) 

surface roughness, zo, plotted with PM10 eddy diffusivity, Kc, for the entire measurement period. 
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6.3.4 PM10 Emission Flux 

During the 17-month measurement period (n = 1,626 hourly data points), hourly PM10 

emission flux ranged from ~0 to 272 mg/m2-hr, with an overall median value of 36 mg/m2-hr. 

Based on days with at least 12 hourly emission fluxes (n = 44), the overall median daily PM10 

emission flux was 1.81 g/m2-day, which was slightly higher but within range of those recently 

published for beef cattle feedlots (McGinn et al., 2010; Bonifacio et al., 2012). McGinn et al. 

(2010) reported values of 1.45 and 1.61 g/m2-day for Australian feedlots based on reverse 

dispersion modeling with WindTrax. Bonifacio et al. (2012) reported median PM10 emission 

fluxes of 1.10 and 1.60 g/m2-day for Kansas feedlots based on reverse dispersion modeling with 

AERMOD. Differences in approaches and feedlot conditions/characteristics could help explain 

the difference among these PM10 emission fluxes. Reverse dispersion modeling was applied to 

determine PM10 emission fluxes in the two previous studies whereas the flux-gradient technique 

was used in this study. Water application on pens was done using a solid-set sprinkler system at 

one feedlot evaluated by Bonifacio et al. (2012); but at the feedlot evaluated, water was 

occasionally applied on either unpaved roads/alleys (2010) or pens (2011) using water trucks. 

Although the feedlot studied was comparable to Kansas feedlots examined by Bonifacio et al. 

(2012) in terms of temperature, wind speed and wind direction, it received far less precipitation 

(420 mm in 2010, 152 mm in 2011) than other feedlots (average of 622 mm). As noted in a 

previous study (Bonifacio et al., 2011), rainfall effects on lowering PM emission generally lasted 

from 3 to 7 days. In calculation of overall PM10 emission flux (1.81 g/m2-day), 78% of the days 

used (n = 44) was preceded by at least 7 days with no rainfall. 

PM10 emission fluxes for these 44 days (with at least 12 hourly values) were plotted as 

24-hr averages in time series with wind u*, temperature, and measured zo (Fig. 6-7). Based on 

both the plot (Fig. 6-7b) and statistical analysis, temperature significantly influenced (P < 0.05) 

the daily PM10 emission flux. Relatively high temperatures might have contributed to large PM10 

emissions at the feedlot from June through July 2010 (temperature of 28 to 33 °C, median PM10 

emission of 85 mg/m2-hr) and May 2011 (temperature of 5 to 23 °C, median PM10 emission of 

100 mg/m2-hr) as seen in Fig. 6-7b. Days with low temperatures, however, also could have high 

PM10 emission rates. For example, November 1 and 4, 2010, despite having 24-hr average 

temperatures of 4 and 2 °C, respectively, had daily PM10 emission fluxes of 87 and 129 mg/m2-

hr, respectively. Another example was January 31, 2011 that had below freezing temperatures (-
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12 °C, 24-hr average) but high PM10 emission fluxes (66 mg/m2-hr, 24-hr average). The high PM 

emissions determined for periods with low temperatures could be attributed to the absence of 

precipitation (e.g., rainfall, snow, water application) for extended periods of time. The high 

emissions in November 2010 could be largely due to negligible precipitation (2.0 mm) in 

October 2011. Statistical analysis showed that the number of days without rain significantly 

affected (P = 0.02) the resulting PM10 emissions. Although not evident from the plot (Fig. 6-7a), 

the other micrometeorological parameter that affected the daily PM10 emission flux was u* (P < 

0.05). 
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Figure 6-7. Daily PM10 emission fluxes plotted with a) friction velocity u*; b) temperature; and 

c) surface roughness, zo. Days considered were those with at least 12 hourly data points (n = 44). 

 

Statistics of the hourly PM10 emission fluxes at the feedlot are summarized in Table 6-3. 

Within a day, PM10 emission flux at the feedlot remained relatively high and steady from 9:00 

a.m. to 9:00 p.m. This trend was different from other cattle feedlot studies: the highest PM10 

emissions within a day were observed in the afternoon (10:00 a.m. to 5:00 p.m.) at two Kansas 

cattle feedlots (Bonifacio et al., 2012) and in the early evening at two Australian feedlots 
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(McGinn et al., 2010). Still, similar to these previous studies, increase in PM10 emissions was 

observed during the early evening period (8:00 p.m. to 9:00 p.m.). Reasons for these different 

PM10 emission trends could include differences in feedlots characteristics (e.g., animal spacing), 

dust control methods (e.g., pen scraping frequency, water application), emission estimation 

technique, and measurement design (e.g., location of samplers, measurement period). In addition, 

note that PM10 emission estimates presented by all these studies for the evening period might be 

suspect because of measurement and meteorological limitations associated with atmospheric 

stable conditions (Massman and Lee, 2002). Based on statistical analyses, u*, temperature, 

sensible heat and zo all influenced (P < 0.05) hourly PM10 emissions. High u*, temperature and 

sensible heat, and small effective zo were conditions favorable to high PM emissions at the 

feedlot. 

Differences were observed in hourly PM10 emissions between warm (21 + 10 °C) and 

cold (-2 + 8 °C) conditions (Fig. 6-8). Using median values, warm conditions had significantly 

higher PM10 emission fluxes, ranging from 9 to 146 mg/m2-hr, than cold conditions, which had 

only 3 to 27 mg/m2-hr PM10 emissions. For the trend within the day, peak in PM10 emissions for 

warm conditions occurred during the early evening period, from 8:00 p.m. to 9:00 p.m. (116 and 

146 mg/m2-hr, respectively). For cold conditions, on the other hand, the highest estimated PM10 

emissions (14 to 27 mg/m2-hr) were from the afternoon, from 11:00 a.m. to 3:00 p.m.; 

surprisingly, no increase in PM10 emissions was measured in the evening (< 7 mg/m2-hr starting 

at 8:00 p.m.). Similar to the previous analyses, PM10 emissions during warm conditions were 

largely influenced (P < 0.05) by u*, temperature, sensible heat and zo; however, during cold 

conditions, PM10 emissions were no longer influenced (P = 0.97) by zo. 

 

 

 

 

 

 

 

 



  121

Table 6-3. Hourly medians and standard deviations for PM10 emission flux (n = 1,626) as 

quantified by flux-gradient technique 

Hour Count Median            
(mg/m2-hr) 

Standard deviation a 
(mg/m2-hr) 

Lower standard 
deviation  

Upper standard 
deviation 

12 a.m. 74 23 20 51 
1 a.m. 75 21 21 32 
2 a.m. 60 19 17 27 
3 a.m. 61 14 15 25 
4 a.m. 58 10 7 24 
5 a.m. 53 8 6 22 
6 a.m. 57 14 14 31 
7 a.m. 58 26 19 47 
8 a.m. 69 35 33 38 
9 a.m. 76 56 64 90 
10 a.m. 66 59 66 117 
11 a.m. 63 68 49 67 
12 p.m. 67 62 55 105 
1 p.m. 66 72 71 65 
2 p.m. 78 72 60 86 
3 p.m. 73 59 58 54 
4 p.m. 69 53 48 96 
5 p.m. 81 59 52 64 
6 p.m. 86 59 64 72 
7 p.m. 79 47 40 90 
8 p.m. 71 63 81 135 
9 p.m. 53 55 66 143 
10 p.m. 70 36 42 115 
11 p.m. 63 22 22 35 

Overall 1,626 36 38 85 
a Two values for standard deviations, for lower and upper ranges, because of non-normality of 
distribution. 
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Figure 6-8. Hourly median PM10 emission fluxes for warm and cold conditions.  

 

Aside from micrometeorological conditions, another important parameter affecting PM 

emission is the water content of the pen surface. Out of 41 days with pen surface water content 

measurement, 26 days had PM10 emission flux data. To keep at least 75% of 26 days with both 

water content and PM10 emission measurements, days with at least 7 hourly emission fluxes were 

considered in the analyses.  A plot of pen surface water content and corresponding PM10 

emission flux is illustrated in Fig. 6-9. As expected, statistical analyses revealed that pen surface 

water content had a significant influence (P < 0.05) on PM10 emission flux. Periods with water 

content greater than 20% had relatively smaller PM10 emission fluxes (Fig. 6-9). For the studied 

feedlot, pen surface conditions with water content greater than 20% (23 to 50%, n = 5) had PM10 

emission fluxes ranging from 3 to 14 mg/m2-hr, with a median of 11 mg/m2-hr, whereas 

conditions with water content of 20% or less (8 to 20%, n = 16) had higher PM10 emission fluxes 

that ranged from 7 to 40 mg/m2-hr and had a median of 15 mg/m2-hr; this implies reduction in 

PM10 emissions of up to 60% for pens with surface water content of greater than 20%.  
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Figure 6-9. Effect of pen moisture content (wet-based) on PM10 emission flux (n = 21 days). 

6.4 Conclusions 

The flux-gradient technique was implemented to quantify PM10 emission fluxes from 

open-lot beef cattle feedlots. PM10 concentrations at a Kansas commercial beef cattle feedlot 

were vertical-profiled using TEOM PM10 samplers, and micrometeorological conditions were 

measured using eddy covariance instrumentation. PM10 emission fluxes at the feedlot varied 

diurnally and seasonally, with hourly emission fluxes ranging from ~0 to 272 mg/m2-hr (overall 

median of 36 mg/m2-hr). During warm conditions, PM10 emissions at the feedlot peaked at 8:00 

p.m. to 9:00 p.m., whereas during cold conditions, which obviously had significantly lower PM 

emissions, the highest PM10 emissions occurred in the 11:00 a.m. to 3:00 p.m. period. Friction 

velocity, temperature, sensible heat flux, and surface roughness were all found to influence PM10 

emission. Conditions favorable to high PM emission fluxes had high friction velocity, 

temperature, and sensible heat flux but low surface roughness. In addition, PM10 emission flux 

was highly affected by the pen surface water content; pen surface water content of at least 20% 

(wet basis) would significantly reduce PM emission at feedlots. 

The flux-gradient technique was applied successfully to estimate PM emission fluxes at 

the cattle feedlot; however, more research is needed to improve its implementation and flux 

estimates for feedlots. Individual contributions of different PM sources, such as pens, unpaved 

roads, and feed mills, to the overall feedlot PM emission flux still need to be assessed. Because 
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pens may differ in soil type, soil/manure depth, and number of cattle, effects of pen 

characteristics on PM emission flux also must be studied. In addition, uncertainties associated 

with stable conditions must be addressed to have more reliable emission estimates. 
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Numerical Simulation of Transport of Particles CHAPTER 7 - 

Emitted from a Ground-level Area Source 

7.1 Introduction 

Air emissions from animal feeding operations (AFOs), including commercial beef cattle 

feedlots, have been studied because of their potential impact on both health and environment. 

These studies are generally designed to establish accurate emission rates, and develop or evaluate 

emission estimation methodologies that can be applied when assessing the potential impact of 

these pollutants on the surrounding locality (CFR, 2011).  The accuracy of these emission 

estimates depends greatly not only on the quality of concentration measurements but also on the 

reliability of methodologies.  

Various techniques are available for simulating dispersion of particles in the atmosphere. 

They include box, Gaussian, Lagrangian, statistical, and computational fluid dynamics (CFD) 

models (Holmes and Morawska, 2006; Turner and Schulze, 2007). Currently, the preferred 

regulatory dispersion model in the U.S. is the American Meteorological Society/Environmental 

Protection Agency Regulatory Model or AERMOD (CFR, 2005). For AFOs, AERMOD has 

been used in assessing dispersion of odor (Koppolu et al., 2002; Sarr et al., 2010) and gaseous 

(Sarr et al., 2010) emissions downwind of swine facilities; and by reverse dispersion modeling 

technique, AERMOD has been applied in determining particulate emission rates  from cattle 

feedlots (Bonifacio et al., 2012). Due to limitations of AERMOD inherent to all Gaussian 

models, the accuracy of its dispersion simulation, particularly for emissions from area sources 

like AFOs, is still for further investigation. 

CFD models have been used in solving fluid flow problems in engineering applications. 

These models simulate fluid flow by solving Navier-Stokes equations. For turbulent flows, CFD 

models are categorized as direct numerical simulation (DNS), large eddy simulation (LES), 

Reynolds-averaged Navier-Stokes (RANS), and Reynolds stress models (Ferziger and Peric, 

2002). With the increasing performance of latest computers, the potential of using CFD models 

in emission studies on AFOs and other open area sources is already being explored. Coupled 

with a partial differential equation for mass transport, CFD models, such as LES model and the 

RANS-based k-ε model, have been applied to simulate dispersion of odor from a livestock 

facility (Hong et al., 2011) and of particulates at an exposed land area (Seo et al., 2010). Even 
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with limited research data on the dispersion performance of CFD models, these models have 

been used in evaluation studies as alternatives to experimental research, which can be costly and 

measurement-intensive. For AFOs, several research evaluating emissions within and outside 

these facilities employed CFD models exactly for this reason. CFD models like k-ε and k-ω 

models, which are both RANS-based, have been used in determining efficiencies of vegetative 

barriers in reducing odor (Lin et al., 2007) and particulates (Guo and Maghirang, 2012)  

downwind of AFOs facilities. One study compared LES model and CALPUFF, a Gaussian 

dispersion model, in simulating odor dispersion at an AFO facility and found that higher 

concentrations were predicted by the CFD model (Li and Guo, 2006).  The k-ε model had been 

used to assess the performance of a micrometeorological method in estimating CO2 emission 

rates in an agricultural study (Magliulo et al., 2004). 

In this study, two techniques were used to simulate dispersion of particles from a ground-

level area source. The first technique was atmospheric dispersion modeling using AERMOD 

(ver. 09292, U.S. EPA; www.epa.gov). The second was numerical approach using CFD based on 

the k-ε turbulence model for velocity simulation and on the scalar convection-diffusion transport 

equation for particle transport simulation. CFD simulation was performed using OpenFOAM 

(ver. 2.1.1, ESI-OpenCFD; openfoam.com), an open-source CFD software package. In 

comparing AERMOD and CFD, a feedlot pen in a three-dimensional domain was used to 

evaluate dispersion downwind, crosswind, and vertical directions of a ground-level area source. 

7.2 Materials and Methods 

7.2.1 Computational Domain 

A three-dimensional (3-D) computational domain (Figure 7-1) was created to simulate 

transport of particles emitted from the feedlot pen in downwind (x), crosswind (y), and vertical 

(z) directions. The feedlot pen was 1,000 m long and 200 m wide. The computational domain 

had dimensions of 2,000 m along downwind direction and 600 m along crosswind direction. The 

domain height was based on the boundary layer height (habl) computed at a wind speed of 1 

m/sec (low wind). Numbers of cells were 120, 60, and 60 in x, y, and z directions, respectively, 

and the total cell number for simulation was 432,000. The cell size was constant in the x and y 

directions. For the z-direction, an expansion ratio, defined as the ratio of the last cell (i.e., top) to 

the first cell (i.e., bottom), was set at 20 to have finer grid near the ground.  
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Figure 7-1. The computational domain for simulating particle dispersion for a ground-level area 

source (i.e., simulated feedlot pen). 

 

7.2.2 AERMOD Dispersion 

7.2.2.1 Dispersion Modeling   

AERMOD is based on the general concentration equation for Gaussian models given by: 
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where C is concentration, ux is wind speed in downwind (x-) direction, and Dy and Dz are 

diffusion coefficients in crosswind (y-) and vertical (z-) directions, respectively.  The overall 

mass transport for Gaussian models is defined by the convective mass transport in downwind 

direction with constant ux, and the diffusion mass transports in crosswind and vertical directions 

with constant Dy and Dz (Heinsohn and Kabel, 1999). The general analytical solution to eq 7-1 is 

commonly referred to as the Gaussian plume model (Heinsohn and Kabel, 1999). AERMOD is 

different from other Gaussian models in the way it simulates dispersion as it uses a well-

characterized planetary boundary layer structure. Also, for unstable conditions, AERMOD 
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applies bi-Gaussian distribution to represent vertical concentration distribution rather than a 

Gaussian distribution (Cimorelli et al., 2004; Perry et al., 2005). 

In AERMOD modeling, an emission flux of 20.0 µg/m2-sec was assumed for the 

simulated feedlot pen based on the study described in Chapter 3. Concentrations were calculated 

for cells of the designed computational domain. The following conditions were specified: 

1. The feedlot pen had a flat terrain with a constant emission flux for the 1-hr averaging 

period. 

2. Effects of precipitation were not considered. Only the dry depletion of particles was 

included as the main removal mechanism. Particle depletion due to gravitational 

effects was considered by assuming a 13-µm aerodynamic particle size, based on the 

mean geometric diameter derived for a commercial cattle feedlot (Gonzales et al., 

2011) 

7.2.2.2 Meteorological Parameters 

Previous CFD studies on ground-level area sources investigated the effects of 

atmospheric stability and wind speed on dispersion (Li and Guo, 2006; Hong et al., 2011). These 

meteorological parameters served as basis of comparison in this study. Using the classification 

presented by Seinfeld and Pandis (2006), five atmospheric stability classes were considered. 

These stability classes were as follows, with their respective Monin-Obukhov length (L) settings 

parenthesized: very stable (L = 50 m), stable (L = 500 m), neutral (L = 500,000 m), unstable (L = 

-500 m), and very unstable (L = -50 m) conditions. While neutral conditions could have high 

negative L values (L < -500, 000 m), these were not allowed in AERMOD, and therefore, not 

considered. Downwind wind speeds of 1 and 5 m/sec at the height of 2.5 m were applied to 

represent low and high wind conditions, respectively. In total, 10 conditions were evaluated by 

each transport simulation. 

Other meteorological parameters were needed to run AERMOD. Temperature, surface 

roughness (zo), and wind direction were fixed to remove their influence on the simulation: 

temperature was set at 15 oC, the average temperature measured at a Kansas cattle feedlot 

(Chapters 4 and 6); zo was set at 5 cm, the typical roughness value for cattle feedlots (Chapter 6); 

and wind direction was constant along downwind direction (x-axis), starting from the edge with 

the origin. Other meteorological parameters, such as friction velocity (u*), sensible heat, and 

mixing heights, were derived using formulations presented by Cimorelli et al. (2004). 
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7.2.3 CFD Simulation 

CFD simulation involved three major steps: (1) mesh generation based on the designed 

computational domain (Figure 7-1); (2) velocity simulation with the standard k-ε model; and (3) 

particle transport simulation using a scalar transport equation.   

7.2.3.1 Velocity Simulation 

7.2.3.1.1 Governing Equations for Velocity Transport 

Air flow was assumed to be incompressible (i.e., constant air density), isothermal, and 

steady state. Incorporating turbulence into Navier-Stokes equation by Reynolds decomposition 

leads to RANS (i.e., Reynolds-average Navier-Stokes) equation given by: 
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where i is subscript for all three directions (x, y, and z), j is subscript for the direction evaluated 

(x, y, or z), ρ is air density, u is velocity component in either i- or j- direction, P is pressure force 

in j-direction, τij is viscous stress component, gj is gravitational force in j-direction, apostrophe 

means fluctuations, and overbar means time-averaged (Glasgow, 2010). The viscous stress 

component, τij, is given by: 
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where µ is fluid viscosity (Feistauer et al. 2003; Ferziger and Peric, 2002). With ρ constant, the 

corresponding continuity equation for RANS equation is: 
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RANS equations are solved using turbulence models. At steady state, the transport 

equations for the turbulent kinetic energy (k) and turbulent dissipation rate (ε) are given by: 
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where µt is turbulent viscosity, σk and σε are turbulent Prandtl numbers for k and ε, respectively, 

and C1 and C2 are turbulent model constants with values of 1.44 and 1.92, respectively (Launder 

and Spalding, 1974). Turbulent viscosity is computed from k and ε using the expression: 

ε
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µ µ kC
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=                                                              (7-7) 

where Cµ has a value of 0.09. 

The turbulence model applied in this study was the standard k-ε model, and this was 

implemented using OpenFOAM standard solver ‘simpleFoam.’  Similar to other OpenFOAM 

steady-state solvers, the semi-implicit method for pressure-linked equations (SIMPLE) algorithm 

is applied in ‘simpleFoam’ in solving velocity and pressure iteratively (OpenFOAM, 2011). For 

convergence, an iterative solution was considered sufficiently accurate when: (a) residuals were 

less than 0.00001; and/or (b) ratios of latest to previous residuals were below 0.1.  

7.2.3.1.2 Boundary Conditions 

Settings for u, k, and ε must be specified in the k-ε turbulence model. Effects of 

atmospheric stability were introduced into CFD simulation through these three parameters as 

they are all functions of L. For the computational domain (Figure 7-1), conditions were set at six 

boundaries, namely inlet (where the origin is located) and outlet along x-direction, upper and 

lower walls along z-direction, and the two side walls along y-direction. Within the domain, 

values of these parameters were initially set to zero. The inlet profile for u was composed of the 

downwind component (ux) only; the crosswind (uy) and vertical (uz) components were assumed 

zero. Based on AERMOD formulations, the inlet profile for ux was computed using: 
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where kv is von Karman constant (0.4), z is measurement height at which ux is computed, and ψ’s 

are stability terms (Cimorelli et al., 2004). Values for ψ's were also computed using formulations 
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in AERMOD. For 1 and 5 m/sec wind speed settings, u* ’s derived and used in vertical profiling 

of ux are summarized in Table 7-1.  

 

Table 7-1. Friction velocities (u*) and atmospheric boundary layer heights (habl) computed using 

AERMOD formulations 

Atmospheric stability 
classification 

1 m/sec 5 m/sec 

u*  

(m/sec) 
habl 

(m) 
u*  

(m/sec) 
habl 

(m) 
Very stable 0.096 67 0.482 770 

Stable 0.102 73 0.508 833 

Neutral 0.102 73 0.511 841 

Unstable 0.103 74 0.514 847 

Very unstable 0.107 78 0.533 895 

 

With u*, the inlet vertical profile for k was set with one of these expressions: 
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where as is a constant whose value depends on stability condition and/or measurement height z, 

w* is mixing layer velocity scale, and habl is atmospheric boundary layer height (Lin et al., 2007). 

Equations 7-9a, 7-9b, and 7-9c are equations for stable, unstable, and neutral conditions, 

respectively. Values for w* were calculated using formulations presented in Lin et al. (2007), 

whereas values for habl were the AERMOD-derived mixing heights (Table 7-1).  
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Inlet vertical profile for ε was derived from k (Hong et al., 2011): 
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Conditions for u, k, and ε at the other five boundaries were the following: fully-developed 

flow at the outlet (i.e., zero velocity gradient); no-slip condition at the lower wall; and symmetry 

condition at upper and side walls. OpenFOAM boundary condition near-wall functions, declared 

by ‘kqRWallFunction’ and ‘epsilonWallFunction’ for k and ε, respectively, were applied in the 

simulation. 

Change in pressure, ∂P/∂xj, was needed in solving velocity transport (eq 7-2), and 

therefore, boundary conditions and initial settings for pressure, P, were specified.  Inlet and 

outlet boundary settings for P were dependent on settings for u: as inlet boundary for u was 

fixed, for P it was zero gradient; and in contrast, P was fixed (i.e., at 0 atm as eq 7-2 is more 

concerned with ∂P/∂xj than the absolute value for P) at the outlet as u had an zero gradient outlet 

setting. A symmetry condition was applied at the upper and side walls, whereas a zero gradient 

condition was implemented at the lower wall. P setting inside the domain was initially given a 

uniform value similar to the outlet boundary setting (i.e., at 0 atm).     

7.2.3.2 Concentration Simulation 

7.2.3.2.1 Governing Equation for Particle Transport 

The transport of particles was modeled with Eulerian-Eulerian approach. Treating the 

particle concentration as passive scalar, the particle flow was solved using the convection-

diffusion equation. The scalar transport solver in OpenFOAM was modified to apply steady-state 

assumption and include turbulence effects on diffusion. The resulting particle transport equation 

used in solving concentration, C, is given by: 
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where ΓD is diffusion coefficient of particles. The diffusion coefficient ΓD combined both 

laminar (ΓL) and turbulent (ΓT) diffusion components. Following the procedure by Guo and 

Maghirang (2012), the corresponding ΓL for the 13 µm-aerodynamic size particle was 2.48x10-12 

m2/sec, whereas ΓT was computed as the quotient of µt and turbulent Schmidt number (Sc). Sc in 

the modeling was set at 0.63. Values for µt (eq 7-7) were generated by the OpenFOAM solver 

‘simpleFoam’. Gravitational effects were also incorporated by adjusting the turbulence model-

derived uz by 5.23 x 10-3 m/sec, the particle settling velocity for the assumed particle size (13 

µm). 

With only one equation to be solved for particle transport, stricter convergence criteria 

was applied without significantly increasing computation time. The criteria were as follows: (a) 

residuals should be less than 0.000001; and (b) ratio of latest to previous residuals should be 

below 0.01. 

7.2.3.2.2 Boundary Conditions 

Previous CFD studies on ground-level area sources used constant concentration at the 

source boundary (Seo et al., 2010; Wong and Liu, 2011). In this study, the concentration 

boundary settings for the feedlot pen were based on AERMOD predictions. With an emission 

flux of 20.0 µg/m2-sec, AERMOD was run to calculate ground-level particle concentrations 

within the feedlot pen boundary. The ground-level height was arbitrarily set at 10 cm to have a 

value higher than zo (5 cm). Ground-level concentration ranges for different atmospheric stability 

classes are summarized in Table 7-2, with the minimum value at the upwind edge of the feedlot 

pen (i.e., origin) and the maximum value at the downwind edge. Expectedly, higher ground-level 

concentrations were calculated for conditions with wind speed of 1 m/sec. Additionally, for a 

given wind speed, stable conditions (L > 0) resulted in higher concentrations, whereas very 

unstable conditions (L < 0) resulted in lower concentrations. 
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Table 7-2. Ranges of ground-level particle concentrations (µg/m3) based on AERMOD 

simulation (emission flux = 20.0 µg/m2-sec) 

Atmospheric stability 
classification 

1 m/sec 5 m/sec 

Very stable 371 - 1,573 74 - 280 

Stable 352 - 1,227 71 - 224 

Neutral 352 - 1,172 70 - 214 

Unstable 299 - 885 60 - 172 

Very unstable 269 - 780 54 - 147 

 

Other boundary conditions for concentration simulation were as follows: zero 

concentration at the inlet (i.e., zero background concentration); zero concentration gradient at the 

non-source (non-feedlot pen) ground areas and outlet (i.e., fully-developed flow); and symmetry 

condition at upper and side walls.  

All input values applied in CFD simulation are summarized in Table 7-3. Convergence 

was achieved with 3,000 to 7,500 iteration steps for velocity using the standard k-ε model, and 

with 99 to 113 iterations for the concentration (eq 7-12). 
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Table 7-3. Summary of input values for CFD simulation 

Parameter Symbol Value 

Air density (kg/m3) ρ 1.225 

Air dynamic viscosity (kg/m-sec) µ 1.79 x 10-5 

Kinematic viscosity (m2/sec) υ 1.46 x 10-5 

Turbulent Prandtl number of k σk 1 

Turbulent Prandtl number of ε σε 1.3 

Turbulent model constant C1 1.44 

Turbulent model constant C2 1.92 

Turbulent model constant Cµ 0.09 

Settling velocity for particles with 
aerodynamic diameter of 13 µm (m/sec) 

 5.23 x 10-3 

Laminar diffusion coefficient for 
particles with aerodynamic diameter of 
13 µm (m2/sec) 

ΓL 2.48 x 10-12 

Schmidt number Sc 0.63 

 

7.2.4 Data Analysis 

Simulation results for velocity and particle concentration were presented. Vertical 

profiles of ux were plotted, and for CFD, values of uy and uz were summarized. Effects of 

atmospheric stability and wind speed on particle dispersion were examined for both AERMOD 

and CFD.  For vertical dispersion, vertical gradients of plume centerline particle concentrations 

(i.e., concentrations at the 300-m crosswind distance from the origin, at the center of the feedlot 

pen) within the 20-m height were calculated for two locations: at the feedlot pen downwind 

edge; and at the 100-m downwind distance (i.e., recommended minimum modeling length for 

Gaussian-based models) from the pen. Also, vertical contour plots of plume centerline particle 

concentrations within the 20-m height were obtained. At the 100-m downwind distance, plume 

centerline concentrations at the 2.5-m height were checked to assess downwind particle 

dispersion. And with the same downwind distance, 2.5 m height-particle concentrations 100-m 

crosswind of the plume centerline were used as measures for crosswind particle dispersion. 
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Plotting of vertical gradients and vertical contours involved use of Excel (Microsoft Corporation, 

Redmond, WA) and Scilab (ver. 5.3, Scilab Enterprises; www.scilab.org), respectively. 

In addition, the fractional bias method was employed to compare calculated 

concentrations from AERMOD and CFD (Li and Guo, 2006; U.S. EPA, 1992). The fractional 

bias (FB) was defined in this study as: 


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where CCFD is concentration calculated using CFD and CA is concentration calculated using 

AERMOD. As described (U.S. EPA, 1992), FB values are bounded between 2 and -2, and values 

close to zero imply negligible bias between the two techniques. FB values falling within (-0.67, 

0.67) range were considered to indicate reasonably good agreement between AERMOD and 

CFD. With CFD as the reference model, an FB > + 0.67 indicates underprediction by AERMOD 

by a factor of 2 or more, whereas an FB < -0.67 indicates overprediction by the same factor 

value. 

7.3 Results and Discussion 

7.3.1 AERMOD 

7.3.1.1 Velocity 

In AERMOD, wind velocity has a logarithmic vertical profile that is assumed to be 

constant in both downwind and crosswind directions. Also, AERMOD only considers the 

downwind component of wind velocity (eq 7-1). With ux normalized by dividing by u*, vertical 

profiles for ux for 1 and 5 m/sec wind speeds (i.e., 2.5 m height) were similar (Figure 7-2). 

Atmospheric stability classes in the order of highest to lowest wind speeds were: very stable, 

stable, neutral, unstable, and very unstable. Based on typical conditions, neutral atmospheric 

stability has high wind velocities whereas stable/very stable and unstable/very unstable 

conditions have low wind velocities (Turner, 1994). 
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Figure 7-2. Vertical profiles of normalized ux (i.e., ux/u*) within the 20-m height for both 1 and 5 

m/sec wind speeds as derived using AERMOD formulations. 

7.3.1.2 Concentration 

Concentration profiles from AERMOD were generally the same for the five atmospheric 

stability conditions. To illustrate, shown in Figure 7-3 are contour plots of particle concentrations 

at the crosswind distance of 300 m from the origin, herein referred to as the plume centerline, for 

neutral condition at both 1 and 5 m/sec wind speeds. Particle concentrations directly above the 

feedlot pen (i.e., distances of 0 to 1,000 m) decreased with height. The vertical concentration 

gradient (i.e., change in particle concentration with height) was computed to demonstrate 

influence of atmospheric stability on vertical dispersion/mixing. At the downwind edge of the 

feedlot pen (i.e., distance of 992 m from the origin, downwindmost cell within the feedlot pen 

domain), vertical concentration gradients for all atmospheric stability-wind speed combinations 

are summarized in Table 7-4. Lower concentration gradients for unstable and very unstable 

conditions indicate stronger vertical dispersion of particles (i.e., more particles dispersed to 

higher heights, thus smaller concentration difference between heights), whereas relatively higher 

concentration gradients for the other three atmospheric stability conditions indicated the 

opposite. Comparing 1 and 5 m/sec wind speed settings, smaller vertical concentration gradients 

were obtained for the higher wind speed. 
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Figure 7-3. Vertical contour plots of AERMOD-based plume centerline particle concentrations 

(̲µg/m3) within the 20-m height at a crosswind distance of 300 m for (a) 1 and (b) 5 m/sec wind 

speeds. 

 

Table 7-4. Vertical concentration gradients (µg/m3-m)a of AERMOD-based plume centerline 

particle concentrations at the feedlot pen downwind edge for (a) 1 and (b) 5 m/sec wind speeds 

Atmospheric stability 
classification 

1 m/sec 5 m/sec 

Very Stable 55 11 

Stable 35 8 

Neutral 32 7 

Unstable 23 6 

Very Unstable 20 5 

a Concentration gradient computed within the 20-m height from the ground.  

 

Surprisingly, particle concentrations downwind of the feedlot pen (i.e., distances of 1,000 

to 2,000 m) were simulated by AERMOD such that the vertical concentration gradient for the 

first few meters from the ground (z = 0 m) were almost negligible. As observed for both wind 

speeds, AERMOD-calculated concentrations at any given distance downwind of the source 

remained relatively constant from the ground up to a certain height (Figure 7-3). At the 100-m 

distance downwind of the feedlot pen, as an example, vertical concentration gradient up to a 

height of 5 m ranged only from 0.5 to 5.2 µg/m3-m and 0.2 to 0.5 µg/m3-m for 1 and 5 m/sec 
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wind speeds, respectively.  In addition, the height at which the particle concentration remained 

relatively constant increased with downwind distance. 

Effects of atmospheric stability on downwind particle dispersion were examined by 

comparing concentrations at a specific location downwind of the feedlot pen. With 2.5 m as the 

reference height and 100 m, the minimum modeling length recommended for Gaussian-based 

models, as the reference downwind distance, plume centerline particle concentrations for the 1 

m/sec wind speed for very stable, stable, neutral, unstable, and very unstable conditions were 

737, 468, 408, 283, and 247 µg/m3, respectively. For the 5 m/sec wind speed, at which lower 

concentrations were expected due to faster horizontal dispersion, particle concentrations were 

117, 76, 67, 52, and 39 µg/m3, respectively. Based on these concentrations, the strongest 

downwind dispersions, and equivalently the longest fetches, were modeled for very stable, 

stable, and neutral conditions, whereas the weakest downwind dispersions (and the shortest 

fetches) were for very unstable and unstable conditions.  

At 100-m downwind distance from the feedlot pen and 100-m crosswind of the plume 

centerline, 2.5 m height-particle concentrations were checked to verify effects of atmospheric 

stability on crosswind dispersion. Particle concentrations for the 1 m/sec wind speed for very 

stable, stable, neutral, unstable, and very unstable conditions were 369, 234, 204, 141, and 124 

µg/m3, respectively whereas for the 5 m/sec wind speed, concentrations were 61, 40, 35, 27, and 

20 µg/m3, respectively. Similar to downwind dispersion, crosswind dispersion was highest for 

very stable, stable, and neutral conditions. Comparison between 1 and 5 m/sec wind speed 

showed that increasing the wind speed narrowed the spread of the dispersion/plume. 

7.3.2 CFD 

7.3.2.1 Velocity 

In CFD modeling, velocity conditions upwind of the feedlot pen (i.e., 0 m from the 

origin) were based on AERMOD formulations (eq 7-8, Figure 7-2), with crosswind and vertical 

components of the velocity both assumed to be zero. Simulation with the standard k-ε model 

resulted in changes in the velocity profile such that the downwind component (ux) of the velocity 

now varied along the downwind distance. Figure 7-4 shows the vertical profiles for normalized 

ux (i.e., ux/u*) for 1 and 5 m/sec wind speeds at the feedlot pen downwind edge (i.e., 1,000 m 

from the origin). Trends of ux at upwind and downwind edges of the feedlot pen were similar 
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such that its vertical profile was logarithmic, the highest velocity was obtained for very stable 

condition, and the lowest velocity for very unstable condition. Calculated differences in ux 

between upwind and downwind edges of the feedlot pen were observed to be largest at lowest 

heights (e.g., 193% at 0.18 m for very stable condition), possibly due to very small absolute wind 

speeds near the ground. Excluding the first 1 m from the ground, percentage differences in ux 

between upwind and downwind feedlot pen edges are summarized in Table 7-5. In general, 

largest percentage differences were obtained for the lower wind speed. Very stable condition had 

the largest positive, or smallest negative, difference in ux (35% and 1% for 1 and 5 m/sec wind 

speed, respectively), whereas very unstable condition had the smallest positive, or largest 

negative, difference (1% and -1% for 1 and 5 m/sec wind speed, respectively).  

 

 

Figure 7-4. Vertical profiles of normalized ux (i.e., ux/u*) within the 20-m height for (a) 1 and (b) 

5 m/sec wind speed settings at the feedlot pen downwind edge as derived by CFD. 
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Table 7-5. Percentage differences in ux between upwind and downwind edges of the feedlot pen 

as simulated by CFDa 

Atmospheric stability 
classification 

1 m/sec 5 m/sec 

Very Stable 35% 
(30 to 51%) 

 

1% 
(-1 to 10%) 

Stable 10% 
(9.9 to 10%) 

 

-0.2% 
(-1 to 0.1%) 

Neutral 4% 
(2 to 5%) 

 

-0.4% 
(-3 to 0.4%) 

Unstable 3% 
(0.6 to 4%) 

 

-0.5% 
(-4 to 0.6%) 

Very Unstable 1% 
(-0.4 to 3%) 

-1% 
(-9 to 2%) 

a Values presented are medians for the first 20-m height; values in the parentheses are ranges.  

 

Simulation with the standard k-ε model also led to crosswind (uy) and vertical (uz) 

components of velocity having non-zero values. Table 7-6 lists the ranges of uy and uz for both 1 

and 5 m/sec wind speed settings at the downwind edge of the feedlot pen. Velocity values for 

each component were very small compared to ux: uy and uz were lower by orders of magnitude of 

at least 8 and 3, respectively. Unlike ux that had logarithmic vertical profile, no general trend was 

observed for both uy and uz as their respective profiles changed along the downwind distance.  
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Table 7-6. CFD-based uy and uz at the feedlot pen downwind edgea 

Atmospheric stability 
classification 

uy uz 

1 m/sec 5 m/sec 1 m/sec 5 m/sec 

Very Stable -1.1x10-8 to         
-1.9x10-9 

3.6x10-9 to            
1.7x10-8 

1.0x10-5 to 
8.8x10-4 

2.0x10-5 to 
2.6x10-3 

Stable -1.7x10-10 to       
6x10-10 

9.2x10-10 to       
5.9x10-8 

1.0x10-5 to 
8.5x10-4 

2.0x10-5 to 
2.4x10-3 

Neutral -4x10-9 to            
3.8x10-9 

1.8x10-9 to            
4.4x10-8 

1.0x10-5 to 
8.3x10-4 

2.0x10-5 to 
2.4x10-3 

Unstable -8.5x10-9 to          
-2.4x10-9 

-1.8x10-8 to          
4.6x10-9 

1.0x10-5 to 
9.3x10-4 

2.0x10-5 to 
2.6x10-3 

Very Unstable -1.9x10-9 to         
-5x10-10 

4.8x10-9 to            
2x10-8 

1.0x10-5 to 
1.1x10-3 

2.0x10-5 to 
2.8x10-3 

a For uz, minimum values for the second lowest cell were presented as values for the lowest cell 
(height of 0.18 m) were zero; ranges were based on the first 20-m height.  
 

7.3.2.2 Concentration 

Figure 7-5 shows the contour plots of plume centerline concentrations from CFD 

simulation for neutral condition and at the two wind speed settings. Similar to AERMOD results, 

particle concentrations above the feedlot pen varied with height. Vertical concentration gradients 

(i.e., at distance of 992 m from origin) were obtained and summarized in Table 7-7. Findings 

were similar to those for AERMOD: (1) very unstable and unstable conditions had smaller 

vertical concentration gradients compared to the other three atmospheric stability classes 

suggesting stronger vertical dispersion; and (2) the 5 m/sec wind speed setting, which was the 

highest setting evaluated in this study, had the smallest concentration gradients.  Vertical 

concentration gradients obtained with CFD were lower than those calculated with AERMOD by 

18 to 44% for the 1 m/sec wind speed and 29 to 40% for the 5 m/sec wind speed. 
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Figure 7-5. Vertical contour plots of CFD-based plume centerline particle concentrations 

(̲µg/m3) within the 20-m height at a crosswind distance of 300 m for (a) 1 and (b) 5 m/sec wind 

speeds. 

 

Table 7-7. Vertical concentration gradients (µg/m3-m)a of CFD-based plume centerline particle 

concentrations at the feedlot pen downwind edge for (a) 1 and (b) 5 m/sec wind speeds 

Atmospheric stability 
classification 

1 m/sec 5 m/sec 

Very Stable 31 7 

Stable 25 5 

Neutral 25 5 

Unstable 19 4 

Very Unstable 16 3 

a Concentration gradient computed within the 20-m height from the ground.  

 

Compared with AERMOD, CFD produced a different and more detailed vertical particle 

concentration profile downwind of the feedlot pen. CFD-derived downwind particle 

concentrations changed with height (Figure 7-5), unlike with AERMOD in which concentrations 

remained relatively constant for the first few meters from the ground (Figure 7-3). Notably, 

shapes of contour lines for downwind particle concentrations also differed between the two wind 

speed settings: for the 1 m/sec wind speed, concentration contour lines downwind of the source 

extended over distances considerably longer than those for the 5 m/sec wind speed.  For both 
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wind speed settings, particle concentration downwind of the feedlot pen decreased with height.  

At the distance of 100 m from the feedlot pen, vertical concentration gradient for the first 5 m 

from the ground ranged from 25 to 36 µg/m3-m and 2 to 5 µg/m3-m for 1 and 5 m/sec wind 

speed settings, respectively, and were much larger than their AERMOD counterparts (0.5 to 5.2 

µg/m3-m and 0.2 to 0.5 µg/m3-m, respectively). Similar to findings within the pen, very unstable 

and unstable conditions had the smaller vertical concentration gradients (i.e., stronger vertical 

dispersion), and the 5 m/sec wind speed had the smallest concentration gradients. 

Using the 2.5-m height and 100-m downwind distance to examine influence of 

atmospheric stability on downwind dispersion in CFD, plume centerline particle concentrations 

for very stable, stable, neutral, unstable and very unstable conditions were 576, 448, 428, 325 

and 295 µg/m3, respectively, for the 1 m/sec wind speed and were 110, 90, 86, 69 and 61 µg/m3, 

respectively, for the 5 m/sec wind speed. Like in AERMOD, the strongest downwind dispersion 

was modeled for very stable, stable and neutral conditions, and the weakest for very unstable and 

unstable conditions. Similar findings were also observed in previous studies that employed CFD 

modeling for simulating downwind dispersion (Hong et al., 2011; Li and Guo, 2006). The 

limited vertical mixing, particularly for very stable and stable conditions, leads to dispersion of 

air emissions further downwind of the source whereas the stronger vertical mixing during very 

unstable and unstable conditions results to dispersion of air emissions vertically rather than 

horizontally. 

Effects of atmospheric stability on crosswind dispersion were also verified. The 2.5 m 

height-concentrations at the downwind distance of 100 m from the feedlot pen and crosswind 

distance of 100 m from the plume centerline at very stable, stable, neutral, unstable and very 

unstable conditions were as follows: for the 1 m/sec wind speed, 364, 293, 282, 218 and 195 

µg/m3, respectively; and for the 5 m/sec wind speed, 71, 59, 57, 45 and 39 µg/m3, respectively. 

Similar in AERMOD, crosswind dispersion was much farther from the centerline for very stable, 

stable and neutral conditions, and at lower wind speed setting. 

7.3.3 Fractional Bias (FB) 

Applying the 100-m downwind distance as the reference location, FB was calculated for 

comparisons of downwind, crosswind and vertical dispersions between the two approaches. 

Using 2.5-m height plume centerline particle concentrations to compare downwind dispersion 

simulation performance, FB values between AERMOD and CFD ranged from -0.25 to 0.18 for 
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the 1 m/sec wind speed and -0.06 to 0.45 for the 5 m/sec wind speed for the five atmospheric 

stability classes evaluated. Based on FB values, AERMOD tended to underpredict downwind 

particle concentrations (FB > 0) as the atmospheric condition became more unstable. At the 1 

m/sec wind speed, the bias between CFD and AERMOD was smallest for stable (FB = -0.04) 

and neutral (FB = 0.04) conditions and largest for very stable (FB = -0.25) and unstable (FB = 

0.18) conditions; at the 5 m/sec wind speed, the smallest and largest biases were determined for 

very unstable (FB = -0.06) and very unstable (FB = 0.45) conditions, respectively. In addition, 

comparison of FB between 1 and 5 m/sec wind speeds indicated that the bias between CFD and 

AERMOD would be larger at higher wind speeds.  

At a distance of 100 m crosswind of the plume centerline, assessment of crosswind 

dispersion was also performed using 2.5-m height concentrations. Likewise, AERMOD 

calculated much lower particle concentrations as the condition became more unstable. For the 1 

m/sec wind speed, excluding very stable condition (FB = -0.02), FB ranged from 0.22 (stable) to 

0.45 (very unstable) indicating that AERMOD underpredicted concentrations even for downwind 

locations away from the plume. For the 5 m/sec wind speed, FB was smallest for very stable 

condition (FB = 0.16) and highest for very unstable condition (FB = 0.65). Similarly, FB values 

for the 5 m/sec wind speed were larger than those for the 1 m/sec wind speed. 

Up to 20-m height, vertical profiles of FB at the 100-m downwind distance from the pen 

were plotted using plume centerline particle concentrations (Figure 7-6). FB values for the 1 

m/sec wind speed were within +/- 0.67 criterion lines and lie near the zero line (Figure 7-6a), 

indicating good agreement between  AERMOD and CFD.  FB values for the 5 m/sec wind speed 

also were within +/- 0.67 criterion lines (Figure 7-6b), except that the values were more on the 

positive side (i.e., underprediction by AERMOD). Further evaluation revealed that the bias 

tended to become more highly positive (i.e., higher CFD concentrations) at farther downwind 

distances.  
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Figure 7-6. Fractional bias between AERMOD and CFD for (a) 1 and (b) 5 m/sec wind speeds 

using plume centerline particle concentrations at the 100-m downwind distance from the feedlot 

pen. 

 

Although not verified in this study, differences in AERMOD and CFD results may be 

attributed to their respective approach in simulating dispersion. As a mass dispersion technique, 

AERMOD models mass transport based on a domain (i.e., boundary layer) characterized by 

meteorological parameter inputs (e.g., ux, u*, L), whereas CFD simulates mass transport based on 

a domain with simulated fluid flow parameters (e.g., in terms of u, k, ε). Mass transport for 

AERMOD is also simplified as it is steady-state and accounts only for one mass transport type 

(i.e., convection in x- direction, diffusion in y- and z-directions) in each direction but for CFD, 

such as the standard k-ε model, mass transport can consider convection and diffusion in all 

directions. AERMOD uses an algebraic equation to directly calculate mass concentration 

whereas CFD solves a partial differential equation/s for mass transport numerically before 

obtaining concentration values. In characterization of the simulation domain, partial differential 

equations for the three velocity components, turbulent kinetic energy and turbulent dissipation 

rate must be solved first numerically in CFD technique (i.e., k-ε model), and on the other hand, 

parameters required in AERMOD are just directly derived using algebraic formulations. 

7.4 Conclusions 

This study compared CFD and AERMOD in simulating dispersion of particles emitted 

downwind from a ground-level area source. CFD modeling involved velocity and particle 

dispersion simulations using the standard k-ε model and a convection-diffusion transport 

equation, respectively. Simulation conditions evaluated were based on five atmospheric stability 
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classes, classified according to Monin-Obukhov length, and two wind speeds. Predicated results 

indicated the following: 

• AERMOD and CFD had similarities in simulating particle dispersion from the ground-

level area source. As a function of atmospheric stability, vertical gradients of particle 

concentrations at the downwind edge of the source were smallest for very unstable and 

unstable conditions indicating stronger vertical dispersion. Very stable, stable and neutral 

conditions had stronger dispersion in both downwind and crosswind directions. As a 

function of wind speed, smallest vertical concentration gradients were obtained at the 

higher setting. 

• AERMOD and CFD simulated the particle dispersion downwind of the source differently 

based on vertical particle concentration profiles. At any location downwind of the source, 

vertical gradients of AERMOD-based particle concentrations from the ground up to a 

certain height were negligible. In contrast, CFD was able to provide a more detailed 

profile for downwind concentrations such that the concentration decreased with height 

and that the simulated concentration gradients between adjacent heights, even those near 

the ground, were significant. In addition, the vertical profile of downwind particle 

concentrations changed with wind speed setting. 

Although this study demonstrated the capability of CFD technique to provide more 

detailed vertical concentration gradients, further research on these two techniques is needed to 

determine the more accurate method for simulating particle dispersion from ground-level area 

sources. To accomplish this, extensive field measurements at ground-level area sources may be 

necessary. More important, the performance of AERMOD in modeling dispersion for ground-

level area sources must be thoroughly investigated.  As AERMOD’s performance in modeling 

vertical profiles of downwind concentrations was found to be limited, this raises some concerns 

on its application as an emission estimation technique for area sources. 
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Conclusions and Recommendations CHAPTER 8 - 

8.1 Summary and Conclusions 

Field measurements of PM10 and meteorological conditions were conducted at several 

commercial beef cattle feedlots in Kansas and PM10 emission rates were determined using 

different techniques. The performance of AERMOD in modeling area sources such as cattle 

feedlots was also assessed by comparing it with other techniques. The following conclusions 

were drawn: 

1. By reverse dispersion modeling with AERMOD, median PM10 emission rates for two 

Kansas cattle feedlots were 1.60 and 1.10 g/m2-day for a 2-yr measurement period 

(241 and 186 days, respectively). These values, equivalent to PM10 emission factors 

of 27 and 30 kg/1,000 hd-day, respectively, were considerably smaller than the U.S. 

EPA published PM10 emission factor for cattle feedlots (82 kg/1,000 hd-day).  

2. Comparison of AERMOD and WindTrax showed that AERMOD had higher back-

calculated PM10 emission rates than WindTrax. Calculated values from the two 

methods were linearly correlated (R2 > 0.88), suggesting the possibility of the 

conversion factor development between these two models. Furthermore, in each 

model, emission rates determined using two different meteorological data sets also 

had high linearity (R2 = 0.91 for NOAA-derived and eddy covariance measurements 

in AERMOD, R2 = 0.98 for empirically-derived and sonic anemometer measurements 

in WindTrax).   

3. Examining the sensitivity of AERMOD and WindTrax to different modeling inputs 

indicated that both models responded similarly to changes in wind speed, surface 

roughness, atmospheric stability, and area source and receptor locations, with their 

profiles of concentrations as functions of these inputs highly similar. However, for a 

given emission rate, AERMOD calculated lower concentrations than WindTrax. 

4. The flux-gradient technique, a micrometeorological method commonly used for 

estimating gaseous emissions, was successfully applied in quantifying PM10 emission 

rates at a cattle feedlot in Kansas. In addition, high values for friction velocity, 

temperature, and sensible heat, and low surface roughness were apparently favorable 

to high feedlot PM10 emissions. The water content of the pen surface highly affected 
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PM10 emissions and a water content of at least 20% (wet basis) is recommended to 

significantly reduce feedlot PM emissions. 

5. AERMOD and CFD responded similarly to atmospheric stability and wind speed in 

general. However, unlike CFD, AERMOD was found to be limited in providing a 

more detailed vertical concentration profile as vertical concentration gradients for the 

first few meters from the ground were negligible. This may be a challenge for 

AERMOD when used in reverse dispersion modeling technique for area sources.   

8.2 Recommendations for Further Study 

Based on findings of this research, the following are recommendations for further study: 

• Assess the performance of available emission estimation techniques, which include 

dispersion models and micrometeorological techniques, in determining gaseous and 

particulate emission rates from cattle feedlots using (extensive) field measurements. 

• Assess performance of CFD turbulence models in simulating both gaseous and 

particulate dispersion for area sources like cattle feedlots. These models may include 

k-e and k-w models for simulating velocity transport, and both Eulerian and 

Lagrangian approaches for particle transport. 

• Perform more detailed comparison of the flux-gradient technique and dispersion 

models (AERMOD, WindTrax) in estimating gaseous and particulate emission 

fluxes. 

• Compare the flux-gradient technique and reverse dispersion modeling with the eddy 

covariance technique in determining gaseous emission rates for cattle feedlots and 

other ground-level area sources.  
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Appendix A -  Supporting Analysis for Chapter 6: Verification of 

PM10 Turbulent Fluctuations 

A.1 Verification of PM10 Turbulent Fluctuations   

Use of the flux gradient technique requires that the air emission concerned follows 

turbulent behavior.  Particles may not always follow turbulent fluctuations in cases, such as 

having large particle size and/or particle density, in which they can have high particle inertia 

(Lilly, 1973). Micrometeorological techniques might not be effective emission flux estimation 

tools in these situations as the particle transport is no longer governed by turbulent/eddy 

diffusion alone. As a supporting analysis to Chapter 6, PM10 turbulent fluctuations were verified, 

and thus the suitability of flux-gradient technique in quantifying particulate matter emission 

fluxes from the studied cattle feedlot. The measurement applied to do this was based on the 

concept presented by Lilly (1973) that involved particle relaxation time and Lagrangian time 

scale. Particle relaxation time, τ, is given by:

          

 

     µ
ρ

τ 18

2d pp=                                                       (A-1) 

where ρp is particle density (i.e., 1,000 kg/m3 for aerodynamic particle), dp is particle diameter 

(m), and µ is air viscosity (kg/m-sec) (Lilly, 1973). Particle diameter was set at 13 µm (1.3 x 10-5 

m), which was the geometric mean diameter reported for a Kansas cattle feedlot (Gonzales et al., 

2011). Air viscosity was approximated using the Sutherland equation (White, 1991). The 

Lagrangian time scale, TL, was calculated by: 

'2u
K

T m
L =                                                         (A-2) 

where Km is eddy diffusivity for momentum (m2/sec), and u’ is root-mean-square of turbulent 

velocity fluctuations (m2/sec2) (Lilly, 1973). Eddy diffusivity for momentum, Km, was estimated 

from micrometeorological measurements. The root-mean-square of turbulent velocity 

fluctuations was calculated using variances measured for ux, uy and uz.  
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The ratio of τ and TL  was utilized to determine whether or not the particles followed 

turbulent fluctuations. The particle transport governed by turbulent/eddy diffusion had τ /TL ≤ 

0.02 whereas the particle transport unaffected of turbulent fluctuations had τ /TL > 10 (Lilly, 

1973).  Analysis of the data (n = 1,653 hourly data points) indicated that the median τ /TL was 

0.0006, with only 5 points exceeding 0.02. Therefore, this confirmed the suitability of flux-

gradient technique in particulate emission flux estimation given the particle characteristics and 

micrometeorological (i.e., turbulence) conditions in the feedlot considered. 
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Appendix B - Comparison of AERMOD, WindTrax, and Flux-

gradient Technique in Estimating PM10 Emission Rates 

PM10 emission rates estimated using the flux-gradient technique were compared to those 

determined using AERMOD and WindTrax dispersion models. AERMOD and WindTrax-

derived PM10 emission rates in this analysis were from Chapter 4 (i.e., 3.81-m measurement 

height): PM10 emission rates derived using eddy covariance and sonic anemometer 

measurements were used for AERMOD and WindTrax, respectively. Based on 1,712 hourly data 

points, median PM10 emission rates for these three techniques were as follows: 47 mg/m2-hr for 

the flux-gradient technique; 55 mg/m2-hr for AERMOD; and 39 mg/m2-hr for WindTrax (Table 

B-1). Paired t-test showed that the flux-gradient technique was not significantly different (P = 

0.65) from AERMOD but was significantly different (P < 0.05) from WindTrax in terms of 

estimated PM10 emission rates. Similar to what was observed in Chapter 4, the two dispersion 

models were significantly different (P < 0.05) from each other.  

 

Table B-1. Hourly median and standard deviations for PM10 emission rates (mg/m2-hr) for flux-

gradient, AERMOD and WindTrax techniques (n = 1,712) 

 Flux-gradient a AERMOD b WindTrax b 

Range c ~0 to 2,270 ~0 to 1,660 ~0 to 1,508 

Median 47 55 39 

Standard deviation d    

Lower 49 61 43 

Upper 116 141 98 

a PM10 vertical concentration gradients computed using measurement heights of 2.0, 3.81, 5.34 
and 7.62 m 
b PM10 emission rates back-calculated using 3.81 m height-measurements 
c Outliers not removed 
d Two values for standard deviations, for lower and upper ranges, because of non-normality of 
distribution. 
 

 PM10 emission rates calculated with these three emission estimation techniques are 

plotted as a scatter plot matrix (Figure B-1). As shown, the linearity in determined PM10 
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emission rates could be observed between the flux-gradient technique and either of the two 

dispersion models (R2 = 0.46 with AERMOD; R2 = 0.52 with WindTrax). This linearity of the 

flux-gradient technique with AERMOD and WindTrax, however, was not as strong as the 

linearity (R2 = 0.94) observed between the two dispersion models. 

 

 

Figure B-1. Estimated hourly PM10 emission fluxes (mg/m2-hr) for the three emission estimation 

techniques.  

 

Note that for this analysis, PM10 emission rates for the flux-gradient technique were 

derived using one Sc value (0.63), which might cause some uncertainties in the emission rates 

calculated by flux-gradient technique. 
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Appendix C - Additional Graphs from AERMOD and CFD Particle 

Dispersion Simulation 

 

 

 

Figure C-1. Vertical contour plots of AERMOD-based plume centerline particle concentrations 

(µg/m3): (a) to (e) for 1 m/sec wind speed; and (f) to (j) for 5 m/sec wind speed at very stable, 

stable, neutral, unstable, and very unstable conditions, respectively.  
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Figure C-2. Vertical contour plots of CFD-based plume centerline particle concentrations 

(µg/m3): (a) to (e) for 1 m/sec wind speed; and (f) to (j) for 5 m/sec wind speed at very stable, 

stable, neutral, unstable, and very unstable conditions, respectively.  
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