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INTRODUCTION

Definition

To formulate a Bathematleal model one can trace either

one of the following approaches:

(i) The deterministic approach

(11) The Btochaatlc approach,

A basic role la played by the deterministic approach In

the field of classical physics, where the analysis of a phy-

sloal system at a given time t depends f\uictlonally on Its
2

state at any earlier or later time t and Is Independent of
1

the state of the system before or after time t .

1
Physical phenomena which obey stochastic laws are of no

less Importance or less frequent occurence than those subject

to deterministic laws. In the same manner, as deterministic

laws, the probability that a given system will be In a given

state at a given time t may depend on Its state at any ear-
2

Her time t and be Independent of Its state before time t ,

1 1
Probablllsts had studied dependent and Independent events

and their probabilities a long time before idarkov. But It

was he who studied a more general case of stochastic processes

In 1907. A remarkable contribution from Markov which tempted

probablllsts to give his name to that class of stochastic pro-

cesses for which the future of the process Is only dependent

on the present of the process and Is independent of Its past.

Examples of Markov processes are very numereous In phy-

sical sciences. The following exanqple Is taken from Bharucha-

Beld (i960).'



Consider a stochastic process (X , x¥»0, 1, 2, ...), that Is
n

a family of random variables, defined on the space X of all pos-

sible values that the random variables can assume. The space X

Is called the state space of the process, and the elements z which

belong to X, the different values that X can assvuae, are calledn
the states. In this ezaoq>le the state space X will be taken to

be the set of non-negative Integers x«l, 2, 3, ...,

The process (Xq, n » o, 1, 2, ...) will be said to represent

a single discrete branching process if the following conditions

are satisfied:

(a) Xq - Xq a 1

(b) p(x) « P(XjL " x), with I p(x) » 1

(c) The conditional distribution of Xj^ » j, is the same as

the sum of j Independent random variables, each having the same

probability distribution as X^^. Hence If we denote by p (k)
n+1

the probability that there are k individuals in the population

In the (n+Dst generation, then

P (k) - 2 p (J)rp(kj]*'^
n-H n L J

In other words the conditional distribution Is the j-fold convol-

ution of p(k) with Itself.

Definition

The following definition is due to Parien (I962);

A discrete parameter stochastic process (X(t), t « 1 .,.)

or a continuous parameter stochastic process (X(t), t ^ 0) is said

to be a Markov process if, for any set on n time points t <t 4,.. ^t
1 2 * n



in the Index aet of the proc©»», the conditional distribution of

the random Tariablo X(t ), for a given valuea of X(t ), ..., X(t)
n in

depends only on X(t ), the most recent known valuei more pre-
nyl

oiaely, for any real muabera x , x , ,,, , x12 n -':'''

P(X(t ) - x\x(t ) » X , ..., X(t ) » X )

n n 1 1 n-1 n-1

- P(X(t ) • X
I
X(t )«x )

n n n-1 n«l
•

The set to which x , i»»l, ..., n belongs is amid to be
i

state soace and will be denoted by X and the set T, to which t ,

1

t , ,,., t belongs is said to be the index set.

2 n
CLASSIFICATION OP MARKOV OtiAlSS

,

Markov proceases caii be classified according tot

(1) The index set Tt

(a) T: t; t=»0, 1, ,.,, i.e. t can take only poa»

itive integral values.

(b) Tt t} t 0, i,e« T is continuous,

(ii) The state spsce JEi

(a) Xt x; x"0, 1, ..., i.e. X is discrete.

(b) Xt X} X 0, i.e. Jl is the continuum.

Further subdivision of Markov processes may be done with

respect to the number of states the process can viait, Parsen

(1962)1

(1) Pinitet x»o, 1, ...» ni»

(ii) Infinite: x=«0, 1, ,,,.

In the above classification it la noticed that the number

of states is either finitely countable or infinitely countable.



Markov proo«ate« vith m flnlt* number of states were ooiuidered

first by Frechet (1937).

^ lUa&OV CdAlsiS

A Markov process vhosa state space and tiise space are both,

discrete is called a Markov chain, Kemnejr and Snell (1959)*

Moatroll ( 191^7 )» olaasified Markov chains into siople Markov

chains and nultiple or eoaqplez Markov chains, where he defined a

siaple Markov chain aat

"By a siaple Markov chain it is meant a sequence of events,

each of vhioh leads to one of v possible results and which occur

in such a manner that if the result of the kth event is ^^, the

probability of the (k-^l)at one yielding a reault a^^^^. ^* propor-

tional to pCajj,
*it>i)"«

Montroll*s definition can be put in the formi

Let (X(t}, t T) be a stochaatic process whose etate space

and time space are both discrete* Such a process is said to be

a aiaqple Markov chain if t

'^^*Vl> - «nn^^^V - *n) - «^I><V»n.l^^

iriixere p(X||, ^c^^^) ^* ^^* Jolht probability function of the two

diawnaional random variable (x^. x ^, ) and B(p(x , x }) ia a»' n^i n n+1

function of pCx^^,
^a-H^*

An exaavia of a ais^l* ^^^^^ ^^^^ ^^^^ ^,, encountered

in the analysis of a aequenoe of tosses of a coin with a memory*

Let the probability of two auoceaaive heads or two successive

tails be p, while the probability of having different facea on

two successive tosses is q:

p(fl,H) - p(T,T) • p



P(H,T) » p(T,H) » q

p -». q « 1,

A m\iltlpl« Markov chain la one for which the result of each

event depends on those of Its n predecessors. If each slaiple

event leads to any one of n possible results, a multiple event

could lead to any one of v events. ,

Transition Probabilities and Stochastic Matrices

The conditional probability p will be called the probability

of a transition from state 1 to state J. The transition probab-

ilities of a chain can be arranged in a matrix of the fozw:

P P P
II 12 U
P P P
21 Z2 2.^

P P P
nl r^ n3

'•*%

••f»

P
In

2n

• • • p
nn

P la a square matrix of size nxn, where n is the number of

states the system can visit. The elements of P can take only

non-negative values and each row s\am is unity. P is called a

Markov matrix or a stochastic matrix. Feller (1957).

A isiiarkov chain is conipletely defined by a stochastic mat-

rix P whose elements are tae transition probabilities and column

vector, say ;



q(l)

q(2)

q(n)

which gives the probability dletribution for the states x « 0,

1, 2, ..., at time zero, 1, e. Initially, Bharucha-Heid (I96O).

Transition from one state to another arnay occur in a period

of tine which is imit-time on our scale and is such a case the

chain will be called a one-step chain. The transition probabil-

ities will be denoted by p or p . If transition from one
14 ij

state to another happens in n time-units then the chain ia said

to be an n-step chain. The transition probabilities, in such a

ease will be denoted by p .

The Chapman-Kolnogrov Equation

Transition probabilities of an n-step Markov chain are

defined recursively in the following manner. Feller (1957)*

(1) V
P =• P

(n+l) (n)

p * 2 p P •

ij k ik kj

By the use of mathematical induction the following relation

is seen to hold:



(v) . ^

p « P(X = j \ X = i),

i j m+v m

A more general form of the relation among transition pro-

babilities can be obtained from the use of the Chapman-Kolmogrov

equation!

(m+n) C«) (n)

p = 2 p p
IJ lie kJ

The Chapman-Kolmogrov equation can be put in a matrix foi^n,

Bharucha-Reid (I960), as follows:

m+n m n ,

P . « P P ,

This functional equation, which characterizes Markov chains, is

of fundamental importance in the theory of karKOV cnains. It is

this equation which establishes the connection between Markov

chains and the theory of semigroups of operators. The theory of

semigroups is discussed by Hille and Phillips (1957).

One way of studying the general properties of the karkovian

processes is to study the properties of the solutions of the

Chapman-Kolmogrov equation. It should be realized that there exist

non-Markovian stochastic processes whose transition probabilit-

ies satisfy the Chapman-Kolmogrov equation. Thus while it is

true that the transition probabilities of a Markov chain satisfy

the Chapman-Kolmogrov equation, it is not true that a stochastic

process is Markovian if its transition probabilities satisfy the

Chapman-Kolmogrov equation, Parzen (1962),

. Absolute Probabilities t

Let Q be the vector of initial probabilities, i. e, q(i) is



8

the probability of the gyst^a &«ln at stat* 1 mt tla« ••po, i.e.

InitUlly. Thl» InpiiM thmtt

<l{l) - P(X^ 1).

flM uncondltioMl probability of finding the systwa at

Uaa n in atata J la givan bys

(n) (n)

q (J) - 2 q(l) p •

IJ

Xha unoorKUtional probabllltltta are oallad abaoluta pro-

babilltiaa, Bharuoba-Bald (I960). Hanoa glvan q(l) and tiaa

o-atap traoaltioa probabiiltlaa p ^ tha 4 can ba oaloul-

Tha following daflnltiona will aarva aa an orlaatatXoa to

teR&lnology to ba uaad later.

Definition: A atate S la aaid to ba acoesalbla Trom a atata
i (a)

8 if. for aoffla integer n>0. p ^0, aod t^a
::

^ ^^

will be denoted by S ™«^ 8 •

i 4

Deflnltloat If atate S la aooaaalble from atata 8 and atate
1 J

S ia aoeeaalble frosa atata S taen the two atatea

4 i

are aaid to be eo—wnl eating and tala la denoted

aa 8 <^—^ S .

r

£>afinitioai A faally of ooaBounioatlng atatea ia aaid to ba

a oosifflunloatlng claaa*

, ^ the uaa of tlie Gbap«a»>KolflMlgVPV equation one can ai:io«

--*..;

^Y.-,--'



that commxAnicatln^^ states satisfy:

( 1 ) If S ^—^S , then S <—>S •

i J J i

(ii) If S >S , then, S —^S •

i J J i

(ill) If S <—^S , and S <r->S , then, S -4—>S .

i k k j i J

(iv) Tir> communicating classes C and C are either Iden-
1 2

tical or have no states in coimaon.

Definition: A state which communicates with Itself Is said to

be a return state.

Definition: A state which does not communicate withe Itself is

said to be a non-return state.

The above properties enable one to express a Markov ciiain

as the union of a finite or countably infinite family of disjoint

classes of states. This can be expressed in the form:

S =« C U C U C U ...
1 2 3

where C C = )^, for 1 ;* J, and each set C is either communica-

,

i J r

ting class of states, or contains exactly one non-return state.

Decomposition of Markov Chains

Let S be a set of states of a Markov chain, if no one-step

transition is possible from any state into any other state out-

side S then S is said to be a closed set. In terms of transition

probabilities a set of states is closed if:

fO, for 1, jeS
,

p a.

0, for les, J£E .
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Definition: The smallest closed set containing S is called the

closure of S,

Definition; A set which is not closed is said to be open.

Definition: A Markov chain whose space X contains two or more

closed sets of states is said to be decomposable or

reducible.

Definition: A chain which is not decomposable is said to be ir-

reducible,

Reducible and Irreducible Matrices

Definition: The transition matrix of a decomposable Markov chain

is said to be reducible.

Definition: The transition matrix of an irreducible Markov chain

is said to be indecomposable or irreducible.

Kemney et al (1957), considered reduclbility and irreduci-

bility of Mai4cov chains. They gave the following criterion to t

test such properties of a Markov chain ast

Let U be the class of all nxn Markov matrices, where rF»2

and let I be that subset of all irreducible matrices contained

in M. Let A(l) be a nonempty subset of M, and for k 1 let A(k)

be the set of all m M such that m can be expressed as the product

of at most k elei-ients of A(l), Let

A = U A(k)

then the following is true:
^

v'
'"

I^
2 - '

^

n
A(2 )c:I, then Acl

^

and hence the elements of A are irreducible matrices.
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J FINITE MARKOV CHAINS

f So far, we have been concerned with chains whose time

space is a countable set. In practice most of the chains

encountered are of finite nature. Since there are only a

finite number of states the system can visit.

The stochastic matrix will be written In the form:

8 8 S
2 3

S

s

p p p ••
11 12 13

> » P f.
21 22 23

nl
P P
n2 r\3

In

2n

nn

where S refers to category 1 and classification into cate-
i

gories depends on the nature of the problem vinder consideration,

i, e, 3 may be the number of bushels of apples produced or a
i

sequence of dry-wet days, etc.

Consider a finite Markov chain with states S, 1»1, 2, ...
1

n, and transition probability matrix:

P «
IJ

1, J=sl, 2, 3, ...,n.



a

L«t the probability vector at time t be given by:

Q(t) -^ (t)]

where Q la an nxl matrix. q(t) is the probability that the proceaa
i

la in state S at time t. The Matrix P and the vector Q are

related in the following manner:

#

Q'(t-»-l) » Q (t) P

where Q« is the tranapoae of Q, Conaidering the initial state

of the system:
• t t

Q (t) « Q (0) P,

An initial position must be ohoaen always as a starting

point for the system.

REGULAR MARKOV CflAIHS ANi; THEIR STOCHASTIC MATRICES

A stochastic matrix P is said to be regular if and only if,

t
P has no zero entries for some positive integer t.

A Markov chain whose stochastic matrix is regular is said

to be a regular chain.

Regularity of atoohastic matrices Ia5>lle8 that any state

S , can be reached from any other state, S , in time t. Since
J —--. • 1

a sero entry in the stochastic matrix implies that the state co-

rresponding to that element cannot be visited, A non-xero ele-
(n)ment

, p^ , will indicate that there is a chance for the sys-

tem to be in either state S or atate S , Such a chance depends
i i



la

(n)

on how large p Is,
ij

Tests for regularity of stochastic matrices follow a trial a

and error scheme, but one may save time be considering:

2 1^

The following theorem is from Kemney and Snell (1959)*

If P is a regular transition matrix then:

(i) The powers P approach a stochastic matrix P ,

(11) Each row of P 1« the same probability vector.

tT» where:

(tT , TT , ..., IT ^
V 1 2 n'

(ill) The components of it' are all positive.

(iv) For any probability vector if, it F approaches

,:;>/i *. the vector rr* as n tends to infinity,

(v) The vector tr' is the unique probability vector

. \ "^ t* such that:

P' Tf « TT ,

* a it

{Vi) P P « P P « P .

The matrix P^ is called the limiting matrix and the vector

TT la called the stationary probability vector for the Markov

chain determined by P and Q,

A point to be clarified concerns the convergence of the

stochastic matrix. Such convergence may be fast or slow. It

is left to the experimenter to explain this convergence, since

it depends on the different factors and variables envolved in

the process. An analytic test for that type of convergence has



ziot been published yet. It may draw the Interest of probab-

llstf as well as algebraists In the future. Onoe the limiting
n

matrix has been reached, say P Is the limiting matrix , then

whatever Inference made about the system at time n, would also

apply at time n+1, n+2, ... .

The equation:

^ Q*(t) * q'(0) P^

shows that If the process started In such a way that the Initial

states have probability distribution Q(0), then the probability

distribution for the states after time t is given by:

Q'(t) « q'(0) P* .

According to the theorem given above one has:

Lim Q'{t) P* - tr'.

t-><»

The existence of the limit is gauranteed by the theorem, and

since tt is dependent only on P, one can notice that Q(t) is al-

most independent of the initial distribution, Q(0) for sufficien-

tly large t,

Niimereous techniques may be used to obtain n or P . Such

techniques may be numerical or analytical.

A basic quantity used to conpute most of the interesting

descriptive quantities for the behavior of a regular Markov

chain is its fundamental matrix, given by:

* -1
2 « ( I - P + P )

where I is the identity matrix with the same dimensions as P.

=#. %
'
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Th« prop«rtl«« of Z may b« given as followtt

(I) P Z « Z P .

(II) w Z tr.

(Ill) Z j^ ;J , 1. •• row B^xma of Z 1, .

(Iv) I - Z A - PZ.

EXAMPLE. AMD APPLICATIOM

MarkoT proo««8«8 may b« used to avaluata ohangaa In tha

alia dlatrlbutlon of flrraa wltMn an Industry, Tha ganaral

oparatlon of this iwdal consists of observing movement of firms

between apeelflc sice oetegorles over specific time periods and

generating an equilibrium. siae distribution of firms mhloh would

be expected to result if tiao type of activity initially obaerved

continued Indefinitely. A two sifie-oategory model may be oon-

atructed as follows. Slse category 1 may be specified aa flrma

with aasets of 1,000 units or over, else category 2 aa flrma with

aaseta leaa than 1,000 unite. Aaaume that forcea aasooiated

with firm growth between time t and time t may be reqreaented
1 2

by a probability of movement from one category to another, for

example p ».6 is the probability that flrma which are In oat*
11

; agory 1 at time t will remain in category 1 at time t , p ••i4.
'

1 2 12

la the probability that flrma which are in category 1 at time t

will move to category 2 at time t , p .3 and p « .7. Theae
2 21 22

probabilitlea may be set in a matrix Pt
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P "
.6 .k

,3 .7

As shown aboys P Is • regular stoohastio .juatrlx.

2
P «

.U8 .$2

.39 .61

P «
.1^332 .!

.i^2$l .1

5668

57U9

.U8571 .571^29

.i426$71 .571429

and « - ( .U8571 .571429 )

Assuming that tha Initial configuration of flrma la 100

In eaeh eatagox*?. This configuration at tlfflo t amy ba exp-

ressed as a vector,

- ( 100 XQO ) i
• U ^

t,
'

' ' ''-':

The expected eocClguratlon at time t Is obtained by aatrlx

Bultlplloatlon,

f

" { 100 100 }

.6 .k

.3 .7

- ( 90 110 ) .

That Is, 90 flxnna are In category 1 and 110 are In category 2.
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The expected configuration In time t would likewise be obt*

3
2

ained by multiplying C times P or C times P :

a C P

b ^2

=« ( 90 110 )

=
( 87 113 )

.3 .

"i^^. •
.

_

« C P^
'

* ( 100 100 )

.1|8

.39

.52

.61

• = ( 87 113 )

Therefore, It follOWE that:

C = C P

.1+286 .57ll|
( 100 100 )

.1+266 .iJ7l4

« ( 85.71 114.29 ) .
'-'

In this way the unique vector n associated with each reg-

ular matrix of transition probabilities gives a unique equil-

ibrivim configuration of firms, C can be obtained byj

i

-
•

e, -- r - > ^ 'V

C s 200 ( .i4,286 .5711+ )

, =( 85.71 111+.29 ) /
'

where 200 is the total niamber of firms.

A solution technique as shown by Adlman (1956), may be
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outlined as follows:

.6 .k
P ~

.3 .7

/
1 .6 .3

P 3
'• .k .7

*
" P = P* - I

'.k .3

.k •-.3

m* m
Let P = ? wl

J' ,

rith the ith row replaced by a row containing

all I's, let V be a column vector iwith all zero elements except

the ith element wnich is 1, tnen

^P**) V = 1T» .

Per the above example, where 1 =» 2,

P' =

P »

9

11.6 .3

.7

** -1
(P )

=

-.U .3

.1^ -,3

-.k .31

1 1

-1/.7 3/. 7

1/.7 l|/.7



w

** -1
(p )

-1.1+2857

1.112857

.1+28571

.5711+29

(f**)" V= Ti ' a
.1+28571

.571429

Therefore} tr =* ( .I4.2857I .5711+29 ) .

Another method to get n is Illustrated in the following

example:

Let

P =

.900 . .100 .000

.810 .090 .100

.729 .081 .1901 .

- Since, ,;' ^ "
'-.:

2 p = 1, and p 0, i, j= 1, 2, 3,

holds for this example; P la seen to be a stochastic matrix.

For t=2, one has: .,

t 2
P =P =

.8910 .0990 .0100

.871+8 .0972 .0280

.8602 .0956 .01+1+2
I

It is noticed that p for all i, and j, which implies that

o .
2 .

P is regular. It is noticed also that P is a stochastic matrix.

Consider the equation:
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.900 .100 .000 1 1

,810 X090 .100 1 - 1

• 729 .081 .190 1 1

The above lOAtrlx equation shows that A. » 1 is a characteristic
1

root of P and the vector:

V >*

is a characteristic vector of P. Prom the theory of matrices

it Is known that for a constant c, cV^^ is a characteristic vector

also. Solving the set of linear equations:

P TT * ir

one obtains:

.900 .810 .729

.100 .090 .081

.000 .100 .190

We see that the stationary distribution is:

"

IT TT

1 1

IT TT

2 ~ 2

IT TT

. 3j 3.

'tT

1
; 889

TT

2
- .099

_3_
.012

is the characteristic vector of P* corresponding to \ ^ x, To
1
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examine the convergence of the stocriastic matrix P ae t in-

creases, one coula look

,889 .099 .012

.886 .098 .015

. 88I4. . 098 . 018

and for t=5, one obtains!

.889 .099 .012

.889 .098 .015

,QQk .098 .018

this result implies that:

P P ,

Consider an arbitrary probability vector Q(0) given by;

889 .099 .012

.889 .099 .012

.889 .099 .012

Q(0)

.66

.13

.21|

q' (0) P^ - (.66 .13 -)

.889 .099 .012

.889 .099 .012

.859 .099 .012

(.689 .099 .012^

The previous result shows that P is a good approxima-

tion of P , and that tne initial condition of tha Markov chain

has little effect on tne distribution after 5 tiuie-inteivais.

In general the value of t required to insuro a good estimate

of P cannot be predicted. One can make a good guess if he
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notices the speed of convergence of the powers of P,

OCCUPATION TIMJjiS kAX) FIRST PASSAGE Tl.niiS

The states of a Markov chain may be characterized by the

nvunber of times the sjstem visits a particular state. Two

states to be considered:

(1) A state which the system can visit infinitely

often,

(11) A state which the system can visit finitely

often.

Consider a Markov chain (X , n=i, 2, 3» ...). For any
n

state S and n=l, 2, ..., let N (n) be the number of times
k k

that state is visited by the systeui in the first n transitions.

N (n) will be called the occupation time of the state S In
k

^

k
the first n transitions. The total occupation time can be ob-

tained as follows:

Total occupation time = N (<»)

*
.

* Llm N (n)

•

xi-^<^ k '-

For a regular Markov chain one must define a function

whose value depends on the number of steps before the system

enters a certain state initially, after the starting position.

This function has the particular state under consideration as

its arfi,ument; Kemney and Snell (19^9), denoted such a funtion

by f and called it "first passage tiiue" of the state S . Tne
k jc



B«An v*Xa« or th^ function f aaa be snown to 1>« fioitft no oftt-

tor vhieh state the Sjstein waj in Initially, Th« m«an first pa-

•aaga matrix la ol graat importance in tiie aoalyaia of Markov

chains. The mean first passage matrix is ddfined ast

lAere,

ij

m " B (f )

and £ refers to the aean of f with the aystea bein^ in state

8 initially. Hence for an initial vector of probabilitiea ti,

the aean flrat paaaage timea are the components of the vector TrM.

Properties of the matrix M were discuased by Kemney axid

Saell (1959) » *nd are aummerised in the followingi

(1) The matrix II aatiafiea the equations

M«P(M-il)+B
where,

M » the matrix M with all the off diagonal

elements equal to sero,

E a a matrix of the aaoie dimensions as P

and all its elements are unity.

(ii) Let TT « ( ir , ,,,, TT ) be the atationary probabilityla
vector of the matrix P. Then,



m » 1/n , for j»l and «ero for J^ 1.

tha vaotor tr, as fflantloned aarllar, is any rov of tha matrix

? . .

(111) Tha aquation: ' v - ^^ \

M > P ( U-M ) •* JS

:t^i

has a unlqua solution,

(iv) Tha aaan first paasaga matrix M la glvan byi

M«(I-Z-*-JIZ}D
dg

whara Z la tha fundamental matrix of P and D Is tha dlagoixal

atrix whoae diagonal elemanta ara the reclprocala of tha oor-

reaponding ooapoaanta of n and its off diagonal aiaaenta are

all xaros.

(y) Let P be the transition natrlx for an Independent

trials prooesa. The mean first paaaaga aatvix for an Independ-

•nt trial process Is given byt

M
K.l

vhara, b > 1/P •

Thla followa from the fact that for a sequence of Independent

trlala the fundamental matrix Z oan be shown to be tha identity

uitrix,

(1) For a regular Markov chain:

n k -[k (f )1
L n J J

dg
s /w
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where, E (f ) is tne mean oX' tne first passage time f with"J J

TT as the initiai probability vector. ^ Is a row vector with

entries all equal to 1, \ ,vx >
; «,

- .. -- ' %

(til) Let,

C a 2 Z '" ~

"^'
"''- ]< — *

::; ij - :
---

'

then,

•> C « M ir»

where, tT» is the transpose of tt, the initial vector of probabili-

ties,

(viii) Let TT and ir be any two Initiai probabiiits
1 2

vectors, then n and tt are related as follows;
1 2

(£ (f ) - E (f ) ) = (tt - TT ) (i-z) D"J n j 12
for proofs of these results and more details one may refer to

Kemney and Snell (1959).
-'"-

It was mentioned earlier that a I^arkov chain is compl-

etely determined by a transition matrix and an initial proba-

bility vector. With these results, one can complete!;/ determine

a Markov chain by the matrix of the mean passage times, M. The

numbers m i ^ j will be used as t::e non-zero entries of the

matrix:

S = M - D .

This matrix has n(n-l) non-«ero entries, which suffices to deter-

mine the chain completely. The matrix M la cuaractt^rized by:
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(1) V haa an invaraa.

(li) n « (c-1) (ir^)» .

-i -;

(ill) P I ( D - ii ) fl? .

VARIANCE OF iriiiiiT iAS^iAUii TIME

Tha first paasaga tiaa haa a variance aa wail aa a maan.

The variance of the first paasage time can be determined in tha

usual way, liemelji

2 2
Var (f ) « E (f ) - (E (f )) .

To find the variance of the first paaaaga tlma, the two

right hand side of tha above aquation need to be determined. Since

E (f } was datenolned before, so It raoialna to fine E (f }, Let

us conaldar tha matrix:

•(vv)-
The matrix W aatlaflas the aquationt

W » P(W-W ) - 2P (Z-i. Z )D E ,

dg dfc
2

fha values of E (f ) are determined by:
1 j

'^' f ' '
: : W«D(2ZD.I)

dg d^

the unique aolutlon of thia equation la given by:

W • M (2 Z D - I) 2 (2 M - E (ZM )^ 4i

hence.

Var (f ) « t -

whara the aubaorlpt aq la uaad to denote that the elements of
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II are the squares of the corresponding elements of M, As
•q

usual the yarlance will be denoted by M , I.e. the 2nd moment
2

about the mean.

If the trials were Independent then:

W « E D ( 2 D - I )

» ( (Vp ) ( ^P - I )

2
M « E ( D - D )

. ( (Vp )^ - Vp )

tj IJ

where, D In the above expression stands for the first passage

time.

RECURRENT AID NON.RECURREUT STATES

Consider a sequence of repeated trials with possible

outcomes £ , E , !••• Let jL be an attribute of finite sequences,
1 2

i. e. It is uniquely determined whether a sequence (E ,•••,£)

has or has not the characteristic y£. The attribute ^ defines a

recurrent event if:

(I) In order that )& occurs at the nth and the (a'»'ia)th

place of the sequence ( E , ..., E ) it is necessary and

*^ Violent that JL occurs at the last place of the subsequences

(E , ..., E ) and ( E ,...,£ ) .

i i J J
* n n+l n+m

(II) Whenever this Is the case:
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.< w/

f (1 , .... « ) • P (E , .•., K )P(I , •••, t )•

L«t S b« an arbitrary, but fUaA, laltiai atata of tha

J

ayataia. &^9rj ti«a tha ayataib vlaita S ttoa prooaaa raaoaanaaa.

Tharafora tha raturn to 8 , aa dafload abOTa la a racurra«t avaat.

J

In tarata of probabilltlaa thla la axpraaaad aat

A atata S ia aaid to ba raourraat if and oolj If ,

•'-^''
Q - 1.

or aquivalantly, L I
J J

irtiara, . ^ - .. - w

/ Q • ? (X -J infinltaly oftaal X • 1) .

IJ h

«adL L « F (X -4 for atlaaat oaa h I X •!)•
^T7 Ij h

A Tinwarj of tha baaio propartl«a of raaurraat avaata

ia givan by PaXlar (1957}» aa followai

(i) Raourranoa tlaa T of a atata S la clafload aat.11
Lat 3 ba a raourraut atata vlthi

1
P(X « 1 )30

a

Olvan that X 1» daflxui a raodoa varlabia T aa
n 1

T -a, if X ^ 1, for l^k^, and X i«
1 tt*k n^«

(11) A atata S la tranalaat If, T X. Tha naoaaaary
J J

to ba tranalaat lat
and aiifi^olant eondltlon for a atata S

J

>i A
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and hence.

(n)

p , for each i.

(lil) A state S Is a persistent nul state ii' T =1,

J J

and the expected value of T = . A necessary and suTriclent
J

condition for a state to be a persistent null state Is:

(n)
2 p

^^ -

and,
(n)

Llm p = , for each state S ,

n—^ ij 1

(iv) A state S has period w 1 If,

J \ .

(n) V,; :.

p = :

':: '

jj

whenever n Is not divisible by w ana w Is tne smallest Integer

with this property, 1. e. a return to the state S Is Impossible,

except, perhaps. In w, 2w, .,,, steps,

(v) If S Is persistent and aperiodic, 1. e. not per-
J

Iodic then,
(n)

Llm p = T /E(T )

where, E(T ) is the mean value of T . In particular wo have:

(n)
Llm p =: 1/E(T ) .

JJ j
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If S l8 A null state, then, one puts:

J

L.(T ) = CO

(vi) If S is persistent and has period w, then

J

the equation:
(n)

IAm p = 1/^(T )

V Jj J

is replaced by:
(nw)

Lim p = w/E(T ) .

Persistent states which are neither periodic nor null

are called ergodic and will be discussed later.

Consider the quantity:

(n)
I

K « P(X aj I X «i, X ?^ i, i*i¥=n)
ij n h '

in ?;ords tnls means:

The conditional probability of the system beint^ in

state S at time n given that at time zero it was in state

J

S and has not been in state S before time n, iience we have:

(n,
'

P(T =n ) « K .

1 li

Hence, the relation;

E(T ) = n P(T =n)
1 1

(n)
* n K

11

> «
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A set of recurrent states will be called a recurrence

class. Recurrence states and their classes were discussed by

Parzen (I962), Recurrent states whose mean recurrence time is

finite and positive are called positive, if the mean recurr-

ence time is infinite, tie state is said to be a null state,

iilGODIG fc'AHKOV CHAINS

As mentioned before, a recurrent state which is neither

null nor periodic is said to be an ergodic state.

Due to the absence of a vell-agreed-upon terminology

about luarkov cnains it is felt that quoting W, Feller(19$7),

in tne following may save sone ambiguity and orient to different

terminology:
,

"Unfortunately, no generally accepted terminology exists,

persistent states are called recurrent states which confuses

by obscuring the parallisro between l/iarkov chains end recurrent

events, Kolmop:rov called transient states 'unessential states'

but new research has snown that the main interest, both theo-

ritical and practical, centers on transient states. The term

'ergodic', being synonymous to 'persistent', 'non-null', 'non-

periodic', is rather generally accepted, but 'positive' state

is one of the existing alterxiatives, anc sometimes ergodic is

equated to persistent", ^"

An ergodic chain is simply a chain where the system

can go from every state to any otner state, hence an ergodic

chain is a chain whicn consists of one and only one comunic-
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atlng class. The stochastic matrix of an ergodlc chala will

be called an ergodlc transition matrix.
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In the appllcfttlooa of pxK>bablllty theory one can often

atsujMi that iib* randoa events or razidoai variable* under oonaldex^

ation are Independent. There are ax^xxj probleois In aelence where

the aaaunptlons of Independence are not satisfied. The study of

dependent randois events Is fof great lapox>tanee In probability

theory. To abandon the assxuBptlon of independenoe, aoniag randoa

events oreates serious ooaplioations In the reasoning and in the

proofs.

Markov, in the investigation of dependent erents, dis-

tinguished a aoheise of events, which can be eonsidered aa the sio-

plest generalisation of the soheae of Independent events, and that

was named after hla as "l^arkov Processes'*. In a Markov process,

the outcoise of any event in a sequence of eventa dependa only oa.

the outeoae of the directly preoedlng event.

Study of the stochastic aatrlx of a Markov cnain enablea

one to deaorlbe the behavior of the proeess^ as well as classi-

fying it such aa, ooaaunlcatlng, regular, ergodio, absorbing, ete.

Powers of the stochastic aatrlx givea a clue about the rate of

aonvergenoe of that aatrlx. A fast convergence Is^lles that the

process will reach equllllbriua in a anort period of tloe, while

a slow convergence indicates that tne process needs a long tlue

to reach Its stationary distribution. The powers of the stooh-

•tic aatrlx where used as a tool to predict the distribution

of the process at a certain tlae, with r-japect to a prespeelfied

stArtiog position,

MarkoT chains are found to be a aultable tool to analyse
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