

GEOLOGIC FACTORS INFLUENCING OIL PRODUCTION IN WABAUNSEE COUNTY

by

ALEXANDER ARSHAK KOTOYANTZ

B. S., Kansas State College of Agriculture and Applied Science, 1954

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Geology

KANSAS STATE COLLEGE OF AGRICULTURE AND APPLIED SCIENCE

2668 T4 1956 K66 C.Z documents

TABLE OF CONTENTS

	Page
INTRODUCTION	1
EARLIER PUBLICATIONS	3
HISTORY OF DRILLING	14-
MAPPING PROCEDURE	6
Units Mapped	6
Source of Data	6
Map Data	7
TECTONICS	8
General Statement	8
Origin of Folds and Faults	8
Uplift and Downwarping	10
STRATIGRAPHY	11
Pre-Cambrian	11
Paleozoic	12
Cambrian Rocks	12
Ordovician Rocks	12
Silurian Rocks	14
Devonian Rocks	14
Mississippian Rocks	14
Pennsylvanian Rocks	15
Permian Rocks	16

	2.080
STRUCTURAL GEOLOGY REVIEW	17
Pre-Mississippian Structures	17
Post-Mississippian Structures	17
Ozark Dome	19
EVALUATION AND INTERPRETATION OF THE INVESTIGATION	19
General Statement	19
Nemaha Uplift	20
Surface Structural Map	23
011 Pools in Wabaunsee County	28
Davis Ranch Pool	28
Mill Creek Pool	32
Newbury Pool	32
Woodbury and Wheat Pools	35
Relation of Oil Accumulation and Distribution to the Structures	36
CONCLUSIONS	37
ACKNOWLEDGMENTS	39
REFERENCES	40
APPENDIX	43

INTRODUCTION

It was necessary to study the geology, the erosional history, and the structural features prevailing in Wabaunsee county in order to evaluate the geologic factors influencing oil accumulation and production. The purpose of the investigation was to review and describe the available information regarding oil pool structures, and the origin of the major structural features in the county; to offer a reasonable explanation for the association of the pools with local structural features, and to show how the area is related to the Mid-Continent. It was not the purpose of this thesis to indicate the possible future areas for exploration. However, an analysis of the structural data may have some economic significance in exploration works.

A knowledge of the geologic history of the region is of fundamental importance. It concerns two major structural features, (1) the Nemaha uplift which extends into Nebraska to the north and into (klahoma to the south, and (2) the Forest City basin, which covers most of northeastern Kansas, and parts of Missouri, Nebraska, and Iowa.

The Forest City basin, since the discovery of the Davis Ranch pool in April, 1949 by Carter Oil Company, received widespread attention and now has 750,000 acres under lease.

Geographically, all Kansas oil fields are in the Mid-Continent province; geologically, they lie within the Western Interior coal basin. This coal basin is bounded on the north by the Wisconsin shield, on the east by the Ogerk uplift, and on the south by the Ouachits and Arbuckle-Amarillo uplifts. Most of Wabaunsee county lies in that portion known as the Forest City basin. The positive areas surrounding this basin are the Nemaha ridge on the west, the Ogerk uplift on the east and southeast, and the Bourbon Arch on the south. The tectonic setting is reflected in the surface and subsurface structures of the rocks, and has influenced the accumulation and migration of the oil.

There has been much speculation regarding the Nemaha anticline. It has been established that differential vertical uplift in the basement rocks, and horizontal compression have operated in the area to produce the uplift. How much of this energy has been expended in faulting is not known.

Geologists believe that all local structures are produced by one or more of the following processes: (1) vertical uplift, (2) intrusions of magness or of rock salt, (3) differential compaction of sediments, (4) original sedimentation, (5) horizontal compression, (6) rotational warping stress. Therefore, the local structures in Wabsunsee county must fit one or more of these categories.

The erosional history indicated that the county, as well as the state of Kansas has suffered post-Ordovician, pre-Mississipian, and post-Mississippian erosion. The major unconformities occur at the end of Arbuckle and Mississippian times. The marimum thickness of sedimentary rocks in the county is 4,000 feet.

The basement complex stands at an average elevation of approximately 3,000 feet below sea level. In places on the Nemsha uplift the basement rocks are within 500 feet of the surface or approximately more than 600 feet above sea level. The absence of certain sediments over the uplift is believed to be the result of erosion rather than non-deposition. The area has been subjected to several periods of structural folding, erosion, and tilting before it reached its present position.

There are six oil pools in Wabaunsee county: (1) the Davis Ranch pool, (2) the Davis Ranch East pool, (3) the Woodbury pool, (4) the Mill Creek pool, (5) the Newbury pool, and (6) the Wheat pool. The principal producing zone is the Viola. The structural traps are faulted, and non-faulted anticlines.

EARLIER PUBLICATIONS

There have been few publications concerning the structural features in Wabaunsee county. Nost are concerned with the Nemaha uplift, and the Forest City basin.

In 1949, Smith and Anders published a report reviewing the drilling activity, the present interpretation of the subsurface relationships, and the engineering aspects, and also the general description of the structure and the stratigraphy.

In 1943, Wallace Lee published a paper on the Forest City basin. It gives detailed descriptions of the stratigraphy, and an attempt to analyze the different major structural movements and their relationships to the occurrence of oil and gas in all of northeastern Kansas.

In 1920-1922, 1920, 1922, and 1917, Moore, Fath, Powers, and Taylor respectively, published a few papers concerning the origin of cil and its relationship to centers of accumulation.

Rieb, 1954, and Koons, 1956, have unpublished Masters' theses pertaining to the area.

HISTORY OF DRILLING

Very few wells had been drilled in Wabaunsee county prior to 1949. The county is in the southwestern portion of the Forest City basin, and since the basin is a structural syncline, it was not actively explored until recently.

The Davis Ranch pool--Sec. 33, T. 13 S., R. 10 E.--was discovered in April, 1949, by the Carter Oil Company. Early in its life, the pool was producing from eight wells; two were dry holes. Well No. 55 (Fig. 6 and Table 1, Appendix) was the discovery well. The production is from the Viola limestone. The discovery of the pool attracted many oil companies and exploration using surface maps, core drilling, and seismic methods were employed.

Four other pools were discovered in Wabaunsee county, but with lesser production than the Davis Ranch pool. In 1950, the Davis Ranch East-Sec. 34, T. 13 S., R. 10 E.--was discovered, and later abandoned because of lack of sufficient production.

Approximately six miles north of the Davis Ranch pool, the Mill Greek pool--Sec. 2, T. 13 S., R. 10 E.--was opened in 1950. The production is from the Viola which lies between 2,923 to 2,927 feet. The pool consists of six oil wells, four are producing and two are dry holes. Well No. 39 was drilled in 1951 and was producing from the upper zone of the Viola at a depth of 2,917 feet.

The Newbury pool--Sec. 11, T. 11 S., R. 11 E.--is approximately 12 miles north and east of the Mill Creek pool. It was opened in 1950. The pool consists of nine wells, of which six are producing. The production is from the Viols at a depth of 2,901 feet.

In 1951 two additional pools were completed. (1) The Woodbury pool located in Sec. 11, T. 15 S., R. 10 E. had two wells drilled in 1954 which gives the pool a total of four wells. Well No. 103 produces from the Viols at a depth of 3,214 feet and well No. 96 from the St. Peter sandstone at a depth of 3,335 feet. (2) The Wheat pool which is located five miles east of the Woodbury pool in Sec. 10, T. 15 S., R. 11 E., well No. 125 (Fig. 6 and Table 1, Appendix) produces from the Simpson group at a depth of 3,230 feet. In Wabaunsee county, at the present, there are 127 wells drilled, 31 wells are producing, one is a gas well, and one is abandoned. There are 96 dry holes.

MAPPING PROCEDURE

Units Mapped

The Vicla of Middle Ordovician age was mapped because it is the main producing zone in Wabaunsee county. It was also necessary to map four other formations of the overlying rocks to show the extent of the subsurface structures, and how they are related to the oil pocls. The Hunton, Mississippian, Kinderhockian, and Lansing groups were chosen for this purpose. Most of these units cover the entire county with the exception of the Mississippian and Kinderhookian rocks which are eroded or are absent over the Nemaha uplift.

Since the Davis Ranch pool is the biggest producing pool in the county, its surface structure was mapped using the base of the Florence limestone in order to correlate it with the subsurface maps. (Table 2, Appendix.) A plane table and alidade was used to construct the surface map. Additional surface data was obtained from State Highway maps. All rock shots were corrected to the base of Florence limestone.

Source of Data

The data obtained for the 127 wells drilled in the county up to 1954 has been taken from the following sourcess (1) Driller's logs from the library of the State Geologic Survey of Kansas in Lawrence, and from the files at Kansas State College Geology Department, Manhattan, Kansas; (2) the Geology of the Davis Ranch Cil Pool, Wabaunsee, Kansas, State Geologic Survey, Bulletin 90, Part 2, Lawrence, Kansas, 1951; (3) Master's thesis, K. S. C., Nelson, 1952; S. Rieb, 1954; and D. Koons, 1956; (4) State Highway Commission of Kansas, Topeka, Kanses.

Map Data

The original scale used for the construction of the subsurface structural maps was one inch to a mile but the maps which are enclosed in the thesis have been reduced to half an inch to the mile. A contour interval of 20 feet was chosen for the purpose of illustrating the regional, as well as the local structures to the best advantage.

The scale used for the surface structural map was five inches to a mile and a contour interval of five feet was used. The final map was reduced to half scale.

For the cross sections, the horizontal scale was one inch to a mile, and the vertical scale one inch to 200 feet. The cross sections in the thesis were reduced to a quarter of the original size.

All well locations were plotted on the basis of quarter, quarter, quarter sections; the elevations of key-bed datums were obtained by subtracting the top hole elevation of each well from the depth penetrated to the top of each key formation.

TECTONICS

General Statement

In order to arrive at a clear understanding of the tectonics involved in producing the structures that exist in Wabsunsee county, a review of the folding, faulting, and the erosional history which has a direct or indirect relationship to the area--Wabaunsee county--was made. And, since some confusion regarding the origin of many structures in the Mid-Continent region exists, it was thought proper to review some of the general tectonic concepts.

Origin of Folds and Faults

The most widespread of the early ideas concerning the origin of the structural features of the Mid-Continent region attributed the deformation to horizontal compression and some differential compaction to produce practically all of the folding. But, Clark (1932) and Powers (1922) disapproved of this possibility. It is obvious that shearing failures resulting from horizontal compression of strata will produce thrust faults. The normal faulting associated with the folds is interpreted as a failure due to diagonal shearing stresses, induced by vertical compression, which becomes effective when the opposing stresses are relieved in the unsupported limb of the fold. Therefore, the author believes that the thrust faulting is associated with horizontal compression, and normal faulting is associated with vertical forces.

Fath (1920) suggested the following ideas about the folding end faulting:

It is a commonly recognized fact that faulting resolves itself in distance into folding. It is possible that where these displacements die out rapidly in both directions, the resultant fold in the overlying sediments will not be elongated into an anticline but will assume the more local form of a dome. The displacement of the faults observed at the surface increases with increasing depth until they reach the competent rocks in which the controlling forces operate.

The origin of anticlinal folds--they are generally regarded as due to the buckling of strata accompanying compression at right angles to the axes of the folds. In assuming that those belts of folding are due to vertical displacement along master faults or shear zones in the basement complex, it must not be concluded that the displacement along any such fault would be of equal magnitude throughout, or in other words, that the result of such displacement is a single continuous and uniform anticline in the surface rock. A 100 foot displacement at any one place might disappear within a short distance, and the resulting anticline in the overlying beds would have definite termini. A combined horizontal and vertical displacement may produce both faulting and folding.

The increasing encount of folding with increasing depth and the consequent possibility that well developed folds exist in cil bearing sands without any corresponding flexures in the surface rocks are of great economic significance. Cil and gas may accumulate in such places where there is little or no folding in the surface rocks and where the conditions cannot be determined by structural geologic investigation in advance of prospecting. The absence of anticlinal folding in the surface rocks, therefore, does not absclutely condemn any locality for its cil and gas prospects.

Fath also published the hypothesis of R. H. Wood which is concerned with torsional faulting along lines of weakness. Fath believes that zone of weeknesses existed in the basement terrane in pre-Cambrian time and that later d'splacement and readjustments deformed and fractured the overlying sediments along the weak zone, although many of the fractures did not reach the surface. To supplement his hypothesis, he pointed out the asymmetrical form of many enticlines, and also the increase of folding with depth. Fath also mentioned the origin of structures due to rotational stresses originating in the competent crystalline rocks, and transmitted into overlying sediments producing faults and anticlines.

Uplift and Downwarping

The vertical uplifts and buried hills played a big part in the Mid-Continent region, and especially in the accumulation of oil and gas. Such structural movements made possible the erosion of anticlinal areas without producing erosional topography elsewhere. The deposition occurred in the areas adjacent to the uplifts.

Downwarping is probably the main factor in creating regional dip. A great synchinal trough is developed where downwarping continues for a long time. Finally, broad, regional uplift terminates the subsidence.

STRATIGRA PHY

Pre-Cambrian

Maps made by Rieb (1954), Nelson (1952), and Koons (1956) show the surface of the pre-Cambrian in great detail. They all show that the east flenk of the Nemaha uplift in Wabaunsee county has been faulted more than 1,000 feet. Maps made in this investigation reflect the faulting in the base ent complex as shown by five of the structural maps, Figs. 1, 2, 3, 4, and 5, Appendix.

The east side of the Nemaha ridge drops off very rapidly, for example, well NE¹/₂ Sec. 15, T. 13 S., R. 12 E., was drilled to a depth of 3,652 feet to granite. The granite in the Root well (Root near Bardwell well No. 2, Zeandale) is approximately 55 feet below sea level, while the granite in the Henderson well (well No. 69, Table 1, Appendix), 21 miles southeast of the Root well, is 2,455 feet below sea level, a difference of 2,400 feet.

The pre-Cambrian rocks consist of granite, gneiss, schist, quartzite, and other igneous and metamorphic rocks. The pre-Cambrian surface was subjected to erosion for a long time before the deposition of the Lamotte sandstone. Rieb's (1954) structural map shows that the Nemaha ridge is asymmetrical with the steeper side on the east flank. It also shows normal faulting on the east flank of Nemaha, with the east side the downthrow block. The east side of Zeandale dome is also faulted. There have been three periods of erosion of the pre-Cembrian rocks. (1) The area was eroded before the deposition of the first Cambrian sediments, Lamotte sandstone of Upper Cambrian ege. (2) Twice later were portions of the area in the north uplifted and eroded, eventually stripping and eroding the pre-Cambrian rocks. (3) The third period was a result of the major uplift that closed the Mississippi Period, and brought into existence the Nemaha Ridge. The first period of erosion resulted in the peneplanation of the pre-Cambrian rocks, and the last two periods did not meterially alter the peneplane.

Paleozoic Era

<u>Cambrian Rocks</u>. Most of the Cambrian rocks have been removed prior to the deposition of the Lamotte sendstone. There is a great unconformity separating the Lamotte sendstone from the underlying pre-Cambrian rocks. The Lamotte grades upward into the overlying Bonneterre.

Ordevician Hocks. The Ordevician rocks are very important in this investigation, because the Vicla limestone (Fig. 5, Appendix) of Middle Ordevician age was used as the principal mapping unit. It is the main oil producing zone in the county. The other rocks that are enc untered are the Lower Ordevician--Arbuckle group (Fig. 5, Fieb). The Arbuckle dolomite has been eroded away over the Nemaha Granite ridge, and the Chautauqua arch where it is overlain by successively younger beds to the kinderhock. The Middle Ordevician, represented by the St. Peter

sendstone of the Simpson group, is the producing brizon in the Woodbury pool. The Sylvan (Maquoketa) shale is also encountered in the Upper Ordovician system.

The St. Peter sendstone rests unconformably on the Arbuckle dolomite, and underlies the Viola limestone. Pew wells in Wabaunsee county show Decorah shale which separates the St. Peter sendstone from the Viola limestone. The base of the St. Peter sendstone gradually thins from SE to NW. The northwest portion of the county shows an absence of St. Peter sendstone which was removed by post-Mississippian erosion.

The Viola (Kimmswick) limestone is approximately 107 feet thick in the central part of the county. It is found conformably below the Sylvan shale. Veriations in thickness is due to peneplanation. Part of the Viola limestone was removed by post-Mississippian erosion in the northwest portion of the NE-SW trending Nemaha uplift.

The Sylven shale is very constant in thickness, which suggests that it was deposited on a flat or peneplained surface of Viole limestone. The approximate thickness in Wabaunsee county is 75 feet, but there is an exception in well No. 53 which shows a thickness of 150 feet. This increase in thickness is probably due to a reverse fault.

There are many unconformities of Ordovician ege. The most important is the one at the base of the St. Peter sandstone which rests on the Arbuckle. Continued subsidence or downfaulting along the east flank of the Nemaha ridge generally protected the formations from post-Arbuckle to Permian from extensive ercsion. The intermittent periods of folding and erosion increased the complexity of the structure on the deeper beds.

Silurian Rocks. The Hunton limestone is one of the mapped units (Fig. 4, and Table 1, Appendix). It is an undifferentiated dolomite of Siluro-Devonian age. It is quite variable in thickness and in characteristics with unconformities both above and below. Well No. 66 (Table 1, Appendix) produces from the Hunton dolomite.

<u>Devonian Rocks</u>. The Devonian rocks are separated from those below and above by angular unconformities. The Chattanooga shale is not differentiated, but it is designated as Devonian or Mississippian. Smith and Anders (1951) mentioned in their report on the Davis Ranch pool that the average thickness of the Chattancoga shale is 180-185 feet. They note an abnormal thickness in well No. 81 (Table 1, Appendix) 260 feet. They believe the thickening is due to reverse faulting.

In the county, the Devonian is thickest in the north and progressively thins toward the southeest. This indicates that there was a great subsidence to the northwest and elevation toward the Ozark area. The greatest thickness of the Hunton was in the center of the Forest City basin, indicating that probably the basin was sinking faster than the margin. In the northwest portion of the county, the Devonian rocks are removed by post-Eississippian erosion (Fig. 4, Appendix).

Mississippian Rocks. The Mississippian rocks are present

in all parts of the county except over the Nemaha uplift, where they have been completely removed by post-kississippian erosion (Fig. 2, Appendix).

The post-Mississippian interval is very important in Kanses because during that time widespread regional deformation and deep erosion of high areas occurred. All the Mississippian and older rocks on the crest of Nemaha ridge were removed. The truncated surface was overlapped by Pennsylvanian sediments. The Nemaha Ridge is a very prominent structural feature of late Mississippian time, as are the folds along the eastern flank of the Nemaha in Wabeunsee county.

Mc Clellan (1930) summarizes the pre-Mississippian rocks:

The pro-kississippien rocks in Kansas are a result of long history, which included three periods of major crustal warping, and cae period of sharper folding and faulting, with consequent erosion following each period. Some of the broader arches began their history during the pre-Cambrian, and were repeatedly uplifted by later movements, while the smaller anticlines and faulted structures are early Pennsylvanian in sge and have since been affected only by Pennsylvanian and Permian folding.

Three structural depressions occur between the elevated structures, namely, the Forest City basin in the northeest, the Saline Basin in the north-central, and e basin in the southwestern part of Kansas for which the name Dodge City Basin is proposed. As pointed out by Fath, as the sedimentary series is obviously unable to transmit horizontal stresses so far from centers of rongony, the structural lines must indicate lines of faulting or folding in the basement rocks.

<u>Pennsylvenian Rocks</u>. The Lansing group of the Missourien Series was the only one of the Pennsylvanian System mapped in this investigation (Fig. 1 and Table 1, Appendix). The basal member of the Pennsylvanian is the Cherokee shale of the Desmoinesian Series. It was unconformably deposited on the denressed erosional surface of the Mississippian rocks.

The re-elevation of the Nemaha anticline at the time of the formation of the Forest City basin produced an eastwardfacing escarpment bounding the basin on the west. North of Geary county, the crest of this escarpment consists mainly of pre-Cambrian granite. To the north, the crest of the escarpment is underlain mainly by rocks of Arbuckle age (Lee, 1943).

The average thickness of the Cherckee around the Davis Ranch pool is 375 feet. In well No. 50 (Table 1, Appendix), it was 420 feet thick, presumably because it filled a sink in the top of the Mississippian bads (Smith and Anders, 1951).

The Pennsylvanian rocks underlie the entire county, and outcrop in the eastern part as a thin belt trending north to south. Pennsylvanian rocks rest directly on pre-Cambrian rocks (Fig. 1, Appendix). Different members alternate with coal beds in a scheme of cyclic sedimentation indicating shallow, fluctuating seas. The pre- Pennsylvanian deposition is largely marine limestone, dolomite and chert, with sand in the Simpson (Decorah). The Pennsylvanian and Permian rocks consist principally of interbedded marine shales, limestones, and sandstones.

<u>Permian Rocks</u>. The Permian rocks cutcrop across the entire county, except the eastern margin where the Pennsylvanian rocks cutcrop. In the county, the Admire, Council Grove, and Chase groups of Wolfcampian Series cutcrop. The Wolfcamp is

the only series represented in the county. Rocks younger than the Doyle shale formation of the Chase group do not outcrop in Wabaunsee county. The surface rocks show many flexures on the east flank of the Nemaha uplift that possess relatively steep dips.

STRUCTURAL GEOLOGY REVIEW

In reviewing the major and minor structural features in Webeunsee county, emphasis is directed toward the regional geologic structures, as well as the local ones in order to portray and interpret the structural picture that will properly reveal the part played by these features in the accumulation and migration of oil and gas in Webeunsee county.

Pre-Mississippian Structures

The major pre-Mississippian structural provinces are: (1) the North Kansas basin to the north, (2) the Ozark monocline to the east and trending northeast to the scuthwest, (3) the Chautauqua arch to the scuth (Jewett, 1951).

Post-Mississippian Structures

The major post-Mississippian structural provinces ere: (1) the Nemaha anticline--it is believed by many geologists that it is faulted in many areas on the steeper east flank. Today, it is the most striking tectonic feature in Kansas, and it crosses the state from morth to south, plunging to the south. The uplift is reflected in the overlying sediments as an anticlinal structure dotted with domes. The Nemshe uplift has divided the North Kansas basin into the Salina Basin on the west, and the Forest City Basin on the east. (2) The Forest City Basin--it is the structural and deposition basin between the Ogark uplift on the east, and the Nemaha uplift on the west. The Bourbon such lies to the south. Jewett (1951) defined the basin

.....ss a structural negative segment of the pre-Mississippian rocks formed at different times by the uplifting of the Chautauque arch (encestral Czark uplift), the Nemaha anticline, and other segments and by down werping within the basin itself.

It is a topographic basin resulting from the Nemaha uplift and the down warping of the peneplaned Mississippian surface. (3) Bourbon arch--it separates the Forest City basin to the north from the Cherckee basin on the south. The Mississippian rocks increase in thickness northward and southward from this arch. This would indicate erosion of the arch before the deposition of the Pennsylvanian beds (Jewett, 1951). The Bourbon arch is low and broad consisting of Mississippian rocks and overlain by Cherckee shale. It is similar to an arch in northeastern Missouri, the Northeastern Missouri arch, separating the Forest City basin from the Illinois basin. (4) The Alma anticline-the axis of this anticline parallels the Nemaha anticline, and extends the entire length of the county. Nost of the cil pools are located on it.

Ozark Dome

The Ozerk uplift is structurally, as well as topographically, a broad, low dome of elliptical cutline, and was formed in Mid-Ordovician time. Erosion has removed practically all the Paleozoic sediments, laying bare rocks of pre-Cambrian age.

The dome lies between the Arkansas basin on the south, in the foreland of Ouschita system, and the interior Illincis and Forest City basins on the northeast and northwest, respectively. Nost of the structural relief is caused by the initial dip existing on the basement rocks (King, 1951). The surface Pennsylvanian and Permian rocks dip west from the dome into Kansas forming the Prairie Plains homocline. All the Paleozoic strata have a gentle westward dip from the Ozark uplift into a subsurface synclinorium beneath the Great Plains.

EVALUATION AND INTERPRETATION OF THE INVESTIGATION

General State ent

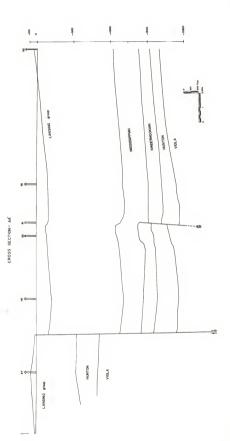
In the evaluation and interpretation of the date in this investigation, it was necessary to point out (1) the possible relationships of the structural traps in the Mid-Continent region to the local structural traps in Wabaunsee county, (2) the influence of the regional structural features in limiting cil accumulation and migration to the area of investigation, (3) the relationship of the cil reservoirs in Wabaunsee county to those of the adjacent areas.

In general, the flexures in the Mid-Continent region consist of faulted and non-faulted anticlines, domes, homoclines, monoclines, terraces, and noses. Many surface folds have closures that do not exceed 20 feet. But, in the subsurface the closures sometime exceed 100 feet.

Nemaha Uplift

The Nemaha was raised in the late Mississippian or early Pennsylvanian, tilted westward, and faulted on the east side. All the maps, and the cross sections I, II, and III show that the Nemaha is faulted. The east, steep flank, is the down thrown side, and the west flank is the up thrown side.

In Wabaunsee county, the Nemeha uplift is plunging to the south. In post-Mississippian time the rocks of Kinderhockian and Mississippian age are completely eroded over the Nemaha ridge. The uplift continued during the Pennsylvanian and Permian periods, but was not as extensive as that of the Mississippian. The Pennsylvanian and Permian rocks overlie the uplift. (Figs. 2, 3, Appendix, and Plate II.)


The most extensive faulting and erosion occurred in the northwestern part of the county. It is clear from Figs. 4 and 5 that in the southwestern part of the county the Vicle and the Hunton were not eroded away, whereas in the northwest they have been removed by post-Mississippian erosion.

The maximum displacement of the pre-Cambrien rocks along the east flank of the Nemaha in the northern portion is

EXPLANATION OF PLATE I

The cross section AA' shows the structural relationship between the Davis Ranch pool and the Nemaha uplift.

EXPLANATION OF PLATE II

The cross section BB' shows the structural relationship between the Will Creek pool and the Nemaha uplift.

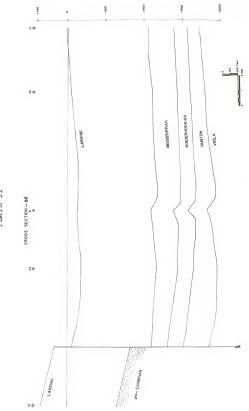


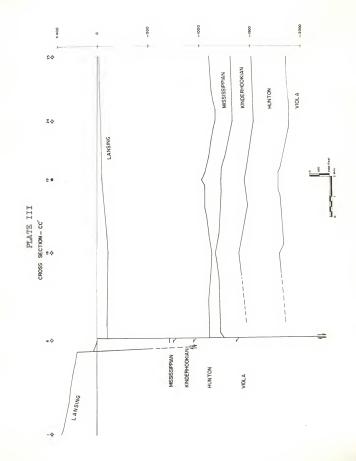
PLATE II

approximately 1,400 feet (Plate II), whereas the maximum displacement as measured on the Viola in the southern portion is approximately 1,100 feet (Plate II).

Practically all the subsurface structural maps show a structural depression or syncline (Figs. 2 and 3, Appendix) in the esst-central area of the Nemaha uplift.

The displacement, therefore, is not a simple fracture, but is a major zone of shearing between the positive Nemaha element on the west, and the negative Forest City basin on the east. In Wabaunsee county, oil is not found over the top of the Nemaha anticline.

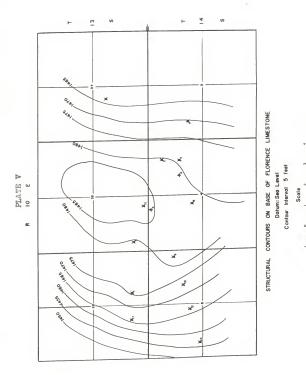
In the northwest corner of the county, the Zeandale dome is faulted on the east side (Fig. 1, Appendix, and Flate III). The maximum displacement as measured on the Lansing group is approximately 250 feet. The displacement increases with depth. Since the oil-bearing horizons are absent on the Zeendale dome, the local folds are not productive.


Surface Structural Map

The surface structural map shows only the structure of the Davis Ranch pool. Its datum is the base of the Florence limestone, which outcrops on the west side of the pool.

The surface map shows an enticline with a closure of 10 to 15 feet (Plate V). It is one mile long, and half a mile wide. The sxis trends northeast to southwest, and favors the east flank, which is steeper than the gentle west slope. It parallels the

EXPLANATION OF PLATE III


The cross section CC' shows the structural relationship between the Newbury pool and the Nemeha uplift.

EXPLANATION OF PLATE V

Į.

Shows the surface structural map of the Davis Ranch pool on the base of the Florence limestone. The X mark with the numbers indicates the outcrop shots, and the numbers correspond to the numbers in Table 2.

Alex A. Kotoyantz

Nemaha anticlines on the west.

The correlation of the surface and subsurface structural maps (Figs. 1, 2, 3, 4, and 5, Appendix, and Plate V) reveals that there is a close relationship in production between the subsurface and surface structure. In the subsurface, the steep side of the Davis Ranch Pool is on the east side of the anticline, and the gentle dip is on the west flank. The subsurface shows a parallelism with the Nemaha uplift on the west. The subsurface reveals a syncline on the east side of the Davis Ranch anticline, and there is a correlation with the surface map. But, there is no faulting evidence on the surface structural map.

Oil Pools in Wabaunsee County

Davis Manch Pool. The production of the Davis Ranch Pool is from the Viola limestone, except well No. 66 (Table 1, *hp*pendix) which is producing from the Hunton.

The structural map (Fig. 5, Appendix) on top of Viola shows a faulted asymmetrical anticline, with a closure of 100 feet. It is approximately four miles long and two miles wide. The strike of the axis of the anticline is approximately northeast to southwest. This parallels the Nemaha anticline. The maximum displacement of the Viola is 150 fast (Plate I). The beds on the west side are dipping gently to the west. The east flank is steeply dipping into the structural depression or syncline to the east.

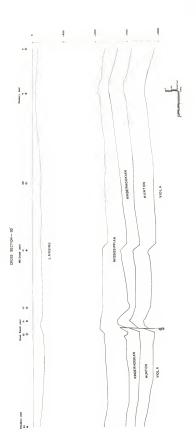
The author has examined all evailable electric logs, and has studied the information obtained from the well samples and the electric logs that were examined by Smith and Anders (1951). The electric logs show that a fault plane exists in well Nos. 53, 61, 81 (Fig. 6, Appendix, and Table 1). These wells show an abnormal thickening of almost twice the normal thicknesses. For example, in well No. 53 (Fig. 6, Appendix), the normal thickness of Sylvan shale is 75 feet, but in the faulted well 150 feet of Sylvan exist. Therefore, 70 feet of Sylvan shale is repeated.

The structural maps show that the faulting in the Davis Ranch pool decreases upward from the Lower Mississippian to the Kinderhook, and might extend into the Osagian Series, and the Warsaw limestone of the Meramecian Series (Figs. 3 and 4, Appendix).

As the fault in the Davis Ranch pool dies out upward, it resolves itself into an anticline fold. This is a typical structural relationship in the Mid-Continent region. The enticlines in the Mississippian rocks show 60 feet of closure, and 40 feet closure in the Lensing group (Figs. 1, 2, Appendix, and Plate I). There is little available data of the downward extension of the fault below the Viole, since most of the wells in the Davis Ranch pool do not penetrate any deeper. The production is on the up-thrown limb.

There is a parallel and similarity of structural movement between the Davis Ranch pool and the Nemshe uplift. The

structural maps (Figs. 2, 3, 4 and 5, Appendix) show constant closure of the folds, with little variation, between the top of the Viole and the Mississippian. This indicates that they were formed by one movement, probably at the end of post-Mississippian or pre-Pennsylvanian times. The close relationship of folding and faulting suggests that the present structures followed old lines of faulting in the basement rocks.


<u>Mill Creek Pool</u>. This pool follows the structural trend of the Davis Banch pool, with a synclinel saddle between it and the Davis Banch anticline. The steep flank is on the east side of the fold, and trends northwest to southeast. But, there is no indication of faulting, and the west flank dips gently into the syncline on the west. The axis of the Mill Creek anticline favors the steeper east flank, and the production is on the west side of the axis.

The closure on the Viola limestone is 60 feet. The mount of closures on the formations between the Viola and the Vississippian are fairly constant. The movement, as in the other instances, also occurred before the close of Mississippian, and pre-Pennsylvanian time (Figs. 2, 3, 4, 5, Appendix, and Plate IV). The closure on top of the Mississippian and on the Lensing group is about 20 feet. The magnitude of the fold decreases upward.

<u>Hawbury Pool</u>. The Davis Ranch pool, the "ill Creek pool, and the Newbury pool follow the same structural trend known as the Alma enticling. These pools are separated by synclinal

EXPLANATION OF PLATE IV

The cross section DD' shows the structural relationship between the Davis Ranch pool, the Mill Creek pool, and the Newbury pool. PLATE IV

saddles. The production is from the Viola limestone. The Newbury pool is the same type of structural trap as the others, except that the steepening is not so pronounced, and occurs on the northeastern side. The closure is not so pronounced and is about 60 feet. The closures on top of the formations between the Viola and the Mississippian is fairly constant. Therefore, the movement must have taken place between post-Mississippian and pre-Pennsylvanian.

The northeast to southwest trending Alma anticline rises progressively from the Davis Ranch pool to the Newbury pool and plunges to the southwest (Figs. 2, 3, 4, 5, Appendix, and Flates III and IV).

The closure on top of the Mississippian rocks is 40 feet end the fold develops into a gentle homocline on the Lensing (Fig. 1, Appendix, and Plates III and IV).

<u>Woodbury and Whest Pools</u>. There is a lack of geologic evidence regarding these pools. Consequently, no Simpson group structural map to define the exact configuration of the pools cold be constructed. However, the structures of both pools appear to be a gentle and gradual dip to the northwest. Both pools plunge northwest and are flanked by the Nemahe uplift. Such flanking structures are common in the Mid-Continent region. A break in the eastward and south-eastward dip will accumulate oil, (Fig. 6, Appendix, and Plate IV), localize it near the center of the uplift.

Relation of Oil Accumulation and Distribution to the Structures

In sreas of gentle dip or homoclinel structures, and gentle folding, the folds near the center of the major uplit, show steeper dips than those farther away. The greatest accumulation of oil is in the minor folds rather than in the major ones. The accumulation is on the gentle dips of the fold rather than on the summit or in the steep flanks. It is observed that the creat axes of the folds favor the gentle side, and progressively move toward the gentle slope with depth.

The configuration of the basement complex, and the granite uplifts controls most of the structural features in Kansas, and has a direct relationship to oil accumulation. It is a known fact that vertical forces are very important, especially in the Nid-Continent region. The Nemeha uplift and the Bourbon arch have acted as barriers for oil migration and have played an important role in restricting the oil accumulation to the eastern flank of the Nemeha and north of the Bourbon erch. The carrier beds were eroded over the Hemaha uplift in Wabsunsee county. Whereas southward, where the Nemaha uplift plunges to the southwest, the source beds and the reservoir rocks have not been eroded. For example, in the Fi Dorado field in Butler county, production is on the Nemaha uplift.

It is typical to find in the Mid-Continent region, especially in Wabaunsee county, homoclinal, synclinal, anticlinal, and faulted anticlinal structures. Igneous or metamorphic rocks are found on the up-thrown side of the faulted areas. The structural highs which favor the accumulation of oil, occur elmost entirely in the major basins. In general, the normal faults occur in synclines or basins, and the reverse faults occur on enticlines.

CONCLUSIONS

The granite Nemsha uplift, and the besement rocks that underlie the entire state of Kansas, had an important and direct influence on the development of the structural features in Kanses, and in the area that has been investigated in this thesis. The major disstrophic movements occurred in post-Mississippian, and early Pennsylvanian times.

The Nemshe uplift was produced by faulting on its east flank as a result of verticel and horizontal tension forces. These forces operated along a line of weekness in post-Mississipplan or pre-Pennsylvanian times. The displacement was sufficient to raise the Nemshe enticline, and to cause the erosion of the oil bearing beds across the uplift. On the eroded crest, the Pennsylvanian rocks lie directly on the pre-Cambrian surface. Farther south, the uplift, and the erosion were not extensive enough to remove the Viola and Hunton of Ordevician and Silurian age, respectively. Here the Viola and Hunton lie directly on the pre-Cambrian surface.

In the srea investigated, the commercially producible oil accumulated in closed anticlines, and faulted anticlines. The

main producing some is the Viola limestone.

The fault in the Davis Ranch pool appears to extend from the Viola to Kinderhookian rocks. There is no direct evidence how far the fault extends downward or upward. The only fault manifestation in the upper beds is a steepening of dips. This is exhibited in the Mississippian and the Lansing. The fault on the east side of the Davis Ranch pool might trend towards the Mill Creek, and the Newbury pools.

It is hoped that this study will aid in the further exploration and development of the area, and will help to determine the in luencing factors of the accumulation of oil.

A CKNOWLEDGHENTS

The writer wishes to extend his appreciation and grateful acknowledgment to Dr. J. R. Chelikowsky for his assistance, and advice, in preparation of this thesis.

The writer also extends special thanks to Mr. J. D. Mc Neal, Chief Geologist of the Kansas State Highway Commission for making State Highway surface data evailable.

REFERENCES

Bertran, J. G. Oil and gas in Arbuckle and Ellenburger Formation, Hid-Continent region. Am. Assoc. Petroleum Geol. Bull .. Vcl. 34, No. 4, p. 682, 1950. Clark, S. K. The mechanics of the plains type folding. Jour. Geol .. Vol. 40, No. 1, p. 46, 1932. Eardley, A. J. Structural geology of North America. New York: Harper & Bros., 1951. Emmon. W. H. Geology of petroleum. New York & London: McGraw-Hill Book Co., 1931. Fath, A. E. The origin of the faults, anticlines, and buried granite ridge morth of the Mid-Continent cil and gas field. U. S. Geol. Survey Prof. Paper 128, pp. 75-84, 1920. Hager, D. Practical oil geology. New York: McGraw-Hill Bock Co., 1951. Howell, J. V. Structure of typical American oil fields. Am. Ass. c. Petroleum Geologists bull., Vol. III, 1948. Jacobsen, Lynn. Structural relations on east flank of Anadarko Basin, Cleveland and McLain counties, Okla. Am. Assoc. Petroleum Geol. Bull., Vol. 33, No. 5, pp. 695-719, 1949. Jewett, J. M. Geologic s'ructures in Kansas. State Geol. Survey of Kans., Bull. 90, Part 6, 1951. Uil and gas in eastern Kansas. State Geol. Survey of Kans .. Bull. 104, 1954. King, Philip B. The tectonics of middle Worth America. Princeton Univ. P-ess, Princeton, N. J., 1951.

Koons, D. L. Faulting as a pos ble origin for the formation of the Nemaha anticline. Las r's Thesis, Kan as State College, Manhattan, Kansas, 1956. Lalicker, C. G. Principles of petroleum geology. New York: Appleton-Century-Crofts, 1949. Landes, K. K. Petroleum geology. New York; John Wiley & Sons, 1951. Lee, Wallace. The stratigraphy and structural develop ent of the Forest. City Basin in Kansas. State Geol. Survey of Kansas, Bull. 51, 1943. Le Toy, L. W. Subsurface geologic methods. Colorado School of Mines, Dept. of Publicat ons, Golden, Colorado, 1950. Levorsen, A. I. Geology of petroleum. San Francisco: W. H. Free an and Co., 1954. Relation of cil and gas pools to unconformities in the M d-Continent region. Am. Assoc. Petroleu: Geol. Bull., p. p. 761, 1934. Mc Clellan, H. W. Surface distribution of pre-Mississippien rocks of Kanses and Cklahoma. Am. Assoc. Petroleum Geol. Bull., Vol. 14. Part 2, 1930. Mc Coy, Mlex W. An interpretation of local structural develop ent in wid-Continent area associated with deposits of petroleum. .m. Assoc. Petroleum Geol. Bull., Vol. 1, p. 109, 1917. Moore, R. C. Buried granite in Kansas. Geol. Soc. Am. Bull., 33, (1), pp. 96-98, 1922. , and others. the Kansas rock column. State Geol. Survey Bull. 89, 1951. Nelson, P. D. The reflection of the basement complex in surface structure of the "arshall-"iley County area. laster's thesis, Kansas State College, Manhat an, Kansas, 1952.

Nevin, C. N.

Principles of structural geology. 4th ed., New York: John Wiley & Sons, 1949.

Possible Future Petroleum Provinces of North America. Am. Assoc. Petroleum Ge logists symposium paper presented in April 24-27, 1950, and published in 1951, pp. 182-190.

Powers, S.

Feflected buried hills and their importance in petroleum geology. Econ. Geol., Vol. 17, No. 4, pp. 233-259, 1922.

Rieb, Sidney Lee

Structural geology of the Memsha Ridge in Kansas. Master's Thesis, Kansas State College, Manhattan, Kanses, 1954.

Smith, R. K. and E. L. Anders, Jr. The geology of Davis Ha ch cil pool, Wabaunsee Coun y, Kansas State Gecl. Survey of Kansas, Bull. 90, Part 2, 1951.

Thomas, C. H. Production from flanks. Am. Assoc. Petroleum Gecl. Bull., Vol. 11, No. 9, pp. 919-931, 1927.

Umpleby, S. S.

Faulting, accumulation, fluid distribution, Ramsey posl, Payne county, Ckla. Am. Assoc. Patroleum Geol. Bull., Vol. 40, No. 1, Jan., 1956. APPENDIX

Table 1. Data on wells drilled in Waubaunsee county, Kensas.

(*All elevations are below sea level unless otherwise indicated.)

No. on i ndex Map:	No. on : Index Map: Location :	Lensing .W	stum elevati Ississippian	Detum elevations of Formetions *	tions* an : Hunton :	Violes	* Total Depth: * (Feet) *	: Initial Production
г	SW NE 28-10-9E	+354					1093	Dry
2	IN SE NE 12-10-108						2015	D&A
e	NE NE NE 13-10-10E	the state	1069	1273	1479	1901	3206	D&A
#	SW SW NW 28-10-10E	+159		346	533		1918	DAA
15	SW SW SE 32-10-10E	+239			224	389	1720	D&A
9	SW SW SE	6	217	222	926	1374	2705	D&A
2	SE SW NW	115	TITI				2371	Dry
00	SE SE SE 26-10-11E	59	1072	1263	1486	1853	3243	D&A
6	SW SW NE	88	1158	1351	1570	1931	3200	D&A
10	cNW SW 1-11-9E	+3+2					2000	Dry

[able 1. (Cont.)	(Cont.)								1
No. on : Index Map:	No. on : index Map: Location	: Lansing:	Detum elevations of formations* MississippiansKinderhooklansHuntons	is of format (inderhookis	<u>1cns*</u> n:Hunton:	Viola: (F	Depth eet)	29	Initial oduction
11	NEC SW 24-11-9E						2350	Ä	Dry
12	SE SE SE	118	1123	1278			2575	A	& A
13	SE SE SE 5-11-10E	+98		1466	673	1011	2489	A	A A
14	NW NW SW	+287					1523	A	& A
15	SW SW NE	+310					1234	A	& A
16	SW SW SE 27-11-10E	128	1139	1351	1558	1927	3365	A	& A
17	SE NE NE 2-11-11E	70	0111		1472		2835	A	Dry
18	SW NW NW	111	1131	1162(?)			2700	A	Dry
19	IN SW NE	48	1028	1215	1442	1773	1062	514 BO	254 BOPD 10W
20	NE SE NW	414	1074	1208	1453	1777	3130	SW	MOMS

No. on Index Maj	No. on : Index Map: Location	: Lansing:Mi	ississippian	Datum elevations of formations* Lensing:Mississippian:Kinderhookian:Hunton:	tions* sn:Hunton:	Viols	otal Depth (Feet)	: Total Depth: Initial : (Feet) : Production
21	SE NW NE 11-11-11E	8 4	1048	1198	1438	1767	2885	380 BOPD & water
22	cNW NE 22-11-11E						500	D&A
23	SWe 31-11-11E						2006	D&A
54	SE SE SW 8-11-12E	35	1160	1326	1535	1887	3227	D&A
25	CNA SW NE	14	1096	1307	1512	1854	3094	D&A
26	SW SW NE 26-12-9E	167	1126	1380	1572	1927	3135	D&A
27	SE SE NE 29-12-9E	66+			533	821	2421	DAA
28	NW SE SE 9-12-10E						276	WH,000 cu.ft. Gas
29	enw sr se 9-12-106	181	1411				2339	Dry
30	NE SW SW 36-12-10E	150	1183	1494	1695	1952	3063	D&A

Table 1. (Cont.)

31 SE SW SW J-12-11E 103 1193 144.3 1619 1905 3383 D & M 32 WM MW WE 126 114.3 1346 1561 1905 3184 D & M 33 SW SE 115 115 1143 1346 1561 1905 3184 D & M 34 SW SE 115 1126 1414 1567 1912 3168 D & M A 35 SW SE 144 1130 1445 1635 1912 3168 D & M A 36 WW SE SE 144 1130 1445 1635 1930 3431 Dry 36 WW SE SE 123 1080 1397 1595 Dry 36 SM SE SW SE 123 1096 1397 1573 1818 2000 DS 37 SM WE SE 121 1096 1371 1573 1818 2924 1000 39 SW WE SE SE	No. on Index Ma	on : Map: Location	: Lansing:	<pre>2 Datum elevations of formations* 3 Dansing:Mississippian;Kinderhookian;Hunton;</pre>	elevations of formations* sslppian:Kinderhookian;Hun	an :Hunton:	Viole	:Total Depth: 13 (Feet) 3	R Initial
W. W. B. 128 1143 1348 1581 1905 3184 D SH. SE SH. SE SH. SE SH. SU SF. SH. 115 1128 1128 11680 D SH. SE SH. SU SF. SHE	31	Se Se	103	1193	1413	1619	1903	3383	8
SW SE 17-12-115 1860 1 SW SE 19-12-115 115 1126 1414 1587 1912 3168 D SF 19-12-115 144 1130 1445 1635 1930 3431 1 SF 213-068 1444 1587 1635 1930 3431 1 W SE SE 213-068 123 1080 1397 1635 1930 3431 1 W SE SE 2-13-068 123 1080 1397 1576 1808 2337 D Su SE NB 123 1080 1371 1573 1818 2932 3000 W NE SE 121 1105 1371 1573 1818 2932 3000 W NE SE 121 1096 1371 1573 1818 2932 3000 W NE SE 121 1096 1371 1573 1818 2932 3000 W NE SE 121 1096 1371 1573 3101 2934 121 W NE SE 121 1096 1366 2934 2934 <	32	NW NW NE	128	1143	1348	1581	1905	3184	ett
SE WE SW 115 1128 1414 1587 1912 3168 D 19-12-118 144 1130 1445 1635 1930 3431 1 SFG 144 1130 1445 1635 1930 3431 1 SFG 144 1130 1445 1635 1930 3431 1 W SE SE 123 1080 1397 1596 1840 3307 D SM SE WE 127 1089 1371 1573 1818 2932 3000 SM SE WE 121 1105 1371 1573 1818 2932 3000 SM W WE SE 121 1105 1371 1573 1818 2934 121 SM W WE SE 121 1096 1371 1573 1818 2934 124/1	33	SW SE 17-12-11E						1880	45
She 19-12-11E 144 1130 1445 1635 1930 3431 1 19-12-11E 1445 1635 1930 3431 1 W SE SE 2365 1 2365 1 W SE SE 123 1080 1397 1596 1840 3307 D Su SE NE 127 1089 1371 1576 1840 3307 D Sw SE NE 127 1089 1371 1573 1818 2932 3000 Sw NE SE 121 1105 1371 1573 1818 2931 121 Zu Ju-10E 121 1096 1371 1573 1818 2931 121 Zu NE SE 121 1096 1366 1582 2934 1356	34	SE NE SW 18-12-11E	115	1128	4T+1T	1587	1912	3168	8
WW SE SE 2365 1 2-13-66 123 1060 1397 1596 1840 3307 D SE NW SE SE 123 1060 1397 1576 1840 3307 D Set NW SE SE 127 1089 1371 1573 1818 2932 3000 WW NE SE 121 1105 1371 1573 1818 2932 3000 WW NE SE 121 1105 1371 1573 1818 2931 121 ZH NE SE 121 1096 1366 1582 2934 156	35	SFC 19-12-11E	144	1130	1445	1635	1930	34 31	Dry
SE WW SE 123 1080 1397 1596 1840 3307 D 2-13-10E 127 1089 1371 1573 1818 2932 3000 S-13-10E 127 1089 1371 1573 1818 2932 3000 WM NE SE 121 1105 1371 1573 1818 2921 121 Z-13-10E 121 1096 1371 1573 1818 2921 121 ZW NE SE 121 1096 1366 1582 2934 2156	36	NW SE SE 2-13-8E						2385	Dry
SW SE NE 127 1089 1371 1573 1818 2932 3000 2-13-10E 121 1105 1371 1573 1818 2921 121 2-13-10E 121 1105 1371 1573 1818 2921 121 2-13-10E 121 1096 1386 1582 1828 2934 1156	37	E-	123	1080	1397	1596	1840	3307	-
WW NE SE 121 1105 1371 1573 1818 2921 121 2-13-10E 121 1096 1386 1582 1828 2934 1156 2-13-10E 121 1096 1386 1582 1828 2934 1156	38	SW SE NE 2-13-10E	127	1089	1371	1573	1818	2932	3000 BOPD
SW NE SE 121 1096 1386 1582 1828 2934 2-13-105	39	NW NE SE 2-13-10E	121	1105	1371	1573	1818	1262	121 BOPD
	04	RE	121	1096	1386	1582	1828	2934	1156 BOPH 24/hrs.

			and the second second second					
No. on Index Ma	p: Location	Lansing	: Datum elevations of formations*: : Lansing:Mississippingingforecommentanements violas	ns of ferms Kinderhooki	tions* an sliun ton:	Viola:	: Total Depth: : (Feet) :	Production
T+	NW SE NE 2-13-10F	131	1096	1384	1583	1836	1462	33.35 BO
42	SE SW SW	195	1216	1483	1665	1952	3430	D &
1+3	SE SW NW 6-13-10E	519	4611		1624	1948	3307	D&
444	NE WA SWA 11-13-10E	131	1106				2405	D&
542	NW NW SW 11-13-10E	129	1093	1434	1622	1878	3320	9
94	SF SF SW 13-13-10F	181	1219	1512	1705	1931	30+02	9
642	NE NW NE 22-13-10F	149	1123	1435	1611	1860	3360	Dè
148	ave sw 25-13-108	153	1203	1511	10/1	1912	3518	DAA
64	SW SW SE 27-13-10E	167	1209	1554	1670	1926	3290	DAA
50	SW SE SW 28-13-10E	144	1148	1363	1550	1782	3192	2911 BOPD

Table 1. (Con..)

No. on Index M	Map: Location :	Lensing:	Datum elevations of forwations* Lansing: MississippiansKinderhookian;Hunton;	elevations of forwations* sippian:Kinderhookian;Hun	tions* an; liunton;	Violas	Total Depth: (Feet) :	h: Initial Production
R	EW SW SE 28-13-10E	132	1065	1337	1524	1749	3181	2735 BOPD & 60% H20
52	SW NW SE 28-13-10E	142	1082	1375	1561	1789	3139	83 BOPD
53	SW 85 SE 28-13-10E	142	1083	1389	1602	1941	3308	D&A
4	NE NE SW 32-13-10B	140	1011	1433	1595	1827	3381	D&A
22	SW SE SW 33-13-10E	127	1064	1383	1563	1789	3206	2580 BCPD
26	SW NE SW 33-13-10E	122	1059	1374	1552	1780	3425	2936 BOPD
22	SW SW SE 33-13-10E	113	1059	1353	1535	1759	3190	3000 BOPD
28	SW SE NW 33-13-10E	136	1065	1362	1546	1764	3186	3000 BOPD
65	SW NE NW 33-13-10E	122	1068	1348	1541	1752	3203	3000 B0PD
60	SW NW SE 33-13-10E	111	1050	1352	1534	1753	3192	2990 BOPP. Tak

at susayu ??

-
nt
8
~
-
le
0

g			48	-	-		45			
: Initial Production	D&A	3000 BOPD	1574 BOPD 30% BOPD	3000 BOPD	3000 B0PD	176 BW	25 B0PD 91% H20	D&A	Dry	D&A
: Total Depth:	33h1	3221	3255]	3162	3182	2938	3314	3142	3652	3410
Viola:	1929	1785	1797	1750	1737		1907	1745		1800
1cn* n:Hunton:	1685	1565	1577	1522	1508	1505	1676	1556		1607
elevations of formation ssippianiKinderhock antH	1501	1369	1375	1346	1326		1508	1384		1435
<pre>perture clevations of formation* . Lansing:Mississipplen:Kinderhock.ansfiunton:</pre>	1132	1086	1075	1049	1059	1057	1172	1049	988	1112
Lansing	159	146	139	123	114	110	167	+26		148
No. on : : ndex Map: Location :	SW SE SE 33-13-10E	SVI NW NW 33-13-10E	SW SW NW	SW SW NE	SW NW NE 33-13-10E	SW NW NE 33-13-10E	SW SW SW 34-13-10E	SVI SW NW	NE SW NE 15-13-12E	SV SW NW 19-13-126
No. on : Index Map:	19	62	63	64	65	99	67	89	69	20

-
÷
R
ŏ
-
•
0 1.
ole 1.
sble 1.

No. on ndex He	No. on : s Index Map: Location:	Lensing	Datum elevelions of firmations" vi Lansings listissippianiKunderhoukianiHunton; Violas	ms of ferra	tions* a:Hunton:	Violar	Total Depth: (Feet) :	: Initial Production
2	SE SE NE 34-13-128	+10	1057	1388	1566	1725	3270	D&A
72	CSL SE NW 35-13-12E	+2+	1061				3640	Dry
73	NE SW SE 1-14-8E						625	D&A
74	c NE ↓ 2-14-8E						618	D&A
22	SWC SW 2-14-8E						520	D&A
76	CSW NW 11-14-8E						604	D&A
22	SW NE SW	109	1046	1378	1560	1773	3220	3000 BOPD
78	SW SE NW	130	1058	1396	1569	1790	3205	3000 BOPD
62	SW NW NE	126	1051	1377	1559	1767	3183	3000 BOPD
80	SW SW NE	131	1099	1389	1575	1777	3191	3000 BOPD

Table 1. (Cont.)

No. on : Index Map:	sp: Location	: Lansing	Datum elevations of formations* Lansing:Mississipplen:Kinderhookisn:Hunton:	ons of forma :Kinderhooki	tions*	Viole	: Total Depth:	Initial Production
81	SW NE NE	154	2111	1432	1692	1928	3306	DAA
82	SE SW NW	172	1176	1516	1701	1921	3250	D&A
83	NW SW NW 12-14-10E	151	1164	1500	1680	1876	3515	D&A
84	SE SE SE 17-14-10E	157	1130	3440	1610	1867	3398	D&A.
82	NW NW SE	168	1137	1460	1637	1840	3522	D&A
86	SW NW SE 20-14-10E	139	1601	4242	1567	1781	3490	D&A
87	SW SW SW 21-14-105	142	1109	1421	1572	1778	3472	D&A
88	SE SE NW 22-14-10E	170	1177	1532	1697	1902	3614	D&A
89	SW SW NE 23-14-10E	143	1166	1494	1682	1866	3409	D&A
96	NW NW NW 35-14-10E	152	1192	1526	1674	1856	3401	D&A

Table 1. (Cont.)

No. on nder Map	No. on : : Index Msp: Location :	: Lensing: M	stum elevation	Detum elevations of formalions* Lansing:Mississippien;Kinderhocklen;Hunton;	cns* isHunton:	Viole	: Total Depth: ; (Feet) ;	s Initial Production
91	SWC SW 17-14-11E						2665	D&A
32	NE NE SW 16-14-12F	440	1037	1384	1533	1664	3223	D&A
93	SWC NE 29-14-12E	+29	1031				5210	D&A
416	SW SW NE	188	THII	1465(?)	1625	1829	3446	D&A
35	SE SW NE	56	4111	1465	1613	1769	3294	D&A
96	SE NW NE	105	1130	1469	1616	1766	3335	108 BOPD & 11 BW
26	ALL-SI-S						1052	D&A
98	SE NE SE 29-14-10E	155	1150		1696	968T.	3492	D&A
66	NE NE NE 13-13-10E	156	1188	1499	1688	1921	3336	D&A
100	SE SW 55. 20-12-105	191	1150	1449(2)	1646	1965	3280	D&A

•T 9T081	(cont.)							
No. on : Index Map:	Location	: Lansin	Detum Rievations of Formations* LansingsMississippiansKinderhookiansHuntons	Rlevations of Formations* sippiansKanderhookiansHun	ns* sHuntons	Viols	: Tctal Depth:	the Initial Production
101	NE NV SE 23-12-10E	146	1172	1459	1654	1949	3330	D&A
102	SW SN NW 8-12-11F	134	1134	1390	1593	1907	3130	D&A
103	SE SW SE 2-15-10E	114	1120	1477	1634	1778	3218	135 BOPD &
104	NE SF. SE 2-11-11E	45	1042	1200	1426	1772	2889	Pumped 25.74 bbls oil w/sli.trace H20 in 8 hrs.
105	SW SE SE 2-11-11E	42	1052	1184	1433	1762	2865	324 36 PD &
106	CIW NW NE	64	1036	1205	1449	1770	2910	360 BOPD & 80% H20
107	NW NE NE	04	1037	1185	1+20	1767	2877	667 BOPD &
108	NW SE NE	51	1047	1210	1445	1771	2885	125 BOPD &
109	SE NE NE 11-11-11E	74	1062	1206	1448	1777	2880	D&A
110	SE SE SW 24-11-11E	32	1063	1226	1467	1765	2977	D&A

Table 1. (Cont.)

No. on Index Ma	No. on : Index hep: Location	: Lensing:M	<pre>2 Detum Tlevetions of Formeticns* c Lensing: Mississippian:Kinderhookian:Hunton;</pre>	MS Of Format	tions* an:Hunton:	Viola	(Feet)	*Total Depth; Initial * (Feat) *Production
111	NW SE NE 12-11-12E						1910	plugged
3112	SE NW SE 7-12-10E	173	6411	1376	1613	1986	3551	DAA
113	NW SE NE 12-12-10E	80					2215	DAA
4TT	NE SW SW 15-12-10E	184	1167	1421	1655	1969	3051	D&A
115	SW SW NW 23-13-8E	+63			T25+1	673	20+03	D&A
911	NW SW NW 13-13-95	204	+L/LT	1439	1629	1918	3436	D&A
117	SW SE SW 21-13-106	156	1105	1530	1620	1860	3370	D&A
118	NEC 5W 32-13-12F							D&A
119	SW NW SE 8-11-10E	158	1118	1442	1627	1842	3394	DAA
120	I7-14-10E							D&A

No.on Index Mar	No.on :	a Longingelife	Datus Nievistions of Formations*	Inderhooki	tions*	Taloty	Total Dep.h:	he Initial
		MOLES STATE STATES	11 TOTAN CANADA CO	TUNNET FONTE	a troop struit a troo	• 14040	100001	8 4 4 C C C C C C C C C C C C C C C C C
121	SE SE NW 32-14-10E	143	1093	1423	1578	1774	3396	D&A
1.22	SE SE SW 36-14-10E	102(7)	1150(?)	1503	1668	1824	3395	D&A
123	SE SINE	21	1601	1421	1581	1734	3404	D&A
124	SE SE SE 2-15-10E	120	1139	1499	1645	1803	3190	D&A
125	CIW SE NE 10-15-11E	26	1028	1423	1563	1696	3234	HO BOPD &
126	ALL-SI-II	64	1038	1420	1221	1712	3265	D&A
127	A Mi.So.Zeandale Nwc NW 28-10-9E	indale					1080	D&A

station :	Elevation :	r Formation	: Base of Florence
×	1321.75	Base of Funston limestone	1463.5
X2	1374.54	Base of Threemile limestone	1480.8
x3	1373.54	Base of Threemile limestone	1479.8
44	1322.24	Base of Middle ledge Crouse limestone	1478.9
42	1390.6	Base of non-cherty zone in Threemile (11.5 feet above base)	1484.3
X ₆	1375.95	Base of Threemile	1481.3
X7	1307.94	Base of Crouse limestone	1470.8
X ₈	1,01.1	Base of Schroyer linestone	1479.8
X9	1409.4	Top of Schroyer limestone	1482.0
X10	1421.94	Base of Florence limestone	1471.9
X11	1430.34	Top of Kinney limestone	1475.4
X12	1465.69	Base of Florence limestone	1465.7
X13	1393.39	Top of Schroyer limestone	1466.0
4TX	1458.07	Base of Florence limestone	1458.1
X15	1380.8	Top of cherty zone in Threemile limestone (8 feet shows here)	tone 1487.1

FIGURES 1 TO 6 INCLUSIVE

(in accompanying plate box)

GEOLOGIC FACTORS INFLUENCING OIL PRODUCTION IN WABAUNSES COUNTY

by

ALEXANDER ARSHAK KOTCYANTZ

B. S., Kanses State College of Agriculture and Applied Science, 1954

AN ABSTRACT OF THE THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Geology

KANSAS STATE COLLEGE OF AGRICULTURE AND APPLIED SCIUNCE

The area of investigation is Wabaunsee county, Kensán, Jator lies in the southwestern part of the Porest City basin, which is located in the Mid-Continent region.

The study covers the geologic factors, end structural features inducing the accumulation of oil in Wabsunsee county. The investigation was concerned with the mapping of key horizons of production; also, four subsurface, non-producing, stratigraphic zones, and one surface horizon, the base of the Florence limestone were mapped. Correlation of the surface, and subsurface structural maps, showed how the surface map of the Davis Ranch pool correlated with the subsurface maps.

The discovery of the Devis Ranch pool was in April, 1949. After its discovery, exploration activity by many oil companies was increased and resulted in the leasing of 750,000 acres. Surface mapping, core drilling, and seismic methods were employed. At the present, there are 127 wells drilled in Wabeunsee county, 31 wells are producing, one is a gas well, one is abandoned, and there are 96 dry holes. The main production is from the Viole limestone.

The structural traps in Wabaunsee county are associated with (1) folded anticlines, (2) faulted anticlines, and (3) gently dipping noses.

The major structural features, namely, the Nemsha uplift, the Forest City basin, and the Bourbon arch have been the principal factors in the accumulation of the oil. But, the single, most fundamental control lies in the configuration of the pre-Cambrian basement rocks.