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Abstract

Cure rate models, also known as two-component mixture models, have been well estab-

lished and widely used in the literature for analyzing the lifetime data of long-term survivors.

Owing to the advancement of genomic technology, it is now of interest to identify the sig-

nificant genes or microarrays that are highly associated with the survival outcome under

the cure rate model framework. The identification procedure using these genomic data will

involve the technique of variable selection for high-dimensional covariates. However, the cure

rate model requires the modeling of the cure fraction and the survival function of the un-

cured individuals, which inevitably leads to a more complicated variable selection process. In

this paper, we propose a gradient-statistic-based variable selection method under a marginal

representation of the cure rate model. This marginal model can produce interpretable co-

variate effects on the overall survival response by relating the marginal mean hazard rate to

high-dimensional covariates directly while regarding the cure fraction as a nuisance param-

eter. A univariate gradient score is then used iteratively to determine significant covariates.

Coupled with the use of a False Discovery Rate approach, the top-ranked list of covariates

can be easily obtained by controlling the family-wise error rate. The proposed method is

evaluated by extensive simulations and illustrated with an application of the TCGA breast

cancer dataset which contains more than 400,000 microarrays.



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 The Marginal Cure Rate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Motivation of the Marginal Cure Rate Model . . . . . . . . . . . . . . . . . . 4

2.2 Derivation of the Marginal Cure Rate Model . . . . . . . . . . . . . . . . . . 6

3 Variable Selection for High-Dimensional Covariates . . . . . . . . . . . . . . . . . 8

3.1 The Gradient Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 The Gradient Score Under the Marginal Cure Rate Model . . . . . . . . . . 10

3.3 Variable Selection with the Gradient Score . . . . . . . . . . . . . . . . . . . 12

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Ultra High-Dimensional Simulation Results . . . . . . . . . . . . . . . . . . . 24

4.3 TCGA Breast Cancer Dataset Results . . . . . . . . . . . . . . . . . . . . . 27

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iv



List of Figures

4.1 The preceding figures had 10 truly significant features p∗ = 10 and censor rate

λc = 0.0002 with a sample size n = 200 and p = 300 features . . . . . . . . . 22

4.2 The preceding figures had 10 truly significant features p∗ = 10 and censor rate

λc = 0.0002 with a sample size n = 200 and p = 300 features . . . . . . . . . 23

4.3 The preceding figures had 10 truly significant features p∗ = 10 and censor rate

λc = 0.0002 with a sample size n = 200 and p = 1000 features . . . . . . . . 26

4.4 Survival curve of the TGCA breast cancer dataset . . . . . . . . . . . . . . . 27

4.5 Pairwise Spearman correlation coefficients for the 4,000 microarrays in the

TGCA dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



List of Tables

4.1 Simulation Results at nominal level 0.05 . . . . . . . . . . . . . . . . . . . . 19

4.2 Simulation Results at nominal level 0.01 . . . . . . . . . . . . . . . . . . . . 20

4.3 Ultra high-dimensional results at nominal level 0.05 . . . . . . . . . . . . . . 25

4.4 The selected microarrays and estimated False Discovery Rate at each prede-

termined threshold value c for a subset of the TGCA breast cancer dataset . 29

vi



Chapter 1

Introduction

Cure rate models are being studied in the literature more extensively in the past decade due

to the rise of data with long-term survivors (Chaves and Rodrigues, 2011; Baghestani et al.,

2015; Bernhardt, 2016; Kim, 2017). Nevertheless, the cure rate model that is being studied

comes with many challenges. A major challenge comes when fitting this model with high-

dimensional covariates. Particularly, the modeling of the cure fraction becomes a problem

as it doubles the number of variables in the model. Thus, modeling the cure fraction sub-

stantially adds to the computing time and further complicates any type of variable selection

procedure. An additional challenge with the cure rate model is that there is no meaningful

and straightforward interpretation that relates the effects of the covariates to the overall sur-

vival response. From a practical standpoint, this interpretation would be extremely useful

and is often of interest to the researcher. In order to resolve the two preceding challenges,

we propose a marginal cure rate model for high-dimensional covariates. Currently, there

is no study in the literature that focuses on the marginal cure rate model because both

the marginal survival function and hazard function are nonstandard due to the long-term

survivors. Therefore, we consider a marginal mean hazard model developed by Chen as the

marginal cure rate model in this report (Chen, 2019). Technically, this model is built upon

the use of the average overall hazard rate and a Weibull baseline hazard function.
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Not only are there no current studies over the marginal cure rate model, but in present-

day literature there are only a few studies that focus on variable selection for high-dimensional

variables under the cure rate model (Li, 2014; Fan et al., 2017; Masud et al., 2018). However,

there are several variable selection methods that have been derived for the regular Cox

Proportional Hazards Model, even though the Cox model does not have the capability to

handle long-term survivors like the cure rate model does. Some of these methods under the

Cox model are complex requiring a bunch of iterations or an inverse of the design matrix, such

as Tibshirani’s Least Absolute Shrinkage and Selection Operator termed Lasso (Tibshirani,

1997) or a stability selection method (Yin and Zhang, 2017). Others that simply want to

identify covariates that are associated with survival, take a univariate approach. The classical

approach to find these covariates involves testing the hypothesis that the covariate is not

associated with survival against the hypothesis that the covariate is associated with survival.

However, with high-dimensional data, there are too many hypotheses tested and multiple

testing becomes a huge issue. One method that has been well-studied for high-dimensional

data under the survival setting is the univariate Cox score (Witten and Tibshirani, 2010).

The univariate Cox score is a straightforward method that involves calculating the score, the

information matrix, the restricted maximum likelihood, and the regular maximum likelihood.

For the purpose of this report, we adopt a gradient score which is seldom discussed in

the literature, but was originally derived from the regular score statistic (Terrell, 2002). Out

of the aforementioned covariate selection procedures, the gradient score is the most easy to

implement as it only requires the first partial derivatives of the model parameters and both

the unrestricted and restricted maximum likelihood estimates. It does not require the use

of the information matrix. For the reason of the simplicity of this gradient score, we derive

this method under the proposed marginal cure rate model. We then pair our method with

a false discovery rate algorithm to control the familywise error rate.

Upon the completion of deriving both the model and the gradient score, we proceed to

evaluate the proposed method with a series of extensive simulations under different model



settings. Afterwards, we illustrate this method by applying it to the National Cancer Insti-

tute’s The Cancer Genome Atlas (TGCA) breast cancer dataset that contains almost 400,000

microarrays and over 600 individuals. We then discuss our results and both the benefits and

limitations of using the proposed method.

The remainder of this report is organized as follows: in Chapter 2 the derivation as well

as the assumptions of the proposed marginal cure rate model will be discussed. In Chapter 3,

we extend the Gradient test to our proposed model for high-dimensional variable selection.

In Chapter 4, we evaluate our proposed method by extensive simulation studies and illustrate

our method by an application to the TGCA breast cancer dataset. In Chapter 5, we discuss

the usage of our proposed method as well as state some of the benefits and limitations of

using it.



Chapter 2

The Marginal Cure Rate Model

In this chapter, we will very briefly discuss the origin of our chosen model, the marginal cure

rate model. Please note this work was done by Jianfeng Chen as part of his Doctoral Thesis

at Kansas State University (Chen, 2019).

2.1 Motivation of the Marginal Cure Rate Model

A cure rate model is different than other models as at the end of the study, some patients

or some individuals are cured and are considered long-term survivors. This type of model is

very important in survival analysis and has become more prominent in the literature in the

past decade as more data have become available with long-term survivors. The standard cure

rate model assumes there are two groups: an uncured group and a cured group, assuming

U is the latent indicator variable that distinguishes these two groups. The uncured group

can be thought of as the individuals who will experience the event of interest, Ui = 1 say,

and the cured group are the individuals that will never experience this event, Ui = 0 where

i = 1, 2, ..., n. The probability that an individual from the uncured group experiences the

event of interest is πi, P (Ui = 1) = πi. This probability is often called the uncured fraction

in the literature. Let ti denote the censoring time or the time it takes for the individual to

experience the event. Also, let Su(ti) be the survival function for that of the uncured group.
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Now, the marginal survival function for the overall population becomes:

SM(ti) = (1− πi) + πiSu(ti), 0 ≤ πi ≤ 1 (2.1)

In this equation, the overall survival function SM(ti) is confounded by the subpopulation

of the uncured group’s survival rate Su(ti) and uncure fraction πi. By assuming πi and

Su(ti) share the same set of covariates, the additional modeling of the uncure fraction in the

conditional cure rate model doubles the number of modeled parameters. These relationships

and confounding variables make the interpretation between the effects of the covariates and

the overall hazard rate extremely difficult.

Therefore, in order to better explain the effect that the covariates have on the hazard

rate of the population and to eradicate using a uncure fraction, we propose a marginal mean

hazard rate model. We first derive the marginal hazard rate model under the cure rate model

(i.e., under the conditional model).

The marginal hazard rate can be described by the following:

hM(ti) =
πifu(ti)

1− πi + πiSu(ti)
, where fu(ti) = hu(ti)Su(ti)and hu(ti) = hu0(ti)e

ηwi (2.2)

In Equation 2.2, hu(ti) is the hazard function of the uncured individuals and η is the vector of

parameter coefficients for the covariates wi for the ith individual. The most popular baseline

hazard function is the Weibull distribution as the Weibull distribution tends to be more

flexible than other commonly used distributions like the exponential and lognormal due to

having an additional scale parameter (Farewell, 1982). When the Weibull distribution is

assumed, the baseline hazard becomes:

hu0(ti) = αλtα−1
i with α > 0 and λ > 0



2.2 Derivation of the Marginal Cure Rate Model

We derive the marginal cure rate model by considering the risk of an event on average, the

expectation of the marginal hazard function with respect to time t. We then re-parameterize

the model so that the marginal mean hazard rate and the effects of the covariates have the

same support. The hazard rate needs to be a non-negative value, so we let the mean hazard

rate be:

E[hM(ti)] = eβ
′xi (2.3)

In this case, β is the vector of parameter coefficients for the covariates and xi are the observed

covariates for the ith individual. We can then derive the marginal mean hazard rate E[hM(ti)]

from the idea of a latent variable Ui by using:

hM(ti) =

 hu(ti) when Ui = 1

0 when Ui = 0
(2.4)

where Ui is the unobserved cure indicator. Ui = 1 indicates the individual is uncured with

probability π, which is now a constant and does not depend on the individual (i.e., πi = π

for all i). Conversely, Ui = 0 indicated the individual is cured with probability 1− π. Using

the above, we can get the marginal mean hazard rate:

E[hM(ti)] = E[E(hM(ti)|Ui)]

= E[πhu(ti)]

= πE[hu(ti)]

(2.5)

Assuming the baseline hazard rate for the uncured group is derived from the Weibull survival

function, hu(ti) = αλtα−1
i eµi where µi = ηwi from Equation 2.5, then Equation 2.3 can be



rewritten as:

eβ
′xi = π

∫
αλtα−1

i eµifu(ti)dt

= παλeµi
∫
tα−1
i λαeµitα−1

i exp
{
− λtαi eµi

}
dt

= παλeµiE[tα−1
i ]

(2.6)

We know that E[tk] = (λeµ)−
k
αΓ(1 + k

α
) is the kth moment of a Weibull random variable.

Thus, we rewrite Equation 2.6 as:

eβ
′xi = πα[λeµi ]

1
αΓ

(
2− 1

α

)
(2.7)

Finally, we solve for λeµi :

λeµi =

[
eβ

′xi

απΓ(2− 1
α

)

]α
(2.8)

Next, we will consider the likelihood function for the mixture data from both the risk and

non-risk group. Suppose we observe, {ti, δi,xi} for the ith observation, then the likelihood

function for the marginal cure rate model becomes:

`(α,β, π|t1, ..., tn) =
n∏
i=1

f(ti)
δiS(ti)

1−δi

=
n∏
i=1

[πfu(ti)]
δi [1− π + πSu(ti)]

1−δi

=
n∏

ı=1

{
πα

[
eβ

′xi

απΓ(2− 1
α

)

]α
tα−1
i exp

{
− tαi

[
eβ

′xi

απΓ(2− 1
α

)

]α}}δi

{
1− π + π exp

{
− tαi

[
eβ

′xi

απΓ(2− 1
α

)

]α}}1−δi

(2.9)

where π is the uncured rate, ti is the survival time for the ith individual, and δi is the censor

indicator in which δi = 1 if the individual is not censored and 0 otherwise.



Chapter 3

Variable Selection for

High-Dimensional Covariates

3.1 The Gradient Score

In Chapter 2, the underlying model, the marginal cure rate model, was introduced. In this

chapter, the proposed test for testing high-dimensional data under the marginal cure rate

model will be proposed. In current literature, there are many variable selection methods

for high-dimensional data under the Cox Proportional Hazards Model that have not been

translated to the cure rate model. The Cox Proportional Model and the cure rate model

can both be used for the analysis of survival data. Nevertheless, the Cox Proportional

Model does not have the capability of handling long-term survivors. For the Cox model

with high-dimensional data, one of the most straightforward methods for variable selection

is the univariate Cox score, a score statistic (Witten and Tibshirani, 2010). There are other

methods that have been proposed as well. Some of these methods include using a Wald

score instead of the Cox score; however, the disadvantage with the Wald score is that in

the high-dimensional setting, it requires iteratively fitting a Cox model for each covariate.

Another method for variable selection includes the lassoed principal components method.
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This method is primarily used for genomic data when researchers have a belief that a given

gene or microarray is associated with the survival outcome if it is correlated with a set

of other genes that already appear to be associated with the survival outcome (Witten

and Tibshirani, 2008, 2010). The downside to this approach is that it requires the use of

eigenvectors of the data matrix and there is an adaptively chosen tuning parameter. For

the cure rate model, there are very few methods for high-dimensional variable selection

discussed in the literature. The method proposed by Y. Li in their doctoral thesis involves

a very complex expectation-maximization algorithm as well as other calculations such as

the second partial derivatives (Li, 2014). Yet another proposed method uses an uncommon

assumption of proportional relationships between the covariates and uncure fraction (Fan

et al., 2017).

Due to the complexity of the aforementioned methods, we propose a variable selection

method under the proposed marginal cure rate model that mimics the Cox Score. Technically,

we propose a gradient score first derived by Terrel in 2002 (Terrell, 2002). The novelty of

the gradient score is that it does not use the information matrix as does the Cox score.

Therefore, when partial second derivatives of the model parameters become too complex

as is the case with our marginalized cure rate model, the gradient score is a good, easy

alternative. As defined by Terrell in 2002 and explained by Lemonte in 2012, the gradient

score tests the null hypothesis, H0:θ2 = θ20 against H1:θ2 6= θ20 where θ = (θ′1,θ
′
2)′,

θ1 = (θ1, ..., θq)
′ represents the parameters that are not of interest or the nuisance parameters,

θ2 = (θq+1, ..., θp)
′ represents the parameters that are of interest in testing, and θ20 represents

a fixed vector with p − q dimensions (Terrell, 2002; Lemonte and Ferrari, 2012). The gradient

score, then, for testing the null hypothesis, H0:θ2 = θ20, is equated by:

F = U(θ̃)′(θ̂ − θ̃) (3.1)

In this equation, the restricted maximum likelihood estimate under the null hypothesis is



represented by θ̂ and is partitioned into a vector containing the nuisance and of interest

parameters, θ̂ = (θ̂′1, θ̂
T
2 )′. Similarly, the unrestricted or normal maximum likelihood esti-

mate is represented by θ̃ and is again partitioned, θ̃ = (θ̃′1, θ̃
′
2)′. Finally, let the U(θ) be

the partitioned score function, U(θ) = ∂`/∂θ = (U1(θ)′,U2(θ)′)′. It is now worthy to note

that Equation 3.1 can be even more simplified. Due to the constant nature of the nuisance

parameters, the score function evaluated at the unrestricted maximum likelihood of those

parameters, ie U1(θ̃) = 0. Thus, the gradient statistic, as written out by Lemonte in 2012,

now becomes:

F = U2(θ̃)′(θ̂2 − θ20) (3.2)

The gradient score has a central chi-square distribution with p − q degrees of freedom.

3.2 The Gradient Score Under the Marginal Cure Rate

Model

We can now use Equation 3.2 to derive the gradient test statistic for the marginalized cure

rate model. Recall the marginal cure rate model, as shown in Equation 2.9 is:

`(α,β, π|t1, ..., tn) =
n∏
i=1

{
πα

[
eβ

′xi

απΓ(2− 1
α

)

]α
tα−1
i exp

{
− tαi

[
eβ

′xi

απΓ(2− 1
α

)

]α }}δi

{
1− π + π exp

{
− tαi

[
eβ

′xi

απΓ(2− 1
α

)

]α }}1−δi
(3.3)

Next, we take the natural logarithm of the marginal cure rate model (Equation 3.3). This

allows us to be able to begin taking partial first derivatives with respect to our parameters

and to calculate both the unrestricted and restricted maximum likelihood underneath the



null hypothesis. Taking the natural logarithm of both sides of our model yields:

L(α,β, π|t1, ..., tn) = log[`(α,β, π|t1, ..., tn)]

=
n∑
i=1

δi

{
log(π) + log(α) + αβ′xi − αlog(α)− αlog(π)

− α log

(
Γ
(

2− 1

α

))
+ αlog(ti)− log(ti)−

(
tie

β′xi

απΓ
(
2− 1

α

))α}

+
n∑
i=1

(1− δi)

{
log

(
1− π + π exp

{
− tαi

[
eβ

′xi

απΓ(2− 1
α

)

]α })}
(3.4)

Finally, we are able to calculate the partial first derivatives with respect to the three param-

eters, α, π, and β = (β0, βj)
′.

∂L(α,β, π|t1, ..., tn)

∂α
=

n∑
i=1

δi

{
1

α
+ β′xi + log

(
ti

απΓ
(
2− 1

α

))−G−Nα log(N)−G− 2

}

+
n∑
i=1

(1− δi)

{
1

D

(
π exp

{
−Nα

}[
−Nα

(
log(N)− 1−G

)])}
∂L(α,β, π|t1, ..., tn)

∂π
=

n∑
i=1

δi

{
1− α
π

+Nα
(
απ−(α+1)

)}

+
n∑
i=1

(1− δi)

{
1

D

[
− 1 + exp

{
−Nα

}
+ π exp

{
−Nα

}(
πN
)α
απ−(α+1)

]}
∂L(α,β, π|t1, ..., tn)

∂β
=

n∑
i=1

δi

{
αxi − αxiNα

}
+

n∑
i=1

(1− δi)
{
−αxiNα

D

}
(3.5)



where

N =
tie

β′xi

απΓ
(
2− 1

α

)
G =

1

αΓ(2− 1
α

)

(
∂

∂α
Γ

(
2− 1

α

))

D = 1− π + π exp

{
− tαi

[
eβ

′xi

απΓ(2− 1
α

)

]α}

Using the partial derivatives in Equation 3.5, we can now begin calculating the score statistic

under the marginal cure rate model. To finish calculating the gradient score, the maximum

likelihood estimates and the restricted maximum likelihood estimates under the null hy-

pothesis need to be calculated and put into Equation 3.2. From Equation 3.2 and using the

hypotheses: H0 : βj = 0 and H1 : βj 6= 0 with j = 1, ..., p, the closed form of the gradient

statistic is:

Fj = U(θ̃, β̃j)× β̂j, where U(θ̃, β̃j) =
∂L(α,β, π|t1, ..., tn)

∂βj

∣∣∣∣∣
θ1=θ̃1,βj=β̃j=0

(3.6)

Here θ1 = (α, π, β0)′, θ̃1 = (α̃, π̃, β̃0)′ are the restricted maximum likelihood estimates for

α, π, and β0 evaluated at βj = 0, and β̂j is the maximum likelihood estimate of βj.

The gradient score is treated much in the standard way a score statistic is treated;

however, the gradient score is non-negative and therefore the interpretation only becomes if

the feature is significant at predicting survival (Witten and Tibshirani, 2010).

3.3 Variable Selection with the Gradient Score

Once computed, the gradient test needs some way to tell which of the features (or covariates)

are significantly associated with survival. From a classical perspective, the significance for

each feature would be tested using a hypothesis test. The null hypothesis in this case would



be that there is no association of that feature with survival and our test hypothesis would be

that there is an association of that feature with survival. Owing to high-dimensional features,

we would then adjust the p-values using some form of multiple comparison adjustment such as

Holm’s method (Holm, 1979), Tukey’s method (Tukey, 1991), or any other method. If these

p-values were small enough, the feature would then be considered significantly associated

with survival. Depending on the data, it may be appropriate to make this adjustment in

different ways. Given high-dimensional genomic data, it can be found that adjustment of

the p-values leads to meaningless and oftentimes little to no results (Witten and Tibshirani,

2010). This largely comes from the fact that there are so many features and not enough

change within the decimal places of the p-values to find anything that is truly significant. In

this scenario, it may be beneficial for the researcher to accept some features knowing that

some of these features will be false positives as in the feature will show up significant, but

will not actually be significant. In this case, a false discovery rate (FDR) is appropriate and

can be very useful. The FDR was originally published by Benjamini in 1995 (Benjamini and

Hochberg, 1995) and later in 2003, Storey applied the FDR to genomic studies (Storey and

Tibshirani, 2003). Storey in 2003 found that the original version of the FDR was not powerful

enough to handle ultra high-dimensional genomic studies, but found that a permutation

version of the False Discovery Rate could deal with such a limitation. The algorithm for

the permutated FDR used by Storey was written out in Witten’s work in 2010 (Storey and

Tibshirani, 2003; Witten and Tibshirani, 2010). We adapted the algorithm used by both

Storey and Witten to the gradient statistic under the marginal cure rate model and is written

out below.

1. Compute the gradient statistic for each feature, j = 1, 2, ..., p, denoted by Fj.

2. For i ∈ {1, 2, ...,M} where M = 1000 or a large enough number

(a) Permute the individual’s survival times ti, i.e., randomly assign the survival times

to the feature measurements, xj



(b) Compute the gradient statistic for the permuted data; F ∗ij .

3. Estimate the FDR at a pre-determined threshold value, c by:

̂FDR(c) =
1
M

∑M
i=1

∑p
j=1 1(F ∗ij ≥ c)∑p

j=1 1(Fj ≥ c)
(3.7)

In Equation 3.7, the 1(·) is an indicator variable and the numerator is the average or expected

number of features that exceed the threshold value under the null hypothesis where the

denominator is the actual or observed number of features that exceed that threshold value.

Please note that Equation 3.7 was originally written as an algorithm for calculating the

FDR given the Cox Score Test was being calculated (Witten and Tibshirani, 2010). For this

report, this algorithm was slightly changed to incorporate estimating the false discovery rate

using the gradient statistic.



Chapter 4

Results

In this chapter we will discuss the results from both our rigorous simulation analyses and

from an application to the TGCA breast cancer dataset. First, we will discuss the simulation

analyses and then we will discuss the real data analysis.

4.1 Simulation Results

First, we simulated data from our model under two different scenarios. One scenario, we

included 200 individuals (n = 200) with 100 features (p = 100). The second scenario,

we included 200 individuals, but 300 features (p = 300), to mimic a more typical high-

dimensional data structure. With these two scenarios, we included a different number of

truly significant features p∗ ∈ {5, 10, 15}. In order to obtain data simulated from our model,

we had to define some parameters for the model. We defined Σ, the covariance matrix as

Σi,j = ρ|i−j| where i = 1, 2, ..., p; j = 1, 2, ..., p; and ρ is the correlation between the features.

For this study, we looked at three different values of the correlation, ρ ∈ {0, 0.2, 0.5}. We

set the value of α in the marginal cure rate model to 1.1 and the uncure rate π to 0.85.

The measurement for each feature was found from a multivariate normal distribution with

a mean of 0 and the variance of Σ as discussed above.

The true measurements, β∗, for each feature were then supplied. The measurements
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depended on how many truly significant features there were p∗ ∈ {5, 10, 15}.

When p∗ = 15,

β∗ = (1.75, 1.5,−1.5, 1.75,−1.5, 1.5, 1.75, 1.5,−1.75,−1.5, 1.25,−1.75, 2, 1.5,−1.5, 1.75︸ ︷︷ ︸
intercept + 15 significant features

, 0, 0, ..., 0, 0︸ ︷︷ ︸
100-16 or 300-16

)′

When p∗ = 10,

β∗ = (1.75, 1.5,−1.5, 1.75,−1.5, 1.5, 1.75, 1.5,−1.75,−1.5, 1.25︸ ︷︷ ︸
intercept + 10 signficant features

, 0, 0, ..., 0, 0︸ ︷︷ ︸
100-11 or 300-11

)′

When p∗ = 5,

β∗ = (1.75, 1.5,−1.5, 1.75,−1.5, 1.5︸ ︷︷ ︸
intercept + 5 significant features

, 0, 0, ..., 0, 0︸ ︷︷ ︸
100-6 or 300-6

)′

In all three scenarios, the intercept β∗0 was set to 1.75 and was not included in the count of

truly significant features. Next, the true marginal mean hazard rate was found by taking

only the non-zero values of β and multiplying them by the measurement simulated by the

multivariate normal distribution. The marginal mean hazard rate was then estimated by

̂E[hM(ti)] = eβ̂xi where β̂ are the estimated parameter coefficients for the covariates xi

observed for the ith individual.

The censoring rate was determined using a randomized exponential distribution with

rate of λc ∈ {0.0002, 0.001, 0.002}. The censoring time was set to have a maximum of

300 days for each individual. Next, we got a true survival time ti by taking a randomized

binomial distribution with probability set to the uncure rate π. If the randomized binomial

distribution gave a value of 1, the individual was assigned a true survival time ti to be

uncured by using:

[
− log(1− r)

(
απΓ

(
2− 1

α

)
eβ̂′xi

)] 1
α

where r is a random uniform distribution taking values in (0, 1), α = 1.1, and π = 0.85.



Conversely, if the randomized binomial distribution gave a value of 0, the individual was

assigned a true survival time ti to be cured and this time was set to a large value, ti =

10000000. Finally, we compared each individual’s censoring time and true survival time. If

the censoring time was equal to or exceeded the true survival time, a value of 1 was recorded

for the censor, i.e., δi = 1, otherwise a value of 0 was recorded δi = 0.

With the data being generated from the proposed marginal cure rate model, we then

calculated the gradient statistic from Equation 3.2 and used the regular False Discovery

Rate (FDR) (Benjamini and Hochberg, 1995). We took 1000 repetitions of these data and

averaged the false positive rate (FPR), false negative rate (FNR), and accuracy. The results

for nominal levels of 0.05 and 0.01 are shown in Tables 4.1 and 4.2, respectively.

From Tables 4.1 and 4.2, we show what happens as we not only increase the correlation ρ,

but also what happens if the censoring coefficient λc, the number of truly significant features

p∗, and the number of features p, in the dataset are changed. Also from Tables 4.1 and 4.2,

we see that as we increase the censoring rate, there is little to no change in the FPR, the

FNR, and the accuracy. This result is seen when we look at a unique combination of number

of truly significant features p∗, number of features in the dataset p, correlation value ρ, and

nominal level. For example, at p = 100, p∗ = 5, ρ = 0, and nominal level of 0.01, we see

that the FPR is 0.009, the FNR is near 0.125, and the accuracy is around 0.985 at all levels

of censoring. These statistics may fluctuate a bit due to randomness and the random way

in which these data are generated. Now, looking at a unique combination of p∗, λc, p, and

nominal level, we see that majority of the time, as the correlation between features increases,

the FPR decreases, the FNR increases, and the accuracy stays about the same. The intrigue

behind this result may be due to the fact that the covariance structure that incorporates

the correlation between the features is not taken into consideration in the gradient test.

Thus, as the correlation increases, the algorithm is not finding enough features significant

due to the correlation between the neighboring covariates. Thus, taking away from the false

positive rate and adding to the false negative rate, but overall having the same accuracy



with this increase and decrease. Next, increasing the number of features from p = 100 to a

high-dimensional case of p = 300 remaining at a constant p∗, ρ, λc, and nominal level; we see

that the FPR decreases and both the FNR and accuracy increase. This result of a decrease

in the FPR and an increase in both the FNR and the accuracy is also seen when looking at

the effect of changing the nominal level from 0.05 to 0.01.



Table 4.1: Simulation Results at nominal level 0.05

n = 200, p = 100 n = 200, p = 300
ρ FPR FNR Accuracy FPR FNR Accuracy

p∗ = 5 Mild Censoring (λc = 0.0002)
0 0.027 0.071 0.971 0.017 0.097 0.982

0.2 0.019 0.200 0.972 0.010 0.254 0.986
0.5 0.009 0.511 0.966 0.004 0.581 0.987

Moderate Censoring (λc = 0.001)
0 0.028 0.068 0.970 0.017 0.095 0.982

0.2 0.020 0.197 0.972 0.010 0.257 0.986
0.5 0.009 0.520 0.967 0.004 0.579 0.987

Heavy Censoring (λc = 0.002)
0 0.029 0.066 0.969 0.018 0.089 0.981

0.2 0.018 0.192 0.974 0.010 0.257 0.986
0.5 0.009 0.530 0.965 0.003 0.585 0.987

p∗ = 10 Mild Censoring (λc = 0.0002)
0 0.059 0.324 0.914 0.041 0.378 0.948

0.2 0.052 0.400 0.913 0.034 0.457 0.952
0.5 0.042 0.473 0.914 0.026 0.522 0.958

Moderate Censoring (λc = 0.001)
0 0.064 0.308 0.912 0.043 0.370 0.946

0.2 0.056 0.398 0.909 0.037 0.452 0.950
0.5 0.042 0.472 0.915 0.027 0.511 0.957

Heavy Censoring (λc = 0.002)
0 0.067 0.307 0.909 0.047 0.354 0.943

0.2 0.058 0.392 0.909 0.041 0.435 0.946
0.5 0.044 0.466 0.913 0.029 0.507 0.955

p∗ = 15 Mild Censoring (λc = 0.0002)
0 0.084 0.503 0.853 0.065 0.561 0.911

0.2 0.081 0.510 0.854 0.062 0.560 0.913
0.5 0.081 0.484 0.858 0.054 0.531 0.923

Moderate Censoring (λc = 0.001)
0 0.085 0.498 0.853 0.070 0.545 0.906

0.2 0.086 0.504 0.851 0.064 0.546 0.912
0.5 0.084 0.483 0.855 0.058 0.522 0.919

Heavy Censoring (λc = 0.002)
0 0.090 0.491 0.849 0.076 0.528 0.901

0.2 0.094 0.500 0.845 0.071 0.532 0.906
0.5 0.084 0.475 0.857 0.062 0.517 0.915



Table 4.2: Simulation Results at nominal level 0.01

n = 200, p = 100 n = 200, p = 300
ρ FPR FNR Accuracy FPR FNR Accuracy

p∗ = 5 Mild Censoring (λc = 0.0002)
0 0.009 0.127 0.985 0.005 0.173 0.993

0.2 0.005 0.318 0.979 0.002 0.374 0.991
0.5 0.002 0.612 0.667 0.001 0.670 0.988

Moderate Censoring (λc = 0.001)
0 0.009 0.125 0.985 0.005 0.165 0.993

0.2 0.005 0.312 0.979 0.002 0.403 0.991
0.5 0.002 0.620 0.967 0.001 0.678 0.988

Heavy Censoring (λc = 0.002)
0 0.009 0.123 0.986 0.005 0.158 0.993

0.2 0.005 0.313 0.979 0.003 0.388 0.991
0.5 0.002 0.637 0.966 0.001 0.677 0.988

p∗ = 10 Mild Censoring (λc = 0.0002)
0 0.021 0.474 0.934 0.013 0.545 0.970

0.2 0.018 0.533 0.930 0.011 0.587 0.970
0.5 0.013 0.565 0.932 0.007 0.607 0.973

Moderate Censoring (λc = 0.001)
0 0.022 0.469 0.933 0.015 0.527 0.968

0.2 0.018 0.531 0.930 0.012 0.582 0.969
0.5 0.013 0.571 0.930 0.008 0.607 0.972

Heavy Censoring (λc = 0.002)
0 0.022 0.459 0.934 0.014 0.528 0.969

0.2 0.020 0.516 0.930 0.012 0.567 0.970
0.5 0.014 0.564 0.930 0.008 0.597 0.972

p∗ = 15 Mild Censoring (λc = 0.0002)
0 0.031 0.660 0.874 0.022 0.713 0.943

0.2 0.030 0.647 0.877 0.021 0.699 0.945
0.5 0.031 0.591 0.884 0.018 0.635 0.951

Moderate Censoring (λc = 0.001)
0 0.032 0.651 0.874 0.024 0.705 0.942

0.2 0.032 0.641 0.876 0.022 0.686 0.945
0.5 0.033 0.590 0.883 0.020 0.629 0.950

Heavy Censoring (λc = 0.002)
0 0.035 0.647 0.872 0.026 0.684 0.941

0.2 0.035 0.635 0.874 0.024 0.678 0.943
0.5 0.033 0.579 0.885 0.021 0.620 0.949



Afterwards, we looked at the percentage of times each feature was selected. Results are

shown for p∗ = 10, n = 200, and p = 300 in Figures 4.1 and 4.2. Figure 4.1 shows the results

when the nominal level was 0.05. The increasing correlations, ρ = 0, ρ = 0.2, and ρ = 0.5

are shown in Figures 4.1a, 4.1b, and 4.1c, respectively. Conversely, Figure 4.2 shows the

results with a nominal level of 0.01 and Figures 4.2a, 4.2b, and 4.2c show ρ = 0, ρ = 0.2,

and ρ = 0.5, respectively. The red lines in each of these six figures represent the selected

percentage of the truly significant features.
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(a) Selected features: ρ = 0 and nominal level of 0.05
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(b) Selected features: ρ = 0.2 and nominal level of 0.05
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(c) Selected features: ρ = 0.5 and nominal level of 0.05

Figure 4.1: The preceding figures had 10 truly significant features p∗ = 10 and censor rate
λc = 0.0002 with a sample size n = 200 and p = 300 features
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(a) Selected features: ρ = 0 and nominal level of 0.01

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300

Feature

S
e

le
c
te

d
 (

%
)

(b) Selected features: ρ = 0.2 and nominal level of 0.01
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(c) Selected features: ρ = 0.5 and nominal level of 0.01

Figure 4.2: The preceding figures had 10 truly significant features p∗ = 10 and censor rate
λc = 0.0002 with a sample size n = 200 and p = 300 features



In Figure 4.1a, all 10 truly significant features, as shown by the red lines are all selected

over 45% of the time; whereas the non-significant features are selected around 5% of the

time. As the correlation increases to ρ = 0.2 in Figure 4.1b, the sixth truly significant

feature is almost selected 100% of the time; whereas, three truly significant features drop

to being selected less than 30% of the time. These three features continue to be selected

even fewer times when the correlation is increased to 0.5 in Figure 4.1c. These three truly

significant features drop to being selected under 10% of the time, almost mimicking that

of the non-significant features. At the same time, there are three truly significant features

that increase to being selected almost 100% of the time when the correlation is increased

to 0.5. Similarly, these patterns are found in Figures 4.2a, 4.2b, and 4.2c. These figures

all show that as the correlation increases, the significant features that are in the middle

- the fourth, fifth, and sixth feature - all get selected nearly 100% of the time; whereas

the features that are further away from the middle get selected less and less. This pattern

is due to the value that the significant features were originally set to. Recall that when

p∗ = 10, the first 10 truly significant parameter values without the intercept in β∗ were

β∗ = (1.5,−1.5, 1.75,−1.5, 1.5, 1.75, 1.5,−1.75,−1.5, 1.25)′. In the figures, when the feature

takes on a negative value, as in the second feature, the parameter is selected fewer times

as the correlation levels increase between the features. When there are two negatively set

features in a row, the second negative cancels out the first negative and is selected more

times even if it has a negative value. This is seen in the ninth feature. Since there are two

negatives in a row, the next feature, the tenth feature, although positive is selected less due

to the preceding negative features (Fan and Lv, 2008; Goh and Dey, 2019).

4.2 Ultra High-Dimensional Simulation Results

Using the methods described in Section 4.1, we now simulate data from an ultra high-

dimensional setting using 200 individuals (n = 200) and 1000 covariates (p = 1000). The



results for the nominal level at 0.05 are seen in Table 4.3.

Table 4.3: Ultra high-dimensional results at nominal level 0.05

n = 200, p = 1000
ρ FPR FNR Accuracy

p∗ = 5 Mild Censoring (λc = 0.0002)
0 0.010 0.122 0.989

0.2 0.005 0.308 0.993
0.5 0.001 0.650 0.996

Moderate Censoring (λc = 0.001)
0 0.011 0.124 0.989

0.2 0.005 0.465 0.997
0.5 0.002 0.631 0.995

Heavy Censoring (λc = 0.002)
0 0.012 0.114 0.988

0.2 0.005 0.328 0.993
0.5 0.001 0.650 0.995

p∗ = 10 Mild Censoring (λc = 0.0002)
0 0.031 0.430 0.965

0.2 0.026 0.498 0.970
0.5 0.020 0.548 0.975

Moderate Censoring (λc = 0.001)
0 0.035 0.410 0.962

0.2 0.030 0.486 0.966
0.5 0.021 0.544 0.974

Heavy Censoring (λc = 0.002)
0 0.035 0.410 0.961

0.2 0.030 0.469 0.965
0.5 0.020 0.535 0.974

p∗ = 15 Mild Censoring (λc = 0.0002)
0 0.058 0.574 0.935

0.2 0.049 0.588 0.943
0.5 0.044 0.548 0.948

Moderate Censoring (λc = 0.001)
0 0.061 0.569 0.931

0.2 0.057 0.579 0.935
0.5 0.033 0.545 0.947

Heavy Censoring (λc = 0.002)
0 0.067 0.550 0.926

0.2 0.061 0.555 0.931
0.5 0.049 0.533 0.944



Next, we looked at the percentage of times each variable was selected. The results for

the nominal level of 0.05 are shown in Figure 4.3. Please note, for this figure, only the first

500 variables are shown.
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(a) Selected features: ρ = 0 and nominal level of 0.05
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(b) Selected features: ρ = 0.2 and nominal level of 0.05
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(c) Selected features: ρ = 0.5 and nominal level of 0.05

Figure 4.3: The preceding figures had 10 truly significant features p∗ = 10 and censor rate
λc = 0.0002 with a sample size n = 200 and p = 1000 features



Again, we see similar results as discussed in Section 4.1.

4.3 TCGA Breast Cancer Dataset Results

The Cancer Genome Atlas (TCGA) Breast Cancer Dataset has nearly 400,000 microarrays

and 622 individuals in the study at the present time. Looking at the survival curve in

Figure 4.4 from these data, we can see that approximately 60% of these individuals are long-

term survivors. Thus, a cure rate model is needed. However, with the number of microarrays

collected on each of these individuals, the cure rate model would be too complex and too

difficult to interpret for a meaningful conclusion. Therefore, the marginal cure rate model is

an appropriate option.
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Figure 4.4: Survival curve of the TGCA breast cancer dataset

For the purpose of this report, only 4,000 microarrays were randomly chosen to analyze.

Due to this random selection, it is possible that there are significant genes that are truly

associated with breast cancer survival not in this selection. Of these 4,000 microarrays, we

were able to find some significant microarrays by the proposed gradient test. From these

4,000 microarrays, we calculated the pairwise spearman correlation coefficients and found

that a majority of the microarray pairs had very small correlations being around 0. These

calculated pairwise correlations can be found in Figure 4.5.
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Figure 4.5: Pairwise Spearman correlation coefficients for the 4,000 microarrays in the TGCA
dataset

The false discovery rate, as discussed in Section 3.3 was then calculated by using different

threshold values, c ∈ {7.0, 7.5, 8.0, 8.5}, from Equation 3.7. 1,000 permutations were used

in calculating these false discovery rates. Table 4.4 shows the selected microarrays along

with the threshold value and calculated false discovery rate.

In Table 4.4, the selected microarrays when the threshold value is 8.5, are seen in all

other results by different threshold values. We can also see the genes that each of these

microarrays corresponds to. Interestingly, some of the selected microarrays and their genes

are already known to be involved in important functions of the human cancer cell. GNA12

is involved early on in the cancer cell’s ability to spread throughout the body and to also

invade healthy tissue (Rasheed et al., 2015). GNG7 is involved in the way that the cancer

cell can avoid natural cell death and therefore the cancer cell can live for a much longer time

than a normal cell can (Liu et al., 2016). The estimated false discovery rates among these

four results range from 0.076 to 0.097 which is in the acceptable range of false discovery

rates for gene expression data 0.1 to 0.2 (Witten and Tibshirani, 2010). Nevertheless, during

these calculations, some gradient scores that were not non-negative were noted. These scores

were usually quite small and very close to zero, ranging from approximately −0.1 to −1.0.



Threshold Value c 7.0 7.5 8.0 8.5 Gene

Selected Microarrays
cg03961401 cg03961401 cg03961401 cg03961401 GNA12
cg07739686 cg07739686 cg07739686 cg07739686 TBC1D17
cg08933276 cg08933276 cg08933276 cg08933276 GNA12
cg13701180 cg13701180 cg13701180 cg13701180 GNG7
cg17290636 cg17290636 cg17290636 cg17290636 TBCD
cg17579154 cg17579154 cg17579154 cg17579154 TBCD
cg01205019 cg01205019 cg01205019
cg03303325 cg03303325 cg05394010
cg05394010 cg05394010 cg13105522
cg06544239 cg06544239
cg11021321 cg13105522
cg13105522
cg13573115
cg18639956
cg23866381
cg24502901
cg27023595

F̂DR 0.094 0.097 0.089 0.076

Table 4.4: The selected microarrays and estimated False Discovery Rate at each predeter-
mined threshold value c for a subset of the TGCA breast cancer dataset

This is a problem as all gradient scores should be non-negative as was stated in Chapter 3.2.

This problem is probably due to the fact that when calculating the maximum likelihood for

α which has a support from [0.5, ∞] was always near the 0.5 boundary. Since it was always

near the end of its support boundary, the maximum likelihood algorithm could probably

not get the true maximum likelihood estimate for α as there was that constraint put on the

algorithm. Thus, some microarrays had small negative gradient scores that were close to

zero and were considered to be zero.



Chapter 5

Discussion

In conclusion, we were able to derive the marginal cure rate model and a method of variable

selection under our proposed model and receive meaningful results. The gradient statistic

offers a simple and straightforward method for variable selection under the marginal cure

rate model. This variable selection step is important as it gives a list of variables that is much

smaller than the original set. In this study, we took a random portion of a dataset, 4,000

variables and were able to select 6-16 potentially important genes from it. The completion

of this simple and easy to calculate variable selection step, simplifies the dataset and opens

up many more opportunities for present-day data analyses.

Nevertheless, there are some limitations to both the marginal cure rate model and the

gradient statistic. First, the marginal cure rate model assumes a Weibull distribution as

the baseline hazard model. With the use of the Weibull distribution, we were able to have

closed-form solutions for our log-likelihood which is more easily implemented and explained.

For a more general model fitting, a nonparametric approach should be used for the baseline

hazard model. Second, the univariat gradient statistic in this paper worked well for variable

selection when there was little to no correlation between the features. However, there could

be the case that there is substantial correlation between the features. In this scenario,

the proposed variable selection method needs to incorporate the correlation structure into

30



its algorithm. Thus, future research should aim to add a correlation component into the

gradient scores to better control for features that are potentially highly correlated.
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