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INTRODUCTION

The LR algorithm is a method for determining the eigenvalues

of a matrix. The basic operation utilized by the algorithm is

the triangularization of a matrix into th product of a unit

lower-triangular matrix and an upper-trie ular matrix. A unit

lower-triangular matrix is a .atrix whose diagonal elements are

all 1, and whose elements above the diagonal are all zero. An

upper-triangular matrix is one whose elements below the diagonal

are all zero.

The algorithm will first be introduced in its simplest form.

Following this a series of modifications will be developed to

improve the accuracy of the algorithm and to accelerate its

convergence. Gaussian elimination with pivoting is an elementary

tool in developing these modifications. This process is a basic

tool in numerical analysis problems dealing with systems of

equations in matrix form. A development of Gaussian elimination

may be found in any of the books listed in the bibliography.



THE LR ALGORITHM

The algorithm is based upon the triangular decomposition of

a matrix A, given by

[1] A s LR

where L is a unit lower-triangular matrix and R is upper-

triangular. If we now form the similarity transformation L AL

on the matrix A, we have

[2] L
1
AL = L

X
(LR)L = RL .

Hence , if we decompose A and then multiply the factors in

reverse order, we obtain a matrix similar to A. If we name the

original matrix A, , then the algorithm is defined by the

equations

™ A
s-1

= L
s-l

R
s-l '

Rs-l
L
s-l

= A
s

Thus A is similar to A - and by induction, to A
1

. This

process is repeated until we obtain a matrix A
g

such that L
g

= I.

which means the diagonal elements of R
g

are the eigenvalues of

A . Since A is similar to A, , these diagonal elements are also
s s 1

the eigenvalues of A, . This then is the LR algorithm.

Since the algorithm is based upon the triangular decomposi-

tion of a matrix A, we shall introduce a method for the triangu-

larization of a matrix. For the original matrix A, by [1],
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Theorem 1. If the matrix A is triangularized such that

A = LR, where L is unit lower-triangular and R is upper-triangular,

:i
det(A. .

)

det(A. .

)

ID

det(A. .

)

det(A. , . ,

)

i-l,i-l

, i = 1, n

where A. . is the leading principal minor of A of dimension

• th(i)x(i), and A., denotes this minor with its i row replaced by

• th
its j row

Ji

thIf we partition the matrices shown above along the i row

j • "th ,and i column, we have

"
A
ii

A.
i ,n-i L. . 1n

1

R..
11

R. .
"1

i,n-i

A . .

_ n-i,i A .

n-i ,n-i
_ i

I

^n-i,i 1

L •n-i ,n-i
3

—
R .

n-i,n-i



It follows that

[4] A. .
= L. -R. • •

11 11

Let A., denote the leading (i)x(i) principal
3^

submatrix of A with

. . .th
its i row

, , ., .th
' replaced by its 3 row . Let the same definition

hold for L. It follows that
1

A. •
=

31
L. .R. • •

31 11

Since L.. is triangular, so is L .
. , but

11 3 1
with k. .

31
on the

diagonal. Thus

det(L. .) = k.

-

1 3i

as all other diagonal elements are 1 . Hence

.

1

detCA^) = k. - detCR. •

)

31 H .

When i = j

detCA.^0 = det(R. • ) •

Hence

,

det(A..)
k.. = 31 , i = 1 , 2

,

. , n

.

3 1
detCA. .)

Similarly, we can find an expression for the r . . ,

13
using

Transposes

t 1 t

A. - = R. ;L. ,11 11 11

t t

A . . = R • • L
]i 31

i

ii

i

where A i s the transpose of A, Note that



Therefore

detd! . ) = 1 .

det(A..) = detCR.-) , detCA..) = det(R!.)
11 11 ' 31 31

T

By the definition of R.
.

,

and

t

, r. . detCR. .

)

det(R..) = -2J ii-
r
ii

det ( R .
.

)

ii

Therefore,

so that

det(R. . .
_•)

1-1,1-1

r. . detCR..) det (R. . )det (R. .

)

r.. = -ii J
1

= ii 21—
13

det(R.'.) detCR. . . ..)det(R!.)
11 i-l,i-l 11

det(A. . )det(A! .

)

detCA^.)
... - 11 3i - 31
1D det (A. , . , )det(A.' .) detCA. , . ,)i-l,i-l 11 i-l,i-l

t

Since A. . = A.
.

,

31 1:

det (A. .

)

5

detCAi-l,i-l>

where det(A
Q0

) = 1. Thus

det(A. .). . det (A. . )

r = 3J
, k .. = ii_

" J det (A. . ) ^ det (A..)



For a simple 3x3 matrix A,

A =

Rll a
12

a
13

a
21

a
22

a
23

a
31

a
32

a
33

L =

det(A
2]

)

det(A )

det(A
31

)

det(A
i;L

)

det(A
32

)

det(A
22

)

R

det(A
i:L

) det(A
12

)

det(A
22

)

det(A
11

)

det(A
13

)

det(A
23

)

det(A, .,)

det(A
33

)

det(A
22

)

With this notation established, we return to the algorithm.

The following assumptions concerning the matrix A will now be

made. We assume the eigenvalues are real and of different abso-

lute value and that the leading principal minors of X and Y are

non-zero, where X is the matrix of right-hand eigenvectors of A



and Y = X
,-1

Theorem 2. If A = LR, under the restrictions just stated,

L * I anc
s

[5]

n

R -* A *>

s s

X

n

as S -* «>

where X denotes the possible non-zero elements of an upper-

triangular matrix.

To prove this result, we establish relations between

successive iterations which will be used extensively. By [3],

Ac = f ^ .L - .
s s-1 s-1 s-1

Repeated application of this result yields

[6]
-1 -1

A = L n L
s

-1 -1
L L n A.,L n L,s-l-s-2 •'• u
2

u
l "1^2 •'• L

s-2
L
s-l

or

[7] L,L„ ... L _A„ = A..L, L„ ... LJ

l"2 s-1 s 1 1^2 J

s-1

Now define matrices T and U by
s s

[8] " L
-
L
2

L and U = R R ,s s s s-1 J.



These matrices are unit lower-triangular and upper-triangular

respectively. Consider the product T U .

T U = L, L„ ... L , (L R )R , ... R R
nss 12 s-1 s s 8—1 2 1

= L-i L„ . . . L , A R
-i

... R_R-
1 2 s-1 s s-1 2 1

= A-, L n L ... (L -, R -,) ... R Rt112 s-1 s-1 l 1

= A., L, L„ ... L n (A . )R „ ... Rr,R n112 s-2 s-1 s-2 I 1

2
— A- Li-. Ll ... V L r.i\ rs ) ... K,-..!^-,112 S- I S-

Z

I 1

2

112 S-3 S-2 S-3 / 1

3
** A -. Li -, L ,-. ... \ Lj ",-K /-. y ... ix,.* in.-,112 s-3 s-3 2 1

= A
S

A
l

Hence, repeated application of [7] yields

[9] T U = A^
s s 1

s
so that T U gives the triangular decomposition of A,



PROOF OF THE CONVERGENCE OF A

Equation [7] is a fundamental tool in the analysis. We

shall prove that if the eigenvalues A. of A, satisfy the relation

\
x \ > ]A

2 |
> |X

3 |

>
n

then in general the results of [5] are true.

Before giving a formal proof, we consider an example of a

matrix of order three. Note, that if X~ AX = diagCX,. ), v/here the

X. are the eigenvalues of A, then X is a matrix of righthand

eigenvectors of A, written as column vectors. This comes from

the relation AX = A.X, where X denotes the eigenvector corres-

ponding to X.. For simplicity, we denote the matrix X of right-

hand eigenvectors in the form

X =

x
11

::

21

>:
12

x
22

x
31

X
32

"13

x
33

and its inverse Y by

X
-1

= Y

*U Y 12 y 13

y 21 y 22 y 23

*31 y 32 33

If we denote T U = A, = B , then
s s 1
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'11 '12 C
13

B = A* = X X '21 '22

'31 '32 33

where

Cn = x
i
x
iiyn + x

2
x
i 2

y
2 i

+ A
3
x
i3y 3 i

c
21

= ^x2lYll + A^x
22 y 21

X^x
23 y 31

s s s
C
31

= A
l
X
31y ll

+ A
2
X
32 y 21

+ X
3
X
33y 31

c
12

= ^xllYl2 + A^x
12 y 22

+ A^x
13y 32

C
22 ~ A

l
X
21y 12

+ X
2
X
22y 22

+ X
3
X
23y 32

'32 X
l
X
31y 12

+ A
2
X
32 y 22

+ X
3
X
33y 32

'13 X
l
X
lly13

+ X
2
X
12y 23

+ X
3
X
13y 33

'23 X
l
X
21y13

+ X
2
X
22y 23

+ X
3
X
23y 33

C
33

= X
l
X
31y13

+ X
2
X
32y 23

+ X
3
X
33y 33

Now T U is the triangular decomposition of A-, and hence the

elements of the first column of T will correspond to the
s r

elements of the first column of L given on page 6. They are

, s det(B )

x
ll

x

det (b., , )



: .

, (s)
r
21 "

A
l
X
21y ll

+
-

A
2
X
22 y 21

+ X
3
X 23^31 _

det ^B
2l

)

A
l
X
lly ll

+
-

A
2
X
12 y 21

+ A
3
X
13y 31

det^l^

, (s)
T
31 "

A
l
X
31y ll

+ A
2
X
32 y 21

+ A
3
X
33 y 31 ^^Sl 5

A
l
X
llyll

+ X
2
X
12y 21

+ A
3
X
13 y 31

det(Bn )

Due to the ordering of the magnitude of the eigenvalues, \* will

dominate the denominator as s *• •». Hence if x, y i 0,

t
21

)
= X

21
/X

ll
+ °^

2
/A

l

)S

t
3?

) = x
31

/x
ll

+ 0.^ 2 -

/X
l'
)8

where 0(A
2
/X )

s
is a term(s) of order (X /X -}

S
, which approaches

zero since | X,
j

> |x
2

|.

Thus, the e lements of the first column of T approach the
s

corresponding elements in the triangular decomposition of X.

Similarly, for the elements of the second column of T , we have
s

'

t
(s)

= 1 __ det(B
22

)

det(B
22

)

[10] t<
3)

=

det(B
32

)
_

(X
1
X
2

)
S
a
1

+ U^)^ + ^2*3)%
det(B

22 ) (X
1
X
2

)
S
b
1

+ (X
1
X
3

)

S
b
2

+ (X
2
X
3

)

S
b

3

where

a
l

= Cxnx
32

- 5c
31
x
12

)(yily22
- y 21y12

)

a
2

= (X
11

X
33 " X

31
X
13 )(ylly 32 ~ y 31y12 )
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a
3

= U
12

X
33 " X

32
X
13 )(y 2ly 32 " y 31y 22

}

b
l

= (X
11

X
22 " X

21
X
12

)(ylly 22 " y 21y 12
}

b
2

= (x
11

x
23

- x
21

x
13

)( yily3 2
- y 31y12 )

b
3

= (x
12

x
23

- x
13

x
22 )(y 21y 32

- y 31Y 22
) •

If we now divide numerator and denominator by (X-^X^

s s
, . a n

+ (X /X ) a„ + (X„/X,) a
(s ) _1 3 2 2 3 1 3

32
b
1

+ (X
3
/A

2
)
S
b
2

+ (A
3
/X

1
)

S
b

3
'

Hence

t
(s)

5
*11*32 - *31*12

t o { i
a/
^,.

X
li

X
22 " X

21
X
12

provided ( x
i:l

x
22 " X

21
X
12 "* ^ ylly 22 ~ y 21y 12^ ^ °

'

We Can See

(s )

from [10] that the limiting value of t„„ is equal to the corres-

ponding element obtained in the triangular decomposition of X.

We have thus established that if

X = TU

then, provided x
11y 1 ]_

^ ° and ^ x
ll

x
22 " X

21
X12 ^ ylly 22 " y 2Iy 12^

i o,

T -> T .

s

Thus, we have shown in this simple example that the matrix

T tends to the unit lower-triangular matrix obtained from the
s

to

triangular decomposition of the matrix X of eigenvectors

,



provided the leading minors of X and Y are non-zero. Wow we

shall prove Theorem 2 in general for a matrix with distinct

eigenvalues . If we write

T U = A, s B
s s 1

then we have

(s)
t

:

31
detCB. . )/det(B. .

)

31 11

as we have proved earlier for s = 1

From the relation

we have that

B * Aj ? X diagU?) X
1

B. .

[11]

X
ll

X
12

x
21

x
22

x
i-l,l

x
i-l

5
2

X
jl

X
J2

>;
In

'2n

x. .

l-l ,n

x
: n J

x
iyn x

iyi2

s s
A
2
y 21

X
2y 22

i
s

a y 1 A yn^n2

A
3>Ii

^
s

A
2y 2i

1
s

X y .

1By the theorem of corresponding matrices (chapter 1, section 15)

det(B..) is equal to the sum of the products of the corresponding

1. See Bibliography
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i-rowed minors of the two matrices on the right in [11]. Hence

we may write

Y x ( ^ }
y
(i)

CA A A )
S

t
ji " v-1

v (i) ^i^V x
U)

y
U}

(A A A )

Z_ PiP2.--pZPiP2-.-Pi Pi p
2
... ?i

where x J is the i-rowed minor consisting of rows 1, 2,
PlP 2 ...Pi

. .
.

, i-1 and j and columns p, , p , . .
. , p . of X and y

1 / 1 ^1-^2 * ' i

is the i-rowed minor consisting of rows p, , p„, ..., p. and

columns 1, 2, . .., i of Y.

The dominant terms in the numerator and denominator are

sthose associated with (A_A„ ...A.) providing the corresponding

coefficients are non-zero. Thus, the dominant term in the

denominator is

det(X..) det(Y. . ) (X,

A

... A.)
S

11 11 1 2 1

where X.. and Y . . are the leading principal submatrices of
j.1 11 •

order i. If detCX..) det(Y..) is non-zero, we have
11 11

, v det(X..) detCY..) det(X..)
t
Cs) ^ 11 ii_ . 31
3± detCX..) det(Y..) detCX..)

11 11 11

showing that T + T, where T = XlT
1

. We have from [8], [6], and

[7] that '

-I -1 -1 -1
A = T .A, T , * T A,T = UX AXU
s s-1 1 s-1 1

, v -1
= U diag(A, ) U



showing that the limiting A is upper-triangular with diagonal

elements X

.

From the relation L T n T and equation [12] it can be
s-1 s

proved in a similar and quite tedious argument that

kf? }
= 0(X./X.) s

i] 1- 3

as s

From this we deduce, using the relation A = L R , that

a. . = OCX. /A. )
S

as 6 '+ » .

13 i 3

Hence, if the separation of some of the eigenvalues is poor, the

convergence may be quite slow.

It should be noted that in establishing these results, the

following assumptions have been made, either explicitly or

implicitly

.

i) . The eigenvalues are real and of different magnitude.

ii) . The triangular decomposition exists at every stage.

It is relatively simple to construct matrices, not otherwise

exceptional, for which this is not true. For example,

A

-3

This matrix has eigenvalues 1 and 3 but has no triangular

decomposition. However, this case can be handled through the

use of interchanges j which we will introduce later.

iii) . The leading principal minox^s of X and Y are all

non-zero

.
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POSITIVE DEFINITE HERMITIAN MATRICES

When A.^ is a positive definite Hermitian matrix we can

remove the restrictions of the last section. Thus

A
1

= X diag(A
i

) X
H

, where X
H

= X
-1

and where X is unitary and the X. are real and positive. Hence,

equation [10] becomes

y x (j) g(i) (XX X )
s

( S ) _
Z_, p 1p 2

...p
i Plp 2

. . . Pi Pl p
2
... Pi

;

Lji

T K I I

2
<* * X )

S

z_, P 1P 2
- .

-

p

± P x P 2
. . . p £

Now consider the class of aggregates p 1 p 2
...p. for which

X
p p ...p. ^ °- Let ^1^2 *

' ^i
be a member of this class such

that X X
Q

X
q

has a value greater than that of any otherH l "2
*

' *i

member. Thus the denominator is clearly dominated by the term(s)

in (X X X )
s

.

As for the numerator, we know from our definition of a a a
*1 ~2 -i

that no term exceeds the magnitude of (X X X )
s

, but thi
q± q

2
. . . q

is
l

term may have a zero coefficient. Hence, t)^ ) tends to a limit

which may be zero.

No assumptions are made about the principal minors of X and

hence we cannot assert that the limiting T is the matrix obtained

in the triangular decomposition of X. Accordingly, we proceed

by writing

T -> T
s °°



. 7

so that

-1 -1

S S-l S oo oo

Further.

[13] A = T
n
A,T - + T A n

T
S S-l 1 S-l oo 1 °°

so that A tends to a limit, say A . Now
s °°

-1 -1
R s L A -* IT A

n
T ,

S S S oo 1 oo '

and hence R tends to the same limit as A . Since R is trian-
s s s

gular for all s, this limit must be triangular also. It must

have the eigenvalues of A, in some order on its diagonal, since

it is similar, from [13], to A,.

Note that the proof is unaffected by the presence of multiple

eigenvalues or by the vanishing of some of the leading principal

minors of X, though the A. may not appear in decreasing order on

the diagonal of A .

It is now advisable to assess the value of the LR algorithm

as a practical technique. It does not appear to be very adequate

for the following reasons

:

i). Matrices exist which have no triangular decomposition,

in spire of the fact that their eigenproblem is well-conditioned.

Without some sort of modification, such matrices cannot be

handled by the LR algorithm. Further, there is a much larger

class of matrices whose Triangular decomposition is numerically

unstable. This instability can arise at any step of the algorithm.

which may lead to considerable inaccuracy in the computation of



lb

the eigenvalues. A method to eliminate this instability will be

discussed in the section covering inter-changes.

ii). The volume of computation is very high. The method
2involves (n-l)n multiplications at each step of the process. A

method of reducing the amount of computation will be discussed

in the section on Hessenberg matrices.

iii). The convergence of the subdiagonal elements of L
s

depends upon the ratio C^r+1
/A

p
) and will be very slow if separa-

tion of the eigenvalues is poor. This problem is discussed in

the section covering acceleration of convergence.

Thus if the LR algorithm is to be useful, it must be modified

to meet these criticisms. To accomplish this, we will use

elementary matrices which interchange or combine multiples of

the rows and columns of A.
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INTRODUCTION OF INTERCHANGES

In triangular decomposition numerical stability is maintained

by the introduction of interchanges if necessary. Consider an

analogous modification of the LR algorithm.

If A is any matrix, by Gaussian elimination, there exists a

product of elementary matrices, P, such that

[14] PA = R

where R is upper-triangular. We can therefore complete a

similarity transformation on A by post-multiplying R by P"
1

and

have

[15] PAP
-1

= RP"
1

.

In particular, when there are no interchanges necessary the matrix

P equals the matrix L and [14-] becomes

L
-1
A = R .

In this case the matrix on the right of [15] is RL.

As a numerical example of the modified process , we take a

3x3 matrix to illustrate non-convergence of the orthodox . LR

algorithm. The matrix A,, the corresponding A., and the X and Y

matrices are:

i -l i A, = 5

A
l

= 4 6-1 A
2

= 2

4 4 1 A
3

= 1



20

X

-1 -1

1

r

l

Y =

1 1

-1

z 1 -1 h

The leading principal minor of X is zero. Hence we cannot be

sure that the orthodox process converges, or, if it does, whether

it will yield the eigenvalues in descending order. In fact, in

this case the elements of T diverge. In Table 1, we have shown
s ° '

the results of the first three steps of the LR process , and from

the form of A divergence is obvious

.

s

1

20

4

r'2

•0.2

6

0.8

1

-5

1

100

TABLE 1

A.

1 -0.04

0.16

•25

1 -0.003

500

0.032

-125

Below: LR with interchanges

2

3.2 -i

-1.25 1 1.25'

1 0.8 1

A
3

A
4

5.157 3.040 -1.00 5.032 3.008 -1.00

-0.174 1.833 1.042

0.167 0.160 1.000

-0.03 1.968 l.OOi

0.032 0.032 1.000



Ai

A

5 3 -1

2 1

1

Tabie 1 also gives the results obtained using the modified

process. The first step in detail yields:

1-11
4 6-1 R(l,2) 1 -1

-1

R2-(1/4)R1

4 6-1
-2.5 1.2!

where R(l,2) indicates an interchange of rows 1 and 2, and

R2-(l/4)Ri indicates the subtraction of 1/4 the elements of row 1

from the corresponding elements in row 2

.

-1

-2.5 1.25 R3-R1

-2

-1

2.5 1.25

R3-.8R2

-1

-2.5 1.25 = R



-1
"1

-2.5 1.25 CC1.2) -2.5 1.25

r

C1+(1/4)C2 -2.5 1.25

< v

C1 + C3

r -i

-1.25 1.25

C2+.8C3 -1.25

3.2 -1

1.25 = A,

The choice of which elements to interchange in the first

step is an important one. Since we have two equal elements in

the first column, the second row is interchanged with the first

This choice is made so that the largest diagonal element, 6,

will become the leading element of the matrix after the corres-

ponding column interchange. This is done because we want the

eigenvalues in descending order on the diagonal.

Only one interchange is necessary in the first step. In

the subsequent steps we are using the orthodox LR technique, as

no more interchanges are necessary. The matrix A converges

very rapidly to an upper-triangular matrix. The use of inter-

changes has not only yielded convergence, but also gave the

eigenvalues in descending order.



2 3

The use of interchanges has given us numerical stability

in triangular decomposition for a simple reason. As may be

noted in the simple example on page 6, triangularization utilizes

a division by det(A .). The introduction of interchanges has

made detCA,.,) greater than or equal to all other elements in the

first column, hence, the first and second columns of L will

become increasingly smaller. Without this modification, the

orthodox LR technique performs this division without regard to

the relative size of a,,, and hence, as is seen in Table 1,

elements may increase in size.



THE UPPER HESSENBERG FORiM

It would seem that the volume of work involved is still

prohibitive when A is a matrix with few zero elements. If,

however, A is of a condensed form which is invariant with respect

to the LR algorithm, then the volume of work might well be

reduced.

The major form which meets this requirement is the upper

Hessenberg form, which is invariant with respect to the
x
modified

LR algorithm, and therefore a fortiori with respect to the

orthodox process. We first reduce a matrix to upper Hessenberg

form. We define a matrix to be upper Kessenberg form if a.. =

for i >_ j+2. This reduction may be accomplished in the following

manner. We will utilize a matrix, call it N, with the following

characteristics: N is unit lower-triangular, and the elements

of the first column, except for the diagonal element, are zero.

Hence, N has the form, for n = 5,

N = n
32

1
J.

n
42

n
43

1

n
52

n
53

n
54

1

For our initial matrix A, we now form the equation

[16] AN = NH



where H is upper Hessenberg
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LAI

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

1

n
32

EN]

n
42

n
43

n
52

n
53

n
54

1

54
1

[N]

10
n
32

1

1n
42

n
43

° n
52

n
53

n
54

[H]

h h h h h

h h h h h

h h h h

h h h

10 h h

where x and h denote possible non-zero elements. The elements

of N and H can be computed column by column. Multiplication of

[16] by N yields

N
1
AN = H

Hence, A is similar to H, an upper Hessenberg matrix. For a

further discussion of this method, see Wilkinson (chapter 6,

2section 11) .

2. See Bibliography
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We now return to the invariance of the upper Hessenberg

form with respect to the LR algorithm. We want to show that

after one complete step of the algorithm A
?

is of upper Hessen-

berg form. This is done by induction. This can be done in this

manner since the elementary operations used to triangularize A,

will involve only rows 1 and 2 at step 1, only rows 2 and 3 at

step 2, and so forth. Hence, after (r-1) steps of the post-

multiplication by these factors, only the first (r-1) columns

of the matrix will have been affected. Thus, assume that after

(r-1) steps the matrix is of upper Hessenberg form in its first

(r-1) columns and triangular in the remaining columns. For the

case n = 6 , r = 4 , it is of the form

X X X X X X

X X X X X X

X X X X X

X X X X

X X

X

where x denotes possible non-zero elements, and the elements

not shown are ail zero. The next step will be the interchange

of columns r and (r+1) if rows r and (r + 1) were interchanged; if

not, there is no effect. The resulting matrix is therefore of

the form (a) or (b) shown below.



(a)

X X X X

X X X

X X X X X

X X X X

x x

X

(b)

X X

X

X X

X X
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X X X X X X

X X X X

X X

X

where (a) shows the effect of an interchange.

Next a multiple of column (r+1) will be added to column r

and the resulting matrix will be of form (c) , from (a), or (d)

,

from (b)

.

(c)

X X X X X X

X X X X X X

X X X X X

X X X X

x x

(d)

X X

X X X X

X X

X X X X X

X X X X

X X

X

In either case the matrix is of upper Hessenberg form in its

first r columns and Triangular otherwise; the extra zero element

in (c) being of no significance. Hence, the upper-Hessenberg

form is invariant with respect to the modified algorithm.

2There are n /2 multiplications in the reduction to triangular

form and n /2 in the post-multiplication, yielding n
2

steps in

one complete cycle of the LR algorithm, compared with (n-l)n
2

for a full matrix.
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ACCELERATION OF CONVERGENCE

Although a preliminary :reduction to upper Hessenberg form

reduces the volume of comput ation considerably, the modified LR

method will still be somewha t uneconomical without improving

the rate of convergence.

As we have seen for a g>sneral matrix, the elements in

positions (i,j), i > j , tend
s

to zero as (A. /A.) does. For
i :

Hessenberg matrices the only non-zero subdiagonal elements are

those in positions (i+l,i). Now consider the matrix (A - pi),

where p is some real number. We will discuss a method of

selecting p later.

The matrix (A - pi) has eigenvalues (A. - p) and, for

(s)example, the element a ,
'

n,n-l tends to zero as [(A - d)/(A - - p]n n-1

does . If p is a good approx imation to A , the element
n

'

a ., will cecrease rapidlyn,n-i *
J Thus it would be to our advantage

to use (A - pi) rather than
s

A .

s

Note, in particular, if p is exactly equal to A , then the

(s)element a . would be zero
n ,n-l after one iteration. This may be

seen by considering the tria:ngularization process . None of the

pivots (the diagonal element;3 of the matrix R) can be zero

except the last, because at iaach stage in the reduction the pivot

is either a. + , -or some oth<5r non-zero number and we are assum-

ing that no a. + . . is zero originally. Hence, since the deter-

minant of (A - X I) is zero,
n '

and R is the form



X

X

X

X X

X X

X X

X X

0_

the whole of the last row being null. The subsequent post-

multiplication merely combines columns and after the iteration

the matrix is of the form

X X X X

X X X

X X X

XXX

The previous discussion suggests the following modification

th
of the LR method. At the s

J

stage we perform a triangulr

decomposition of (A^ - k I) , where k is some suitable value,
s s s '

rather than of A . We therefore produce the sequence of matrices
s F ^

defined by

A - k I = L R
s s s s

RL + k I = A ^,
s s s s+1

Thus

A ,

s+
R L + k I = L

X
(A - k I)L + k I = L

TA Lss s ss ss s sss



and hence the matrices A are again similar to A,. In fact

\ = L
_1

A L = if
1!/"1 , A n L ,

L

o
= L~ . . . L~ L~ A-.L-.Lj ... L

s+1 s 3 s s s-1 s-1 s-1 S S S 1 X J. I

ov

L
1
L
2

•*• L
s
As+l

= A
1
L
1
L
2

'•• L
s

'

This formulation of the modification is usually described as LR

with shifts of origin and restoring, because the shift is added

back at each stage. We have

L
1
L
2

••• L
s-l

(LsV R
s-l '•• R

2
R
1

- L
1
L
2

••• L
s-l

(A
s

" k
s
I)R

s-l •'• R
2
R
1

= (A
1

- k
s
I) LlL 2

... (L^R^) ... Vi

= (A
1

- k
s
I)(A

1
- k

s _ 1
I)L

1
L
2

... L
s _ 2

R
s _ 2

... R^

= (A, - k I)(A
n

- k .1) ... (A, - k I) .

1 S 1 S-1 1 -L

Hence , writing

T
s

= Ll L 2
... L

s
, U

s
= R

s
... R^

we see that T U gives the triangular decomposition of
s s

n (a
i - k

i
n

i=l

the order of the factors being immaterial.

In a practical sense we are now faced with selecting a

suitable sequence of k so as to give rapid convergence. We



'..

(s) (.<=

)

expect , in the matrix A , that a . and a will approach
s n,n-l nn ri

zero and A respectively. Hence it is reasonable to take k =
n c J

s

a„„ as soon as a . becomes < 1 or a indicates it isnn n,n-l nn
C s )converging. In fact, it is simple to show that when a , is^ n-n-1

of order £ then, if we choose k = a , we have
s nn '

(s+1) n , 2,a . = 0(e ) .

n,n-l

(s).For (A - a^'i) with n = 6, is of the form shown in matrix (a)
O ill 1

below

.

(a)

X X X X

X X X X X

X X

X

XXX
XXX
XXX

£

(b)

X X X X X X

X X X X X

X X X X

XXX
a b

e

(c)

X X X X X

X X X X X

XXX X

XX X

a b

-be/c

Consider now the reduction of (A - a I) to triangular form
s nn

by the use of Gaussian elimination with interchanges. Matrix (b)

above indicates the form of the matrix when only the last row
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remains to be reduced. The element (a) in row (n-1) will not

(s

)

be small unless a happened to bear some special relationship

to the leading principal minor of order (n-1) of A , i.e., if
s '

the shift was an eigenvalue of this minor. Then no interchange

would be necessary in the last step and we would take row (n)

- e/a row (n-1), i.e., R(n) - e/a R(n-l). The triangular matrix

is thus of form (c) above.

When we have post multiplied by all factors except those

involving the last two columns , the current matrix will be of

form (a) or (b) given below, depending on whether an interchange

did or did not occur, i.e., C(n-l,n).

x

(a)

x x

XXX

X

X X X X X X

X X X X

X

b

be/a.

x x

(b)

x x

X X X X X

X X X X

XXX
x a

x

X

X

X

-be/a

To complete the post-multiplication, we add e/a times column n

to column (n-1), no interchange being necessary in general.

The final matrix is of form (a) or (b) below.



(a) (b)

XXX
X X X X

XXX
X X

X

X

X

X

be/a

-b£
2

X

X

X

-bs

X X X

X

X

X X

X

X

a

-be
2

X

Hence, axter restoring the shift, we have

(s+1) (s) , ,

a = a be/a,
nn nn '

(s + 1)
i ,
n ,n-l

- 2,2
-be /a

, ^ (s+1) .
,

. , (s+1) . - . 2
so tndi. a is lnaeea converging and a , is or order e ,nn ° & n ,n-l '

which we wished to show. Note that any interchange which may

take place in the other steps of the reduction are of little

significance

.

(s)
in general, once a 1 has become small, it will diminish° n,n-l '

rapidly in value. When it is negligible to working accuracy we

(s)can treat it as zero and The current value of a is then an
nn

eigenvalue. The remaining eigenvalues are those of the leading

principal submatrix of order (n-1). This matrix is itself of

Hessenberg form so that we can continue with the same method,

working with a matrix of order one less than the original.

Since we are expecting all sub-diagonal elements to tend to zero,

(s)
n , 2 ^^y already be fairly small, and in this case we can



immediately use a , , as the next value of k .

J n-l,n-l =>

Continuing in this way we may find the eigenvalues one by

one, working with matrices of progressively decreasing order.

The later stages of the convergence to each eigenvalue will be

quadratic generally, and moreover, we can expect that when

finding the later eigenvalues in the sequence, we shall have a

good start.



CONCLUSION

The basic LR algorithm, although it introduces the basic

method of operation, has been seen to be quite tedious and quite

possibly inaccurate. However, the introduction of interchanges,

reduction to upper Hessenberg form, and shifts of origin have

given numerical stability, a reduction of the volume of computa-

tion, and accelerated convergence respectively. These modifica-

tions have made the LR algorithm a somewhat practical method for

the computation of the eigenvalues of a matrix with the restric-

tions that were placed upon it.

These restrictions, mainly that the matrix have real

distinct eigenvalues, are still quite prohibitive. It is

generally quite difficult, if not impossible, to determine

whether the matrix A has distinct real eigenvalues. There exist,

however, more advanced methods which are able to handle matrices

with these restrictions. The QR algorithm, which is analogous

to the LR technique, is more adaptive to these limitations.

For a discussion of the QR algorithm, see Wilkinson (chapter 8,

3section 28 )

.

3 . See Bibliography
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The LR algorithm is an iterative method for determining the

eigenvalues of a matrix. The basis of the algorithm is the

triangularization of a matrix A, into the product of a unit lower-

triangular matrix L and an upper-triangular matrix R. This yields

the equation A, = LR. Multiplication of these matrices in reverse

order yields a matrix similar to A,, i.e., RL = A
2

. The algorithm

is thus defined by the equations

A . = L .R .

s-1 s-1 s-1

R
n
L . = A .

s-1 s-1 s

As s approaches infinity, L * I and R » A ... Hence, the desired

eigenvalues of A- are the diagonal elements of R . This is true

in general, however, only if the eigenvalues are distinct and

real. This orthodox procedure can be numerically unstable and

quite slow to converge, unless some modifications are made.

The introduction of Gaussian elimination with interchanges

eliminates the problem of numerical instability by assuring That

leading principal submatrices of A are non-zero.

The process still requires a large amount of computation.

To relieve this problem, the matrix A is reduced to an upper

Hessenberg matrix. The upper Hessenberg matrix is invariant with

respect to the LR algorithm. This reduces the computation from

(n-l)n multiplications to n
l
multiplications per step.

The problem of the possible slow rate of convergence of the

algorithm is remedied by the use of shifts of origin. By working

with the matrix (A - pi), where p is an approximation to A
.

, the



rate of convergence can be considerably improved. When the sub-

diagonal element (a.,..) is less than 1, choose p = a...

These modifications definitely improve the practical

application of the basic algorithm, however, two major restric-

tions were assumed in the development. It was assumed that the

matrix A had real and distinct eigenvalues. These two limitation:

are difficult to recognize in most problems , and they require

additional methods to handle them. However, if these limitations

are not present,. the modified LR algorithm will yield the eigen-

values of the matrix A, and the method will be practical to use.


