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Abstract 

Laccases are multicopper oxidases that catalyze the oxidation of a broad range of 

substrates, typically phenols and anilines.  Research on laccases in fungi, plants, and 

bacteria has indicated that they have roles in detoxification, pigmentation, wound healing, 

morphogenesis and lignin synthesis and degradation.  However, there has been relatively 

little investigation on laccases that exist in insects or other invertebrates.  Insects have 

multiple laccase genes, but the function of just one type is known; laccase-2 (Lac2) 

orthologs are required for tanning of newly synthesized exoskeleton.  In the mosquito 

Anopheles gambiae and other insect species whose genomes have been sequenced, 

alternative exon splicing may generate two isoforms of Lac2.  The objective of this study 

was to characterize the two isoforms of AgLac2.  They are identical in their first 500 

residues, but the carboxyl-terminal 262 residues derived from alternative exons are 81% 

identical.  Recombinant Lac2A and Lac2B were expressed and purified.  They are both 

glycoproteins of ~81 kDa, and both can oxidize the laccase substrate ABTS as well as the 

catechols, N-β-alanyldopamine (NBAD) and N-acetyldopamine (NADA).  Lac2A and 

Lac2B with ABTS have pH optima of 5.0-5.5 and 4.5-5.0, respectively.  The pH optima 

with NBAD and NADA are 5.5-6.5.  The Km values (mM) for Lac2A and Lac2B with 

NBAD are 5.4 ± 2.1 and 5.0 ± 2.6, respectively.  The Km values (mM) for Lac2A and 

Lac2B with NADA are 0.7 ± 0.2 and 1.4 ± 0.5, respectively.  Thus, there is little 

difference between the isoforms in Km for these two substrates.  The Km values do 

indicate that both isoforms have a greater affinity for the substrate NADA.  The kcat 

values (s-1) for Lac2A and Lac2B with NBAD are 14.2 ± 3.5 and 6.0 ± 1.8, respectively.  

The kcat values (s-1) for Lac2A and Lac2B with NADA are 2.4 ± 0.2 and 0.5 ± 0.04, 

respectively.  The most apparent difference between the two isoforms detected in the 

study is that Lac2A was four-fold more active than Lac2B when NADA was used as a 

substrate.  Although the two isoforms are very similar in their amino acid sequences, the 

differences in catalytic properties may indicate different roles in insect physiology. 
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CHAPTER 1 - Introduction 

One of the first enzymes to ever be described was laccase from the lacquer tree, 

Rhus vernicifera in 1883 (Yoshida, 1883).  Laccases, or para-diphenol:dioxygen 

oxidoreductaases (EC 1.10.3.2), are blue multi-copper enzymes that catalyze the 

oxidation of a broad range of substrates while simultaneously coordinating a four-

electron reduction of molecular oxygen to water (Messerschmidt, 1997).  Additional 

members of the blue oxidase family include ascorbate oxidase and mammalian plasma 

ceruloplasmin (Mayer and Staples, 2002).  Included in the variety of substrates oxidized 

by laccase are polyphenols, methoxyphenols, anilines, diamines, and several inorganic 

compounds (Solomon et al., 1996; Piontek et al., 2002).  For this reason, laccases have 

grabbed the attention of scientific researchers.  It has been discovered that they have 

many applications for advancing biotechnological processes in industry.  Some of these 

applications include color modification of food and wine, wood pulp bleaching and 

delignification, textile bleaching, cosmetic formulation, and biosensor development 

(Couto and Herrera, 2006).  Laccases are also generating interest because of their 

potential impact of the environment.  Currently, fungal laccases are being used in 

bioremediation for detoxification of industrial effluents as well as degradation of 

pesticides, herbicides, and some explosives found in soil (Mayer and Staples, 2002; 

Couto and Herrera, 2006).  At present, scientific research is attempting to further progress 

to expand the applications of laccases. 

Molecular structure and properties of laccases 
The molecular architecture of laccase is very similar to other multi-copper 

oxidases, especially ascorbate oxidase.  The glycoprotein structure is globular, consisting 

mainly of three domains all with a similar β-barrel type fold (Messerschmidt, 1997; 

Ducros et al., 1998; Bertrand et al., 2002; Hakulinen et al., 2002).  The structure contains 

four copper atoms that have been categorized into three main types.  The T1 site contains 

a type I copper that is situated in a trigonal coplanar geometric orientation.  This is due to 

its coordination to several amino acids, specifically two histidines and a cysteine (Piontek 
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et al., 2002).  These particular bonds to copper have very distinct spectroscopic 

properties.  The bond linking type I copper and cysteine results in intense absorption 

around 600 nm, which is responsible for the blue color that is a common property of 

proteins in the multi-copper oxidase family.  The T2 site contains a type II copper with a 

characteristic electron paramagnetic resonance (EPR), a technique that detects chemical 

species that have unpaired electrons.  In the T3 site, the pair of type III coppers generates 

an absorption band at 330 nm, but does not exhibit an EPR signal in the presence of 

molecular oxygen because of a strong antiferromagnetic coupling interaction between the 

two type III copper atoms (Solomon et al., 1996; Gray et al., 2000; Enguita et. al, 2003).  

When a reducing substrate is present, the mononuclear T1 site removes electrons from it 

and orchestrates their transfer to the trinuclear T2/T3 center where molecular oxygen is 

reduced to water (Messerschmidt, 1997). 

Evolution and function of laccases 
The molecular evolution of laccases is still not completely known, but through 

analysis of the growing collection of sequences and X-ray crystal structures of proteins in 

the multi-copper oxidase family, it is hypothesized that the origin is a single-domain 

cupredoxin protein.  Duplication and modifications of the single domain are thought to 

have possibly led to the creation of present day multicopper oxidases (Nakamura and Go, 

2005).  “They [copper proteins] describe an evolutionary history that spans nearly the 

entire period of life on Earth and involves prokaryotes, fungi, plants, and animals, 

whereas most of the other groups studied are confined to evolution of animal life” (Ryden 

and Hunt, 1993).   

Studies of laccases in several organisms have shown that they participate in 

diverse physiological processes.  To date, fungi provide the greatest source of laccases 

and therefore have been the most widely studied.  The ligninolytic activity of white rot 

fungi, such as Pycnoporus cinnabarinus and Trametes versicolor, has been attributed to 

the laccases found in these species, which grow on rotting wood (Bourbonnais et al., 

1995; Eggert et al, 1996).  In several fungi, laccases are involved in pigmentation and 

morphogenesis.  The fungus, Aspergillus nidulans produces a laccase that engages in the 

formation of conidium green color (Clutterbuck, 1972).  In Schizophyllum commune and 
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Agaricus bisporus, laccases have been implicated in aiding fruit body formation 

(Thurston, 1994).  Cryptococcus neoformans, a fungal pathogen that infects people with 

compromised immune systems, produces laccase that is a virulence factor.  This fungal 

laccase is thought to convert host catecholamines into melanin, which protects C. 

neoformans, allowing it to cause more damage to the host (Zhu and Williamson, 2004).   

Laccase genes have been identified in a few bacterial species.  Laccases are 

responsible for spore coat formation in Bacillus subtilis and melanin synthesis in 

Azospirillum lepoferum (Faure et al., 1994; Claus, 2003; Enguita et al., 2003).  In plants, 

laccases play a part in lignification of cell walls and wound response (Bao et al., 1993; 

Mayer and Staples, 2002).  There has been little biochemical study on laccases that exist 

in insects or other invertebrates.  However, laccase has been demonstrated to function in 

sclerotization and tanning of the new exoskeleton that occurs after insect molting 

(Dittmer et al., 2004; Arakane et al., 2005; Anderson, 2007).  

Insect laccases 
Analysis of several insect species whose genomes have been sequenced show the 

existence of two laccase genes in Bombyx mori and Tribolium castaneum, four in 

Drosophila melanogaster, and five in Anopheles gambiae and Aedes aegypti (Gorman et 

al., 2008).  Although its genome has yet to be sequenced, Manduca sexta appears to have 

two laccases as well.  In A. gambiae and these other insect species, there are apparently 

two isoforms of laccase-2 (Lac2A and Lac2B), arising from alternative exon splicing 

(Dittmer et al., 2004; Gorman et al., 2008) (Figure 1).  Recently, through the use of the 

RNA interference technique, the laccase-2 transcript was knocked down in T. castaneum.  

As a result, beetles injected with TcLac2A dsRNA had soft cuticles that displayed little 

or no tanning in the pupal or adult stages, and beetles injected with TcLac2B dsRNA 

showed a delay in adult cuticle tanning.  Both dsRNA treatments were lethal, showing 

that even though the two laccase-2 isoforms may have different roles, they are critical to 

the life of the insect (Arakane et al., 2005). 

Comparison of A. gambiae laccase-2 with orthologous sequences available in 

GenBank show greater than 84% sequence similarity.  Upon closer examination, 

specifically of the two isoforms, there exists high sequence similarity between the 
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isoforms within each species and an even greater sequence similarity among A isoforms 

and among B isoforms from the various insect species (Arakane et al., 2005). 

Anopheles gambiae 
A. gambiae mosquitoes are insects that belong to the family Culicidae in the order 

Diptera.  They have a life cycle that proceeds through four stages, which are egg, larva, 

pupa, and adult.  The adults can be distinguished from other species by the palps, which 

are as long as the proboscis, and by the presence of black and white scales on the wings.  

These mosquitoes are classified as anthropophilic, since the females prefer to feed on 

humans for blood meals (www.cdc.gov/malaria/biology/mosquito/).  They are found in 

Sub-Saharan Africa where they are the primary vector of the malaria parasite, 

Plasmodium (Kiszewski et al., 2004).  For this reason, biochemical studies of Anopheles 

mosquito enzymes, such as laccase, are essential for aiding in the development of new 

insecticides or other control strategies. 

Specific aims 
It has been determined that the AgLac2 isoforms are identical in their first 500 

residues, but the carboxyl-terminal 262 residues derived from alternative exons are 81% 

identical.  They have been largely conserved through evolution leading to the hypothesis 

that both have very important, but different physiological roles in the Anopheles gambiae 

mosquito. 

The first aim of this research was to express the two isoforms of Anopheles 

gambiae laccase-2 as recombinant proteins and purify them. 

The second aim was to determine substrate specificity of the two isoforms of 

laccase-2 by analyzing the activity of these enzymes in oxidizing the substrate 2,2’-

azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS), and with the catechols N-β-

alanyldopamine (NBAD) and N-acetyldopamine (NADA) (Figure 2), which are likely 

natural substrates for laccase-2. 

Based on homology modeling results, I developed a hypothesis that the catechol, 

NADA, may have a greater affinity as a substrate for the recombinant A isoform of A. 
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gambiae laccase-2 (rAgLac2A), while the catechol, NBAD, may have a greater affinity 

as a substrate for the recombinant B isoform of A. gambiae laccase-2 (rAgLac2B). 
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CHAPTER 2 - Materials and Methods 

Homology modeling 
AgLac2 protein target sequences were used as input into an automated web-based 

homology modeling program known as SWISS-MODEL.  SWISS-MODEL performed a 

BLAST search for a protein of known structure to be used as the template (Peitcsh, 1995; 

Guex and Peitcsh, 1997; Arnold et al., 2006).  The template and target sequences were 

next submitted to the web-based sequence alignment program, ClustalW (Larkin et al., 

2007).  The aligned sequences were returned to SWISS-MODEL for production of a 

homology model of each AgLac2 isoform.  Each model data file was then uploaded into 

the Protein Explorer website for viewing and manipulation 

(http://molvis.sdsc.edu/protexpl/frntdoor.htm).   

Construction of recombinant baculoviruses 
Recombinant AgLac2A and AgLac2B baculoviruses were generated with the 

BAC-TO-BAC Expression System (Invitrogen).  cDNAs containing the full coding 

regions of AgLac2A and AgLac2B cloned into the pCR4 vector were obtained from 

Maureen Gorman in the Department of Biochemistry, Kansas State University.  

AgLac2A and AgLac2B plasmid DNA was used to transform E. coli strain TOP10 

(QIAGEN).  Common molecular biology techniques were carried out as described in 

Molecular Cloning: A Laboratory Manual – Volume 1 (Sambrook and Russell, 2001).  

AgLac2A and AgLac2B plasmid DNA purified from the E. coli cells using a QIAprep 

Spin Miniprep Kit (QIAGEN) was quantitated by measuring absorbance at 260 nm.  

Identity of the plasmids was verified by restriction endonuclease digestion (EcoRI, Not I, 

Cla I).  The AgLac2A and AgLac2B plasmid DNA and a pFASTBAC vector were then 

subjected to digestion by EcoRI, and the fragments were isolated by agarose gel 

electrophoresis, then purified from agarose using a QIAquick Gel Extraction Kit 

(QIAGEN).  AgLac2A or AgLac2B DNA was ligated into the pFASTBAC vector and 

used to transform E. coli strain TOP10.  Eight AgLac2A colonies and eight AgLac2B 

colonies were selected and cultured overnight at 37ºC in Luria-Bertani (LB) medium 

supplemented with ampicillin (100 μg/mL) for verification of the correct orientation of 
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insertions of the cDNAs by restriction endonuclease digestion (EcoRI, Not I, Kpn I).  The 

recombinant plasmids with desired orientation of cDNA insertions were used to 

transform E. coli strain DH10BAC, which contains a bacmid (a plasmid containing a 

baculovirus genome) with a mini-attTn7 target site and a helper plasmid encoding 

transposase.  The transformed bacteria were streaked onto LB agar plates supplemented 

with kanamycin (50 μg/mL), gentamicin (7 μg/mL), tetracycline (10 μg/mL), X-gal (100 

μg/mL), and IPTG (40 μg/mL).  The plates were incubated at 37ºC for 24-48 hours.  

Colonies containing recombinant bacmids were identified by disruption of the lacZα gene 

and resulting white color.  From a single AgLac2A or AgLac2B colony confirmed as 

having a white phenotype on agar plates containing X-gal and IPTG, a liquid culture (3 

mL) contained antibiotics (kanamycin, gentamicin, and tetracycline) was incubated at 

37ºC with shaking overnight.  The High Purity Miniprep System (Marligen Biosciences) 

was used for isolating bacmid DNA from the selected E. coli clones.  PCR analysis was 

used to verify successful transposition of the laccase constructs to the bacmid. 

Sf9 cells (1 x 106 cells/mL serum-free medium [Sf-900 II SFM]) were transfected 

with the recombinant bacmid DNA using CELLFECTIN Reagent (Invitrogen).  After 

amplification of virus stocks, plaque assays were implemented to determine titers (BAC-

TO-BAC Baculovirus Expression Systems Instruction Manual – Invitrogen).  Successful 

transposition of AgLac2A to the bacmid was verified by PCR, using forward primer 

specific for a sequence in exon 8A 5’ – CAC CGG ACT CGA ACG TCA – 3’, and a 

reverse primer (RP 014 for pBK-CMV and pBluescript) that anneals to the vector 5’ – 

CAC ACA GGA AAC AGC TAT GAC C – 3’.  The final product size was 900 base 

pairs.  To verify successful transposition of AgLac2B to the bacmid, PCR was done using 

5’ – CGC TGG AGA TCT TCA CCA TT – 3’, which is a forward primer in exon 4 of 

the AgLac2 sequence and 5’ – TGA TCT TCT TCA CCG TGC T – 3’, which is a reverse 

primer specific for a sequence in exon 8B.  The final product size was 867 base pairs. 

DNA electrophoresis 
For electrophoretic analysis of DNA, 0.8% w/v agarose gels with 2 μL ethidium 

bromide (10 μg/μL) were submerged in 1X TAE buffer (40 mM Tris, 20 mM acetic acid, 

1 mM EDTA, pH 8.0) and run at a constant voltage (100 V).  DNA bands were visualized 
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by exposure to ultra-violet light using the Electrophoresis Documentation and Analysis 

System 120 equipment and recorded with KDS1D 2.0 software. 

Expression and purification of recombinant proteins 
For expression, 1.5 liters of Sf9 cells (2 x 106 cells/mL serum-free medium [Sf-

900 II SFM]) were infected with baculovirus at a multiplicity of infection of 2, and cells 

were incubated at 28ºC with shaking (150 rpm) for 48 hours.  Cells were removed by 

centrifugation (600 rpm for 15 min), followed by vacuum filtration of the supernatant 

using a sterile 0.20 μm membrane filter.  To help inhibit proteases in the clarified 

medium, p-aminobenzamidine (Sigma) was added to a concentration of 0.5 mM. 

Purification of rAgLac2A and rAgLac2B began with binding of glycoproteins in 

the culture medium to Concanavalin-A Sepharose (GE Healthcare) (34 mL at 60% slurry 

for rAgLac2A, 46 mL at 60% for rAgLac2B) in a shaking incubator (200 rpm, 4ºC) for 

approximately eight hours.  The resin, after separation from the culture medium, was 

poured into a 2.5 cm diameter column at 4ºC.  The column was washed and packed by 

gravity flow with binding buffer (20 mM Tris-HCl, pH 7.5 (4ºC), 500 mM NaCl, 1 mM 

MgCl2, 1 mM CaCl2, 1 mM MnCl2) until the flow through had an absorbance reading of 

<0.01 at 280 nm.  Laccase was eluted with 0.5 M methyl-α-D-mannopyranoside in 80 mL 

of 20 mM Tris-HCl, pH 7.5 (4ºC), 0.5 M NaCl, and protease inhibitor cocktail diluted 

1:200 (for tissue culture media, DMSO solution – Sigma P1860).  Pooled fractions 

containing recombinant laccase were dialyzed twice against 4 liters of 20 mM Tris-HCl, 

pH 8.0 (4ºC), 0.5 mM p-aminobenzamidine.  A 1.0 cm diameter (3.0 cm packed height) 

Q-Sepharose (GE Healthcare) chromatography column was prepared by packing the resin 

with 20 mM Tris-HCl, pH 8.0 (4ºC) using a flow rate of 4.0 mL/min.  The dialyzed 

pooled fractions containing recombinant laccase were loaded onto the Q-Sepharose 

column using a flow rate of 1.0 mL/min.  Next the column was washed with 20 mM Tris-

HCl, pH 8.0 (4ºC) until the wash fractions had an absorbance reading of <0.01 at 280 nm.  

Proteins were eluted as 1 mL fractions with an 80 mL linear gradient of NaCl in 20 mM 

Tris-HCl (0-300 mM NaCl), pH 8.0 (4ºC), protease inhibitor cocktail diluted 1:200 (for 

tissue culture media, DMSO solution – Sigma).  Finally, fractions containing rAgLac2A 
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protein were pooled.  The same was performed with fractions containing rAgLac2B 

protein. 

Protein Analysis 
The presence of protein throughout the purification process was detected using a 

spectrophotometer to measure absorbance at 280 nm, while protein concentration was 

determined as follows.  For the protein concentration assay, a bovine serum albumin 

(BSA) stock solution (0.2 mg/mL) was used to set up 50 μL of each of the following 

standard concentrations:  0.2 μg/μL, 0.4 μg/μL, 0.6 μg/μL, 0.8 μg/μL, 1.0 μg/μL, and 1.2 

μg/μL.  Each standard was loaded onto a 96-well plate along with samples collected 

throughout the purification process.  To each well, 50 μL of Coomassie Plus Protein 

Reagent (Pierce) was added and mixed using a pipette.  After incubation for 10 minutes 

at room temperature, absorbance was measured at 595 nm (Bio-Tek Instruments Power 

Wavex).  The standard values were utilized to create a standard curve for determination of 

unknown protein concentration by a computer program called KC Junior. 

For SDS-PAGE, samples from fractions collected during the purification process 

were combined with 6X SDS sample loading buffer (350 mM Tris-HCl, pH 6.8, 10% 

SDS, 30% glycerol, 0.125% bromophenol blue) and heated at 95ºC for five minutes.  The 

samples were then loaded onto a NuPAGE 4-12% Bis-Tris SDS polyacrylamide gel 

(Invitrogen) in 1X 3-[N-morpholiono] propanesulfonic acid (MOPS) buffer (Invitrogen) 

and electrophoresed at a constant voltage (200 V) until the bromophenol blue dye 

reached the bottom of the gel (approximately one hour).  The gel was then transferred to 

Coomassie blue staining solution for at least one hour before destaining in 10% acetic 

acid, 30% methanol.  The destaining solution was changed approximately every hour 

until blue bands of protein were visualized against a clear gel background. 

The same SDS-PAGE procedure was followed for Western blot analysis, except 

that when electrophoresis was finished, the gel was equilibrated twice in Western transfer 

buffer (48 mM Tris, pH 9.2, 39 mM glycine, 1.3 mM SDS, 20% methanol) for 10 

minutes each time and then put onto a semi-dry electrophoretic transfer cell (Bio-Rad), 

where proteins were transferred onto a 0.45 μm nitrocellulose membrane (GE Water and 

Process Technologies) for 1.5 hours at a constant voltage (10 V).  The membrane was 
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then stained with Ponceau S for two minutes to visualize the protein size marker, Mark 

12 (Invitrogen) and rinsed with distilled deionized water (ddH2O) until clear again.  The 

membrane was subsequently washed three times with 1X TBST (25 mM Tris, pH 7.4, 

137 mM NaCl, 2 mM KCl, 0.05% (v/v) Tween 20) for five minutes each and then 

incubated in 3% dry milk in 1X TBST for one hour.  The membrane was washed again as 

before and incubated for one hour in affinity-purified Manduca sexta laccase-2 antibody 

(provided by Neal Dittmer, Department of Biochemistry, Kansas State University) at a 

dilution 1:1000 in 3% dry milk in 1X TBST.  The membrane was washed again as 

previously described and then incubated for one hour in alkaline phosphatase (AP) 

conjugated goat anti-rabbit secondary antibody (Bio-Rad) at a dilution of 1:3000 in 3% 

dry milk in 1X TBST.  The membrane was washed again as before, developed using an 

AP conjugate substrate kit (Bio-Rad), and rinsed twice with water for five minutes. 

Enzyme assays and kinetics 
To detect the presence of recombinant laccase in column fractions, an assay was 

performed in 100 mM citric acid-sodium citrate buffer (pH 4.5).  The assay used 50 μL of 

collected fraction sample in a 200 μL total volume containing 0.5 mM ABTS in a 96-well 

plate.  The plate was wrapped in aluminum foil and left undisturbed for 6-8 hours.  An 

endpoint absorbance reading at 414 nm was then measured to detect the oxidized product. 

To determine optimum pH, assays were performed in 100 mM citric acid-sodium 

citrate buffer. Each assay contained 250 ng protein and 0.5 mM substrate in a 200 μL 

total volume.  Assays were set up in a 96-well plate, and production of oxidized product 

was monitored at 414 nm for ABTS and 390 nm for NADA and NBAD (National 

Institute of Mental Health).  The molar absorption coefficient of ABTS stable radical is 

64,000 cm-1 M-1 and the absorption coefficient of NADA and NBAD quinones is 1100 

cm-1 M-1 (Thomas et al., 1989).  For the substrate ABTS, one unit of activity was defined 

as 0.001 ΔA414/min/mg protein.  For NADA and NBAD, one unit of activity was defined 

as 0.001 ΔA390/min/mg protein. 

To characterize substrate specificity, assays were performed in 100 mM citric 

acid-sodium citrate buffer (pH 6.0).  Each assay contained 250 ng protein and a select 

substrate concentration (0.1 mM, 0.2 mM, 0.4 mM, 0.6 mM, 1 mM, 2 mM, 4 mM, 6 mM) 
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in a 200 μL total volume.  Assays were set up in a 96-well plate and production of the 

oxidized quinones was monitored for 30 minutes at 390 nm for NADA and NBAD.  One 

unit of activity was defined as 0.001 ΔA390/min/mg protein. 
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CHAPTER 3 - Results 

Homology modeling 
Of the known crystal structures of laccases, SWISS-MODEL identified Trametes 

versicolor laccase (TvLacIIIb) (PDB accession number:  1KYA) as most similar in 

sequence with AgLac2.  ClustalW was used to create an alignment of TvLacIIIb and the 

AgLac2 isoforms and determine the extent of their sequence identity.  AgLac2A and 

TvLacIIIb are 32% identical, while AgLac2B and TvLacIIIb are 33% identical (Figure 

3).  The isoforms of AgLac2 are 100% identical in their first 500 residues, but the 

carboxyl-terminal 262 residues derived from alternate exons are 81% identical.  Based 

upon this sequence alignment input, SWISS-MODEL produced a homology model for 

each of the isoforms of AgLac2, but without the first 240 N-terminal residues, since they 

do not align with the fungal enzyme (Figure 4).  The models predict that each isoform has 

three domains.  Both AgLac2 isoforms also have four additional surface loops not present 

in TvLacIIIb, due to insertions that are not in the fungal sequence.  These insertions are at 

residues 501-518, 542-562, 588-595, and 672-687.  Comparison of the substrate-binding 

site in the AgLac2 isoforms with that of TvLacIIIb shows a similar hydrophobic pocket 

and conservation of the histidine residue 458 in TvLacIIIb and 718 in the AgLac2 

isoforms that interacts with the single copper and the substrate (Figure 5).  Most of the 

residues in AgLac2A and 2B that align with the substrate-binding residues of TvLacIIIb 

do not differ between isoforms.  Previous structural analysis of TvLacIIIb with other 

multicopper oxidases has revealed a loop region possibly responsible for substrate-

binding specificity (Larrondo et al., 2003).  Analysis of this region found in domain 3 in 

the two isoforms suggests it as a putative substrate-binding loop.  Looking at this loop 

shows a difference at residue 633, a proline in AgLac2A and glutamic acid in AgLac2B 

(Figure 6). 

Upon further examination of this difference, a ClustalW sequence alignment of 

the alternate exon 6-9 regions for laccase in Anopheles gambiae, Aedes aegypti, 

Drosophila melanogaster, Bombyx mori, Tribolium casteneum, and Manduca sexta 

revealed that the difference between Lac2 isoforms at residue 633 is not conserved 

among the different insect species.  However this alignment does show there are 
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differences between isoforms at residue 544 and residue 728 that are conserved between 

insect species.  At residue 544, this difference is tyrosine in Lac2A and isoleucine in 

Lac2B, with the exception of BmLac2B having a substitution of methionine instead.  At 

residue 728, the conserved difference is glutamine in Lac2A and histidine in Lac2B 

(Figure 7). 

Expression and purification of rAgLac2 isoforms 
In order to characterize AgLac2, the recombinant proteins AgLac2A and 

AgLac2B were expressed in insect cells using a baculovirus expression system.  

Recombinant AgLac2A and AgLac2B were secreted into the cell culture medium, an 

indication that their own signal peptides were functional in this system.  The molecular 

mass of both isoforms determined by SDS-PAGE analysis was ~81 kDa.  rAgLac2A and 

rAgLac2B bound to a Conconavalin A chromatography column, indicating that they are 

glycosylated (Figures 8 and 10).  The Con A chromatography step yielded a 15-fold 

increase in specific activity for rAgLac2A and 25-fold increase for rAgLac2B. 

 The predicted isoelectric point of AgLac2A is 6.25 and 6.72 for AgLac2B 

(ExPasy).  The combined Con A fractions were applied to a Q-Sepharose 

chromatography column at pH 8.0, and the enzymes were eluted using a NaCl gradient  

(Figures 9 and 11).  The combined fractions yielded an additional three-fold increase in 

specific activity for rAgLac2A and rAgLac2B (Table 1).  A total of ~120 μg rAgLac2A 

(15 ng/μL) and ~40 μg rAgLac2B (5 ng/μL) was purified from 1500 mL medium (Figure 

12). 

rAgLac2 enzyme activity 
When assayed with ABTS as a substrate, rAgLac2A had a pH optimum of 5.0-5.5 

and rAgLac2B had a pH optimum of 4.5-5.0 (Figure 13A).  When assayed with NADA 

or NBAD as a substrate, Lac2A and Lac2B have pH optima of 5.5-6.5 (Figures 13B and 

13C). 

NBAD and NADA are naturally occurring compounds found in mosquitoes and 

potential physiological substrates for Lac2 (Munkirs et al., 1990; Kerwin et al., 1999).  

Michaelis-Menten kinetics were observed with NBAD and NADA as substrates for both 
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of the recombinant enzymes (Figure 14). The Km values (mM) for Lac2A and Lac2B 

with NBAD are 5.4 ± 2.1 and 5.0 ± 2.6, respectively.  The Km values (mM) for Lac2A 

and Lac2B with NADA are 0.7 ± 0.2 and 1.4 ± 0.5, respectively.  Thus, there is little 

difference between the isoforms in Km for each substrate.  The Km values do indicate that 

both isoforms have a greater affinity for the substrate NADA.  The kcat values (s-1) for 

Lac2A and Lac2B with NBAD are 14.2 ± 3.5 and 6.0 ± 1.8, respectively.  The kcat values 

(s-1) for Lac2A and Lac2B with NADA are 2.4 ± 0.2 and 0.5 ± 0.04, respectively.  The 

most apparent difference between the two isoforms detected in this study is that Lac2A 

was four-fold more active than Lac2B when NADA was used as a substrate (Table 2). 
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CHAPTER 4 - Discussion 

 The discovery of laccase in insects has brought even more intrigue to this very 

diverse and long studied enzyme.  RNAi experiments in the red flour beetle, T. 

castaneum, establishing that cuticle sclerotization can be added to the repertoire of roles 

to which laccase is involved (Arakane et al., 2005), has fueled the growing intention to 

ascertain more information about the enzyme.  The identification of laccase genes in the 

A. gambiae mosquito, an insect with such an impact on the health of the world’s populace 

today, has helped lead to this exploration of new possible hypotheses regarding insect 

laccases.  The goals of this research were to generate homology models of the A. gambiae 

laccase-2 isoform structures, express a recombinant form of each AgLac2 isoform and 

compare their biochemical properties.   

The alternative method of homology modeling was applied to generate models of 

the AgLac2 isoform structures since the three-dimensional structures of AgLac2 are not 

yet available.  SWISS-MODEL in combination with alignment information provided by 

ClustalW was used to produce a model of each isoform based upon the known crystal 

structure of the fungal laccase, TvLacIIIb.  With the sequence identity between the 

AgLac2 targets and TvLacIIIb template being in the 30-50% range, the models can be 

considered reliable, with majority of possible inaccuracies being located in the loops 

generated from the four sequence insertions not found in the fungal sequence (Baker and 

Sali, 2001). 

A closer look at the homology models provides some ideas about the different 

substrates that could be accommodated by the enzymes.  In the substrate cavity, the 

residues in AgLac2A and 2B that align with the substrate-binding residues of TvLacIIIb 

do not differ between isoforms.  Several residues could have hydrophobic interactions 

with a substrate.  The charged residue Asp 206 that is conserved among fungal laccases 

has been replaced by the corresponding hydrophobic residue (Val 397) in the AgLac2 

isoforms.  However, two polar residues Thr 347 and Ser 568 replace the corresponding 

hydrophobic residues (Leu 164 and Phe 337) of TvLacIIIb.  The charged residue (His 

458) of the fungal laccase that coordinates with the copper that acts as the primary 
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electron acceptor is conserved (His 718) in the AgLac2 isoforms (Bertrand et al, 2002).  

Pairing this information with the knowledge that laccases typically have a low substrate 

specificity, a wide variety of phenols and aromatic amines could be suggested for 

oxidation by the AgLac2 enzymes (Messerschmidt, 1997).  Also, a number of various 

sized molecules could fit if the substrate cavity is as wide as that of TvLacIIIb.  Substrate 

selectivity of the AgLac2 isoforms, however, may be increased by the presence of the 

two surface loops positioned near the substrate-binding cavity.  These could also be 

involved with the previous suggestion that there is a ligand-induced fit of laccases 

(Bertrand, 2002).  Currently, there is no explanation for the presence of the other two 

surface loops on the opposite side of the AgLac2 isoforms. 

Redox potential of the compounds that might be possible substrates needs to be 

considered as well.  Studies have recently shown evidence to support the suggestion that 

laccases better oxidize compounds with lower redox potentials (Tadesse et al., 2007).  

Examination of the T1 active site in laccases has found that higher redox potential is 

correlated with the presence of more hydrophobic residues (Matera et al., 2008).     

Leading to the development of the hypothesis for this research was the 

examination of the putative substrate-binding loop in the AgLac2 isoforms.  Its location 

can be considered reliable due to its position near the substrate-binding cavity in the 

models as well as being near well conserved regions of sequence containing histidine 

residues that interact with the different coppers.   The only difference between the two 

isoforms found in the putative substrate-binding loop was residue 633, which is proline (a 

hydrophobic residue) in AgLac2A and glutamic acid (a charged polar residue) in 

AgLac2B.  Although this difference is not conserved between Lac2 isoforms among the 

different insect species, it is the only major variation located near the substrate-binding 

site.  Compounds NADA and NBAD are not only diphenols, but also naturally occurring 

in Aedes aegypti and Toxorhynchites amboinensis mosquitoes (Munkirs et al., 1990; 

Kerwin et al., 1999).  Combining this information with that provided by the homology 

models, a conclusion can be draw that these compounds hold high potential as substrates 

of the AgLac2 isoforms.  Thus, next the hypothesis that NADA may have a greater 

affinity as a substrate for the recombinant A isoform of A. gambiae laccase-2 

(rAgLac2A), while NBAD may have a greater affinity as a substrate for the recombinant 
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B isoform of A. gambiae laccase-2 (rAgLac2B).  It is possible that the uncharged 

compound NADA will interact with the hydrophobic Pro 633 residue in rAgLac2A and 

the positive charge on NBAD will interact with the negative charge of Glu 633. 

As homology models can provide only a limited amount of information, it was 

necessary to express the two isoforms of laccase-2 in A. gambiae as recombinant proteins 

and purify them to further explore this hypothesis.  The recombinant AgLac2 proteins 

were produced by means of a baculovirus expression system in Sf9 insect cells.  As 

determined by SDS-PAGE, both recombinant isoforms had a molecular mass of ~81 kDa.  

However, three bands consistently appeared on Western blots of purified fractions of 

each isoform.  This leads to the question, why are there three bands?  It has already been 

indicated that rAgLac2A and 2B are glycosylated due to their ability to bind to a 

Conconavalin A column.  Therefore, it is possible that the different bands are from 

various levels of glycosylation.  Another prospect to consider is degradation, despite the 

various protease inhibitors used throughout the purification process.  To determine if this 

is indeed the case, Edman degradation would need to be performed on each of the bands 

so that the N-terminus can be examined. 

Having partially purified preparations of each recombinant isoform, it was time to 

delve into the investigation of their specific biochemical properties.  The pH profile with 

ABTS as a substrate indicates that rAgLac2A has optimal activity at pH 5.0-5.5 and 

rAgLac2B has optimal activity at pH 4.5-5.0.  The pH profile with NADA and NBAD as 

substrates indicates that Lac2A and Lac2B have optimal activity at pH 5.5-6.5.  These 

results are consistent with previous studies on insect laccases, such as the fruit fly, 

Drosophila melanogaster (pH 6.5), silkworm, Bombyx mori (pH 5.5), desert locust, 

Schistocerca gregaria (pH 5.0), blowfly, Calliphora vicina (pH 4.5), sheep blowfly, 

Lucilia cuprina (pH 4.5), green rice leafhopper, Nephotettix cincticeps (pH 4.75), and 

tobacco hornworm, Manduca sexta, (pH 5.0) (Yamazaki, 1969; Yamazaki, 1972; 

Andersen, 1978; Barrett and Andersen, 1981; Barrett, 1987; Sugumaran et al., 1992; 

Hattori et al., 2005; Dittmer et al., 2009). 

Michaelis-Menten kinetics were observed with NADA and NBAD as substrates 

for both of the recombinant enzymes.  The Km values for Lac2A and Lac2B with NADA 

are 0.7 mM and 1.4 mM, respectively.  The results for rAgLac2A are similar to the 

 17



observed values for the laccases from the blowfly, C. vicina (Km = 0.53 mM) and tobacco 

hornworm, M. sexta (Km = 0.43 – 0.63 mM) (Barrett and Andersen, 1981; Dittmer et al., 

2009).  The results for rAgLac2B are similar to the value reported for the laccase from 

the desert locust, S. gregaria (Km = 1.3 mM) (Andersen, 1978).  The Km values for 

Lac2A and Lac2B with NBAD are 5.4 mM and 5.0 mM, respectively.  The results for 

both isoforms are higher than the values detected for both the recombinant and 

endogenous forms of MsLac2 (Km = 1.90 mM and Km = 0.47 mM, respectively).  

However, the substrate inhibition with NBAD observed with MsLac2 (Neal Dittmer – 

personal communication) did not occur with the rAgLac2 isoforms.  A comparison shows 

there is little difference between the isoforms in Km for each substrate, but that both Lac2 

isoforms have a greater affinity for the substrate NADA than for NBAD. 

The kcat values for Lac2A and Lac2B with NADA are 2.4 s-1 and 0.5 s-1, 

respectively.  The kcat values for Lac2A and Lac2B with NBAD are 14.2 s-1 and 6.0 s-1, 

respectively.  This kinetic parameter points to Lac2A being four-fold more active than 

Lac2B when NADA was used as a substrate and two-fold more active than Lac2B when 

NBAD was used as a substrate.  This could suggest that the AgLac2A is possibly the 

dominant isoform, as was found to be the case in the RNA interference studies of TcLac2 

(Arakane et al., 2005).  On the other hand, this difference may still point toward the two 

isoforms each playing different roles in the mosquito’s physiology.  Analysis of kcat/Km 

indicates that neither isoform can oxidize NADA or NBAD with a very high catalytic 

efficiency. 

When merged together, it can be concluded that these results do not support the 

hypothesis that NADA has a greater affinity as a substrate for rAgLac2A, while NBAD 

has a greater affinity as a substrate for rAgLac2B.  So what paths can be taken from here?  

Other than its role in cuticle sclerotization, little is really known about what other 

functions laccase may have in insects.  There are still a number of different compounds 

that can be looked at in further substrate specificity studies for A. gambiae laccase-2.  

Also, this research only looked at each isoform individually.  When performing assays on 

other compounds, the two isoforms could be combined to determine whether or not they 

can act synergistically.  The purpose of two isoforms of laccase-2 being present in the A. 

gambiae mosquito as well as several other insect species is still unknown.  The more data 
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that can be accumulated about the biochemical properties of insect laccases, the 

likelihood of being able to design insecticides specific to these insect laccases will 

significantly increase. 
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Activity   
(U/μL) 

(U=mOD/min)

Total 
Volume 

(mL)

Total 
Activity 

(U)

Protein 
Concentration 

(mg/mL)

Total 
Protein 

(mg)

Specific 
Activity 
(U/mg)

% Yield 
Activity

Fold 
Purification

rAgLac2A Media 0.023 1450 33988 0.30 436 78 100 1
rAgLac2A Con A 0.205 75 15363 0.17 12.5 1230 45 16
rAgLac2A Q column 0.459 8 3668 0.10 0.81 4540 24 58

rAgLac2B Media 0.006 1475 8437 0.39 580 15 100 1
rAgLac2B Con A 0.046 80 3658 0.12 9.6 381 43 25
rAgLac2B Q column 0.127 8 1020 0.08 0.67 1517 28 101

Table 1 – Summary for purification of recombinant AgLac2 isoforms.  rAgLac2 

isoforms were expressed using a baculovirus vector in Sf9 cells infected at a MOI = 2 for 

2 days.  rLac2 secreted from the cells was purified from media by affinity 

chromatography on Concanavalin A Sepharose, followed by anion exchange 

chromatography (Q Sepharose).  Specific activity significantly increased with each 

purification step yielding relatively pure rAgLac2A and 2B. 
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Enzyme Substrate
Vmax       

(mM min-1)
Km    

(mM)
kcat          

(s-1)
kcat/Km     

(s-1 mM-1)
rAgLac2A NBAD 28.2 ± 6.3 5.4 ± 2.1 14.2 ± 3.5 2.6
rAgLac2B NBAD 11.8 ± 3.5 5.0 ± 2.6 6.0 ± 1.8 1.2

rAgLac2A NADA 4.7 ± 0.3 0.7 ± 0.2 2.4 ± 0.2 3.4
rAgLac2B NADA 0.9 ± 0.08 1.4 ± 0.5 0.5 ± 0.04 0.4

 

Table 2 – Summary of enzyme kinetics.  Enzyme assays were performed with 250 ng 

of purified laccase-2 and various concentration of NBAD or NADA to provide the 

measured kinetic values of maximal velocity (Vmax), the Michaelis constant (Km), 

catalytic constant (kcat), and catalytic efficiency (kcat/Km).
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Figure 1 – Anopheles gambiae laccase gene structure.  Exons are indicated by 

rectangles with the length shown above them.  Introns are indicated by lines with the 

length shown below them.  Light blue regions correspond to untranslated sequences.  

Color coding for Lac2 indicates alternate exons 6-9.   (Figure courtesy of Maureen 

Gorman, Department of Biochemistry, Kansas State University).             
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Figure 2 – Substrate chemical structures.  (A)  2,2’-azinobis-(3-ethylbenzothiazoline-

6-sulfonate) (ABTS) (http://www.sigmaaldrich.com/united-states.html)  (B)  N-β-

alanyldopamine (NBAD)  (C)  N-acetyldopamine (NADA). 
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Figure 3 - Sequence alignment of AgLac2 isoforms and TvLacIIIb.  Predicted signal 

sequences are underlined in orange.  Putative N-linked glycosylation sites are underlined 

in blue.  Alpha helical residues are highlighted in yellow and beta sheet residues are 

highlighted in pink.  Domain 1 of the proteins is underlined in purple, domain 2 is 

underlined in green, and domain 3 is underlined in light blue.  Residue differences 

between AgLac2 isoforms are colored red.  Substrate binding residues are highlighted in 

gray.  Residues of a putative substrate-binding loop are highlighted in green.  The arrow  

(    ) indicates the exon boundary (the start of alternative exons).
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AgLac2A         MAIDWRNRVLSLGILLALAVAADGVRVQQHTSRRFKDESFGHDQTPAGSWWSSHLTEPPS 60 
AgLac2B         MAIDWRNRVLSLGILLALAVAADGVRVQQHTSRRFKDESFGHDQTPAGSWWSSHLTEPPS 60 
1KYA            ------------------------------------------------------------ 
                                                                             
 
AgLac2A         NFYQATHGLLQTHPSVPSLKPVAGAPAAPGPSALPLSSRKSPTVSSAAALNSGFPSIANP 120 
AgLac2B         NFYQATHGLLQTHPSVPSLKPVAGAPAAPGPSALPLSSRKSPTVSSAAALNSGFPSIANP 120 
1KYA            ------------------------------------------------------------ 
                                                                             
 
AgLac2A         NPRSPFRHLDFSTSATAELRRNPSLSAPDECARACREGEPPRICYYHFTVEYYTVLGAAC 180 
AgLac2B         NPRSPFRHLDFSTSATAELRRNPSLSAPDECARACREGEPPRICYYHFTVEYYTVLGAAC 180 
1KYA            -----------GIGPVADLTITNAAVSPDGFSR--------------------------- 22 
                           . ...*:*  . :  :**  :*                            
 
AgLac2A         QVCTPNATNTVWSHCQCVLADGVERGILTVNRMIPGPSIQVCENDRVVIDVENHMEGMEL 240 
AgLac2B         QVCTPNATNTVWSHCQCVLADGVERGILTVNRMIPGPSIQVCENDRVVIDVENHMEGMEL 240 
1KYA            ---------------QAVVVNGGTPGPLITGNMGDRFQLNVIDN------LTNHTMLKST 61 
                               *.*:.:*   * * ...*    .::* :*      : **    .  
 
AgLac2A         TIHWHGIWQRGTQYYDGVPFVTQCPIQQGNTFRYQWTG--NAGTHFWHAHTGLQKLDGLY 298 
AgLac2B         TIHWHGIWQRGTQYYDGVPFVTQCPIQQGNTFRYQWTG--NAGTHFWHAHTGLQKLDGLY 298 
1KYA            SIHWHGFFQKGTNWADGPAFINQCPISSGHSFLYDFQVPDQAGTFWYHSHLSTQYCDGLR 121 
                :*****::*:**:: ** .*:.****..*::* *::    :***.::*:* . *  ***  
 
AgLac2A         GSIVVRQPPSRDPNSHLYDFDLTTHIMLVSDWLHEDAAERYPGRLAVNTGQDPESLLING 358 
AgLac2B         GSIVVRQPPSRDPNSHLYDFDLTTHIMLVSDWLHEDAAERYPGRLAVNTGQDPESLLING 358 
1KYA            GPFVVYDP--NDPAADLYDVDNDDTVITLVDWYHV-AAKLGP---AFPLGAD--ATLING 173 
                *.:** :*  .** :.***.*    :: : ** *  **:  *   *.  * *  : **** 
 
AgLac2A         KGQFRDPNTGFMTNTPLEIFTITPGRRYRFRMINAFASVCPAQVTIEGHALTVIATDGEP 418 
AgLac2B         KGQFRDPNTGFMTNTPLEIFTITPGRRYRFRMINAFASVCPAQVTIEGHALTVIATDGEP 418 
1KYA            KG--RSPST---TTADLSVISVTPGKRYRFRLV-SLSCDPNYTFSIDGHNMTIIETDSIN 227 
                **  *.*.*   *.: *.::::***:*****:: :::.     .:*:** :*:* **.   
 
AgLac2A         VHPAQVNTIISFSGERYDFVITADQPVGAYWIQLR-GLGECGIKRAQQLAILRYARGPYQ 477 
AgLac2B         VHPVQVNTIISFSGERYDFVITADQPVGAYWIQLR-GLGECGIKRAQQLAILRYARGPYQ 477 
1KYA            TAPLVVDSIQIFAAQRYSFVLEANQAVDNYWIRANPNFGNVGFTGGINSAILRYDGAAAV 287 
                . *  *::*  *:.:**.**:

LPQGVVMNPL

 *:*.*. ***: . .:*: *:. . : *****  ..   
 
AgLac2A         PASPPPTYDVG DA 37 
AgLac2B         PASPPPTYDVGLPQGVVMNPLDA 37 

QCNVQRDDAICVSQLKNAKEIDRALLQDKPDVKIFLP 5
VCNVPRPDAVCVSNLRNAKKADKAVLSERPDVKIFLP 5

1KYA            EPTTTQTTSTAPLNEVNLHPLVA------------------TAVPGSPVAGGVDLAINMA 329 
                 .:.. * ...  : * ::** *                  .    : :    *: * :. 
 
AgLac2A         FRFY F VAP LIDEISY 97 LYRPEEL QPNTYNRFL TGDHVIS LSAPAPLLSQYDDINPEQFCNG 5
AgLac2B         FRFY F VAP LIDEISY 97 FYRVEEL TPNTYNKFL GGDHLIS VSPPSPMLSQINDIPPEQFCNG 5
1KYA            FNFN---------------------GTN--FFINGASFTPPTVPVLLQII--------SG 358 
                *.*                      * :   :*:  *: ... *:* *          .* 
 
AgLac2A         DNRP CMCTHKVDIPLNAIVEVVLVDEVQQADCGAN PNLSHPFHLHGYA 57 YNVVGIGRSPDS 6
AgLac2B         DNRP CMCTHKVDIPLNAIVEVVLVDEVQQPDCGPN ENLSHPFHLHGHA 57 FHVIGMGRSPDS 6
1KYA            AQNAQDLLPSGS---VYSLPSNADIEISFPATAAAPGAPHPFHLHGHAFAVVRSAGSTVY 415 
                 :.. *  ..       .:* ** :*: :   .   . .*******:*: *:  . *.   
 
AgLac2A         DLDRRGLL IAVPNNGYVVLRFRADNPG LFHCHF 17 
AgLac2B         DLDRRGLL IAVPNNGYVVLRFRADNPG LFHCHF 17 

NVKKINLKHAL HRQYNLPPLKDT FW LF 7
TVKKINLRHTL NRQFNLPPLKDT YW QF 7

1KYA            NYDNPIFRDVVSTG----------------TPAAGDN--VTIRFRTDNPGPWFLHCHIDF 457 
                . .:  ::..:. .                * *. :*  *.:***:**** *::***: * 
 
AgLac2A         HIVIGMNL PVPPNFP - 753 ILQVGT--HADLP TCGDHLPPIN---
AgLac2B         HIVIGMNL PVPPNFP - 755 VVHIGT--HADLP RCGNHIPPIKYN-
1KYA            HLEAGFAVVFAEDIPDVASANPVPQAWSDLCPTYDARDPSDQ
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Figure 4 - Homology models of AgLac2 isoforms.  (A) Trametes versicolor laccase 

(pdb number – 1KYA) was aligned with (B) AgLac2A and (C) AgLac2B isoform 

sequences using ClustalW and were modeled with SWISS-MODEL.  Shown are Domain 

1 (magenta), Domain 2 (green), and Domain 3 (cyan).  Insertions not present in the 

fungal sequence are colored blue.  Copper atoms are indicated as red spheres, and 2,5-

xylidine in the substrate-binding site is represented in orange sticks. 
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Figure 5 - Comparison of AgLac2 substrate-binding site.  Comparison of the 

substrate-binding site in the AgLac2 isoforms with that of (A) TvLacIIIb shows a similar 

hydrophobic pocket and conservation of a His residue that interacts with the single 

copper and the substrate.  The residues in (B) AgLac2A and (C) AgLac2B that align with 

substrate-binding residues of TvLacIIIb do not differ between isoforms. 
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Figure 6 - Comparison of a putative AgLac2 substrate-binding loop.  Comparison of 

an AgLac2 putative substrate-binding loop (shown in green) in Domain 3 found 

specifically in alternate exons 7-8, shows a difference that might affect substrate-binding 

specificity, particularly residue 633, which is Pro in (A) AgLac2A and Glu in (B) 

AgLac2B.
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Figure 7 - Sequence alignment of domain 3 of insect laccase-2 orthologs.  Anopheles 

gambiae (AgLac2), Aedes aegypti (AeLac2), Drosophila melanogaster (DmLac2), 

Bombyx mori (BmLac2), Tribolium castaneum (TcLac2), and Manduca sexta (MsLac2) 

are the laccase-2 orthologs shown in the sequence alignment.  Highlighted in yellow is 

the difference between Lac2 isoforms at residue 633, which is not conserved among the 

different insect species.  Highlighted in green are the differences between isoforms at 

residue 544 and residue 728 that are conserved between insect species.  At residue 544, 

this difference is tyrosine in Lac2A and isoleucine in Lac2B, with the exception of 

BmLac2B having a substitution of methionine instead (colored red).  At residue 728, the 

conserved difference is glutamine in Lac2A and histidine in Lac2B.  The arrow (     ) 

indicates the exon boundary (the start of alternative exons).
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AgLac2A         YWIQLRGLGECGIKRAQQLAILRYARGPYQPASPPPTYDVGLPQGVVMNPLDAQCNVQRD 507
AeLac2A         YWIQLRGLGECGIKRAQQLAILRYARGPYQPASPPPTYDVGLPQGVVLNPLDAQCNVQRD 501
DmLac2A         YWIQLRGLGECGIRRAQQLAILRYARGPYQPASSPPTYDVGIPQGVVMNPLDAQCNRQRN 536
BmLac2A         YWIQVRGLGECGIKRAQQLGILRYARGPYQPSSLAPTYDVGIPQGVVMNPLDARCNISRN 513
TcLac2A         YWIQLRGLGECGIRRVQQLGILRYAKGPYQPSQAPPTYDYGIPQGVVLNPLDARCNEIRP 465
MsLac2          YWIQVRGLGECGIKRAQQLGILRYARGPYQPSLPAPTYDIGIPQGVVMNPLDARCNILRN 509
 
AgLac2B         YWIQLRGLGECGIKRAQQLAILRYARGPYQPASPPPTYDVGLPQGVVMNPLDAVCNVPRP 507
AeLac2B         YWIQLRGLGECGIKRAQQLAILRYARGPYQPASPPPTYDVGLPQGVVLNPLDAVCNVPRP 504
DmLac2B         YWIQLRGLGECGIRRAQQLAILRYARGPYQPASSPPTYDVGIPQGVILNPLDAICDRKRA 536
BmLac2B         YWIQVRGLGECGIKRAQQLGILRYARGPYQPSSLAPTYDVGIPQGVVMNPLDAICDVKRN 512
TcLac2B         YWIQLRGLGECGIRRVQQLGILRYAKGPYQPSQAPPTYDYGIPQGVVLNPLDAICNKPRK 465
                ****:********:*.***.*****:*****:  .**** *:****::***** *:  *  
 
AgLac2A         DAICVSQLKNAKEIDRALLQDKPDVKIFLPFRFYLYRPEELFQPNTYNRFLVAPTGDHVI 567
AeLac2A         DAICVSQLKNAKDIDRALLQEKPDVKIFLPFRFYLYRPEELFQPNTYNRFLVAPTGDHVI 561
DmLac2A         DAICVSQLKNALEIDRGILAEKPDVKIFLPFRFFVYRAEDLFQPNTYNRFLVAPTGDHVI 596
BmLac2A         DAICVSQLKNAQNIDPAILQERPDVKIFLPFRFFVYRPEMLFQPNTYNRYLVAPGGDHVI 573
TcLac2A         DAICVSQLKNALSIDKGILREKPDVKIFLPFRFHIYTPEDLFAPNTYNRHLVAPNGDHVI 525
MsLac2          DAICVSQLKNAKHIDPAILQERPDIKIFLPFRFFVYGPETLFQPNTYNRYLVAPSGDHVI 569
 
AgLac2B         DAVCVSNLRNAKKADKAVLSERPDVKIFLPFRFYFYRVEELFTPNTYNKFLVAPGGDHLI 567
AeLac2B         DAICVSNLRSAKKLDKAVLTERPDVKIFLPFRFYFYRVEELFTPNTYNKFLVAPGGDHLI 564
DmLac2B         DAVCVSNLKNAKKVDKGVLVERPDVKIFLPFRFFVYEPKALFIPNTYNRFLVVPSGDHLT 596
BmLac2B         DAVCVSNLKSARPVDKALLQDRPDVKIFLPFRFHFYKPKDLFKENTYRNFLVAPGGDHVL 572
TcLac2B         DAVCVSQLRNAKKVDEAILEERPDVKIFLPFRFLFYKPEDIFRPNTYNRFLAATGGDHVI 525
                **:***:*:.*   * .:* ::**:******** .*  : :*  ***...*... ***:  
 
AgLac2A         SLIDEISYLSAPAPLLSQYDDINPEQFCNGDNRPADCGANCMCTHKVDIPLNAIVEVVLV 627
AeLac2A         SLIDEISYLSAPAPLLSQYDDINPEQFCNGDNRPADCGANCMCTHKVDIPLNAIVEVVLV 621
DmLac2A         SLIDEISYLSAPAPLTSQYNDINPDQFCNGDNRPADCGPNCMCTHKIDIPLNAIVEVVLV 656
BmLac2A         SLIDEISYMSPPAPLISQYDDINPDQFCNGDNRPANCGQNCMCTHKVDIPLNAVVEIVLV 633
TcLac2A         SLIDEISYMAPPAPLISQYDDIDPQQFCNGDNRPADCQQNCMCTHKVDIPLNAIVEIVLV 585
MsLac2          SLIDEISYMSPPAPLLSQYDDINPEQFCNGDNRPANCGQNCMCTHKVDIPLNAVVEIVLV 629
 
AgLac2B         SLIDEISYVSPPSPMLSQINDIPPEQFCNGDNRPPDCGPNCMCTHKVDIPLNAIVEVVLV 627
AeLac2B         SLIDEISYVSPPSPMLSQIEDIPPEQFCNGDNRPPDCGPNCMCTHTVDIPLNAIVEVVLV 624
DmLac2B         SLVDEISYISPPAPPLSQIDDIPPEYFCNGDNRPPNCGPNCECTHMVDIPLGAIVEVVLV 656
BmLac2B         SLVDEISYSAPPAPPLSQMHELSPDLFCNGDNRPPNCAVDCRCTHMIDVPLNSIVEIVLV 632
TcLac2B         SLIDEISFTFPPSPPLSQIHDLSPDQFCNGDNRPPDCGQNCMCTHQVDIPLNAIVEVVLV 585
                **:****:  .*:*  ** .:: *: ********.:*  :* *** :*:**.::**:*** 
 
AgLac2A         DEVQQPNLSHPFHLHGYAYNVVGIGRSPDSNVKKINLKHALDLDRRGLLHRQYN---LPP 684
AeLac2A         DEVQQPNLSHPFHLHGYAYNVIGIGRSPDSNVKKINLKHALDLDRRGLLHRQYN---LPP 678
DmLac2A         DEVQQPNLSHPFHLHGYGFSVIGIGRSPDSSVKKINLKHALDLDRRGLLHRQYN---LPP 713
BmLac2A         DEVQIANLSHPFHLHGYSYNVIGIGRSPDQNVKKINLKHALDLDRRGLLERHLKQGDLPP 693
TcLac2A         DEVQQPNLSHPFHLHGYAFNVIGIGRSPDQNVKKINLKHALDLDRQGLLHRQFN---LPP 642
MsLac2          DEVQITNLSHPFHLHGYAYNVIGIGRSPDQNVKKINLKHALDLDRRGLLERHLKQGDLPP 689
 
AgLac2B         DEVQQENLSHPFHLHGHAFHVIGMGRSPDSTVKKINLRHTLDLDRRGLLNRQFN---LPP 684
AeLac2B         DEVQQDNLSHPFHLHGHSFNVIGMGRSPDTTVKKINLRHALDLDRRGLLNRQFN---LPP 681
DmLac2B         DEVQQVNLSHPFHLHGTAFYVVGLGRSPDKSIKKINLKHALELDQMGMLERHFS---KPP 713
BmLac2B         DEVQSPNLSHPFHLHGTSYNVIGMGRSPDKNIKKINLKHALDLDRKGLLHRQYN---LPP 689
TcLac2B         DEVQSPNLSHPFHLHGYAFNVVGIGRSPDQNVKKINLKHALDLDRRGLLHRQFN---LPP 642
                ****  ********** .: *:*:***** .:*****:*:*:**: *:*.*: .    ** 

 30



  
AgLac2A         LKDTIAVPNNGYVVLRFRADNPGFWLFHCHFLFHIVIGMNLILQVGTHADLPPVPPNFPT 744
AeLac2A         LKDTIAVPNNGYVVLRFRADNPGFWLFHCHFLFHIVIGMNLILQVGTLQDLPPVPPNFPT 738
DmLac2A         TKDTIAVPNNGYVVLRFRADNPGFWLFHCHFLFHIVIGMNLILQVGTNADLPPVPPGFPT 773
BmLac2A         AKDTIAVPNNGYVILRFRATNPGFWLLHCHFLFHIVIGMSLVLQVGTQGDLPPVPPNFPT 753
TcLac2A         AKDTIAVPNNGYVVLRLRANNPGFWLFHCHFLFHIVIGMNLVLQVGTHADLPPVPPNFPT 702
MsLac2          AKDTIAVPNSGYVILRFRATNPGFWLLHCHFLFHIVIGMSLVLQVGTQADLPPVPPGFPT 749
 
AgLac2B         LKDTIAVPNNGYVVLRFRADNPGYWLFHCHFQFHIVIGMNLVVHIGTHADLPPVPPNFPR 744
AeLac2B         LKDTVAVPNNGYVVMRFRANNPGYWLFHCHFQFHIVIGMNLVVHVGSKADLPPVPPNFPR 741
DmLac2B         LKDTIAVPNNGYVVIRFRADNPGYWLFHCHFLFHIVIGMNLIFHIGTTADLPPVPPRFPT 773
BmLac2B         HKDTLAVPNNGYVVLRLKADNPGYWLFHCHFIYHIVIGMSLILHIGTQGDLPPVPPNFPR 749
TcLac2B         SKDTIAVPNNGYVIFRFRADNPGYWLFHCHFLFHIVIGMNLIIHVGTQLIYRPFS-HFPR 701
                 ***:****.***::*::* ***:**:**** :******.*:.::*:     *..  **  
 
AgLac2A         CGDHLPPIN----------- 753 
AeLac2A         CGDHLPPIQ----------- 747 
DmLac2A         CGDHTPSIPIN--------- 784 
BmLac2A         CGDHLPAI-----PLH---- 764 
TcLac2A         CGDHVPEIN-----SNPNLV 717 
MsLac2          CGDHLPPI-----PLH---- 760 
 
AgLac2B         CGNHIPPIKYN--------- 755 
AeLac2B         CGNHIPPIRFN--------- 752 
DmLac2B         CGDHVPPVTWY--------- 784 
BmLac2B         CGHHLPTISPPFYPIH---- 765 
TcLac2B         CGNHLPPIS-----LH---- 712 
                **.* * :             
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Figure 8 – Purification of rAgLac2A by affinity chromatography (Con A).  (A)  

Graph showing elution profile from column.   rAgLac2A activity was assayed using 

ABTS as a substrate.  Elution fractions 1-8 were combined for further purification by 

anion exchange chromatography.  (B)  SDS-PAGE analysis of collected fractions on a 

NuPAGE 4-12% Bis-Tris SDS polyacrylamide gel stained with Coomassie blue.  (C) 

Western blot analysis of collected fractions using Manduca sexta Laccase-2 antibody.  

The red arrow indicates rAgLac2A.  Mark 12 protein standard was used for estimation of 

molecular masses.
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Figure 9 – Purification of rAgLac2A by anion exchange chromatography (Q 

Sepharose).  Graphs showing elution profile from column with (A) absorbance at 280 

nm and (B) linear 0-300 mM NaCl gradient.  rAgLac2A activity was assayed using 

ABTS as a substrate.  Elution fractions 23-30 were combined for use in experiments.  (C)  

SDS-PAGE analysis of collected fractions on a NuPAGE 4-12% Bis-Tris SDS 

polyacrylamide gel stained with Coomassie blue.  (D) Western blot analysis of collected 

fractions using Manduca sexta Laccase-2 antibody.  The red arrow indicates rAgLac2A.  

Mark 12 protein standard was used for estimation of molecular masses. 
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Figure 10 – Purification of rAgLac2B by affinity chromatography (Con A).  (A)  

Graph showing elution profile from column.   rAgLac2B activity was assayed using 

ABTS as a substrate.  Elution fractions 1-7 were combined for further purification by 

anion exchange chromatography.  (B)  SDS-PAGE analysis of collected fractions on a 

NuPAGE 4-12% Bis-Tris SDS polyacrylamide gel stained with Coomassie blue.  (C) 

Western blot analysis of collected fractions using Manduca sexta Laccase-2 antibody.  

The red arrow indicates rAgLac2B.  Mark 12 protein standard was used for estimation of 

molecular masses. 
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Figure 11 – Purification of rAgLac2B by anion exchange chromatography (Q 

Sepharose).  Graphs showing elution profile from column with (A) absorbance at 280 

nm and (B) linear 0-300 mM NaCl gradient.  rAgLac2B activity was assayed using 

ABTS as a substrate.  Elution fractions 22-29 were combined for use in experiments.  (C)  

SDS-PAGE analysis of collected fractions on a NuPAGE 4-12% Bis-Tris SDS 

polyacrylamide gel stained with Coomassie blue.  (D) Western blot analysis of collected 

fractions using Manduca sexta Laccase-2 antibody.  The red arrow indicates rAgLac2B.  

Mark 12 protein standard was used for estimation of molecular masses.
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Figure 12 – SDS-PAGE analysis of purified rAgLac2.  Purified rAgLac2 (10 µL) and 

known concentrations of bovine serum albumin were treated with 6X SDS loading buffer 

and separated on a NuPAGE 4-12% Bis-Tris SDS polyacrylamide gel, followed by 

staining with Coomassie blue.  The red arrow indicates rAgLac2.  Mark 12 protein 

standard was used for estimation of molecular masses. 
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Figure 13 - pH profile analysis of recombinant AgLac2 isoforms.  Assays were 

performed with 250 ng of purified laccase-2 and 0.5 mM ABTS (A) or NBAD (B) or 

NADA (C) in 100 mM citric acid-sodium citrate buffer of various pH.  Activity was 

determined by monitoring production of oxidized product at 414 nm for ABTS and 390 

nm for NBAD and NADA.  Each data point for NBAD and NADA indicates the mean of 

2 replicates ± range. 
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Figure 14 – rAgLac2 kinetics.  Assays were performed with 250 ng of purified laccase-

2 and various concentration of (A) NBAD (B) or NADA in 100 mM citric acid-sodium 

citrate buffer (pH 6).  Activity was determined by monitoring production of oxidized 

product at 390 nm for each quinone.  Each data point for NBAD and NADA indicates the 

mean of 2 replicates ± range.  Curves were fitted to the data by non-linear regression 

using the GraphPad Prism software. 
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