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Abstract 

Pestiviruses such as classical swine fever virus (CSFV) and bovine viral diarrhea virus 

(BVDV) are some of the most economically important livestock diseases in the world. The 

antigenic similarities between members of the pestivirus genus allow for both BVDV and CSFV 

to infect swine. Infections with heterologous pestiviruses in swine can interfere with diagnostic 

tests for CSFV. The identification of cross-reactive and cross-neutralizing epitopes between 

CSFV and BVDV for the development of improved diagnostics and vaccines that allow for the 

differentiation of infected animals from vaccinated animals (DIVAs) are necessary to accurately 

detect and control CSFV. The overall goal of this research was to identify epitope regions 

recognized by antibodies that can differentiate between CSFV and BVDV. The approach was to 

use serum neutralization assays to confirm the presence of neutralizing antibodies to BVDV in 

swine serum collected from animals immunized with one of three separate Alphavirus vaccine 

constructs: BVDV-1b, CSFV E2, and CSFV Erns. Results showed that animals immunized with 

the Alphavirus BVDV-1b construct had high neutralizing titers against BVDV-1a and animals 

immunized with Alphavirus CSFV E2 and Erns constructs had low, but detectable, neutralizing 

activity. Polypeptide fragments of CSFV and BVDV E2 were then expressed in E. coli and 

purified using affinity chromatography. Serum from a pig immunized with the CSFV E2 

Alphavirus construct was tested against two fragments of CSFV E2, 2/4 and 4/4, and four 

fragments BVDV E2, 1/4, 2/4, 3/4, and 4/4, using western blot analysis. Reactivity to fragments 

CSFV E2 2/4 and 4/4 and BVDV E2 1/4 and 4/4 was observed. The results of this study 

identified CSFV amino acid positions 774 through 857 and BVDV amino acid positions 783 

through 872 as the regions that contain the epitopes recognized by cross-reactive antibodies 



  

between BVDV and CSFV E2. These results provide more specific sequence regions to improve 

CSFV diagnostic assays and DIVA vaccines. 
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Chapter 1 - Literature Review of Classical Swine Fever Virus and 

Bovine Viral Diarrhea Virus 

 Introduction 

Pestiviruses such as classical swine fever virus (CSFV) and bovine viral diarrhea virus 

(BVDV) are some of the most economically important livestock diseases in the world. The 

antigenic similarities between members of the pestivirus genus allow for both BVDV and CSFV 

to infect swine. Infections with heterologous pestiviruses in swine can interfere with diagnostic 

tests for CSFV. For viruses that cause high morbidity and mortality like CSFV, outbreaks can be 

devastating and require efficacious vaccines coupled with quick and accurate diagnostics to 

control the virus and minimize the number of animals infected. Vaccines that allow for the 

differentiation of infected from vaccinated animals (DIVA) are increasingly needed for the 

control of pestiviruses. Without DIVA diagnostic tools it is difficult, if not impossible, to 

distinguish between an animal that has been naturally infected and one that has been vaccinated. 

Vaccines and accompanying diagnostic assays that have the necessary sensitivity and specificity 

to detect the pestivirus of interest are crucial for the control and surveillance of CSFV. In order 

to develop these types of assays and vaccines, unique areas or epitopes of each virus must be 

identified. 

 The Flaviviridae Family 

The Flaviviridae family of viruses is a group of single-stranded, positive-sense RNA 

viruses that consists of four genera: Flavivirus, Hepacivirus, Pestivirus, and Pegivirus. Species 

such as yellow fever virus, West Nile virus, Japanese encephalitis virus, and dengue fever virus 

from the genus Flavivirus and hepatitis C virus (HCV) from the genus Hepacivirus are viruses 
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that cause severe disease in humans and are of major global concern (Lindenbach et al., 2007; 

Stapleton et al., 2011). Phylogenetic studies of the Flaviviridae family show that the Pestivirus, 

Hepacivirus, and Pegivirus genera are the most closely related. This close relationship between 

pestiviruses and hepaciviruses has been utilized to study viruses that replicate poorly in cell 

culture and lack available animal models. BVDV, a bovine pestivirus, has been used as a tissue 

culture surrogate for HCV as both viruses share similar genomic structure and replication 

strategies (Billerbeck et al., 2013; Buckwold et al., 2003; Ouzounov et al., 2002). 

 The Pestivirus Genus 

The genus Pestivirus consists of four main species of viruses: classical swine fever virus 

(CSFV), bovine viral diarrhea virus-1 (BVDV-1), bovine viral diarrhea virus-2 (BVDV-2), and 

border disease virus (BDV). Other unassigned species have been identified and include a giraffe 

pestivirus isolate, Giraffe-1 (Avalos-Ramirez et al., 2001), HoBi-like viruses, also known as 

BVDV-3 or atypical pestiviruses (Schirrmeier et al., 2004), pronghorn antelope pestivirus 

(Vilcek, 2001), and Bungowannah virus (Kirkland et al., 2007). These viruses similarly infect a 

number of species in the order Artiodactyla such as domestic even-toed ungulates like cattle, 

sheep, and pigs as well as old- and new-world camelids and feral species such as deer, chamois, 

and antelopes. The worldwide geographic distribution of pestiviruses mirrors the large economic 

impact these viruses have on the livestock industry (Schweizer & Peterhans, 2014). 

  Virus 

 Economic Impact 

CSFV, also known as hog cholera, swine fever, peste du porc, cólera porcina, and 

virusschweinepest, is a virus that solely infects members of the Suidae family (United States 

Department of Agriculture Animal and Plant Health Inspection Service [USDA APHIS], 2013). 
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CSFV is one of the most economically important diseases of swine worldwide due to the high 

morbidity and mortality of the disease. The virus, which was once widespread in the Americas, 

Asia, Africa, and Europe, has since been eradicated in a number of countries. The cost of 

infection can be devastating as seen in the 1997-1998 outbreak in the Netherlands which resulted 

in the destruction of approximately 1.1 million pigs and cost $2.3 billion to eradicate 

(Meuwissen et al., 1999; Stegeman et al., 2000). The first recorded case of CSFV in the United 

States dates back to 1833. The disease was officially eliminated from the country in 1978 after 

16 years of eradication efforts (Edwards et al., 2000; USDA APHIS, 2012). Current economic 

models of pork, swine, and related markets have estimated that a new outbreak in the United 

States would result in the loss of 11 million hogs and would cost $2.6-$4.1 billion (Paarlberg et 

al., 2009). Today, CSFV remains endemic in a number of countries in Central and South 

America, Asia, Africa, and in wild boar populations of Europe (World Organization for Animal 

Health [OIE], 2009). The severity and highly contagious nature of CSFV has resulted in the 

listing of the virus by the United States Centers for Disease Control and Prevention (CDC) as a 

biosafety level 3 (BSL-3) agent in vitro and BSL-3-Ag in vivo (Wilson & Chosewood, 2009). 

 The Virion, Genomic Organization, and Proteins 

CSFV is a single-stranded, positive-sense RNA virus (Meyers et al., 1989; Moormann et 

al., 1996, p. 199; Ruggli et al., 1996). The CSFV capsid is hexagonally shaped with an electron-

dense inner core structure of 30 nm surrounded by a spherical envelope 40-60 nm in diameter 

(Murphy et al., 1995). The genome consists of a single open reading frame (ORF) flanked by a 

5'-nontranslated region (NTR) and a 3'-NTR that encodes for a single polyprotein (Figure 1.1). 

The polyprotein is co- and post-translationally converted into four structural proteins: C, Erns, E1, 

and E2 (Figure 1.2), and eight non-structural proteins: Npro, p7, NS2, NS3, NS4A, NS4B, 
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NS5A, and NS5B. The conversion of these proteins is performed by viral proteases Npro, NS2, 

NS3, and host cell proteases (Meyers & Thiel, 1996; Moormann et al., 1990; Rümenapf et al., 

1993; Thiel et al., 1991). 

Glycoprotein E2, formerly E1 or gp51-55, is the major envelope protein expressed on the 

outer surface of the virion and contains four antigenic domains on the N-terminal half: A, B, C, 

and D with domain A further divided into subdomains A1-A3. E2 forms a heterodimer with E1, 

which is essential for virus entry, but is also found alone as a homodimer. This glycoprotein is 

not secreted as it has a hydrophobic transmembrane anchor at the C-terminus. The primary 

function of E2 is binding and entry of the virus into the host cell. It is the major determinant of 

cell culture tropism (Lindenbach et al., 2007; van Rijn et al., 1993, 1996; Ronecker et al., 2008; 

Rümenapf et al., 1993; Thiel et al., 1991; Wensvoort, 1989). 

The Erns glycoprotein, formerly E2 or gp44/48, forms a homodimer in which the protein 

structure is stabilized by four intramolecular disulfide bridges. Erns is atypical in that it lacks a 

transmembrane anchor and is anchored by an amphipathic helix formed by the folding of the 

C-terminus which allows for it to be secreted as a soluble protein from infected cells in addition 

to being associated with the mature virion. Functions of Erns include ribonuclease activity, 

control of translocation across eukaryotic cell membranes, and it plays a role in inhibition of 

double-stranded RNA-induced cell responses. The N-terminus of Erns is unique to pestiviruses, as 

compared to other members of the Flavivirdae family, and may be involved with the evasion of 

host interferon responses (Lindenbach et al., 2007; Magkouras et al., 2008; Meyer et al., 2012; 

van Rijn et al., 1996; Schneider et al., 1993; Thiel et al., 1991). 

The phylogeny of CSFV is determined by the variable E2 fragment. To date there are 

three genotype groups each containing several subgroups. These genotypes consist of genotype 1 
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with subgroups 1.1, 1.2, 1.3, and 1.4; genotype 2 with subgroups 2.1, 2.2, and 2.3; and genotype 

3 with subgroups 3.1, 3.2, 3.3, and 3.4 (Paton et al., 2000, p. 200; Postel et al., 2013). Each 

genotype is characteristic in certain geographical regions with groups one and two primarily in 

Europe and the Americas and group three circulating only in Asia (Moennig et al., 2003; Paton 

et al., 2000). Generally, genotype 1 and 3 isolates are of moderate or low virulence while 

genotype 1 isolates show the highest virulence. Some of the most widely used strains in research 

include highly virulent Brescia strain of genotype 1.2, highly virulent Alfort strain of genotype 

1.1, and moderately virulent Paderborn of genotype 2.1 (Floegel-Niesmann et al., 2003; Leifer et 

al., 2011; Weesendorp et al., 2009). 

Host antibodies target the NS3, E2, and Erns proteins; however, neutralizing antibodies 

are only produced towards Erns and E2 glycoproteins. Moreover, only neutralizing antibodies 

against E2 have been shown to correlate with protective immunity in the host (König et al., 

1995; van Rijn et al., 1992, 1993; Weiland et al., 1992; Wensvoort, 1989). Further analysis of 

antibodies produced against glycoprotein E2 has shown that two structural units make up E2 

with domains B/C and D/A forming two independent antigenic units. Both conformation-

dependent and linear epitopes have been found on A and B/C domains with neutralizing 

antibodies produced against domains B/C; however, these domains are not conserved across 

CSFV strains. Analysis of the subdomains found that A1 and A2 are highly conserved across 

strains of CSFV, but only antibodies of subdomain A2 have been shown to be neutralizing 

(Chang et al., 2010, 2012; Wensvoort, 1989; Wensvoort et al., 1986, 1989a, 1990). Antibodies 

generated against NS3, due to the high genetic stability of the protein, are conserved across 

pestivirus species and are therefore not specific to CSFV alone (Beer et al., 2007). 
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 Virus Life Cycle and Replication 

Attachment of the viral glycoproteins to the surface of host cells allows for the entry of 

CSFV. Glycoproteins E1 and E2 are essential for viral entry while Erns is non-essential. Once the 

viral glycoproteins have bound to the host receptors, internalization occurs by clathrin-dependent 

endocytosis. The RNA viral genome is then released into the cytoplasm after the virus membrane 

fuses with the host endosomal membrane. Once inside the cell, RNA translation occurs in the 

cytoplasm. Replication is associated with cytoplasmic membranes and requires NS3, NS4A, 

NS4B, NS5A, and NS5B in addition to cellular components. The virion is then assembled and 

likely matures in intracellular vesicles which are then released by exocytosis (Lindenbach et al., 

2007). 

 Transmission 

CSFV is present in blood and is secreted via most bodily discharges including urine, 

feces, and semen as well as oral, nasal, and conjunctival fluids. The natural and most efficient 

route of infection is through direct pig-to-pig contact and usually occurs oronasally. The 

consumption of swill containing products originating from CSFV-infected animals by 

susceptible pigs can also be a source of CSFV infection and has resulted in outbreaks in the past 

prompting bans on swill feeding in parts of Europe and in Australia (Dunne et al., 1959; 

Edwards et al., 2000; Moennig, 2000; Penrith et al., 2011; Ribbens et al., 2004). Artificial 

insemination can also be a source of infection, as the virus is excreted in semen, and stud boars 

should be screened for the virus prior to semen collection (Floegel et al., 2000; de Smit et al., 

1999). The environment, people, and fomites, such as livestock trucks and tools used by 

veterinarians that have been contaminated with excretions of infected pigs, can also serve as 

sources of infectious material (Penrith et al., 2011; Ribbens et al., 2004, 2007). 
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Infection of a gestating sow during the first trimester will result in abortion of the piglets. 

Vertical transmission from sow to piglet can occur if the sow is infected in her second or third 

trimester of gestation. Some sows infected during the second trimester of gestation (days 50-70), 

during the development of the piglets' immune systems, can produce persistently infected (PI) 

animals via vertical transmission. Tolerance to the virus allows the virus to be shed throughout 

the animal's life with few or no clinical symptoms. The presence of PI animals within a herd or 

population can lead to the persistence of an outbreak even though they appear normal. Testing is 

required to identify such individuals as they are typically asymptomatic (Moennig, 2000; 

Moennig et al., 2003; Ribbens et al., 2004). 

Wild boar also serve as important sources of CSFV, primarily in Europe, as the virus is 

endemic in many boar populations. Indirect contact is the most important route of transmission 

as virus can be spread through the feeding of silage that has been harvested from areas where 

wild boar have been or via contact with vehicles that have been used for transport of infected 

boar or carcasses. Direct contact with wild boar, while less likely, remains as a potential method 

of transmission to domestic pigs (Moennig, 2000; Penrith et al., 2011; Ribbens et al., 2004). 

Other Suiformes such as the common warthog, bushpig, peccary/javelina, and pygmy hog 

are also susceptible to the virus (Barman et al., 2012; Everett et al., 2011; Fowler, 1996; Gers et 

al., 2010). The epidemiological role of these species has not been fully explored and their role in 

transmission of the virus remains unknown (USDA APHIS, 2013). However, the possibility 

exists that persistently infected individuals of these species could become sources of infection for 

both domestic swine and other wild Suiformes (Barman et al., 2012). 

While the mechanisms are still not fully understood, it has been observed that the risk for 

secondary infections is highest in distance-dependent infections referred to as “neighborhood” 
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infections. The risk of these neighborhood infections increases as the distance to the primary 

infected herd decreases. It has been suggested that airborne transmission or undocumented 

biological or mechanical vectors may be the cause (Elbers et al., 1999; Penrith et al., 2011; 

Ribbens et al., 2004). One study demonstrated that aerial transmission was possible in close 

quarters but that it was dependent on the virulence of the strain. Pigs infected with highly 

virulent strains, such as Brescia and Paderborn, excreted higher quantities of virus than those 

infected with the low-virulent Zoelen strain (Weesendorp et al., 2008). 

 Infection and Immune Response 

The immune response to CSFV is dependent on multiple factors including the virulence 

of the strain and the immunological status and age of the animal. Neutralizing antibodies can be 

detected as early as 3 days after infection while maximum antibody titers usually occur 

3-4 weeks after infection and may remain elevated for as long as for 6 months (Chander et al., 

2014; Depner et al., 1997; Laevens et al., 1999; Moennig et al., 2003; Moennig & Plagemann, 

1992). 

After the virus enters the host naturally through oral, nasal, conjunctival, and genital 

mucous membranes it infects the cells of the tonsil, the primary tissue for replication, and local 

oropharyngeal lymph nodes. CSFV has an affinity for cells of the mononuclear phagocyte 

system with the main targets consisting of macrophages, dendritic cells, and endothelial cells. 

The virus then infects secondary target organs such as the spleen, lymph nodes, thymus, bone 

marrow, and gut-associated lymphoid tissue (Knoetig et al., 1999; Summerfield et al., 1998, 

2000; Summerfield & Ruggli, 2015; Susa et al., 1992). 

Generalized leukopenia is the major effect of CSFV infection with deficiency of 

B lymphocytes observed as a result of infection of the lymphoid organs. Lymphocyte apoptosis 
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induced by chemical mediators from monocyte-macrophage cells causes this immunosuppressive 

response (Chander et al., 2014; Sánchez-Cordón et al., 2002; Summerfield et al., 2001). One 

hallmark of the acute disease phase, brought on by virulent strains of CSFV, is the extremely 

high levels of serum interferon-α (IFN-α), a signaling protein produced by leukocytes. These 

high levels of IFN-α coincide with depleted peripheral B and T lymphocytes. During the final 

stages of the disease, as much as 90% of T cell depletion has been shown to occur (Pauly et al., 

1998; Summerfield et al., 2006; Summerfield & Ruggli, 2015). 

 Clinical Signs and Pathology 

Signs of disease in animals infected with CSFV include fever, anorexia, dullness and 

apathy, conjunctivitis, and constipation with hard fecal pellets followed by diarrhea. Some 

animals may also display a staggering gait, ataxia, or convulsions. Purple skin discoloration or 

petechial hemorrhages may develop several days later on the ears, lower abdomen, and legs 

(Moennig et al., 2003; Terpstra, 1991; OIE, 2014). 

CSFV can occur in four forms: acute, chronic, subclinical, or persistently infected. 

Highly virulent strains of CSFV and infections in animals up to 12 weeks of age are associated 

with the acute form of the disease. Animals with the acute form of disease typically have an 

incubation period of 2-6 days and die 10-20 days after infection. CSFV strains of moderate to 

low virulence are associated with the subacute and chronic forms of the disease. Animals with 

the subacute form generally die 20-30 days after infection and those presenting with chronic 

infection will die much later after an apparent recovery followed by relapse. Persistently infected 

animals generally appear normal at birth and may develop normally for several weeks or months 

before clinical symptoms develop. Severe growth retardation and the development of runted pigs 
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are also associated with persistent infections (Blome et al., 2006; Chander et al., 2014; Dahle & 

Liess, 1992; Greiser-Wilke et al., 2007; Moennig et al., 2003; Terpstra, 1991; OIE, 2014). 

Animals infected with high-virulent and moderately virulent strains of CSFV tend to 

show all of the symptoms previously described, while low-virulent strains may only present with 

poor reproductive performance of sows and piglets born with neurologic defects. Young animals 

tend to be more affected than older animals as they display classical hemorrhagic disease while 

older animals tend to experience a milder course of disease that may even be subclinical (Dahle 

& Liess, 1992; Greiser-Wilke et al., 2007; Moennig et al., 2003; Terpstra, 1991; OIE, 2014). 

In subclinical cases no gross changes are found upon necropsy. In cases of acute or 

subacute infection hemorrhages can be found in various organs throughout the body. The lymph 

nodes generally appear swollen, edematous, and are red or black in color due to diffuse 

hemorrhages. Hemorrhages ranging in size from petechial to echhymotic can be present on the 

skin, heart, urinary bladder, larynx, intestinal mucosa, and serosa. The skin may also be cyanotic 

and the kidneys will show petechiae in the cortex, also known as having a “turkey egg” 

appearance. Splenic infarcts up to 10 mm in size are considered to be characteristic of acute 

infections. In the large intestine, the presence of button ulcers and the general appearance of 

being hyperemic are characteristic in subacute and chronic infection. Brain and spinal cord 

lesions are known to occur along with congestion in the lungs, liver, and bone marrow. Atrophy 

of the thymus and depletion of lymphocytes in tonsils, lymph nodes, and spleen are also 

observed (Blome et al., 2006; Chander et al., 2014; Terpstra, 1991; OIE, 2014). 

The symptoms of CSFV can be difficult to differentiate from those caused by other 

hemorrhagic and febrile diseases of swine, such as African swine fever virus (ASFV), porcine 

dermatitis and nephropathy syndrome (PDNS), porcine reproductive and respiratory syndrome 



11 

virus (PRRSV), post-weaning multisystemic wasting syndrome (PMWS), bacterial septicemias, 

anticoagulant poisoning, and hemolytic disease of the newborn, and require differential testing to 

confirm which disease is affecting the animal. Septicemic diseases, such as erysipelas, 

salmonellosis, and Haemophilus suis infections, must also be considered as differential 

diagnoses (Floegel-Niesmann et al., 2003; Greiser-Wilke et al., 2007; Moennig et al., 2003). 

Infection with a bovine pestivirus, BVDV, can also present with symptoms that resemble CSFV 

infection (Terpstra & Wensvoort, 1988). 

 Detection of CSFV 

Diagnostic methods for CSFV include reverse transcription-polymerase chain reaction 

(RT-PCR), fluorescent antibody tests (FAT), virus isolation, enzyme-linked immunosorbent 

assays (ELISA), fluorescent antibody virus neutralization tests (VNT), neutralizing peroxidase-

linked assays (NPLA), and immunoperoxidase staining using monoclonal antibodies for 

differentiation of pestiviruses (Blome et al., 2006). For diagnosis in live animals, the detection of 

virus or viral nucleic acid in blood or antibodies in serum are the methods of choice (OIE, 2014). 

However, it takes two to three weeks post infection for antibodies to develop (Greiser-Wilke et 

al., 2007). As a result, antibody detection methods do not provide an accurate diagnosis during 

early infection. While ELISAs and VNTs are the recommended methods for detection of an 

immune response to CSFV, cross-reactive antibodies against other pestivirus species have been 

observed in pigs. Therefore, screening tests should be followed by confirmatory tests that are 

specific for CSFV. The method of choice is the comparative neutralization test which compares 

neutralizing titers of antibodies to those of other pestivirus species. For diagnosis in deceased 

animals, detection of virus, viral nucleic acid, or antigen in organ samples through virus 
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isolation, direct FAT, or RT-PCR are suitable methods (Carbrey et al., 1969; Fernelius et al., 

1973; OIE, 2014). 

 Control and Prevention 

Vaccination, culling of infected animals or those within contact range (stamping out), 

disinfection of infected areas, quarantine, movement control, precautions at borders, screening, 

surveillance, and control of wildlife reservoirs are all commonly implemented methods of 

control (OIE, 2015a). While the safety and efficacy of vaccines for CSFV has been shown with 

no evidence of reversion, a number of countries where the virus is endemic, such as those in the 

European Union, have banned vaccination due to the inability to differentiate antibodies 

produced by vaccinated animals from those naturally infected with the virus (Greiser-Wilke & 

Moennig, 2004; USDA APHIS, 2012). This ban on vaccinations in the European Union is due to 

the fear that during an outbreak vaccinated pigs may become apparently healthy carriers of the 

virus and further spread the disease (Council of the European Union, 2001). 

Vaccines for CSFV include a number of live attenuated vaccines (LAV)/modified live 

virus (MLV) vaccines. The most commonly used attenuated vaccines include the Chinese 

lapinised strain (CLS or C-stain), the Japanese guinea pig cell-culture-adapted (GPE-) strain, the 

Thiveral strain, and the Mexican PAV strain. The C-strain vaccine is the most widely used as it 

provides protection against all genotypes and is effective three days post vaccination. LAVs can 

also be administered orally and have been used to vaccinate wild boar in Europe (Beer et al., 

2007; Graham et al., 2012; Greiser-Wilke & Moennig, 2004; Huang et al., 2014).  

DIVA vaccines, also known as marker or subunit vaccines, are the focus of current 

vaccine development efforts and few are commercially available. A number of these vaccines 

utilize the E2 or Erns glycoprotein to induce a neutralizing antibody response and use companion 
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ELISAs to determine the presence or absence of the glycoproteins. For example, animals 

naturally infected with CSFV will produce antibodies against both E2 and Erns.  Through DIVA 

vaccination, animals will only develop an antibody response against the glycoprotein they are 

vaccinated with and lack antibodies against the other glycoprotein, and are therefore negative on 

the companion ELISA (Beer et al., 2007).  

Chimeric pestiviruses are one type of DIVA vaccines that are currently under 

development. The most promising of these, CP7_E2alf, was produced by replacing the E2 gene 

of BVDV strain CP7 with the E2 gene of CSFV strain Alfort 187. These modified live chimeric 

vaccines have comparable protection to that of the Chinese strain vaccines, can be administered 

orally, and utilize a companion Erns ELISA (Beer et al., 2007; Huang et al., 2014; Rasmussen et 

al., 2007; Reimann et al., 2004, 2016; USDA APHIS, 2012). Another DIVA chimeric pestivirus 

that has also been under development is CP7_E2gif. This vaccine also uses a BVDV strain CP7 

backbone in which the E2 gene is replaced by that of BDV Gifhorn E2 and utilizes a companion 

E2 ELISA (Rasmussen et al., 2007; von Rosen et al., 2014). Other types of DIVA vaccines also 

under development include CSFV peptide vaccines, DNA vaccines, and viral vector vaccines. 

(Beer et al., 2007). 

 Bovine Viral Diarrhea Virus 

 Economic Impact 

First identified in 1957, BVDV is a virus that infects cattle and other ruminants. BVDV 

can be found worldwide in cattle populations with 60-85% of cattle testing seropositive. 

Economic losses due to BVDV infection in the United States have been estimated at $20 million 

per million calvings for low-virulent strains of the virus and as high as $57 million per million 

calvings for high-virulent strains (Houe, 1999). BVDV eradication efforts are ongoing in a 
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number of European countries such as Switzerland, Norway, Germany, Ireland, and Scotland 

(Barrett et al., 2011). In Switzerland, using data collected in 1995-1997, it was estimated that 

BVDV induced losses were around 9 million Swiss francs per year (Institut für Veterinär-

Virologie, 2006). The Swiss BVD-eradication program, which began in 2008, is expected to cost 

approximately 40 million euros with a third of this amount being paid for by farmers (Presi et al., 

2011; Presi & Heim, 2010). BVDV, due to its infectious nature, is categorized as a BSL-2 agent 

by the CDC (Wilson & Chosewood, 2009). 

 The Virion, Genomic Organization, and Proteins 

BVDV is a positive-sense, single-stranded nonpolyadenylated RNA virus about 12.5 kb 

in size with one large ORF flanked by 5' and 3' NTRs. The virion is enveloped and spherical in 

shape with a diameter of 40-60 nm. The genome organization and viral protein cleavage products 

are the same as those of CSFV (Figure 1.1) (Lindenbach et al., 2007; Meyers & Thiel, 1996). 

The virus life cycle and replication method are also the same as what was described previously 

for CSFV (Lindenbach et al., 2007). 

Structural glycoprotein E2, formerly gp53, and glycoprotein Erns, formerly gp48, share 

the same features and functions as those of CSFV (Deregt et al., 1998; Lindenbach et al., 2007; 

Paton et al., 1992). The current literature disagrees on the antigenic domains of BVDV E2 as one 

study identified three antigenic domains, I-III, and other identified four domains, DA, DB, DC, 

and DD (El Omari et al., 2013; Li et al., 2013; Wang et al., 2015). Domain I was identified 

between amino acid positons 693-782, domain II between amino acids 783-860, and domain III 

between amino acids 861-1035 (Li et al., 2013). As with CSFV, host antibodies are made against 

NS3, E2, and Erns proteins with E2 being the most immunodominant (Corapi et al., 1990; Deregt 

et al., 1998; Lindenbach et al., 2007; Paton et al., 1992). 



15 

There are two genotypes of BVDV: BVDV-1 and BVDV-2. The two genotypes have 

only 60% homology between the nucleotide and amino acid sequences of E2 and 75% homology 

between the 5' NTR (Donis, 1995; van Rijn et al., 1997; TIJSSEN et al., 1996). Analysis of the 

5' NTR and Npro regions have shown the presence of 20 subgenotypes of BVDV-1 which 

include BVDV-1a through BVDV-1t (Giammarioli et al., 2014) and six subgenotypes of 

BVDV-2 which include BVDV-2a through BVDV-2f (Giangaspero & Harasawa, 2004). The 

main classical strains of BVDV, such as NADL, SD-1, Oregon, Singer, Osloss, and NY1 are all 

of BVDV-1a or BVDV-1b subgenotypes. Different subgenotypes tend to be predominant in 

different geographic regions. BVDV-1a is widely distributed in the United States and Canada 

and predominates in the UK while BVDV-1b is prevalent in continental Europe and the United 

States. While prevalent in the United States and continental Europe, genetic typing showed that 

BVDV-2 is less prevalent than BVDV-1 in Europe (Kalaycioglu, 2007). 

Two biotypes of the virus exist, cytopathogenic (cp) and non-cytopathogenic (ncp), 

which are based on their effects on cells in vitro. Cytopathic biotypes will induce apoptosis in 

cultured cells while non-cytopathogenic biotypes do not. Acute infections are generally caused 

by noncytopathogenic biotypes, although cytopathogenic biotypes have been shown to induce 

acute infection under experimental conditions (Lanyon et al., 2014). 

 Transmission and Clinical Signs 

 BVDV can infect its host two ways: transiently or persistently. Seronegative animals that 

become infected and shed virus are said to be transiently infected. However, the majority of 

transiently infected animals will have no manifestation of any clinical signs (Ames, 1986).  

Those cattle that become infected and display clinical signs of disease are said to have acute 

BVDV infection. Acute infections are typically characterized by clinical signs such as fever, 
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anorexia, lethargy, leukopenia, ocular and nasal discharge, oral lesions, diarrhea, reduced 

fertility, abortion, stillbirths, congenital defects, and decreased milk production. The acute 

presentation of BVDV has an incubation period of 5-7 days and viremia can last up to 15 days. 

Generally, the time in which cattle with acute BVDV infections recover is related to duration of 

viremia and severity of lesions, both of which are associated with virulence of the strain, in 

addition to the presence of any secondary infections. However, most animals recover within 

2-4 weeks after the onset of clinical signs (Evermann & Barrington, 2005). 

Calves that are exposed to noncytopathogenic strains of BVDV between 30-125 days of 

gestation during which time the immune system is developing will become PI animals. The 

immune systems of these animals develop tolerance to the virus. As a result, the animals do not 

mount an immune response the virus and are born as animals that are persistently viremic. Most 

PI calves are characterized as “poor-doers” that survive only a few a few hours or days. Longer 

surviving animals generally appear normal at birth but have stunted growth. These animals are 

also 50% more likely to die within the first year of life (Liebler-Tenorio, 2005). PI calves can 

and do survive into adulthood, although both cows and bulls will have reduced reproductive 

performance. Cows are able to conceive and give birth, however they will always give birth to PI 

calves (Grooms et al., 1996; Liebler-Tenorio, 2005). 

The appearance of a fatal condition known as mucosal disease can arise in PI cattle as the 

result of infection with cytopathic BVDV through recombination between noncytopathogenic 

biotypes, superinfection, or mutation of the persistent biotype (OIE, 2015b). Mucosal disease 

presents in both acute and chronic manifestations. Symptoms of acute mucosal disease may last 

from 3-10 days before death occurs and can include fever, anorexia, polypnea, and tachycardia; 

profuse, watery diarrhea; erosions on the tongue, palate, and gingiva; lacrimation, excessive 
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salivation, and ocular and nasal discharge; ocular edema and inflammation of the interdigital 

space and coronary bands (Bolin, 1995; Evermann & Barrington, 2005). In some cases death can 

occur so suddenly that it may be the only clinical sign (Brownlie et al., 1987). Mucosal disease 

epizootics have been known to occur. These outbreaks occur when groups of cows are bred at 

the same time and subsequently become infected with BVDV around the same time of gestation. 

Ultimately this results in all of them producing PI calves. When cytopathic BVDV infects one PI 

animal it often infects all of the PI animals resulting in a sudden onset of animals with mucosal 

disease. Some animals with mucosal disease develop a chronic form of the disease that presents 

as unthrifty appearing animals with persistent loose feces or intermittent diarrhea, mild-to-

moderate anorexia, chronic recurrent bloat, interdigital erosions, nonhealing erosive skin lesions, 

ocular and nasal discharge, alopecia and hyperkeratinization around the head and neck, chronic 

laminitis, and abnormal hoof growth. Animals with the chronic form of mucosal disease rarely 

survive longer than 18 months of age (Evermann & Barrington, 2005). 

Noncytopathogenic and cytopathogenic biotypes of BVDV can be transmitted in bodily 

fluids such as nasal discharge, urine, milk, semen, saliva, tears, and fetal fluids. During acute 

infection, viral shedding occurs for about 10 days following infection with detectable antibodies 

occurring 13-19 days after exposure. Animals with primary BVDV infection have a relatively 

short period of viral shedding compared to PI animals and are generally poor transmitters of the 

virus. Direct contact with an infected animal or fomites are the most likely sources of infection, 

but transmission through ambient air has been documented (Niskanen & Lindberg, 2003; OIE, 

2015b). Secretions and contact with PI calves are the most plausible and effective route for 

transmission of BVDV and can perpetuate infection within a herd (Niskanen & Lindberg, 2003). 

PI cattle are also the most important source of noncytopathogenic BVDV, as they shed the virus 
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continuously throughout their lives and can be asymptomatic (Lindberg & Alenius, 1999). One 

study showed that PI calves are likely the most important reservoir of BVDV for susceptible 

cattle with 70-100% of susceptible penmates becoming infected after exposure to PI animals 

(Fulton et al., 2009).  

PI breeding bulls are a major concern as a means of viral transmission through infected 

semen. PI bulls can be a significant source of virus as the amount of BVDV excreted in the 

semen is extremely high, as compared to transiently infected bulls, and the semen can be quickly 

dispersed anywhere in the world. Another animal product that can serve as potential route of 

transmission includes embryo transfer materials, as the virus can be present in the collection 

fluid or on the zona pellucida and can be horizontally transferred to the recipient cow (Larson et 

al., 2004). Contaminated laboratory supplies used in vaccines are also potential sources of 

BVDV infection and should be checked for BVDV status by the vaccine manufacturer prior to 

use or be sourced from a supplier that tests its stock (Fulton, 2015). 

Other species, such as sheep, have been documented to transmit BVDV to cattle. While 

species such as swine can be infected with BVDV, there is currently no evidence of transmission 

to cattle (Larson et al., 2004). Seroprevalence studies looking for seroconversion of BVDV in 

wild ungulate populations found that pronghorn, caribou, deer, elk, moose, reindeer, and bison 

were antibody positive as well as domestic ungulates such as alpaca and llamas (Aguirre et al., 

2014; Duncan et al., 2008; Larska, 2015). One study identified a mousedeer as a PI animal 

infected with BVDV-1f. Examination of the virus revealed only a few nucleotide changes when 

compared to the strain obtained from German cattle. While wild mousedeer represent a low risk 

of infecting domestic cattle, the isolation of the virus shows the wide range of ungulates that can 

be infected and potentially spread the virus (Uttenthal et al., 2005). 
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 Detection of BVDV 

Diagnostic methods for BVDV include virus isolation, ELISA, immunohistochemistry, 

RT-PCR, VNTs, and virus isolation in cell culture. Diagnostic testing has been focused on 

detecting PI animals as a means of viral control (Fulton et al., 2009; World Organization for 

Animal Health, 2008). BVDV antigens from PI calves can be detected in skin biopsies by 

immunohistochemical staining. However, maternal antibodies can impact testing methods in 

calves because BVDV maternal antibodies may block viral infectivity or detection of viral 

antigens in these animals. Moreover, maternal antibodies may be detected in PI animals for up to 

three months and are detectable in non-PI calves for up to eight months (Sandvik, 2004). 

When surveying for BVDV using ELISAs, it is important to consider which viral 

antigens are used as BVDV-1 and BVDV-2 are two separate species. For this reason, and for 

optimal sensitivity, it is recommended that ELISAs detecting NS2 and NS3 be used over those 

utilizing Erns (Sandvik, 2005). 

 Control and Prevention 

Surveillance programs to identity PI animals for removal remains the best way to control 

the virus. Biosecurity measures, vaccination, and the removal or isolation of PI animals are all 

part of successful BVDV control programs (Fulton, 2015). Self-clearance of the virus from 

smaller BVDV-positive herds with no intervention has been documented to occur. This results 

from a lack of susceptible animals, as animals seroconvert and develop immunity to the virus, in 

addition to the removal of any PI animals. For surveillance of the virus in PI animals and those 

acutely infected, diagnostic assays such as BVDV antibody and antigen ELISAs are 

commercially available. ELISAs for the testing of bulk milk samples are also available 

commercially as a means for prevalence surveillance in dairy herds (Sandvik, 2004). 
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While surveillance programs targeted at identifying and removing PI animals are the 

most effective way to prevent subsequent BVDV infections in herds, vaccination remains an 

important tool for cattle producers in areas where high levels of beef production occur and where 

the virus is endemic. There are a number of MLV and inactivated (killed) BVDV vaccines that 

are commercially available. The MLV vaccines are believed to induce a more rapid immune 

response as they only require a single dose while killed vaccines require a booster. Vaccines for 

BVDV should include both BVDV-1 and BVDV-2 to provide the best protection against the 

virus. The majority of vaccines, both MLV and killed, use BVDV-1 cytopathogenic strains such 

as Singer, NADL, and C24 and a cytopathogenic strain of BVDV-2 (Fulton, 2015). 

Vaccines that are currently available lack DIVA properties and make surveillance for 

BVDV more complicated in areas where animals have been vaccinated against the virus. Several 

BVDV DIVA vaccines are still in the experimental phase. Of these, the Alphavirus-derived 

replicon particle system is one of the most effective as the antibodies produced have been shown 

to cross-neutralize both BVDV-1 and BVDV-2 following booster vaccination (Loy et al., 2013). 

Alphaviruses are a group of single-stranded RNA viruses and belong to the family Togaviridae 

and include viruses such as Semliki Forest virus (SFV), Venezuelan equine encephalitis (VEE) 

virus, and Sindbis virus (SIN). For the development of vaccines against infectious diseases, like 

BVDV, the virus is genetically modified to express substituted foreign genes of interest. The 

resulting replicon and helper vector supplying the viral structural genes are then co-transfected 

into a mammalian cell line via electroporation. Once in the cells the replicon and helper 

components multiply and form many new alphavaccine particles which contain the antigen of 

interest. After 24 hours, the particles are harvested from the cells and are purified and 

formulated. The resulting vaccine construct is a single-cycle replication-deficient recombinant 
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virus-like replicon particle that will only express the substituted genes (‘AlphaVax’, 2016; 

Lundstrom, 2014). Another experimental DIVA vaccine is a pronghorn antelope 

pestivirus/BVDV chimera. To generate this chimeric virus, a BVDV backbone was utilized and 

the Erns sequence of the BVDV backbone was replaced by that of the pronghorn antelope 

pestivirus. This chimera was distinguishable from BVDV infection by anti-Erns serology after 

infection and is a potential DIVA vaccine candidate (Luo et al., 2012; Mogler & Kamrud, 2014). 

 The Pestivirus Problem 

The immunological and genetic similarities between pestivirus species allows for BVDV 

to infect swine. During the CSFV outbreak in the Netherlands in 1997-1998, serum that tested 

positive on ELISA for CSFV was further characterized by VNT. The results of the VNTs 

showed that only 15% of the samples were truly positive for CSFV while 35% were positive for 

BVD/BVDV. Serum that tested positive for ruminant pestivirus neutralizing antibodies most 

often originated from sows and the prevalence varied from 0 to 60% (de Smit et al., 2000). 

Current surveys of swine have shown the seroconversion rate to be as high 64% in China and 

anywhere from 2-42% in North American swine herds. Sources of BVDV infection are believed 

to be cattle in close proximity to swine herds. However, during the 1997-1998 outbreak, a 

majority of the animals that tested positive for BDV/BVDV were not kept in close proximity to 

ruminants (de Smit et al., 2000; Tao et al., 2013). Other possible sources of infection for pigs 

include the feeding of BVDV contaminated milk and cow offal as well as contaminated swine 

vaccines. In CSFV vaccines, the contamination rate has been shown to be as high as 21.74% due 

to inefficient screening procedures for BVDV and contaminated bovine serum used in the 

manufacturing of these vaccines (Tao et al., 2013; Wensvoort & Terpstra, 1988). 
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BVDV infection in pigs has been shown to cause all of the clinical signs of CSFV, such 

as high fever, lethargy, yellow diarrhea, and skin lesions of the ears, abdomen, and legs. While 

BVDV infection in pigs can be symptomatic, it usually occurs without clinical signs which 

allows the virus to spread undetected. In addition to the typical symptoms of CSFV infection, 

BVDV infected pigs have been shown to have breeding problems with aborted, stillborn, and 

malformed piglets occurring (Carbrey et al., 1976; Castrucci et al., 1974; Tao et al., 2013; 

Terpstra & Wensvoort, 1988, 1997; Walz et al., 1999). 

Current data suggest that both CSFV and BVDV share the same receptor for entry into 

host cells. Bovine cluster of differentiation 46 (CD46) was first identified as the cellular receptor 

for BVDV and porcine CD46 was later identified for CSFV with further analysis showing 

roughly 55% sequence identity at the amino acid level between BVDV and CSFV CD46. CD46, 

also known as membrane cofactor protein, is present on all nucleated cells and belongs to the 

family of regulators of complement activation. Specifically, CD46 functions as a cofactor for 

plasma serine protease factor which cleaves complement factors C3b and C4b that have 

deposited on host tissues therefore preventing further complement activation (Dräger et al., 

2015; Krey et al., 2006a; Maurer et al., 2004). 

Other cells expressing CD46, such as HeLa and mouse L cells, have been shown to 

absorb BVDV into the cell. However, no productive infection occurred from these experiments 

suggesting that BVDV interacts with one or more additional cellular molecules that facilitate 

viral entry. This data would also suggest that these other cellular molecules are coreceptors and 

are likely present on cells of species belonging to the order Artiodactyla (Maurer et al., 2004). 

Several other receptors have been identified to be involved with viral binding and support 

the theory previously stated. Low density lipoprotein (LDL) receptor was first identified as a 
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common receptor for a number of Flaviviridae viruses, including HCV and BVDV, and mediates 

endocytosis of the virus. However, anti-LDL antibodies were shown to only delay the cytopathic 

effects of BVDV on cells while complete inhibition was observed for HCV, further supporting 

the theory of multiple receptors for pestivirus entry into the host cell (Agnello et al., 1999; Krey 

et al., 2006b). Another receptor that was identified is heparan sulfate (HS) which was shown to 

be a cellular receptor for both viruses and interacts with Erns. However, binding of the virus to 

HS alone is also not sufficient for viral entry into the host cell (Dräger et al., 2015; Hulst et al., 

2001). The laminin receptor (LamR) has also been shown to be responsible for viral attachment 

to the host cell in CSFV infection and specifically interacts with Erns (Chen et al., 2015). 

Annexin 2 (Anx2) was also demonstrated to function as a receptor for CSFV and is associated 

with E2 (Yang et al., 2015). 

Analysis of the crystal structure of BVDV E2 further supports the similarities between 

CSFV and BVDV E2. As mentioned previously, CSFV E2 has four antigenic domains, A-D, and 

BVDV E2 has three, I-III. Domain II of BVDV E2 was mapped to domains A/D of CSFV E2 

and domains B/C correspond to domain I of BVDV E2. It is suggested that domain III of BVDV 

E2 does not contain any antibody epitopes because it is not exposed to the viral surface which is 

likely a result of the C-terminal hydrophobic transmembrane anchor (Li et al., 2013). 

The genetic characteristics of BVDV strains in pigs remains unknown for the swine 

populations of Europe and America. In three viral genomic sequences obtained from isolates in 

Chinese pigs, all three were noncytopathogenic with two identified as BVDV-1 and one 

BVDV-2. Between these BVDV-1 and -2 strains, only 70% homology was shown between the 

two (Tao et al., 2013). 



24 

 Epitope Mapping 

Epitope mapping is the process of identifying the interaction site on an antigen where the 

antibody binds. Epitope mapping is essential for the development of new diagnostic assays and 

vaccines. Once identified, these epitopes can be used to generate more precise targets for 

diagnostic assays and subunit vaccines. Epitope-based vaccines are desirable over MLVs 

because they are unable to revert to a virulent form. These vaccines generate an optimal immune 

response with no risk of reversion as they contain just the essential antigens to generate an 

immune response (Gershoni et al., 2007; National Institutes of Health National Institute of 

Allergy and Infectious Diseases, 2012). 

The epitope of interest can change depending on which part of the adaptive immune 

response is the desired target. T cell epitopes differ from B cell and antibody epitopes in that 

T cell epitopes result from antigen processing by professional antigen presenting cells (APCs). 

The resulting peptide is about 10 amino acids in length and is presented in major 

histocompatibility complex (MHC) type II on the surface of the APC; however, because of the 

open-ended binding groove on MHCII, this length can vary with differing numbers of amino 

acids that extend out of the binding groove. The epitopes presented in MHC II are linear and are 

not conformational due to processing of the peptide by the APC as it breaks down the tertiary 

structure of the protein. B cell receptors (BCR) and antibody paratope binding regions consist of 

many overlapping groups of 15 amino acids that are approximately 50 variable amino acids in 

length. As a result, BCRs and antibodies have a large number of potential paratopes. Unlike 

T cells, BCRs and antibodies are not limited to antigen peptides presented in MHC II and can 

bind antigen peptides directly. As antigens can vary in shape and size, the epitope to which a 

BCR or an antibody can bind can be continuous (linear) or discontinuous (conformational), 
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depending on where the antibody may bind (Frank, 2002; Owen et al., 2013; Pandit et al., 2012). 

Linear epitopes are formed by several adjacent amino acids and are generally about six amino 

acids in length. Large antigens with tertiary and/or quaternary structures, such as proteins in their 

native conformation, generally have epitopes that are formed by amino acids that are not in 

sequence but are spatially juxtaposed in the folded protein in what are known as conformational 

epitopes. However, the denaturing of a protein, or loss of the primary, secondary, tertiary, and 

quaternary structures, will result in a linear chain of amino acid residues. In these cases, the 

conformational epitopes are no longer available for antibodies to bind, only the linear epitopes 

(Abul K. Abbas, 2005). 

Common methods of epitope mapping include X-ray co-crystallography, peptide 

scanning (also called overlapping peptide scanning or pepscan analysis), phage display library 

scanning, site-directed mutagenesis and mutagenesis mapping, and hydrogen/deuterium 

exchange mass spectrometry. X-ray co-crystallography is currently considered the gold standard 

as this method generates an atomic resolution of the epitope (Gershoni et al., 2007; Ossipow & 

Fischer, 2014). 

 Cross-protection of Antibodies 

Cross-protective immunity, or cross-reactivity, occurs when antibodies specific for one 

antigen or epitope from one organism are also protective against a similar but different species of 

organism. Due to the similarities of the different pestivirus species, cross-reactive and cross-

neutralizing antibodies have been documented. The issue arises when animals are tested for one 

pestivirus species and have previously been infected and seroconverted, or produce detectable 

antibodies in the blood, to a different pestivirus species. The presence of these similar antibodies 

may cause a positive test result for a disease when the animal was not infected with the disease 
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of interest, also known as a false positive. False positives can also occur due to contaminated 

laboratory supplies, such as fetal bovine serum used to manufacture vaccines (Carbrey et al., 

1969; Edwards et al., 1991; Makoschey et al., 2003; Wensvoort et al., 1989b). 

Previous studies have assessed the cross-protective immunity of BVDV antibodies to 

CSFV. In one study, pigs were first infected with BVDV type 1b strain St. Oedenrode, isolated 

from a naturally infected pig, and later challenged with the CSFV strain Paderborn, a moderately 

virulent strain. The results of the study showed that the presence of BVDV antibodies can protect 

against the clinical signs of a CSFV infection and limit transmission of CSFV. It was noted that 

diagnostic assays, such as the NPLA, while able to rule out CSFV in BVDV infected animals, 

may be unable to detect a current CSFV infection in animals that have BVDV antibodies 

(Wieringa-Jelsma et al., 2006). 

Another study with the aim of evaluating current CSFV antibody detection assays found 

that only one out of the seven tests that were analyzed, using samples of BVDV-1, BVDV-2, and 

BDV, was unable to differentiate between CSFV and the other pestiviruses. The other assays that 

were examined were negative anywhere from 44% to 86% of the time. The assays for E2 had the 

best results while those using NS3 and Erns were less accurate (Schroeder et al., 2012). 

 Purpose 

The purpose of this study was to determine the epitope regions of cross-reactivity 

between CSFV and BVDV glycoproteins as a means to identify epitopes that differentiate 

between the two pestivirus species. The worldwide distribution of BVDV coupled with the 

virus’s ability to infect swine makes the detection and control of CSFV more difficult. Outbreaks 

of CSFV can be devastating and require efficacious vaccines coupled with quick and accurate 

diagnostics to control the virus and minimize the number of animals infected. Diagnostic assays 
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with improved specificity and DIVA marker vaccines are essential for the surveillance of and 

protection against this economically important virus. The identification of these unique regions is 

necessary for the development of improved CSFV diagnostic assays and DIVA vaccines.   
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 Tables and Figures 

Figure 1.1 Genomic Organization of CSFV and BVDV 

The genomic organization of both CSFV and BVDV. The genome consists of a single open 

reading frame (ORF) flanked by a 5'-nontranslated region (NTR) and a 3'-NTR that encodes for a 

single polyprotein that is converted into four structural proteins: C, Erns, E1, and E2, and eight 

non-structural proteins: Npro, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B. 
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Figure 1.2 Structural Organization of CSFV and BVDV 

Glycoproteins E1, E2, and Erns are expressed on the outside of the virus forming E1 homodimers, 

E1/E2 heterodimers, and Erns homodimers. E1 and E2 are both anchored into the viral envelope 

by a transmembrane region and Erns is anchored by an amphipathic helix formed by the folding 

of the C-terminus. 
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Chapter 2 - Materials and Methods 

 Experimental Serum Samples 

The 13 serum samples and one control serum sample used for the serum neutralization 

assays were collected from a previous study in which 3- to 4-week-old weanling Large White 

and Landrace crossbred domestic pigs were immunized with alphavirus-based vaccine 

constructs. The viral vaccine constructs were created by cloning genes for CSFV E2, CSFV Erns, 

BVDV-1b E2, or ASFV HAp72 separately into a Venezuelan equine encephalitis (VEE) vector. 

The VEE virus expressing the gene of interest was grown in Vero cells and the culture fluid was 

used to prepare the vaccines as previously described (Bosworth et al., 2010). After acclimation, 

animals were vaccinated separately with one of the viral vector constructs and subsequently 

received booster immunizations at days 21 and 42 post vaccination. The serum used for this 

project was collected on day 57 post vaccination. 

 Maintenance of Cells 

Bovine turbinate (BT) cells (Kansas State University Veterinary Diagnostic Laboratory) 

were maintained in T75 cell culture flasks with Eagle’s Minimum Essential Medium (MEM) 

with Earle’s salts and sodium bicarbonate and without L-glutamine (Sigma-Aldrich) to which 

fetal bovine serum (FBS) (Sigma-Aldrich), Fungizone®, active ingredient amphotericin B, (Life 

Technologies), Pen Strep (penicillin and streptomycin) (Life Technologies), and 100X 

concentrate GlutaMAXTM-1 (Thermo Fisher Scientific) had been added. The final concentrations 

of these additives were as follows: FBS 72 ml/L, amphotericin B 3 mg/L, penicillin 80,000 U/L, 

streptomycin 80 mg/L, and 100X GlutaMAXTM 10 ml/L. Cells were incubated at 37 °C and 
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5% CO2. Using sterile technique, cells were passaged every 3-5 days once they had reached 

approximately 80% confluency. 

 Virus Propagation 

BVDV-1a Singer strain stock virus (Kansas State University Veterinary Diagnostic 

Laboratory) was propagated via the addition of 400 µl of virus with a 50% tissue culture 

infectious dose (TCID50) of approximately 1 x 106/ml to a T75 flask of approximately 40% 

confluent BT cells. The flask was incubated for 6 days at 37 °C and 5% CO2. In order to lyse the 

cells, the flask was placed at -80 °C until frozen. The flask was subsequently thawed at 37 °C 

and the media was aliquoted into 1.5-ml cryovials and stored at -80 °C. 

 Calculation of TCID50 

End-point titration assays were performed to calculate the TCID50 of the propagated stock 

virus. Prior to performing the assays, BT cells were seeded in 96-well tissue culture plates until 

approximately 80% confluent. Stock virus was serially diluted 1:10 in maintenance media and 

200 µl of each dilution was added in quadruplicate to the 96-well tissue culture plates of BT 

cells. The cells were incubated at 37 °C and 5% CO2 for 4 days and examined for virus-induced 

cytopathic effects (CPE) using an inverted microscope. The TCID50 was calculated using the 

Spearman and Kärber algorithm (Hierholzer & Killington, 1996). 

 Serum Neutralization Assays 

Serial 1:2 dilutions of serum samples prepared in maintenance media were placed in 

replicate wells of a 96-well plate to which BVDV-1a Singer strain virus was added to a final 

virus concentration of 100-300 (TCID50)/ml. Following a one-hour incubation period at 37 °C 

and 5% CO2, well contents were transferred to 96-well tissue culture plates of approximately 

80% confluent BT cells. Plates were incubated for 4 days at 37 °C and 5% CO2 and examined 
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daily for the presence of virus-induced CPE using an inverted microscope. The endpoint 

neutralization titer was determined as the highest dilution without virus-induced CPE. Replicate 

wells containing neither serum nor virus were used as negative controls to monitor for virus 

contamination. Serum from an alphavirus ASFV HAp72-immunized pig was serially diluted 1:2 

alongside the CSFV and BVDV serum samples as a control for non-specific antibody 

neutralization. To confirm the concentration of virus, the virus at the working dilution was back 

titrated using four 10-fold serial dilutions of the virus in maintenance media. The virus at the 

working dilution and the four serial dilutions were added to the 96-well serum neutralization 

plates in replicate wells. 

 Expression of CSFV and BVDV Polypeptides 

Polypeptide fragments of BVDV and CSFV E2 were expressed using bacterial stocks of 

BVDV-1a Singer strain and CSFV C-strain E2 fragments that had been cloned into the histidine-

tagged ubiquitin expression vector, pHUE, and transformed into the BL21 E. coli strain (New 

England Biolabs) using methods previously described (Trible et al., 2011). The whole CSFV E2 

and BVDV E2 proteins were divided into four non-overlapping polypeptide fragments 

designated as CSFV E2 1/4, 84 amino acids in length; 2/4, 84 amino acids; 3/4, 84 amino acids; 

and 4/4, 121 amino acids; or BVDV E2 1/4, 90 amino acids; 2/4, 90 amino acids; 3/4, 90 amino 

acids; and 4/4, 104 amino acids (Figure 2.1). 

Overnight cultures were created by adding 7 µl of ampicillin (AMRESCO) to 7 ml of 

lysogeny broth (LB) medium (MP Biomedicals) and then adding a small inoculum of the BL21 

E. coli strain containing the plasmid of interest. The overnight cultures were incubated for 

12-18 hours at 37 °C in a bacterial shaking incubator. Culture volumes were increased by 

inoculating flasks containing 100 ml of prewarmed LB medium with 2-5 ml of the overnight 
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cultures and continuing to incubate them until the optical density of the samples measured at a 

wavelength of 600 nm (OD600) reached a value between 0.4-0.7. Cultures were then induced 

with isopropyl β-D-1-thiogalactopyranoside (IPTG) (LabScientific) at a concentration of 0.1 M 

and then returned to the shaking incubator at 37 °C.  The cultures were incubated for 4 hours 

post induction with IPTG and then centrifuged for 10 minutes at 4,000 x g. The supernatant was 

discarded and the resulting bacterial pellets were stored at -20 °C.   

 Native Purification of CSFV and BVDV Polypeptides 

Bacterial pellets were resuspended in 5 ml of lysis equilibrium wash (LEW) buffer 

(Affymetrix). Following this, 50 µl of protease inhibitor cocktail (PIC) (Thermo Scientific) and 

5 mg lysozyme (Fisher Scientific) were added to the resuspended lysate. The lysate was shaken 

on ice for 30 minutes and then sonicated using an ultrasonic homogenizer (BioLogics) at 40% 

power and 50% pulse for 2 minutes to lyse the cells. The lysate was centrifuged at 13,000 rpm 

for 30 minutes to recover the soluble protein fraction. The resulting supernatant was collected 

and filtered through a 0.45 µl filter to eliminate any insoluble material and the remaining pellet 

was stored at -20 °C. The supernatant was purified by nickel affinity chromatography using a 

Ni-IDA column (Affymetrix), as specified by the manufacturer, to bind the histidine tag from the 

pHUE vector. The flow through, washes, and elution fractions were collected and stored at 4 °C 

and an aliquot of each was analyzed via sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE). Protein concentrations were measured using a bovine serum 

albumin (BSA) assay. 

Insoluble proteins were purified using the mild detergent 3-[cyclohexylamino]-1-

propane-sulfonic acid (AMRESCO) and sodium lauroyl sarcosinate (Sigma-Aldrich) 

(CAPS/sarkosyl). The purified pellet from the soluble protein purification was resuspended in 
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10 ml of 0.5 M CAPS buffer with 0.3% sarkosyl and placed in a 37 °C water bath for 

15 minutes. The resuspended pellets were frozen at -80 °C. Once frozen, the suspension was 

thawed at 37 °C for 15 minutes and refrozen at -80 °C. The freeze/thaw process was repeated 

two additional times and the final thawed suspension was centrifuged at 10,000 x g for 

30 minutes. The resulting supernatant was filtered using a 0.25 µl filter to eliminate any 

insoluble material. Proteins were purified using nickel affinity chromatography as previously 

described for the soluble protein purification using 0.5 M CAPS buffer and 0.3% sarkosyl buffer 

instead of LEW and 0.5 M CAPS buffer with 0.3% sarkosyl and 250 mM imidazole (Fisher 

Scientific) buffer instead of elution buffer. The flow through, washes, and elution fractions were 

collected and stored at 4 °C and an aliquot of each was analyzed via SDS-PAGE. Protein 

concentrations were measured a using a BSA assay. 

 Western Blots 

Western blot analysis was performed using the purified polypeptide fragments, CSFV E2 

fragments 2/4 and 3/4, and all four BVDV E2 fragments. The proteins were transferred from an 

SDS-PAGE gel to a polyvinylidene difluoride (PVDF) (GE Healthcare) membrane by tank 

electroblotting and subsequently blocked overnight at 4 °C in 5% non-fat dry milk in PBS with 

added Tween 20 (PBS-T) (Fisher Scientific). The membrane was washed three times with 

PBS-T. Polyclonal serum from an alphavirus CSFV E2-immunized pig (pig 30) was diluted 

1:1000 in 5% non-fat milk blocking solution and added to the membrane. Following a one-hour 

incubation period, the membrane was washed three times with PBS-T. Goat anti-porcine IgG 

antibody conjugated to horseradish peroxidase (HRP) (ICN Biomedicals) was diluted 1:2000 in a 

5% non-fat milk blocking solution and added to the membrane. Following a one-hour incubation 

period, the membrane was washed three times with PBS-T. Visualization was performed using a 
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commercial peroxidase kit (Pierce DAB substrate kit, Thermo Fisher Scientific). The DAB 

substrate solution was added to the membrane and incubated for 20 minutes. Development was 

stopped by the addition of ddH2O to the membrane.  
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 Tables and Figures 

Figure 2.1 CSFV and BVDV pHUE Fragment Constructs 

Polypeptide fragments of CSFV E2 and BVDV E2 that were cloned into the pHUE expression 

vector and expressed in BL21 E. coli strain bacteria. For both viruses, the whole E2 protein was 

broken down into four different polypeptide fragments of about equal size with no overlapping 

amino acids. The fragment length in amino acids is provided in the column on the left and the 

corresponding beginning and ending amino acids of the whole polyprotein to which the fragment 

corresponds are indicated on the bottom of each fragment. CSFV amino acid positons are in 

reference to CSFV C-strain GenBank accession number Z46258.1-1 and BVDV amino acids 

positions are in reference to BVDV-1a Singer strain GenBank accession number DQ0889995. 

 

CSFV E2 Fragments 

Fragment Length (aa)  

Whole 373  

1/4 84  

2/4 84  

3/4 84  

4/4 121  

 

 

  

BVDV E2 Fragments 

Fragment Length (aa)  

Whole 374  

1/4 90  

2/4 90  

3/4 90  

4/4 104  

690                                                                                                                                                                         1062 

690                             773 

774                             857 

858                              941 

942                                             1062 

693                                                                                                                                                                         1066 

693                             782 

783                             872 

873                              962 

963                                              1066 
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Chapter 3 - Results 

 Comparison of CSFV and BVDV E2 and Erns 

The antigenic targets this work focuses on consist of CSFV and BVDV glycoproteins E2 

and Erns. The identity shared between BVDV and CSFV, specifically for these two glycoproteins, 

is responsible for the production of antibodies with cross-reactive and cross-neutralizing activity. 

A pairwise comparison of C-strain CSFV E2 and Singer strain BVDV-1a E2, the glycoprotein 

responsible for viral binding and entry into the host cell and against which antibodies are made, 

reveals a shared identity of 59.36% between the glycoproteins (Figure 3.1). Pairwise comparison 

of CSFV Erns and BVDV Erns, the other glycoprotein against which antibodies are made, reveals 

a shared identity of 73.13% (Figure 3.2). These comparisons show moderate identity between the 

CSFV and BVDV glycoproteins E2 and Erns; a number of shared runs of amino acids are shown 

when their sequences are aligned. To determine the location on CSFV and BVDV to which 

cross-reactive and cross-neutralizing antibodies react, serum neutralization assays were 

performed to confirm the presence of cross-neutralizing antibodies produced in response to 

alphavirus vaccine immunization. 

 Serum Neutralization Assays 

The purpose of this work was to determine if antibodies produced by swine in response to 

immunization with an alphavirus vaccine construct possess neutralizing activity against a 

cytopathic BVDV strain. Prior to performing any serum neutralization assays, BVDV-1a Singer 

strain stock virus was propagated in BT cells and collected on day 6 when more than 70% of the 

cells showed varying signs of cytopathic effects (CPE). The TCID50 of this stock virus was 

calculated to be 2.22 x 106 TCID50/ml. Serum neutralization assays were performed in replicate 

wells of 96-well tissue culture plates using serial dilutions of polyclonal swine serum from five 
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animals immunized with BVDV-1b E2, four animals immunized with CSFV E2, and four 

animals immunized with CSFV Erns. The BVDV E2 samples served as a positive control to 

which cross-neutralization activity of the CSFV E2 and Erns samples could be compared. 

Replicate wells with no added virus served as negative controls to monitor for virus 

contamination. Serial dilutions of serum from an ASFV p72-immunized animal were used as 

negative controls to monitor for non-specific antibody neutralization. The diluted serum samples 

were incubated with 100-300 TCID50 of BVDV-1a Singer strain virus and transferred to plates of 

approximately 80% confluent BT cells. Back titrations using the virus at working dilution were 

also performed on the serum neutralization plates as a confirmation of the TCID50/ml. The plates 

were observed daily for CPE. CPE characteristic of BVDV infection (Figure 3.3) were first 

observed in 90% of infected wells 3 days after viral inoculation with significant CPE throughout 

the well by day 4. Neutralization titers were calculated as the highest dilution of serum in which 

CPE was not observed (Table 3.1). The negative control wells were observed and remained free 

of CPE and the wells containing the ASFV p72-immunized pig serum developed signs of CPE as 

expected. The results of these assays demonstrated neutralizing titers for the serum samples from 

animals immunized with the BVDV-1b E2 and CSFV E2 and Erns alphavirus constructs.  

The first serum neutralization assay performed showed that the animals immunized with 

the BVDV and CSFV alphavirus constructs had detectable neutralizing titers. Of the three 

alphavirus constructs used for immunization, those animals vaccinated with the BVDV-1b 

construct had the highest neutralizing titers. Serum from animals 11, 12, 13, and 15 was able to 

neutralize the virus at all dilutions (1:8 through 1:1024) and only one sample from an animal 

immunized with BVDV-1b, pig 14, was not able to completely neutralize the virus at all 

dilutions with a neutralization titer of 1:512. Serum from three animals immunized with the 
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CSFV E2 construct, pigs 21, 23, and 29, was used for the assay and had low neutralization titers. 

Samples from animals 21 and 23 demonstrated no neutralizing activity at any dilution while 

serum from pig 29 had a neutralization titer of 1:16. The two CSFV Erns samples used for the 

assay, serum from pig 41 and 47, both showed neutralizing activity. Serum from pig 41 had a 

neutralizing titer of 1:8 and serum from pig 47 had neutralizing titers ranging from 1:16 to 1:32. 

The results of this assay showed that antibodies generated in response to immunization with an 

alphavirus BVDV-1b construct can neutralize BVDV-1a virus and that both CSFV E2 and Erns 

serum samples possess cross-neutralizing antibodies. 

A second serum neutralization assay was performed to better characterize the neutralizing 

activity of the samples. Using the same set of serum samples, serum dilutions were performed 

starting at a 1:32 dilution. Neutralization titers of serum from animals immunized with the 

BVDV-1b construct differed from the first assay in that serum from animals 11, 12, and 14 had 

lower titers than were observed previously. The titers observed for serum from animals 13 and 

15 confirmed the results of the first assay, as they were 1:1024 and 1:2048, respectively. The 

CSFV E2 samples had similar titers as observed in the previous assay with serum from animals 

21 and 23 showing no neutralizing activity. Serum from animal 29 had one replicate with 

neutralizing activity at the lowest dilution (1:32) and the other with no neutralizing activity (less 

than 1:32). The serum from animals immunized with the CSFV Erns construct had similar results 

to the first assay with neutralization occurring at the lowest dilution for serum from pig 41 and 

no neutralizing activity observed for serum from pig 47. The titers collected from this assay 

confirmed the previously observed neutralizing activity of BVDV-1b samples from animals 13 

and 14 and low neutralizing activity of samples 29 and 41. 
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A third assay was performed to check the concentration of the virus at working dilution 

using serum samples from two animals that previously demonstrated neutralizing activity, pig 12 

immunized with the BVDV-1b construct and pig 47 immunized with the CSF Erns construct. 

Results similar to the first neutralization assay were observed for both animals with serum from 

pig 12 demonstrating complete neutralizing activity for all dilutions (1:8 through 1:1024) and 

neutralizing titers ranging from 1:16 to 1:32 for serum from pig 47. This assay confirmed the 

high titers seen in the first assay for serum from pig 12 and low, yet detectable, neutralization 

activity for serum from pig 47. The concentration of the virus at the working dilution was also 

confirmed to be correct. 

The fourth serum neutralization assay was performed utilizing all of the serum samples 

used previously in assays one and two. Four of the five serum samples from BVDV-1b-

immunized animals were completely neutralizing at all dilutions (1:8 through 1:1024). Only one 

sample, serum from pig 13, did not show complete neutralization and had neutralizing titers 

ranging from 1:256 through greater than 1:1024.  Of the three CSFV E2 samples, only serum 

from pig 29 showed neutralizing activity with titers ranging from no neutralizing activity (less 

than 1:8) through 1:32. The two CSFV Erns samples showed some neutralizing activity with titers 

for serum from pig 41 ranging from 1:8 through 1:32 and ranging from 1:16 through 1:32 for 

serum from pig 47. The results of this assay were similar to those seen for assays one and two, 

with the exception of serum from pig 13, which had lower titers than were observed previously. 

Finally, a fifth serum neutralizations assay was performed using only serum from animals 

immunized with the CSFV E2 and Erns constructs. Two CSFV E2 samples, obtained from pigs 

21 and 30, and four CSFV Erns samples, obtained from pigs 41, 46, 47, and 48, were used for the 

assay. Both CSFV E2 samples had neutralizing activity ranging from 1:16 to 1:32 and two of the 
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CSFV Erns serum samples, from pigs 46 and 48, had no neutralizing activity (less than 1:8). 

Serum from pig 41 had low neutralizing titers ranging from no neutralizing activity to 1:8 and 

pig 47 serum had similar neutralizing titers ranging from no neutralizing activity to 1:16. The 

results of this assay showed no neutralizing activity for two previously untested CSFV Erns 

samples, serum from pigs 46 and 48; similar neutralizing activity for serum from pigs 41 and 47; 

and some neutralizing activity for CSFV E2 with serum from pig 21. 

The results of this work, five assays over the course of 10 months, showed high 

neutralizing titers for serum from swine immunized with the alphavirus BVDV-1b E2 construct 

against the homologous virus and weak, but detectable, neutralizing titers for the CSFV E2 and 

Erns samples of the heterologous virus, demonstrating the presence of cross-neutralizing 

antibodies. Of the five BVDV-1b samples that were used, serum from pig 15 had high titers that 

were reproducible and had the highest neutralizing titer out of all of the BVDV samples with a 

titer of 1:2048. The other three BVDV-1b samples that were examined had titers that ranged 

from 1:64 to greater than 1:1024 with a majority of the replicates showing strong neutralizing 

activity with titers of 1:1024 or greater than 1:1024. The neutralizing titers of the four CSFV E2 

and four CSFV Erns samples were significantly lower than those observed for BVDV-1b samples. 

Neutralization titers for these animals ranged from 1:8 to 1:32 with no neutralizing activity 

observed for animals 23, 46, or 48 and some detectable activity for animals 21, 29, 30, 41, and 

47. The variation observed in titers among the assays may be due to the varying amount of virus 

used in each assay. Overall, this work identified the presence of BVDV-1b E2, CSFV E2, and 

CSFV Erns antibodies generated in response to alphavirus vector immunization with neutralizing 

activity for BVDV-1a. 
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 Expression and Purification of CSFV and BVDV E2 Polypeptide Fragments 

Based on the results of the serum neutralization assays, the next aim of this study was to 

map the antigenic regions to which the antibodies reacted. The purpose of this work was to 

express and purify polypeptide fragments of CSFV E2 and BVDV E2 for use in western blot 

analysis to map the antigenic regions where the antibodies against CSFV E2 and BVDV E2 bind. 

Four polypeptide fragments of BVDV E2 and two polypeptide fragments of CSFV E2 were 

successfully expressed using the pHUE expression vector in BL21 strain E. coli cells and 

purified under native conditions using affinity chromatography. 

All four polypeptide fragments of BVDV E2 were successfully expressed and purified 

under native conditions using CAPS/sarkosyl. Protein concentrations were 322.3 µg/ml, 

359.2 µg/ml, 204.4 µg/ml, and 126.2 µg/ml for fragments 1/4, 2/4, 3/4 and 4/4, respectively 

(Table 3.2). Protein purity was analyzed using SDS-PAGE. A single band was visualized for 

each of the four polypeptide fragments with no additional bands detected (Figure 3.4). BVDV E2 

fragment 4/4 had the faintest band due to the lower concentration of the expressed product. 

Three of the CSFV E2 polypeptide fragments, 1/4, 2/4 and 3/4, were successfully 

expressed and purified under native conditions. CSFV E2 fragments 1/4 and 3/4 were purified 

using CAPS/sarkosyl and fragment 1/4 was purified using a standard native protocol. Protein 

purity was analyzed using SDS-PAGE and a single band was visualized for each fragment 

(Figure 3.4).  Protein concentrations were 210 µg/ml and 224 µg/ml for CSFV E2 fragments 2/4 

and 3/4, respectively (Table 3.2).  

Although CSFV E2 fragment 1/4 was successfully expressed and purified, the protein 

concentration was too low for use in the remainder of the study. The whole CSFV E2 protein and 

CSFV E2 fragment 4/4 were not available for further use in the study as these were never 
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successfully expressed, likely due to the presence of the C-terminal transmembrane region. The 

whole BVDV E2 protein was not successfully expressed and was also not available for further 

use in the study. The successful expression and purification of all four BVDV E2 fragments and 

CSFV E2 fragments 2/4 and 4/4 was sufficient to map the antigenic regions of the CSFV E2 and 

BVDV E2 antibodies. 

 Western Blot 

Following the expression and purification of the six CSFV E2 and BVDV E2 polypeptide 

fragments, western blot analysis was performed for the purpose of mapping the antigenic binding 

regions of the CSFV E2 and BVDV E2 antibodies in the polyclonal serum from the alphavirus-

immunized swine. The western blot was performed using CSFV E2 fragments 2/4 and 3/4 and all 

four BVDV E2 fragments with polyclonal serum from alphavirus CSFV E2-immunized pig 30. 

The CSFV E2 fragments were used as positive controls to identify the region the antibodies were 

reacting against on the homologous protein. The BVDV E2 fragments were used to identify the 

region of the heterologous protein for which cross-reactivity of the antibodies had been 

demonstrated. The results of this work showed that antibodies generated in response to 

immunization with an alphavirus CSFV E2 vaccine construct possess cross-reactive activity for 

two regions on the BVDV E2 protein. 

All proteins that were visualized on the resulting western blot had single bands of 

expected size (Figure 3.5). The serum from the alphavirus CSFV E2-immunized pig reacted with 

both CSFV E2 fragments 2/4 and 3/4. CSFV E2 fragment 2/4 had the most prominent band 

while CSFV fragment 3/4 had a faint band. BVDV E2 fragments 1/4 and 2/4 were also 

recognized by the serum resulting from vaccination with the alphavirus CSFV E2 construct and 

had faint bands comparable to that seen for CSFV E2 3/4. This same serum did not recognize 
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BVDV E2 fragments 3/4 and 4/4 as no bands were observed. However, both CSFV E2 fragment 

2/4 and BVDV E2 fragment 2/4 were recognized by this serum suggesting that the cross-reactive 

antibodies between the two pestiviruses recognize one or multiple epitopes that are on these 

fragments.  The results of this work demonstrate that the polyclonal serum from the animal 

immunized with the alphavirus CSFV E2 construct, pig 30, recognized both CSFV E2 and 

BVDV E2 protein fragments and indicates the presence of cross-reactive antibodies between 

BVDV E2 and CSFV E2 that recognize CSFV amino acid positions 774 through 857 and BVDV 

amino acid positions 783 through 872. 
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 Tables and Figures 

Table 3.1 Summary of Results of Serum Neutralization Assays  

  Assays and Neutralization Titers 

Pig 

Number 

Vaccine 

Construct 
Assay 1 Assay 2 Assay 3 Assay 4 Assay 5 

1 2 1 2 1 2 3 4 1 2 3 1 2 3 

11 BVDV E2 > 1:1024 > 1:1024 1:128 1:256 - - - - > 1:1024 > 1:1024 > 1:1024 - - - 

12 BVDV E2 > 1:1024 > 1:1024 1:512 1:1024 > 1:1024 > 1:1024 > 1:1024 > 1:1024 > 1:1024 > 1:1024 > 1:1024 - - - 

13 BVDV E2 > 1:1024 > 1:1024 1:1024 1:1024 - - - - > 1:1024 1:512 1:256 - - - 

14 BVDV E2 1:512 1:512 1:64 1:64 - - - - > 1:1024 > 1:1024 > 1:1024 - - - 

15 BVDV E2 > 1:1024 > 1:1024 1:2048 1:2048 - - - - > 1:1024 > 1:1024 > 1:1024 - - - 

21 CSFV E2 < 1:8 < 1:8 < 1:32 < 1:32 - - - - < 1:8 < 1:8 < 1:8 1:32 1:16 1:32 

23 CSFV E2 < 1:8 < 1:8 < 1:32 < 1:32 - - - - < 1:8 < 1:8 < 1:8 - - - 

29 CSFV E2 1:16 1:16 1:32 < 1:32 - - - - < 1:8 1:32 1:32 - - - 

30 CSFV E2 - - - - - - - - - - - 1:16 1:16 1:32 

41 CSFV Erns 1:8 1:8 1:32 < 1:32 - - - - 1:16 1:32 1:8 1:8 < 1:8 < 1:8 

46 CSFV Erns - - - - - - - - - - - < 1:8 < 1:8 < 1:8 

47 CSFV Erns 1:32 1:16 < 1:32 < 1:32 1:32 1:16 1:32 1:8 1:16 1:16 1:32 < 1:8 1:16 1:16 

48 CSFV Erns - - - - - - - - - - - < 1:8 < 1:8 < 1:8 

Note: Serum neutralization assays were performed with serum samples in replicate wells on each plate and the neutralization titer for each replicate is provided. 

Assays one and two were performed in duplicate, assay three was performed in quadruplicate, and assays four and five were performed in triplicate. 

Neutralization titers with a greater than symbol (>) indicate that complete neutralization was observed through the highest dilution for that assay for that 

replicate. Titers with a less than symbol (<) indicate no neutralization was observed at the lowest dilution for that assay for that replicate. A minus symbol (-) 

indicates that no data was collected for that serum sample.
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Table 3.2 CSFV and BVDV Polypeptide Fragment Purification Summary 

Fragment 
Bacterial 

Stock Number 

Purification 

Method 

Size 

(kDa) 

Protein Concentration 

(µg/mL) 

CSFV E2 Whole 3127 - 50 - 

CSFV E2 1/4 3131 CAPS/sarkosyl 18 - 

CSFV E2 2/4 3132 CAPS/sarkosyl 18 210 

CSFV E2 3/4 3133 Native 18 224 

CSFV E2 4/4 3126 - 22 - 

BVDV E2 Whole 3216 - 50 - 

BVDV E2 1/4 3214 CAPS/sarkosyl 18 322.3 

BVDV E2 2/4 3221 CAPS/sarkosyl 18 359.2 

BVDV E2 3/4 3222 CAPS/sarkosyl 18 204.4 

BVDV E2 4/4 3223 CAPS/sarkosyl 19.5 126.2 

Note: No purification method or protein concentration is given for CSFV E2 whole, CSFV E2 fragment 4/4, or 

BVDV E2 whole as these polypeptides were never successfully expressed or purified using the described vector 

system. 
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Figure 3.1 Protein Sequence Alignment of CSFV E2 and BVDV E2 

Protein sequence alignment of the E2 glycoproteins of CSFV C-strain (GenBank accession 

number Z46258.1-1) and BVDV-1a Singer strain (GenBank accession number DQ088995.2) 

performed using CLC Main Workbench. The numbers at the end of each alignment indicate the 

amino acid positions within the polyprotein. Hyphens (-) located in the sequence rows indicate 

gaps in the alignment. Asterisks (*) located in the consensus row indicate non-consensus 

positions. 
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Figure 3.2 Protein Sequence Alignment of CSFV Erns and BVDV Erns 

Protein sequence alignment of the Erns glycoproteins of CSFV C-strain (GenBank accession 

number Z46258.1-1) and BVDV-1a Singer strain (GenBank accession number DQ088995.2) 

performed using CLC Main Workbench. The numbers at the end of each alignment indicate the 

amino acid positions within the polyprotein. Hyphens (-) located in the sequence rows indicate 

gaps in the alignment. Asterisks (*) located in the consensus row indicate non-consensus 

positions. 
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Figure 3.3 BT Cells in Cell Culture 

Panel A shows healthy BT cells at approximately 80% confluency. Panel B shows BT cells 

infected with BVDV-1a Singer strain virus displaying CPE characteristic of BVDV infection. 

Increasing vacuolization, clumping of apoptotic cells, and detachment from the flask are 

characteristic of BVDV infected BT cells. 

 

  

A 

B 
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Figure 3.4 SDS-PAGE Gel of CSFV and BVDV E2 Polypeptide Fragments Used For 

Western Blot 

Standard SDS-PAGE gel stained with SimplyBlueTM SafeStain showing the purification products 

of CSFV E2 and BVDV E2 polypeptide fragments used to generate the western blot in 

Figure 3.3. Lane one contains the Precision Plus Protein Kaleidoscope Prestained Protein 

Standards with the 15 and 20 kDa bands identified. Lane two contains CSFV E2 fragment 2/4, 

lane three contains CSFV E2 fragment 3/4, lane four contains BVDV E2 fragment 1/4, lane five 

contains BVDV E2 fragment 3/4, lane six contains BVDV E2 fragment 2/4, and lane seven 

contains BVDV E2 fragment 4/4. Note that BVDV E2 fragment 2/4 and BVDV E2 fragment 3/4 

are switched on the SDS-PAGE gel as compared to the western blot. 
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20 kDa 
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Figure 3.5 Western Blot of CSFV and BVDV E2 Polypeptide Fragments 

Western blot performed using purified CSFV E2 fragments 2/4 and 4/4 and BVDV E2 fragments 

1/4, 2/4, 3/4, and 4/4 reacted against polyclonal swine serum from pig 30 obtained following 

immunization with the CSFV E2 alphavirus construct and goat anti-porcine HRP conjugated 

secondary antibody. Visualization was achieved using the Thermo Scientific Pierce DAB 

substrate kit. Lane one shows the Precision Plus Protein Kaleidoscope Prestained Protein 

Standards with the 15 and 20 kDa bands identified. Lane two shows the strong reactivity of 

CSFV E2 fragment 2/4, lane three shows weak reactivity of CSFV E2 fragment 3/4, lane four 

shows weak reactivity of BVDV E2 fragment 1/4, lane five shows weak reactivity of BVDV E2 

fragment 2/4, and lanes six and seven show no reactivity of BVDV E2 fragments 3/4 and 4/4 to 

the serum from the pig immunized with the alphavirus CSFV E2 construct. 
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Chapter 4 - Discussion and Conclusions 

The objective of this study was to determine the epitope regions of cross-reactivity 

between the CSFV E2 and BVDV E2 glycoproteins as a means to identify epitopes that differ 

between the two pestivirus species. Serum neutralization assays performed using serum from 

groups of pigs immunized with an Alphavirus expressing either BVDV-1b E2, CSFV E2, or 

CSFV Erns demonstrated neutralizing activity towards BVDV-1a in vitro. Additionally, a western 

blot using serum from a pig immunized with the Alphavirus CSFV E2 viral vector construct 

recognized both CSFV E2 and BVDV E2 polypeptide fragments. The results of this study 

identified CSFV amino acid positions 774 through 857 and BVDV amino acid positions 783 

through 872 as the regions that contain the epitopes recognized by cross-reactive antibodies 

between BVDV E2 and CSFV E2. 

Early research of pestiviruses utilized similar neutralization assays using antiserum and 

monoclonal antibodies to first identify BVDV infection in swine and to better characterize 

pestivirus strains. One of first observances of BVDV in swine was identified in laboratory 

animals that had antibody titers of 1:4 and 1:16 against CSFV and 1:256 and 1:1024 against 

BVDV (Carbrey et al., 1969, 1976). To better characterize the pestivirus groups, studies using 

anti-serum against multiple pestivirus strains collected from cattle, swine, and sheep were tested 

for their neutralizing activity against a number of pestivirus isolates. Neutralizing titers were 

greatest against homologous species with observed cross-neutralization of almost all 

heterologous species, generally at much lower titers (Dekker et al., 1995; Wensvoort et al., 

1989b). To account for this observed cross-neutralization between pestivirus species, panels of 

monoclonal antibodies were developed for differentiation of CSFV. Monoclonal antibodies that 
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were pan-pestivirus specific, detecting most strains of CSFV, BVDV, and BDV were identified 

in addition to those monoclonal antibodies specific for only CSFV, suggesting that the 

CSFV-specific monoclonal antibodies detected a conserved region of CSFV that is not found in 

the other pestiviruses (Edwards et al., 1991; Wensvoort et al., 1989a). 

Serum neutralization titers calculated in this study showed that the serum taken from pigs 

immunized with a BVDV E2 viral construct had the highest neutralization titers against BVDV 

and lower titers for the CSFV E2 and Erns constructs that ranged from not detectable (less 

than 1:8) to 1:32. The resulting lower neutralization titers for CSFV E2 and Erns were expected as 

only cross-protective antibodies are capable of neutralizing BVDV in this assay, accounting for a 

fraction of the total antibody population. Neutralization assays to measure the activity of the 

antibodies to CSFV could not be performed in a BSL-2 laboratory, as live CSFV is a BSL-3 

agent, and was therefore not an option for this study. The high neutralization titers to 

homologous virus strains and the low neutralization titers to heterologous virus strains reflect the 

findings of earlier pestivirus research (Carbrey et al., 1976; Dekker et al., 1995; Wensvoort et 

al., 1989b). 

Eight polypeptide fragments of CSFV E2 and BVDV E2 were expressed using the pHUE 

plasmid expression vector system in E. coli. Fragments 2/4 and 3/4 of CSFV E2 and all four 

fragments of BVDV E2 were successfully expressed and purified. Although CSFV E2 fragment 

1/4 was successfully expressed, the purification resulted in protein concentrations that were too 

low to be used for the rest of the study. The western blot results utilizing these purified fragments 

showed strong reactivity to CSFV E2 2/4 (amino acids 774-857) which encompasses all of 

domain A (amino acids 766-866), as well as the C-terminals of domains B and C (amino acids 

691-773 and 691-800, respectively) (Figure 4.1). Epitopes that have been previously mapped to 
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this region include 829TAVSPTTLR837, which is conserved among CSFV strains (Lin et al., 

2000). CSFV E2 fragment 3/4 (amino acids 858-941), which represents only 9 amino acids of 

the C-terminal of domain A (amino acids 776-866), had weak reactivity (Figure 4.1). Although 

no known epitopes of CSFV have been mapped to this fragment, antibodies have been identified 

against domain A (Lin et al., 2000; Nishimori et al., 1996; van Rijn et al., 1993). 

BVDV E2 fragment 1/4 (amino acids 693-782), which encompasses domain I of BVDV 

E2 (amino acids 693-782), had weak reactivity similar to that of CSFV E2 3/4 (Figure 4.2). A 

previous study described an epitope found to have high homology between pestivirus species 

that lies on this fragment. Identified as a cluster of amino acids in the center of  the 16 amino 

acid sequence 756RYLAILHTRALPTSVV771 in BVDV-1 strain NADL, amino acids 763T, 764R, 

and 766L on the C-terminus of BVDV E2 fragment 1/4 may be responsible for the weak reactivity 

seen on the western blot (Paton et al., 1992a).  

Interestingly, the motif 753RYLASLHKKALPT765 was identified by another study as one 

that is shared among CSFV strains and also shares amino acids 753R, 754Y, 755L, 756A, 758L, 759H, 

762A, 763L, 764P, 765T with BVDV-1 (Chang et al., 2012b). Domain I of BVDV corresponds to 

antigenic unit B/C of CSFV. Previous studies have shown that antibodies made against the B/C 

domain of CSFV do possess neutralizing activity. It could therefore be hypothesized that the 

753RYLASLHKKALPT765 motif, as it lies on the B/C domain of CSFV, may be responsible for 

the cross-reactivity observed in western blot analysis and cross-neutralizing activity observed in 

vitro of antibodies produced in response to CSFV E2 of BVDV. 

BVDV E2 fragment 2/4 (amino acids 783-872), which contains all of domain II (amino 

acids 783-860) and the N-terminal of domain III (amino acids 861-1035), also had weak 

reactivity on western blot similar to that of CSFV E2 3/4 and BVDV E2 1/4 (Figure 4.2). A 
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BVDV epitope, Z2, was mapped to amino acids 

813LNGPAFQMVCPIGTGTVSCTLANKDTLAT842 and represents an area of high homology 

between BVDV sequences (Jelsma et al., 2013). This area, found at the center of the D/A 

domain of CSFV, is a region with high homology between BVDV that is also shared by CSFV. 

A potential epitope in which antibodies are generated that are cross-reacting and cross-

neutralizing may lie in this region. 

Further analysis of the Z2 epitope revealed that it corresponds to CSFV E2 domain A, 

amino acid positions 809-838, which is found on CSFV E2 fragment 2/4. In addition, a highly 

conserved CSFV epitope, 829TAVSPTTLR837, can also be mapped to this region (Lin et al., 

2000). However, this epitope is highly variable among strains of BVDV and BDV and has little 

homology with BVDV-1. When both E2 sequences are aligned, amino acids 

809NTTLLNGPAFQMVCPIGWTG828 of BVDV have 85% homology between CSFV C-strain 

and BVDV-1a Singer strain, which encompasses part of the Z2 epitope and lacks the unique 

CSFV 829TAVSPTTLR837 epitope. While this identified region could represent a potential 

epitope to which antibodies are made that are cross-neutralizing and cross-reactive, there is 

currently no other data in the literature to suggest this.  

Future work should be done to truncate the CSFV E2 protein to remove the 

transmembrane region, as the presence of this region on the C-terminus of CSFV E2 fragment 

4/4 is likely the reason this protein was not successfully expressed in the pHUE E. coli vector. A 

sequence of 18 amino acids first identified at the C-terminus of strain Brescia, 

1032IVLVVVALLGGRYVLWLI1048, which is likely the transmembrane domain that anchors E2 

into the lipid bilayer of the viral envelope, may be responsible for the inability of this protein to 

be expressed (Moormann et al., 1990). Previous studies that expressed CSFV E2 found that 
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expression levels were higher for E2 sequences that lacked this transmembrane region (Hulst et 

al., 1993; van Rijn et al., 1996). A hydrophobicity plot of CSFV C-strain E2 was generated to 

demonstrate the location of this hydrophobic transmembrane region (Figure 4.3).  

Future efforts to develop serological assays with improved specificity for CSFV should 

be done to further refine the location of the epitopes responsible for cross-reactivity on CSFV E2 

fragment 2/4 and examine CSFV E2 fragment 1/4 for cross-reactive epitopes. Once identified, 

these epitope locations should be avoided for use in the development of serological assays as 

they represent a potential area of cross-reactivity that would give a false-positive result for a 

CSFV-negative animal. The epitopes identified by these studies would also improve DIVA 

subunit vaccine constructs as prior infection and seroconversion to BVDV could inhibit or 

dampen the immune response to vaccination. Therefore, vaccines should contain epitopes that 

are not shared between the viruses and are unique to only CSFV to ensure that vaccination 

generates a protective immune response. A similar and more common example of this 

immunological event occurs in neonates and infants that possess maternal antibodies. Maternal 

antibodies present at the time of vaccination neutralize the antigen before the immune system can 

mount a response, thereby inhibiting the production of any form of immunological memory by 

the young animal. This form of passive immunity is the reason why immunizations are not 

administered before a certain age in most species (Niewiesk, 2014). 

Mapping the cross-reactive epitopes of CSFV Erns and BVDV Erns should be performed 

for the development of improved serological assays. This is especially important as a number of 

CSFV DIVA vaccine candidates rely on vaccination with CSFV E2 and require a companion 

ELISA to detect for the presence of CSFV Erns. One such marker vaccine candidate, CP7_E2alf, 

utilizes a companion Erns ELISA. Animals vaccinated with CP7_E2alf are protected against 
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infection via the antibody response to the homologous E2 glycoprotein. The absence of CSFV 

Erns, as determined by the companion Erns ELISA, allows for differentiation between wildtype 

infected and vaccinated animals (Graham et al., 2012; USDA APHIS, 2012).  

The functionality of CSFV E2 DIVA subunit vaccines are dependent on the ability of the 

companion ELISA to accurately detect the antibodies of interest. BVDV Erns antibodies 

generated in response to BVDV infection in swine interfere with the ability to accurately 

differentiate infected from vaccinated animals. One study analyzed CSFV ELISAs for their use 

as a companion diagnostic assay. Of the two commercial assays they evaluated, one CSFV Erns 

ELISA was completely unable to correctly identify CSFV E2 negative samples that contained 

other pestivirus E2 antibodies. The other ELISA they evaluated, although it was noted as being 

the improved assay, produced false-positive results 30% of the time (Schroeder et al., 2012). 

This study further highlights the need for improved serological assays for the detection of CSFV 

as companion assays for DIVA vaccines. 

The presence of BVDV antibodies in swine continue to be problematic for the 

surveillance and control of CSFV. The identification of cross-reactive and cross-neutralizing 

epitopes between CSFV and BVDV for the development of improved diagnostics and DIVA 

vaccines is necessary to account for this issue. The results of this study identified CSFV amino 

acid positions 774 through 857 and BVDV amino acid positions 783 through 872 as the regions 

that contain the epitopes recognized by cross-reactive antibodies between BVDV E2 and 

CSFV E2. These results provide more specific sequence regions to use for the improvement of 

CSFV diagnostic assays and DIVA vaccines. 
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 Tables and Figures 

Figure 4.1 Previously Mapped Epitopes of CSFV E2 from the Literature and Fragment Reactivity to Alphavirus CSFV E2 

Polyclonal Swine Serum as Determined by Western Blot 

CSFV E2 amino acid positions are in reference to the whole polyprotein sequence of CSFV C-strain (GenBank accession number 

Z46258.1-1.) Epitope CKEDYRY was identified by Dong and Chen (2006). Epitope RYLASLHKKALPT was identified by Chang et 

al. (2012b). Epitope LFDGTNP was identified by Peng et al. (2008) and the LLFD motif was identified by Chang et al. (2010). 

Epitope TAVSPTTLR was identified by Lin et al. (2000) and the SPTTLR motif was identified by Zhang et al. (2006). Epitope YYEP 

was identified by Yu et al. (1996). 
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Figure 4.2 Previously Mapped Epitopes of BVDV E2 from the Literature and Fragment Reactivity to Alphavirus BVDV E2 

Polyclonal Swine Serum as Determined by Western Blot 

BVDV E2 amino acid positions are in reference to the whole polyprotein sequence of BVDV-1a Singer strain (GenBank accession 

number DQ0889) with the exception of epitope Y2 which is in reference to BVDV-2 strain C413 (GenBank accession number 

NC_002032.1). Epitope RYLAILHTRALPTSVV was identified by Paton et al. (1992b) and the motif TRAPLTS was identified by 

Deregt et al. (1998). Epitope Y2, or PDVIDMTDDFEFGLCPCDSKPVIKGKFNASL, was identified by Jelsma et al. (2013) and is 

specific to BVDV-2. Epitope Z2, or LNGPAFQMVCPIGWTGTVSCTLANKDTLAT, was identified by Jelsma et al. (2013). Epitope 

YFEP was identified by Yu et al. (1996). 
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Figure 4.3 Hydrophobicity Plot of CSFV E2 

Hydrophobicity plot of CSFV C-strain E2 (Genbank accession number Z46258.1-1) generated 

using CLC Main Workbench. Values above 0.0 indicate areas of high hydrophobicity and values 

below 0.0 indicate low hydrophobicity. Amino acid positions 280-373 represent an area of high 

hydrophobicity. 
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