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INTRODUCTION

This report is concerned with particular mappings of sets and various

properties of these mappings. Sets will be denoted by capital Roman letters;

objfects in a set by the letters a,b..., or merely by the numerals l,2,...,n.

All groups and sets will be understood to be finite, and sets are non-null

unless otherwise specified. The order of a set M is the number of objects

in the set and will be denoted as o(M). :,

*, . -

Definition 1. A permutation of a set M is a one-to-one mapping of M

onto M(6,l) .

If a set M contains n objects, o(M) = n, it can be written as M =

{l,2,...,n}, or as M = {a^.a^, • . . ,a^} . For a permutation f, (a^)f = a^

means that a. is the image of a. under f; Mf = M. A permutation can be

represented in various ways. One of the most elementary but very cumber-

some is the two row form, where

^
/I 2 ...m \

I a^ a„. . .a /
\ 1 2 m/

means that 1 is mapped onto the number a^ under f, 2 onto a^) •••,!" onto a^.

A more convenient notation arises when f is such that (a )f = a^, i.a.^i. =

a^,...,(a Jf = a , (a )f = a, . The symbol (a^a„...a^), called an m-cycle,
3 m-1 m m 1 1 z m

denotes this permutation and is referred to as cyclic notation. Note that

(a,a„...a ) = (a.a. ...a a^) = (a a^.-.a ^) . It will be shown later that^12 m 23 ml ml m-1

every permutation can be expressed by using cyclic notation. The degree

The notation (6,1) refers to page 1 of reference number 6 in the

bibliography. Similar notation is used throughout this report.
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of a permutation is the number of distinct objects it maps onto objects

other than themselves. Two permutations f and g are said to be equal if

(a.)f = (a.)g for all a. eM.

The "identical" permutation is the identity mapping e where (a^)e = a^

for all a.eM.' The inverse of any permutation g, denoted by g , is the
1

one-to-one mapping such that if (a^)g = a , then (aJg = \- ^he product,

or composition, of two permutations f and g is defined to be the one-to-one

mapping fg obtained by first performing f and then g; that is, (a)fg = (af)g

for all aeM. Thus, if M = {l,2,3,4,},

which illustrates the fact that permutation multiplication is, in general,

not commutative. It is associative, however. ' .

The following well-known theorem is easily proved with the above

definitions. , .

'

Theorem 1. For any set M with n>l elements, the set of all permutations

of M forms a group under permutation multiplication.

This particular group is called the symmetric group on M and will be

denoted by Sym(M) . Since there are nl permutations of n elements, o(Sym(M))

= nl and Sym(M) is said to be of degree n. The degree refers to the number

of objects actually mapped by Sym(M) ; in this case Deg(Syra(M)) = n = o(M).

Now consider a permutation f eSym(M) . If a,beM, define a = ^b if and

only if b = (a)f''' for some integer i. This defines an equivalence relation

on M.

1) For every aeM, a e a, since a = (a)f = (a)e = a.
,



2) For a,beM, if a 5 b, then b = (a)f''' for some integer i so that

a = (b)f . Whence b = ^a.
I

3) For a.b.ceM, if a = ^b, b = ^c, then b = (a)f , c = (b)f^ for some

integers i and j . Then c = ((a)f^)f^ = (a)f^f^ = (a)f^'^^. This

implies a H ^c.

This equivalence relation induces a decomposition of M into disjoint

subsets, namely the equivalence classes. In particular, since M is finite,

if aeM there is a smallest positive integer k such that (a)f = a. Then

the equivalence class containing a consists of the elements a, (a)f

(a)f^~"'", and f is the k-cycle (a (a)f (a)f ...(a)f ~
) on the elements in

this equivalence class. Thus given any permutation f on a set M, M can be

decomposed into equivalence classes and f is a cycle on each disjoint set.

Then f can be represented as the product of these disjoint cycles, since

the image of every element under f will be known. This representation is

unique except for the order of the cycles and the alternate ways each cycle

can be written. It is customary to omit the cycles of length one, it being

understood that objects omitted are mapped onto themselves under the par-

ticular permutation. For example,

/12453)
= (1)(2)(345) = (345).

When a permutation is a cycle, for example f = (a a . . .a ) , the powers

of f are easy to compute if the m objects are visualized as being arranged

in a circle. In general, f maps each object a onto a , , where i+k is

reduced modulo m. Then f will map each object back onto itself, and thus

the order of a cycle (in a group) is equal to its degree.



Lemma 1. The order of a permutation f is the least common multiple

of the orders of its cycles.

Proof: Let f be a permutation and f = g g_...g be the cyclic decom-

position of f, where the order of g. is u.. If aeM, a belongs to one of

\ ^
^

t
the cycles, say g , then (a)g, = a. Also (a)f = a if t is a multiple

of u . Conversely, if (a)f = a,aegT^ then t must be a multiple of u^. Then

(a.)f^ = a. for all a.eM if and only if t is a multiple of each of the u ,

in which case f = e. The smallest such t is the order of f and this is

the least common multiple of {u, ,U2,...,u }.

The simplest non-identical permutations are the 2-cycles, called

transpositions. Every permutation is a product of transpositions since

(12... n) = (12) (13) . . . (In) , but this representation is not unique. How-

ever, the following well-known lemma pertains to representing a permuta-

tion as a product of transpositions (a. a.).

Lemma 2

.

In any representation of a permutation by transpositions,

the number of transpositions is always even or always odd.

Definition 2. If a permutation is expressible as an even number of

transpositions, it is called an even permutation. If it is expressible as

an odd number, it is called an odd permutation.

The following facts follow immediately. A transposition is an odd

permutation; the product of two even (or odd) permutations is even, while

the product of an odd and an even (in either order) is an odd permutation,

and the identity permutation is even, since e = (ab) (ba) .



Theorem 2. The even permutations on a set M form a normal subgroup

of index two in Sym(M) (2,59)

.

.

Proof: Let Alt(M) be the set of all even permutations on M and

f,g£Alt(M). Then fg£Alt(M) since the product of two even permutations

is even. Suppose f~''"Mlt(M). Since feAlt(M), ff~ is odd and ff i!lAlt(M),

but this a contradiction since ff" = eeAlt(M) . Thus f eAlt(M) for any

feAlt(M) and Alt(M) is a subgroup of Sym(M) , called the alternating group.

To show that Alt(M) is normal in Sym(M), let W be the group of real numbers

1 and -1 under multiplication. Define the mapping T of Sym(M) onto W by

(f)T = 1 if f is an even permutation, (f)T = -1 if f is an odd permutation.

By the rules for multiplication of even and odd permutations, T is a

homomorphism of Sym(M) onto W. That is, if f ^,f2eSym(M) , h^,h2eW, and

(f )T = h , (f )T = h^, then (^2^2^^^ " ^1^2' '^^^ kernel of T is precisely

Alt(M), since every even permutation goes onto 1, and being the kernel of

a homomorphism, Alt(M) is a normal subgroup of Sym(M) . Now since (a^a^)

is an odd permutation, the right coset Alt(M)(a a^) consists entirely of

odd permutations. If feSym(M) , f is either even or odd; if even feAlt(M);

if odd fCa^a^) is even, f (a^a2)eAlt(M) and f = (f (a^a2)) (a^a2) eAlt(M) (a^a^)

Thus Sym (M) = Alt(M) + Alt(M)(a a ) where the plus sign indicates the

cosets Alt(M) and Alt(M)(a^a^) are distinct and exhaust the elements of

Sym(M) . Since there are two right cosets of Alt(M) in Sym(M) , Alt(M) is

of index two in Sym(M) and the theorem is proved.

The last part of the proof, that Alt(M) is of index two in Sym(M) , is

sufficient to prove that Alt(M) is a normal subgroup. If Alt(M) is of

index two, then



„ o(Sym(M)) n! . ^ /*-,./vrNN nJ
2 =

o(Alt(M))
=

o(Alt(M) ^° ^^^'^ o(Alt(M)) = --

There are as many even permutations in Sym(M) as there are odd, since

right cosets of Alt(M) contain the same number of elements. There are

several interesting properties of alternating groups. These will be dis-

cussed later when stronger concepts are available.

CAYLEY'S THEOREM :

[.

When groups first arose in mathematics they usually came from some

specific source and in some very concrete form. Very often it was in the

form of a set of transformations of some particular mathematical object.

In fact, most finite groups appeared as groups of permutations, that is,

as subgroups of SjmiCM) . The English mathematician Cayley first noted

that every group could be realized as a subgroup of Sym(M) for some M(3,60).

Theorem 3. Every group G is isomorphic to a permutation group of its

own elements (2,9). ^ , >.

Proof: Let G be a group with k elements and identity element i. For

each geG, define the mapping R(g) : (x)R(g) = xg for all xeG. For a fixed

g this is a mapping of the elements of G onto themselves, since for a given

yeG, (yg )R(g) = yg g = yi = y. It is also one-to-one since if x .x^eG

and x^g = x„g, then x^ = x„ by the cancellation law for groups. Thus R(g)

is a permutation for each g and in the two row form



To show that G is isomorphic to G = {R(g)|geG}, consider the following.

The mapping R(g^)R(g2) is the mapping (x)R(g^)R(g2) = (xg3^)R(g2) = (xg],)g2

= x(g^g2) for all xeG so R(g^)R(g2) = R(gig2) •
Moreover, (i)R(g^) = g^,

(i)R(g2) = g2 so if g^ ^ g^, then R(g^) ^ Ug^) - Thus the mapping F.

(g)F = R(g), is an isomorphism of G onto G , a group of permutations, and

the theorem is proved. Moreover, R(i) = e, and the inverse of R(g) is

RCg"-"-) since RCg'^RCg) = RCg'^^g) = R(i) = e implies (R(g))" = R(g" )•

A permutation is said to be regular if all of its cycles are of the

same degree. Every permutation in G is regular. If R(g)eG ,
suppose the

element g of the original group G is of order r, g = i. To resolve R(g)

into cycles, let x be any element of G. Then R(g) contains the cycle

(x^x g...x g^""*")
. If x„ is any other element of G not in this cycle, form

(x x g...x-g^ ). This process can be continued until all elements of G

have been accounted for. Thus R(g) = (x^x^g...x^g )(x2X2g...X2 ;•

(x X g...x g'^"
) and every cycle is of the same degree so R(g) is regular,

m m° m

For this reason G is called the right regular representation of G. It is

also possible to consider the permutations L(g) : (x)L(g) = gx for all xeG.

The group of these permutations is called the left regular representation

of G. L(g) is anti-isomorphic to G. It is one-to-one but "reverses"

multiplication, that is, L(g^g2) = L(g2)L(g2). Thus a group has more than

one representation in terms of permutations; in fact, it can have represen-

tations of different degree. It is sometimes advantageous to keep the

degree as small as possible; note that the right regular representation

G is a subgroup of Sym(G) ,• where o(G ) = k, o(Sym(G)) = kl and G is

rather "lost" in Sym(G ) . It is possible to find smaller sets M such that



G will be isomorphic to a subgroup of Sym(M) , but this is presented later.

The main advantage of Cayley's theorem is that it enables one to represent

a purely abstract group by a permutation group, as in the following example.

Example 1. Let G be the abstract non-Abelian group of order 6 defined

by the following table (4,81).

i a b c d f

1

a

b

c

d

f

i a b c d f

a b i f c d

b i a d f c

c d f i a b

d f c b i a

f c d a b i

Then the mappings R(i) = e, R(a) = (iab)(cdf), R(b) = (iba)(cfd),

R(c) = (ic)(af)(bd). R(d) = (id)(ac)(bf), R(f) = (if ) (ad) (be) make up the

group G"*" which is isomorphic to a subgroup of Sym ({l,2,3,4,5,6}) . On the

other hand G is also isomorphic to Sym ({l,2,3}) under the mapping E; (i)E

= (1), (a)E = (123), (b)E = (132), (c)E = (12), (d)E = (13), (f)E = (23).

It will be shown later by using cosets, that some groups can be shown

to be isomorphic to subgroups of Sym(M) for quite small o(M); however, no

smaller o(M) can be obtained in the above example.
.

The following lemma is an application of Cayley's theorem for abstract

groups (6,10). .
-T • • ' .-•• *• - ':*

Lemma 3. If o(G) = 2u with u odd, then G contains a normal subgroup

of order u. v
'•

Proof: G contains an element g of order 2 by one of the Sylow theorems.

From this it follows that R(g) is a product of u transpositions and is there-

fore an odd permutation. Hence G contains odd permutations, and therefore



the subgroup N""" consisting of all the even permutations of G is a normal

subgroup of index 2. The desired normal subgroup of G is then the subgroup

1 "• .

of G to which N corresponds. »

CONJUGATES IN A SYMMETRIC GROUP

The idea of conjugates is a very fundamental concept of elementary

group theory. Conjugate permutations will be approached by first consider-

ing the idea of a partition. . :
.

Definition 3. Given the integer n, the sequence of positive integers

n ,n , ...n^, .n^in2<.. . -in^ constitute a partition of n if n = n^+n^+.-.+n^

(3,75). •

Let p(n) denote the number of partitions of n. As an example, p(4)

= 5 since 4=4, 4=1+3, 4=1+1+2, 4=1+1+1+1. and 4=2+ 2.

Every time a permutation in Sym(M) is written as a product of disjoint

cycles, with 1-cycles included, a partition of n is obtained. A permutation

f£Sym(M) is said to have the cycle decomposition {n^n^.-.n^} if it can be

written as the product of disjoint cycles of lengths n^,n2...n^, n^fP^^. .

.

<n^. Thus when n = 9, f =
(j ^ ^ ^ ^ ^ ^7

9 ^]
= (1) (23) (456) (7) (89) has

cycle decomposition {1,1,2,2,3} and 9=1+1+2+2+3.

It is often important to know how many permutations belong to a certain

partition of n. The formula for the number of permutations is due to Cauchy

(4,73). If p. is the number of cycles of degree j corresponding to the

partition Ip + 2p + . . . + kp , then the exact number of distinct permuta-

tions with the cycle decomposition corresponding to this partition is
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nl

It will be shown that this is the number of permutations in any conjugate

class. ; , •
'

A simple rule for computing products such as h gh is necessary for

the following discussion. Suppose that geSym(M) , and (a^)g = a . For any

heSym(M), suppose (a.)h = b, (a.)h = c. Then (b)h" gh = (bh" )gh = (a^)gh

= (a.g)h = (a.)h = c. Thus to write h~ gh, one replaces every symbol in g

by its image under h. This is illustrated when g and h have been decomposed

into cycles. Suppose g = (123) (4) (6587) and h = (158) (47362) . Then to write

h~ gh, in g replace 1 by its image under h, which is 5, 2 by 4, 3 by 6,...

7 by 3. Thus h'-'-gh = (546) (7) (2813) .

Theorem 4. Two permutations f,geSym(M) are conjugate in Sym(M) if

and only if f and g have the same number of cycles of any order.

Proof; Suppose f and g have the same cycle decomposition {r,s,,..,t}.

2sLet g = (^11- --^Ij-) (^21 ^2s^---^^mr'-^mt^
^""^ ^ = (b^^...b^^)(b2]_...b,J

. . . (b
ml'

b ) . Then if
mt

h =
a^T...a^ a»..«.a^...a _,
11 Ir 21 2s ml mt

\^ll*"^lb^21-"^2s'
.b - . . .b ^ml mt

heSym(M) , h gh = f by applying the rule above, and so f and g are conjugate.

Now suppose f and g are two conjugate permutations, f = h gh for some

heSym(M) . Then by the rule to compute h gh, f and g have the same cycle

decomposition. , ,
^ ,, , ..

'
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All the elements conjugate to a given element g are said to belong to

the conjugate class of g. The conjugate relation is an equivalence relation

on the set of elements forming a group

.

Lemma A. The number of conjugate classes in Sym(M) is p(n).

Proof; Each partition of an integer n corresponds to a particular

decomposition, and two permutations with the same cycle decomposition are

conjugate. -

^;

The above discussion can be applied to find all the elements

commuting with a given permutation. A fundamental theorem in group

theory is that the number of elements conjugate to an element geG is

the index of the normalizer of g in G, [g:N, v . Combining this fact

with Cauchy's- formula, one can determine the normalizer of a particular

element

.

Example 2. Given the permutation (12)eSym(M), what permutations

commute with it? Any of the (n-2) 1 permutations which leave 1 and 2

fixed commute with (12), and it commutes with itself. All of the 2 (n-2)

I

elements (12)^g for i = or 1, g fixing 1 and 2 commute with (12); how-

ever, there might be more. The number of distinct transpositions in Sym(M)

can be computed from Cauchy's formula. A transposition corresponds to

the cycle decomposition with (n-2) 1-cycles and one 2-cycle. In Cauchy's

formula,

'
'^ ' ^

, .
n! n(n-l)

i""^ (n-2): 2^1 : ^

.

.

'•

is the number of distinct transpositions, or by Theorem 4, the number of



^
':

;. .. 12

conjugates of (12). Suppose r = 0(^(12)'* ^^^" ^ ^^ ^^^ number of elements

commuting with (12). Hence ...

n(n-l) r„ ,^. „ 1 o(Svm(M)) _ nl-i^ = |Sym(M):N(^2)| " o(^^^^^) ' r

and r = 2(n-2)I. This many elements have already been exhibited so the

general element f commuting with (12) is f = (12) g, i = 0,1, g fixing 1 and

2.

As another application, consider the cycle f = (12. . .h) eSym(M) . It

will be shown that f commutes only with its own powers. Certainly it does

commute with the n powers f^, i = l,2,...n. Any n cycle is conjugate to

f; by Cauchy's formula there are (n-1) ! distinct n-cycles in Sym(M)
.

If

r = o(N, .), (n-1) I = ^^ and r = n. Then there are n elements commuting

with f, precisely the n powers of f(3,76).

TRANSITIVITY

The concept of transitivity distinguishes permutation groups from

abstract groups in that transitivity applies only to the former. In this

section permutation groups other than symmetric groups will be considered.

Every group is a subgroup of some symmetric group.

Theorem 5. Let G be a subgroup of Sym(M) and S^M. Then Gg =

{feO: (b.)f = b. for every b.eS} is a subgroup of G and H = {feG: Sf = S}

is a subgroup such that G is normal in H(2,55).
' "! .

Proof: Let S =
["^ly^i*

"
'^-J ' ^^ Sl^S'^2^^S' ^^^^ (b^)g]^g2

'
-

= (h^?.{)%2^ - (b^)g2""^ = (b.g2)g2~'^ = (b.)g2g2"'^ = ^^^^^ = b^. and hence
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'< i

"
'-.

G is a subgroup. If h^eH, h2eH, then (S)h^h2~ = (Sh^)h2 = i5)h^

(Sh2)h2~"'" = (S)h h
"' = (S)e = S, so H is a subgroup. If heH, geGg, then

(b.)heS, (b.)g = b., h'-'-eH, where (b Jh"-'" = b . Then (b )h" gh = (b h~ )ghill 1 J J "J

= (b.)gh = (b.g)h = (b.)h = b., which implies h~ gheCg and thus Gg is a

J J J '

normal subgroup of H. .

A special case of the above theorem is obtained when S = {a^}.

Then G = G is the set of permutations which fix the element a , and
S a. '•

,

1

G = G^ = H is a subgroup of G.
a . b •'

X

An orbit of G5Sym(M) is a set t5m such that there exists an aeM for

which T = aG(5,255). The different orbits of G partition M.

Theorem 6. If GfSym(M), aeM, beM, then '

(

1. beaG if and only if bG = aG.

2. M is the disjoint union of the orbits of G(5,255).

Proof: 1. If b£aG, then b = (a)g for some geG. Then bg = (ag)G

= (a)gG = aG. Let bG = aG. Then bebG since eeG and b = (b)e. Since

bG = aG, beaG. 2. If cebG/laG, then cebG, ceaG, so cG = bG = aG by 1.

Hence unequal subsets are disjoint. Since for any a^eM, a^ = (a^)eea^G,

M is the union of the pairwise disjoint orbits of G.

Definition 4. A permutation group G^Sym(M) is said to be transi-

tive if and only if it has only one orbit (namely M) . Otherwise G is

intransitive.

Thus M = aG for all aeM if G is transitive. G cannot be the identity

alone, since M ^ (a)e if M contains more than one element. Also, if
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a,beM, aG = bG, which implies beaG, b = (a)g for some geG.
,

Definition 4a. A permutation group G£Sym(M) is said to be transitive

if for any a.beM, there exists a geG such that (a)g = b.

» • "

The symmetric group is transitive, but the subgroup G = {(1), (12),

(34), (12) (34)} of Sym ({l,2,3,4}) has order and degree 4 and is intransi-

tive, since IG = {1,2} + {1,2,3,4}. Equivalently, there is no feG such that

(l)f =3. A group G may fail to be transitive, but will be transitive on

a subset of M; in particular G will be transitive on each of its orbits.

Definition 5. A permutation group Gf Sym(M) is transitive on a subset

S5m if (a.)feS for all feG and a .eS, and if a,beS, there exists a feG such

that (a)f = b. S is called a set of transitivity for G(2,55). ...

Orbits of G and sets of transitivity for G are related as follows.

Theorem 7. A set S£M is a set of transitivity for G.SSym(M) if and

only if S is an orbit of G.
''

Proof; Let S = aG be an orbit of G for some aeM, and let geG, beS.

Then there exists an feG such that (a)f = b. If (b)g = c, then c = (b)g =

(af)g = (a)fgeS since fgeG. Let c,deS. Then there exists f.geG such that

(a)f = c, (a)g = d, f~''"eG so (c)f~"'"g = (a)g = d, and S is a set of tran-

sitivity for G. If S is a set of transitivity for G it is an orbit of G,

since S = aG for all aeS.

Theorem 8. In a transitive group G5^Sym(M), the normalizer of G is

transitive on the points left fixed by G (6,7).
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Proof: Let N.^ , = {geC: gG = G g (or G = g~ G ^} and S = [a.^:
(G ) ^ a a a a J

^ i
a

(a.)g = a. for all geG }. Let heN. . and beS; if (b)h = c, then c = (b)h =

-1 -^^
(bG )h = (b)G h = (ch )G h = (c)h G h = (c)G since heN.„ ,. Thus (c)G =

a a a a a v^o'

c so ceS. Let b.ceS, and aeS by hypothesis. Since G is transitive, there

exists an heG such that (b)h = a. Form the group V = h G h which leaves a

fixed, since if geG , then (a)h~ gh = (ah )gh = (b)gh = (bg)h = (b)n = a.
3.

Then V^ G and V has the same number of elements as G so V = G . Thus G
a a a a

= h~ G h so heN,^ .. Similarly for c there exists a geG such that (c)g = a

and geN. .. Then (b)gh"-'- = (bh)g~"'- = (a)g"-'" = c and N^^
^

is transitive on

a 3-

S. '

' -v". ,

"

The above theorem is attributed to Jordan and has been generalized by

W. A. Manning(6,7) . Groups G £Sym(M) which are transitive on M-S possess

the property that if G and G are two such groups, o(T)<o(S), and if G is

-1 '

transitive on M, there exists a geG such that g Ggg^G^.

The decomposition of a permutation group into cosets can be accomplished

by using sets of transitivity.

Theorem 9. If S 5M is a set of transitivity for G£Sym(M), a^^eS,

G S.G. then G = G f, + G f.+...+ G f , where for each a eS, (a,)f. =

a ' a 1 a 2 a^ m i i i

a^(2,55).

Proof: Suppose heG f, and heG f . , f , 5^ f . . Then h = g^f, , h = g„f.
a, K. a^jkj ±K. zj

for some 83^.82^^^ • '^^us (a^)h = (a^)g^fj^ = (a^g^)fj^ = (a^)fj^ = a^^ and

(a^)h = (.^^)&2^. = (^182^^1 " ^^l^^j " ^j" ^^^^^
^k ^ ^3' \'^ ^j ^^^^^ ^^

impossible. Thus the cosets G f . are distinct. Moreover, let h be an
^1 ^

arbitrary element of G. Then (a )h = a. for some a.eS since S is a set of
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transitivity for G. Then (a^)hf .^ = (a3^h)f2^ = (a^)f~^ = a^. so hf
.
eG^^,

hf~^f = he = h, h£G f ., and so the cosets G f exhaust G.
i i ^1 '" 1

In the proof of the theorem, the following corollary was also proved,

since the index of G in G, pGiG 1 , is the number of right cosets in G.

Corollary 9.1 If SSM is a set of transitivity for G£Sym(M) which

contains exactly m letters, then G is of index m in G.

1

Corollary 9.1 also says that if G^Sym(M) is a permutation group, T

is an orbit of G and aeT, then o(G) = o(G^)o(T) and if G is transitive

o(G) = o(G )Deg(G). The converse of Theorem 9 is true only when S = M.

[

Theorem 10. A group G^Sym(M) is transitive on M = {a^,a2, . • • ,a^} if

= n for any fixed a. , i = 1,2, . . .n.G:G
a.
1

Proof: Let G = G^ g^ + G^ g2 + • • •+ G^g^ and let T = a.G. The theo-

i i i

rem will be proved by showing T = M. No two of the permutations g^y ^
=

l,2,.,n say g and g , map a. onto the same object. To do so would imply
in K. 1

sible. Since there are n such permutations and n objects in M, the per-

mutations g., j = 1,2 n, map a^ onto each a^ M. Thus T = a^G = M.

M is the only orbit for G, since if a^G = S were another, a^^eS, but aj^eM

and by Theorem 6, M = S.

Definition 6. A permutation group G on M is called semiregular if for

each aeM, G = ^e} • G is called regular if it is semiregular and transi-
Si

tive (5,8).
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Accordingly, every regular group is also semiregular, and subgroups

of semiregular groups are semiregular.

Lemma 5, All orbits of a semiregular group G have the same length.

namely o(G)

.

Proof: Let T be an orbit of a semiregular group G. By Corollary 9.1

o(G) = o(G )o(T) = lo(T) = o(T). ^
,

The order of a semiregular group G is a divisor of its degree, since

if G operates on M, by Theorem 6 M is the union of the disjoint orbits,

and by Lemma 5, each orbit has length of o(G).

Lemma 6. A transitive group is regular if and only if its order and

degree are equal. ^

Proof; Let G^Sym(M) be a transitive group such that o(G) = o(M).

If G is transitive, M is the only orbit of G, but by Corollary 9.1,

o(G) = o(G )o(M). Since o(G) = o(M), o(G ) must be 1 and thus G is semi-
a 3

regular and consequently regular. Suppose G is a regular group. M is the

only orbit of G and by Lemma 5, o(G) = o(M) .
,

,

Abelian groups have an interesting property concerning transitivity.

Theorem 11. Every transitive Abelian group is regular (5,265).

Proof: Suppose G is a transitive Abelian group that is not regular.

Then G is not semiregular, so there exists a gEG, g ?^ e, and aeM such that

(a)g = a. Since g ^ e, there is also some beM such that (b)g ^ b. Since



18

G is transitive, there is some heG such that (a)h = b. Then (a)gh =

(ag)h = (a)h = b, and (a)hg = (ah)g = (b)g ^^ b. Thus gh i hg, which

contradicts the fact that G is Abelian. Thus every transitive Abelian

group is regular.

An example will illustrate that every permutation in a regular

permutation group is regular. If f = (123) (45)eSym({l,2,3,4,5}) is a

2
non-regular permutation, f = (132) (4) (5) i' e maps 4 and 5 onto them-

selves, which contradicts the fact that in a regular permutation group,

only the identity maps any object onto itself. The cyclic group G =

<;^(123) (456)^ = {e,(123)(456),(132)(465)}c:Sym({l,2,3,4,5,6}) is an

example of a group which is not regular because its order is not equal to

its degree, although every permutation in it is regular. However, G is

intransitive, since there is no geG such that (l)g = 4. Regular permuta-

tion groups have an important application in the representation of groups

as permutation groups. In fact, every group is isomorphic to a regular

permutation group, since the permutation group G , the right regular re-

presentation of Theorem 3, is a regular permutation group. It is semi-

regular, since only the identity R(i) fixes any object, and it is transi-

tive since G = aG . Regular permutation groups are their own regular

representations, and a transitive permutation group consisting of regular

permutations only is a regular permutation group.

PERMUTATION REPRESENTATIONS

It has been noted that an abstract group may be represented in more

than one way as a permutation group. A group of permutations P is called
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a representation of a group G if there is a mapping F of G onto P, (g)F =

K(g), geG, K(g)eP such that K(g^)K(g2) = K(g^g2) . P is necessarily a

homomorphic image of G, and if P is, in fact, isomorphic to G, P is said

to be a faithful representation of G. Just as .all homomorphic images

of G are given by factor groups modulo a normal subgroup of G, all transi-

tive permutation representations of G may be found in terms of right cosets

of subgroups (2,56). -.

It was noted in Example 1 that the non-Abelian group of order 6 could

be faithfully represented as a transitive permutation group on three objects,

and also on six objects. For this reason it is necessary to distinguish as

permutation groups certain groups which are isomorphic as abstract groups.

Definition 7. A permutation group Q on a set S is isomorphic as a

permutation group to a permutation group P on a set T if there is an iso-

morphism F between Q and P and a one-to-one correspondence E between S and

T, ((s.)E = t.). such that (s.)q = s. if and only if (t.)p = t. when qF = p.

Theorem 12. If G is a group, H a subgroup of G and S = {Hg:geG} then

there is a homomorphism D of G into Sym(S) , GD = P SSym(S), such that P

is a representation of G as a transitive permutation group (2,57).

Proof: Let G be a group, H a subgroup of G, and S = {Hg:geG}. S need

not be a group itself; in fact, it would be a group only if H were a normal

subgroup of G. For geF, let the mapping Cg be defined by (Hx)C = Hxg for
O

every geG and every xeG. To show C eSym(S) , suppose HxeS. Then Hx = (Hx)g g

= (Hxg )g = (Hxg )C so that C maps S onto itself. Moreover, C is
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one-to-one, for if Hx, HyeS and (Hx)C = (Hy)C , then Hxg = Hyg, which by

the cancellation property of groups implies that Hx = Hy. Thus for every

geG, C eSym(S). If. g,heG, consider C . For any HxeS, (Hx)Cg^ = Hxgh =

(Hxg)h = (Hxg)C^ = (HxCg)Cj^ = (Hx)CgC^, and hence C^^ = C^C^. Thus the

mapping D defined by (g)D = C is a homomorphism of G into Sym(S), and is
O

a representation for G. P is a transitive representation of G since

(H)C = Hg is an arbitrary element of S, and it is sufficient for transi-

tivity to show that a particular object can be mapped onto any other object.

The degree of P is o(S) = [G:H
J. v

,

Now, the question is, when is this representation faithful?

•
. Theorem 13. The kernel of D in Theorem 12 is the largest normal sub-

group of G which is contained in H. The representation is faithful if and

only if H contains no normal subgroup of G greater than the identity (2,58).

Proof: Let K be the kernel of D. If keK, then (k)D = C^^ is the

identity map e on S, so that for every HxeS, (tix)Cj^ = Hxk = Hx for every

xeG. On the other hand, if beG is such that Hxb = Hx for every xeG, re-

tracing the above argument beK. Thus K = {beG: Hxb = Hx for all xeG}. K

is a normal subgroup of G because it is the kernel of a homomorphism. Now

K£H, for if keK, Hxk = Hx for every xeG, so in particular Hk = H, hence

keH. Finally, let N be a normal subgroup of G which is contained in H.

If yeN, xeG, then xyx~ eN£H so that Hxyx" = H; thus Hxy = Hx for all xeG

and so yeK. Thus the first half of the theorem follows. By the definition

of faithful representations, and by the fact that a homomorphism is an

isomorphism if and only if the kernel is the identity, the second statement
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follows

.

The case H = /i ^ ;L the identity element of G, yields Cayley's theorem.

Theorem 3. If H has no normal subgroup of G in it other than <^iy ,
and H

i' G, then the size of M used in proving Theorem 3 has been decreased. This

observation is useful both as a means of proving certain finite groups have

nontrivial subgroups, and as a means of representing certain groups as

permutation groups on small sets. Theorem 14 states that every transitive

representation of a group is isomorphic to one of the type obtained in

Theorem 12.
, .

Theorem 14. Suppose GF = P is a representation of G as a transitive

permutation group on a set of elements S

.

1. If s is a particular element of S, then H = {geG:(s)f = s where (g)F =

f eP} is a subgroup of G.
g ^

2. The elements of S may be put into a one-to-one correspondence with the

right cosets of H so that P is isomorphic as a permutation group to the group

of permutations P given in Theorem 12(2,57).

Proof: 1. If g,heH then (s)f = s, (s)f, = s and (s)f _^
=

§ gh~

(s)f f ,
= (sf )f ^

= (s)f
T

= (sf, )f , = (#f , = (s)f = s. Hence
8 h"^ ^ h"^ h"^ ^ h"^ hh ^ ^

H is a subgroup. 2. T = {geG:(s)f = s. for some fixed s^eS} is not

vacuous since P is transitive. If x. is one of the elements of T, then T

is the right coset Hx., H being the subgroup found in 1. which fixes s,

since if geT then (s)f = s. so g = egeHx.. Conversely all the elements

of a right coset Hx, have the property that their corresponding permutations

all map s onto the same element s. = (s)x.. This establishes a one-to-one

correspondence between elements of S and right cosets of H. Let P be the
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permutation group of right cosets found in Theorem 12, where C eP for every

geG. In P if (s.)f = s., then (s)f f = (sf )f = (s.)f = s., whence^ 1 g J x^ g x^ g X g J

x.geHx., and hence Hx.g = Hx.. Conversely, Hx.g = Hx . implies (s.)f = s..

Thus (s.)f = s. if and only if (Hx.)C = Hx.. In particular, f is the
1 g J 1 g J g

identity if and only if C is the identity. Thus P and P are homomorphic

images of G, both with the same kernel, and K, where f K = C , is an iso-

morphism between P and P . With the one-to-one correspondence between S

and the set of right cosets of H, it has been established that P is isomor-

phic as a permutation group to P .

Thus any transitive permutation representation of a group G may be spo-

ken of as the representation on a subgroup H. The following lemma follows

from the fact that the only subgroups of an Abelian group are normal and by

Theorems 13 and 14.

Lemma 7. The only faithful transitive representation of an Abelian

group is the regular representation.

PRIMITIVE AND IMPRIMITIVE GROUPS

Let G be a permutation group on a set M.

Definition 8. A block of G is a subset B^M such that, if geG, either

B = Bg or B/OBg = 0.

Obviously, the whole set, the empty set and every singleton are blocks.

These are called trivial blocks. Also, if H^G, then every block of G is a

block of H, and an orbit is a block.
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Lemma 8. If B and D are blocks of G, then their intersection B/]D

is also a block of G(6,12).

Proof; Let C = B/lD. If C/lCg = 0, there is nothing to prove. Suppose

aeC/lCg for some geO. Then aeC which implies aeB, aeD, and aeCg which im-

plies that there exists a beC such that (b)g = a. If beC, then beB and

beD; so aeDg and aeBg. Hence when C/lCg is non-empty, B/OBg and D/lDg are

also non-empty. Since B and D are blocks, B = Bg, D = Dg. Hence Cg =

(B/lD)g = Bg/)Dg = B/)D = C, and so C is a block.

Lemma 9. If B is a block and geG, then Bg is a block (5,269).

Proof: Let heG. If Bghg"''" = B, then Bg = Bghg" g = Bgh = (Bg)h. If

Bghg"-'-/lB = 0, then (Bg)h/]Bg = [(Bg)h/)BgJ g'-'-g = [Bghg"Vl Bgg" Jg
=

r Bghg" /)B Ig = 0g = 0. Hence Bg is a block.

Theorem 15. If B ?^ is a block for the transitive permutation group

G, then the order of B divides the degree of G.

Proof: If aeM, beB, then since G is transitive there exists a heG such

that (a)h = b, (b)h~''" = a so aeBg for g = h~ . If B is a block, Bg is a block

for each geG, B and Bg are of the same order and either disjoint or equal.

Thus M is the disjoint union of all the Bg, and hence o(B)|o(M).

Definition 9. A primitive permutation group is a transitive permuta-

tion group with no nontrivial blocks. An imprimitive permutation group is

a transitive permutation group with at least one nontrivial block,

A block for an imprimitive group is often referred to as a set of im-

primitivity. A block system of an imprimitive group G is a set S of non-
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trivial blocks such that M = B, + B. + . . .+B, , B.eS, and such that if BeS
1 2 k 1

and gcG, then BgeS(5,269).

Theorem 16

.

Let G be an imprimitive permutation group. If B is a

nontrivial block then the set of distinct Bg, geG, is a block system.

Conversely, any block system is of this type (5,269).

Proof: Let B be a nontrivial block and let S = {SgrgeG}, Since G

is imprimitive, it is transitive, and therefore each aeM is in some Bg.

If Bg/\Bh i 0, then Bgh~ /I B 'f 0, and since B is a block, Bgh~ = B,

Bg = Bh. Hence M is the union of the disjoint blocks of S. Moreover, if

BgeS and heG, then (Bg)h = B(gh)eS. Hence S is a block system. Conver-

sely, let S be a block system and let BeS. Then by definition BgcS for

all geG. Since the set of Bg, geG, is already a block system by the first

half of the proof, and since M is the disjoint union of blocks of S it fol-

lows that S = {Bg:geG}.

Theorem 17. If G is an imprimitive group with block system S and

N = {heG:Bh = B for all BeS} then N is a normal intransitive subgroup of

G(5,271).

Proof: N is a subgroup of G, since if h,feN, then B(hf ) = (Bh)f =

(B)f~-'- = (Bf)f""^ = BCff"-*-) = Bi = B. If geG, heN and BeS, then Bg'-^^eS, so

that Bg~ hg = (Bg~"^)hg = (Bg"-'-)g = Bg'^^g = Bi = B and g~"'"hgeN. Thus N is

a normal subgroup of G. Now, if beBeS, then B ?^ M since S is a block system,

and the orbit bN of N is a subset of B, hence a proper subset of M. There-

fore N is intransitive.

Theorem 17 has a partial converse.
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Theorem 18. If the transitive group G contains an intransitive normal

subgroup N i (^y , then G is imprimitive. The distinct orbits of N form a

block system of G(6,13).

Proof: Let T be an orbit of N. Then Tg = aNg = agN = bN, so Tg is an

orbit of N. Thus G can only permute the pairwise disjoint orbits of N among

each other and hence the orbits of N form blocks of G. Because N ^ Q./ ,

they contain more than one object, and because of the intransitivity of N

they are proper subsets of M. Hence G is a transitive permutation group

with nontrivial blocks and is imprimitive. By Theorem 16, the set of dis-

tinct orbits form a block system of G.

The above theorem established a sufficient condition for imprimitivity;

the following is a necessary and sufficient condition.

Theorem 19. Let aeM. The transitive group G on M is imprimitive if

and only if there is a subgroup H which lies properly between G^ and G;

i.e. for which G CHCG holds (6,14).
a

Proof: Let G be imprimitive and B a nontrivial block of G. Let

H = IheG: Bh = b}. In the proof of Theorem 17, H was shown to be a subgroup

of G. H is a proper subgroup because Y>CYi. and G is transitive. Let aeB,

geC . Because B is a block (B = Bg or B/lBg = 0) it follows from (a)g = a
a

that Bg = B. Therefore G <^H. Because o(B)>l, there exists beB, b ?^ a,

and because of the transitivity of G there exists an feG such that (a)f = b.

Again, because B is a block Bf = B, feH but liQ, . Hence G ClH. Now suppose
3. 3

H is given with G <1HCG. Let B = aH. To show B is a block, let beB/^Bg" a

with geG. Then beB, beBg, hence b = (a)h = (a)fg where h,f£H. Then



26

a = (a)hh" = (a)fgh" so fgh eG CH and geH. Thus Bg = (a)Hg = (a)H = B

and B is a block. Because G C E. B does not consist of a alone. It has
a

been shown that B = Bg holds only for geH. Since HCG, there is a geG with

B Ti' Bg, and therefore B 7^ M. Hence B is a nontrivial block and G is imprimi-

tive.

The above theorem can be applied in the following manner.

Theorem 20. Let G be a regular group on M whose degree is not a prime.

Then G is imprimitive (6,15).

Proof: If G is regular, G is transitive and G = {e}. If o(M) is not

a prime, by Corollary 9.1 o(G) is not a prime. Hence for aeM there is a

proper subgroup between G = {e} and G. By Theorem 19, G is imprimitive.
3.

G = <((1234)") contains the elements e, (1234), (13) (24) , (1432) and is

imprimitive, having the nontrivial block {l,3}. The group H = {e, (12) (34)

,

(13) (24), (14) (23)} has 3 non-trivial blocks, {1,2}

,

{l,3}, {l,4} and thus

is imprimitive.

Several of the theorems on imprimitive groups have implications per-

tinent to primitive groups. In particular, the following theorems follow

from Theorem 15, Theorem 19 and Theorem 18, respectively.

Theorem 21. If G is a transitive group on M whose degree is a prime,

then G is primitive.

Proof: Let B be a block of G. Then by Theorem 15, o(B) divides

o(M) = p. Hence o(B) is 1 or p and B is trivial in either case. Hence G

is primitive.
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Theorem 22. Let aeM and o(M)>l. A transitive group G on M is primi-

tive if and only if G is a maximal subgroup of G.
a

Theorem 23. A normal subgroup N ?^ <C^<) of a primitive group is

transitive.

Primitive groups have some interesting properties of their own.

Theorem 24. If G is primitive on M and a,beM, a 7^ b, then either

G ^ G, or G is a regular group of prime degree (6,17).
3. D

Proof: Let G ^ /e \ . Let P be the set of points of M which are

left fixed by every permutation of G . By Theorem 8, N(G ) = N is transi-
3. di

tive on P. If G = G, for & f h, then beP and there exists an heN such that
a b

(a)h = b, hjfG so G (^ N. By the assumed primitivity of G and by Theorem 22,

N =G. Hence it follows that P = M and G = <^e^ in contradiction to the
1

assumption that G ^ /e N . Thus G v* G • If G = /e\ , then G is

regular and hence n = o(M) is by Theorem 20 a prime.

Primitive groups of prime degree are easy to construct. G = /(12345)/

is of degree 5 and is transitive since IG = {l, 2, 3, 4,5}. Hence by Theorem

21, G is primitive. The permutations (12354), (12453), (12435), (13452),

(13245) also generate primitive permutation groups.

"In conclusion, it should be pointed out that to each transitive group

G on M there are certain primitive groups (in general of smaller degree)

which are called primitive components of G," (6,18). By inducing transitive

groups on block systems which are homomorphic to G, a series of primitive

components is obtained.
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MULTIPLY TRANSITIVE GROUPS

There is a generalization to the concept of transitivity.

Definition 10. A permutation group G on a set M of order n is called

k-ply (or k-fold) transitive if for every two ordered k-tuples a^a^.-.a^^ and

b b ...b of objects of M(with a^ ^^ a., b^ ?^ b^ for i ?^ j) there exists a

geG such that (a.)g = b., i = 1,2, . . .k(6,19)

.

The transitivity discussed before is the same as 1-ply transitivity.

Every k-ply transitive group is automatically j-ply transitive, where j<k.

Sym(M) is k-ply transitive for k<n, and if a group is n-ply transitive for

some n, it must be the symmetric group. If k = 2, the term doubly transitive

is employed; for k>_2, the term is multiply transitive. A group which is

transitive, but not doubly transitive, is called singly transitive or simply

transitive. If a group is k-ply transitive but not (k+l)-ply transitive,

k is said to be the degree of transitivity of the group. There is no transi-

tive group of degree n whose degree of transitivity is n-1. Every group

having a k-ply transitive group as a subgroup is itself k-ply transitive.

Multiply transitive is a strong form of primitivity.

Theorem 25. Every doubly transitive group G is primitive.

Proof: Let G be a doubly transitive group B^M, o(B)>l. Then there

exists a,beB, a ^ b, and a ceM-B. Since G is 2-ply transitive, there exists

a geG such that (a)g = a, (b)g = c. Thus aeBg/1 B so that Bg/OB ^ 0. Since

ceBg - B, Bg ?^ B. Therefore B is not a nontrivial block and G is primitive.

Theorem 26. Let G be transitive on M and aeM. Then G is (k+l)-ply

transitive on M if and only if G is k-ply transitive on M-{a}(6,19).
3.
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Proof: Suppose G is k-ply transitive onM-{a}. To show k-ply
3.

transitivity it is sufficient to show that a particular ordered k-tuple

can be mapped into any other ordered k-tuple. Consider the ordered

(k+l)-tuple a,a^a^...a, and let b,b^b„...b, be any other ordered k-tuple.

Since G is transitive, there exists a geG such that (b)g = a. If (b.)g =

c, i = l,2,,,.k. then there exists an heG such that (a)h = a and (c.)h =
1 a 1

a., i = 1,2, ...k, since G is k-ply transitive. Then gheG and (b.)gh = a.,
d. a. ^ ^

i= l,2,...k, (b)gh = (a)h = a. Thus G is (k+l)-ply transitive on M. Sup-

pose G is (k+l)-ply transitive on M. Let M = {a ,a„,...,a } and a = a •

G contains an element g such that (a)g =a, (a.)g=b., i= 2,3,...k+l

where b^b„...b, .^ is any ordered k-tuple and a ^^ b. for any i. Then geG
2 3 k+1 -^ 1 ° a

and G is k-ply transitive on M-{a}.
a.

As an example, G = Alt ({ 1,2, 3,4}) is doubly transitive, since G^ =

{e, (234), (243)} is simply transitive on M-{l}. The proof of the follow-

ing theorem is analogous to that of Theorem 26.

Theorem 27. Let G be transitive on M and SCM. If G is k-ply transi-

tive on M and o(S) = d<k, then G is (k-d)-ply transitive on M - S.

Many of the theorems on transitivity can be generalized without diffi-

culty to multiply transitive groups. In particular. Corollary 9.1 can be

generalized.

Theorem 28. The order of a k-ply transitive group of degree n is

divisible by n(n-l) . . . (n-k+1) . The quotient is the order of any subgroup

of the form G with o(S) = k(6,20).
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The alternating group has several interesting properties concerning

multiple transitivity.

Theorem 29. Alt(M) is (n-2)-ply transitive (n>3) where o(M) = n(2,60).

Proof: Let bib„...b be an arbitrary ordering of M. If
1 z n

fa,

...a „a ,a \ /a . . .a „a tS \

u . u ."" ^nd g = / J^'^'^'V then g = f (b^ ,b )

and so either f or g is even, the other odd. Hence one belongs to Alt(M)

which implies Alt(M) is (n-2)-ply transitive. Because Alt(M) is of degree

n, it is not (n-l)-ply transitive since this would imply n-ply transitive.

The alternating group can be shown to be simple, (contains no proper

normal subgroup) except for n = 4, by using multiple transitivity proper-

ties (3,61).

The concept of k-ply transitivity may be strengthened or weakened in

many ways. The most important is called sharp k-ply transitivity. A group

G is called sharply k-ply transitive if, for any two ordered k-tuples of

the type described previously, there is exactly one geG which maps the first

into the second. The sharply simple transitive groups are the regular groups

and have no special structure, since every abstract group can be faithfully

represented as a regular permutation group (6,23). Two other strengthening

properties are those of k-ply primitive and half-transitive. A group G on

M is k-ply primitive if it is k-ply transitive and the subgroups which leave

k-1 points fixed are not only transitive on the rest but even primitive. A

group G on M is called half-transitive if its orbits all have equal length

>1(6,23).
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A weakening of the concept of k-ply transitivity in which unordered

k-tuples are used in place of ordered k-tuples is of importance for game

theory (6,23). This is called s set-transitive.

Definition 11. A group G on M is s set-transitive (l<s<n-l) if for

every pair of subsets of M, S and T, each containing s elements, there exists

a geG such that (S)g = T(l,36).

From the definition, 1 set-transitive and transitive are the same

thing, and if G is k-ply transitive, then G is s set-transitive for all

s<k. With M = {1,2,3,4,5,6,7}, the group G = </(1234567) , (235) (476)^ is

an example of a group which is 2 set-transitive but not doubly transitive.

G is not 3 or 4 set-transitive. A group G of degree n is said to be set

transitive if G is s set-transitive for all s, l<s<n-l. The alternating

group is set-transitive except for n = 2, and the symmetric group is set-

transitive. Beaumont and Peterson proved that groups which are s set-transi-

tive for at least one s are transitive, and if for at least one s>l, they

are primitive. The values of n for which set-transitive groups other than

the syimnetric or alternating groups may exist have been found to be only

5,6,9, and only four such groups exist other than their conjugates, the

alternating groups and the symmetric groups(l,40)

.

Many, but not all, non-Abelian simple groups can be represented as

6 4
doubly transitive permutation groups. A counter-example of order 2 3 5 has

been pointed out by Parker (6, 21)

.

Whereas there are numerous nontrivial doubly and triply transitive

groups (Sym(M) and Alt(M) are considered to be trivial in this case) only

two nontrivial quadruply transitive groups and two nontrivial quintuply
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transitive groups are known; they were found in 1861 by Matthieu. Their

degrees are 11, 23, 17, 24 respectively. Structure and representation of

these groups are of great interest in regard to simple groups (6, 21)

.

For k>6, it is not known if there are nontrivial k-ply transitive

groups; however, there are many estimates on the limit of transitivity of

groups of degree n, with k<3 log n being one(6,21). '

.„ * )
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Some of the elementary concepts of permutation groups are considered

in this report. A knowledge of elementary group theory is assumed through-

out.

A permutation is a one-to-one mapping of a set M onto itself. Only

finite sets are considered. A permutation can be represented in two row

form, and it can also be expressed as a product of disjoint cycles. It

is shown that in a group, the order of a permutation is the least common

multiple of the order of the disjoint cycles in this expression. Permuta-

tions are called even or odd, depending on whether they are expressable as

an even or odd number of 2-cycles.

It is well-known that for a set M, all the permutations of M form a

group, the symmetric group. The alternating group, the set of all even

permutations of the set M, is a normal subgroup of index two in the

symmetric group. Cayley's theorem states that every abstract group is

isomorphic to a permutation group, where the objects permuted are the

elements of the original group. Conjugate permutations are approached by

considering the partition of an integer which corresponds to a cycle de-

composition or representation for a permutation. Two permutations in the

symmetric group are conjugate if and only if when expressed as a product

of cycles, each permutation has the same number of cycles of any order.

The number of conjugate classes in the symmetric group is p(n), the parti-

tion of the number of objects in the set M.

The concept of transitivity is defined for permutation groups.

Subgroups of the sjnmnetric group on M are considered in the section on

transitivity, especially subgroups which map particular objects, or sets

of objects, onto themselves. A permutation group on M is transitive if



for two arbitrary elements of M, the group contains a permutation that

maps one object onto the other. A group can be transitive on the whole

set M or on subsets of M which are called sets of transitivity. Permu-

tation groups can be decomposed into cosets by employing sets of transi-

tivity. Regular groups are transitive permutation groups in which only

the identity maps any element onto itself. An important theorem in this

section is that a transitive group is regular if and only if its order is

equal to its degree. The degree of a group is the number of objects it

maps onto objects other than themselves.

In addition to Cayley's theorem, there is another way to represent

an abstract group. Given a group G with a subgroup H, let S be the set

of all right cosets for H.. Then there is a horaomorphism of G into the

symmetric group on S such that the image of G is a transitive permutation

group. Conversely, any transitive representation of a group G is isomor-

phic as a permutation group to a permutation group on the set of cosets

for some subgroup H.

From the idea of transitivity, the concepts of imprimitive and

primitive groups are derived. Special subsets of M, called blocks, are

defined for this purpose. If a transitive permutation group G on a set

M has a block which is not M and which contains more than one object,

then G is said to be imprimitive; otherwise G is primitive. A necessary

and sufficient condition that the transitive permutation group G on M is

imprimitive is that G has a proper subgroup H which lies between G and a

subgroup of G which maps some object of M onto itself. Transitive groups

on sets with a prime number of elements are primitive.

Transitive permutation groups are generalized to multiply transitive.



or k-ply transitive groups. Instead of mapping a single element onto any-

other single element, a k-ply transitive group is concerned with mapping

ordered k-tuples onto other ordered k-tuples. If k^2, k-ply transitive

groups are primitive. Several means of strengthening or weakening the idea

of k-ply transitivity are mentioned in the final section of the report.


