
CHEBYSHEV APPROXimTIONS

by

• PHILLIP F. UNRUH

B. A,, Kansas State University, 196?

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mathematics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

r *
' ^ 1968 : \ "*

\

Approved by:

*.

»

'<• '-

'-^L
Major Professor



R^ . ;.:-.

'^ ' - : . ,- TABLE OF CONTENTS

Page
INTRODUCTION 1

PROPERTIES OP CHEBYSHEV POLYNOMIALS 2

N"*^^ DEGREE LEAST-SQUARES POLYNOMIAL APPROXniATION 11

THE "MINII-LAK" PRINCIPLE . ll^

ECONOMIZATION OP POTTER SERIES I7

CONCLUSION 26

ACKNOliTLEDGMENT 2?

REPERENCES 28

"" *.^



INTRODUCTION

The purpose of this report is the development of some of

the properties and applications of Chebyshev polynomials. This

class of functions was named after the Russian mathematician,

P. P. Chebyshev (l821-l89l|-) . Many papers and books dealing with

one or more characteristics of Chebyshev polynomials have been

written. .
i: •

•

Chebyshev polynomials can be obtained in a variety of ways.

These polynomials include the eigenvalue-eigenfimction solutions

of a certain differential equation, generating functions,

Rodrigues-type formula, recursion formula, trigonometric defi-

nition, orthogonality definition, etc. Some of these deriva-

tions are discussed in this report. The various definitions -.

lead to the same set of functions, to v;ithin a multiplicative

constant. VJhenever we need to prove some relation, we use that

definition or property V7hich is most suitable and most easily

applied.

The two properties of Chebyshev polynomials which have

spurred their utilization are their Fourier Series property

(least-squares approximation) and their rainimax property. Both

of these are discussed in the report. In addition, they also

enter into considerations of continued fraction approximation

of functions. Trimcated continued fractions lead to Fade' ap-

proximants, the use of is generally considered to be a very

efficient approximative method.



PROPERTIES OP CHEBYSHEV POLYIIOMIALS

: Many techniques exist for finding polynomial approxima-

tions which reduce the amount of work and guarantee a specified

accuracy. The Chebyshev polynomials form a set which are among

the simplest and most useful of all polynomial approximations.

The Chebyshev polynomial of degree n can be defined by

Tn(35^) ~ cos{n arccos x). ' "\

If we set e = arc cos x, then T^^Cx) = cos ne. By using de

Moivre's theorem,

(cos e 4 i sin e)^ = cos ne + i sin no,

and noting that

sin © = (1 - cos e)*^ = (1 - x )'^,

we have

[x- id - x2)^]"
'•

« x^ + nx^-^ [i{l-x2)'^] 4 n(n-l)x^-^ [id-x^)'^] ^ ^ ...

Then, by simplifying and taking the real part only of the ex-

pansion, we obtain

T„(x)= x^ + n(n-l) x""^(x^-l) + nCn-l) (n-2) (n-3) x'^"^(x^-l)^ + ...n
21 TfT



Prom T (x) = cos(n arccos x) = cos ne, we can develop the

reciirrenco relation

T^^l(x) = 2xT^(x) - ViCx).

Since x = cos g, -1 f- x j^ 1, and -v < est we have that

T , (x) = cos(n4l)e = cos ne cos e - sin ne sin e

and

Tj^_-j^(x) " cos(n-l)© =: cos ne cos e + sm no sm e

Adding, yields

^n+1^^^ "* ^n-1^^^ ' ^°°^ ^® °°^ e » 2x T^(x);

hence

T^^l(x) . 2xT^(x) - Vi(x).

¥e can tabulate the Chebyshov polynomials from

Tjj(x) = cos ne

yielding

Tq(x) = coso = 1

and

T-, (x) = cos© = X, for n = 0,1.



Prom this point all other T (x) can be tabulated from the re-

ciorrence relation yielding:

T^U) = 2x^-1

TABLE A T. (x) = 8x^ - 8x^ 4 1

T^(x) = I6x^ - 20x^ + 5x

The figure below shows the graphs of the first few Chebyshev

polynomials.
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The Chebyshev polynomials can bo shovm to satisfy the dif-

ferential equation

(1 . x2)^fy . X II * n2y =

This equation can be modified so as to conform with the Sturm-

Liouville form of the differential equation

on some interval a f x £ b, satisfying certain boundary condi-

tions by dividing by (1 - x ) ^.

In fitting the differential equation to the Sturra-Liouville

second-order differential equation above we note that

(x) = Vl- x^, q(x) =0, ^= n , p(x) =

the range is f-l, ij •

The equation takes the form

^ and

d
a:x /rr?i] -^ . = 0.

We note that for x = -1, r(x) = 0. Hence this problem has the

trivial solution y = for any value of the parameter A - n .

Solutions y, not identically zero, are called character-

istic functions or eigenfionctions of the problem, and the values

of A for vrhich such solutions exist, are called characteristic

values or eigenvalues of the problem.

Therefore [(1) PP. \i}\.-\\$\ the solutions corresponding

to different values of n form an orthogonal set over [-1, l]

1 *•
•'

with respect to the weight function /r~~~2.



To solve the differential equation, we can assume a pox-jer

series development, for each n » 0, 1, 2, . . , we obtain both

a polynomial and an infinite series, the polynomial solutions,

except for constant factors, are Chebyshev polynomials y = T (x)

for n = 0, 1, 2, . . .

.

The Chebyshev polynomials also can be shown to be identical

with the functions obtained from Rodrigues formula [(6), pp. 15-

A generating function for the Chebyshev polynomial is

^ - ^
P

= fT^(x)u^
1 - 2xu + u^ fzi

This generating function is derived from the geometric series

by noting that

1 _^ = 1
le 1-ucose - iusine

1 - ue

1 - u cos + iu sin ©_ .__ ,

(1 - ucose) f u sin e

Taking the real parts yields

0-3

^ U Owa iiM — -.,

n-:.o 1 - 2u cos© -t u
*cos n© = 1 - ^<^ogQ



Now, the standard substitution of x = cos © shows that the pre-

ceding function does generate the Chebyshev polynomials.

Prom the polynomials preceding, it is easily seen that the

leading term of T^^Cx) for n>l is 2""-'-x^. Chebyshev polynomi-

als, T (x), have simple zeros at the n points x^^ «• cos
^rx

'^'

k = 1, 2, . . . n. This is seen by substituting x^^ in T^Cxj^) =

cos(n arccos x) . Hence:

Tjj(x^) = cosfn arccos (cos -I—*")]
= cos ~^^ ^

for k «= 1, 2, . . . n.

Then T'(x) = -sin(n arccos x) -JiJL. a j«£—^ sin(^ arccos x)

.

"
/l-x^ VI-x^

Therefore T^(xj^) = ;=^«2 ^^^ ^^tt f implies that the zeros

must be simple. This can also be seen on observing that the

degree of Tj^(x) is n; therefore, Tj^(x) has exactly n zeros.

Also the zeros must be simple since Tj^(x) has n different zeros,

Another useful property of T (x) is that its extreme val-

k<»
ues are - 1, These n + 1 values are obtained for x^ = cos -T/*

k k
From the proof above, T' (xA) = n(l-cos ^)

'^ sinkw = for k =

1, 2, .. , . n-1. Then T^(x^) = cosfn arccos ( cos- tj)] = cos k» =

(-1) for k = 0, 1, . . . n. But since -1 < x £ 1, T^(x) = cos

(n arccos x) implies that|Tj^(x]^ £ 1. Hence this shovrs that the

values xA give extreme values.
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Since T (x) is a polynomial of degree n in x, it can be

shown that if n is even, Tj^(x) is an even polynomial; and if >

n is odd, T (x) is an odd polynomial. This property follovrs

from the definition of odd and even fimctions. An odd func-

tion is defined as one in v;hich f(x) is given by f(-x) = - f(x).

An even fxmction is one in x^rhich f(x) is given by f(-x) = f(x).

The parity of T (x) is obtained from the power series ex-

pansion given at the beginning of this section. One notes

that (x - 1) occurs to different powers v^hile the multipliers

of (x^ - 1)^ are x^, x^"^, x^"^, .... Additionally, the

parity can also be seen from the following argument: let

© = arc cos x

then arc cos (-x) = tt - g;

Tj^(-x) = cos fn arc cos (-x)"]

= cos [n(Tr - g)] .

'

^^

= cos [^(mi - n©)j

= cos n7] cos ne + sin ni) sin ne

• ' = (-l)^cos ne ,

= (-l)^cos(n arc cos x)

= (-1)^ T^(x).



/

The Chebyshev polynomials have the properties of both trig-

onometric fiinctions and orthogonal polynomials. The trigonomet-

ric functions have the properties that alternating maxima and

minima of individual terms are equal in size, and that the sine

and cosine are orthogonal over both the continuous range and an

equally spaced set of discrete data points. Orthogonal polyno-

mials have the additional properties that their zeros interlace

each other; they can be put into a power series form; and they

satisfy a three term recurrence fonaula.

It can be shown that the Chebyshev polynomials are orth-

ogonal over f-1, 1} with respect to the weighting factor

(1 - X )"'^. Recall the trigonometric integral

cos ne cos m© de "
"f 2*

^~^^^ "
•

'
,

V^u, m=ns:0

This is sometimes referred to as the Fourier expression for

orthogonality of the cosine functions. Then with the change

of variable x = cos © the above becomes t ,

ITT^
)j^<)mn.

T^(x)Tj^(x)dx \
;.--..

where C^ = TT, C^^ = ^ (^7^0) and ol ran is the Kronecker delta

symbol defined by

^
man

ran

m/n



V
. _ j; ^ .: 10

Hence the Chebyshev polynomials are orthogonal over the interval

f-l, If with respect to the weighting function w(x) = i==»«ry

'

, Correspondingly, in the discrete domain for N equally

spaced data points, we get the relations

m/n
N-1

nna ^-^^ ^yjci ll'^Tj.

k=0

cos me^, cos n©,, = a ^ m=n;^0

N m=n=0

Hence,

"O mj^n
N-1

^''^
. \ N ra=n=0

Where 2^ = cos '

^xi ' k = 0, 1, . . . n-1.

Chebyshev showed that, of all monic polynomials of degree

n, the polynomial T (x)2 *" has the smallest least upper bound

for its absolute value in the interval -1 £ x < 1 . Since the

upper bound of JT (x^ is 1, the upper bound inquestion is ^

.

This property is known as the Chebyshev criterion and will be

proved later. The "Chebyshev approximation" is associated v;ith

those approximations v/hich attempt to reduce the maximum error

to a minimtmi. This is known as the minimax principle. Normal

least-squares approximation minimizes the average square error,

but could allow isolated extreme errors. Chebyshev approxima-

tion keeps extreme errors doim but allows a larger average

square error.
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: N*^ DEGREE LEAST-SQUARE POLYITOMIAL APPROXIi-iATION

The n-th degree least-squares polynomial approximation to

f(x) in f-l, ll relative to the weight function v;(x) = /==^

is defined by

.

-
- n .:

•

y(x) = Z^W^^^ -i^x£i
k=0

I .-

1 /f(x)dx
where a^ = ^ Ijf^ ^"A'^:

><.? "t.
•

^
2 /f(x) Tjjx)dx ^j,Q

It has the property that, of all polynomials of degree n or

less, the integrated weighted squared error

ff{x) - y^(x)] ^dx

a:x^

is least when yj,(x:) is given by

n _

a^T^(x)

k=0

In practice the above formulas are seldom used to evaluate

a^, but they do yield the following upper bounds:



Klif /lued. =!f

-j'! ;"'•• "A "^-^'i
'"•'" ''"•

k ?
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where M is the maximum value of )f (x)| in |_-1, IJ .

A more useful method of evaluating the coefficients is

based on relations of (1). The fvinctions Tq(x), T-^{x) , . . .

are orthogonal under integration over [-1» IJ relative to

•w(x) « /==^.
yjl-x. '

Now the same f\anctions Tq(x), T-^Cx), . . . T^(x) are •

orthogonal under summation over the zeros of Tj^_i(x) relative

to w(x) = 1. The n-th degree Chebyshev polynomial approxi-

mation to f(x) is defined by

n ,

'(^' =ZVk(-'

/

where ^__ indicates a finite sum whose first term is to be

halved and '

"'''

n

. k=o .. ., .
:

-

and where Xj » - cos |
J *

^
Tf, j = 0, 1, . . . n.

As an example of the above process, suppose that we want

to find the second degree Chebyshev approximation through the

folloTiring points:
,

..

~: <.* %i



Y J!^^^ = -cos f, Xi = -COS |,
and X2 = -COS |l

.

f(x^) = -^Q
)[3

- 3
^ f(^^) -

0^
. f(x^) = 10 v^ - 3

We can tabulate the following data:

•v, ' x^ T^(Xj) Ti(Xj) TgUj) ' fUj) ;: .

Tf - v/I -, • zJl 1 -10/3-3
X = -cos ^ _^ 1 -^ ^ )L^

X = -cos 5 1 -1 ,

^ - 5;? _i3 1 jH 1 10/3-3
X - -cos ^ _|2 1 -^ 2

Ij;

Then for the coefficients we calciilate

2 -

^f(x )T^(x.) = -1,a = 2
o 3 .il-.

-^^
J' O^ J

J-0

^1 =f 2^^^^j)^l^^j^ - ^^

2

J-0

\

Therefore, \\ \j v "
- . , . , ,

k-0

= ^o + a-^^T-^Cx) 4 a2T2(x)



lil-

-h 4 5x - 3^2(2x^-1)

25x - X

In the above note that the T-]^(x) satisfy the orthogonality

condition (1) and also that the x. are the zeros of T-^Cx) . .

.;;. : THE HINIl-lAX PRIHCIPLE

VJe shall now restate Chebyshev's theorem, or the "mini-

Biax" principle. It states that of all polynomials Pj^(x) of

degree n having a leading coefficient equal to 1, the polynomial

,: !n(fi
^

-V'"
-

....

has the least least-upper bound for its absolute value in the

interval f-l, l7 ; i.e..

Max
l
^n^^^

l
^ I,lax P„(x)

To prove this we shall assume that there is a monic poly-

nomial, say Pj,{x) of degree n, for v/hich the max Pr>(x) has a

lesser' absolute value. Nox^r since the coefficient of x in T (x)

is 2^" the leading terra of 2 "'^T„(x) is x^. Hence we can form
n'

the polynomial
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Q(x) = 2^-^T (x) - Tix) ^. ^
'\

... - • ..A ^ ^
. . ^ ,",..'.- --'' \ \

Where Q(x) is of degree n-1 or less. Now, since Pj^(x) has a

smaller norm than n^'^^ Q(x) must be positive at the maxima

of T^(x) and negative at the corresponding minimia of T^(x).

Siiice ^n^^^ takes on extreme values n + 1 times at the points

^ ,. 2^-1

X. = cos-ij^, j = 0, 1, . . . n, in the interval [-1, l] , Q(x)

must vanish at least n times. But as observed from above,

Q(x) is a polynomial of degree at most n-1. Thus a contra-

diction has been shovna and the theorem is proved.

This theorem may be stated in the equivalent way: Among

all polynomials of degree n with maximum norm unity in [-1, l] ,

T (x) has the largest leading coefficient, namely 2 "
.

Thus if Pj,(x) is any polynomial of degree n, we can define

the minimax polynomial approximation as the calculation of that

polynomial Q(x) of degree n-1 or less for v/hich

(Pn(x) - Q(x)| 5 f.
-1 £ X ^ 1

for some prescribed £ ^ 0.

^ .' If Pj,(3c) is any polynomial of degree n vrith leading co-

efficient a , then its minimax polynomial approximation of

degree n-1 or less on f-l* 1? is
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Any polynomial of degree n can be uniquely expressed as

a linear combination of the Chebyshev polynomials. From Table

A we can form Table B in which powers of x are expressed in

terms of Chebyshev polynomials. Thus,

^o

y

TABLE B

X = Tq^

jZ ^ 2-l(To + Tg)

j3 „
2~^(3T-L * T3)

X^ = 2-3(3T^ + i^T2 * \)

x^ = 2"^(10Ti + 5T3 + T^)

yP = 2"^(10Tq + I5T2 + ^\ <- T^)
\

Therefore, there exist constants C-,^ such that

(6) Pj^(x) = CoTqCx) + C-lT^Cx) + . . . + C^TnCx).

We note that the term x^ appears only in Tj^(x) ; therefore, C

a^
must be equal to ^. Thus we can form the miniraax polynomial

pn~JL

approximation to Pj,^^^*
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(7) Q(x) = C^ + C^T-^M f C2T2(x) 4 ... - Cj^_iTn_l(x).

Therefore, v;e see that to obtain the rainiitiax polynomial

approximation to a given polynomial ?^{x.) we first express Pn(x)

as the series (6) of Chebyshev polynomials and then drop the

last term,

ECONOMIZATION OP PO^VER SERIES

It txirns out that in many cases one can drop more than one

term and still obtain approximations which are "close" to being

minimax, which we shall show later in an example illustrating

this method of approximating polynomials. In actual practice,

we need only retain the terms through some k, k<.n, in (6)

since |T:i(x)| ^1 for all j. In doing this, the error committed
V

is bounded by '

.
^

The procedure above for replacing a polynomial of given

degree by one of lower degree is sometimes referred to "econ-

omizing a power series". We shall outline this procedure for

obtaining an economized polynomial approximation to a function

f (x) belo;^.

The economization of a power series has four basic steps.

Step 1. Expand f(x) in a Taylor series valid on the interval
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[-1, 1[ . Trimcate this series to obtain a polynomial

;
":•;•-,«' > ^ .,-:

Pj^(x) = a^ 4 a-j^x + . . . -f a^x >-.. „-?

which approximates f (x) to within a prescribed tolerance error

C for all X in [-1, l] .

Step 2. Expand P_{x) in a Chebyshev seriesn

Pj^(x) = Cq + C^^T-j^Cx) •...+ CnTn(x)

making use of Table B.

Step 3. Retain the first k terms in this series

.=^ Mj5.(x) » Cq + ^1^1^^^ f . . . + Oy^T-^U)

choosing k so that the maximum error given by v

if(x) -i^^{x)\s e+ K,ii+ . . . + Ki

is acceptable. •

Step i}.. Replace T.(x), (j=0, l,..k) by its polynoradal form

using Table A and rearrange to obtain the economized polynomial

approximation of degree k in standard form,

f (x)c: c'^ + O-^TL - . . . + Cjj.x

If necessary in step 1, make a transformation of independent

variables so that the expansion is valid on that interval.

As an example of the above procedvire we shall find a

polynomial of as low a degree as possible vjhich vrill yield
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the value of e^ for x on [-1, l] with an error of at most

.005.

Stop 1. By using the remainder term, B.^{x) = ^'^^ ^V

>

where a is equal to zero and "^ lies between x and zero in the

Taylor series theorem, we find that the first six terms of the

Taylor series are required to remain in the prescribed toler-

ance. Hence,

"

S x3 x^, x^
f(x) =e^-l + x + ^4i- + #n- + T^ " Pcr(x)

where the maximijun absolute error of P^(x) is less than -^.^

0.0038, If we were to omit the $y terra, we would inciu? the

possibility of an additional error, which, when added to that

already committed, would exceed the prescribed tolerance.

Step 2, Replacing each power of x in terms of Chebyshev

polynomials from Table B, yields

P5(x) = 1.2656250 + I.I302083T-L * O.27083333T2 •

O.Oi|li.27083To + 0.0052083Ti^ + 0.00052356t^

Step 3» Dropping the last term, v;e obtain the minimax poly-

nomial approximation to P^(x) : t- - '•

Qij^Cx) = 1.2656250 + 1.1302083T]_ + 0.27083333^2 +

0.0]4ij.27083T3 4 0.0052083T|^



20

Now, we need to check our error to see if it lies within the

prescribed tolerance level, £ ^.005. Since

. Ip^U) - Qj^(x)| 6: 0.00053

and
.

|e^ - 7^Ui^ 0.0038,

it follows that |e^ - Qh (x)( ^ O.OO38 + 0.00053 - O.OOi|.33.

Hence, the error from using Q^Cx) is less than 0.005 for all x

on [-1, 1] .
-

Step 1].. Using Table A and replacing T]_, T2, T3, T[^ by their

polynomial equivalents, and rearranging, we arrive at the

economized polynomial:

Qi^(x) - 1.000000 + 0.99739581X t 0.5000l602x^ +

0.17708332x^ + 0.0iia0506Ipc^.

Letting x take on some values in the interval [-1, ly ,

can tabulate the corresponding errors in P^(x) and Qj. (x)

:

v/e

k^-r •: e^ :- i.' e^ - P^Cx) e^ - Qij^(x)

1.0 0.36788 * * 0.0012 f0.0007

0.5 0.60653 * 0.0000 -0.0002

1.0000 0.0000 0.0000

0.5 1.61j.87 0.0000 0.0003

1.0 2.7183 ', 0.0016 0.0022
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Hence, we see that the error in using the polynomials

Pi-(x) and Qk(x) are well within our tolerance level of 0.005.

The important thing to note is that Q^ (x) is of one degree

less than Pi-{x) and therefore has fewer terms to tabulate and

it still remains in our prescribed tolerance level.

If we can allov; an error as large as £5.01, since |T (x](^l,

and §r/<:.01 when x lies in .the interval f-1, l] , we can neg-

lect the terras in T^(x) and T^(x). Hence, in so doing, we in-

troduce an additional error of at most Tq "̂q ^ 0057 « Thus, v;e

may write

f(x) = e^8lT^(x) + 219Tt (x) * 13T2(x) + 17To(x)

where the maximum error of about 0.0095 is within error toler-

ance set, VJhen we convert the above back into the economized

polynomial in x, v;e obtain ..

e^ 1 (382 + 383x + 208x^ + 68x^) "^v

where the error is not more than .01 throughout the interval

[-1, ij . ;,
-

For many functions, especially those with slowly converg-

ing power series, the telescoping effect can be quite dramatic.

C. Hastings [(2), p. 106? shows that the polynomial



22

Q^(x) = 0.99990167X - 0.k.97Q7$kkjS + 0.3176^005x^ -

0.19376ll>.9x^ + 0.08556927x^ - O.Ol83385lx^

approximates ln(l+x) to an accuracy of 0.0000015 for all x on

the interval [o, ij . The Taylor series for ln(l+x) converges

so slowly that many hijndreds of terras wo\ild "be required for

this same accuracy.
J

. *,;; -.

In actual practice, we do not need to carry out all of

the above computations. Consider again the truncated series

n'

(8) f„(x)=51a^x^ -I'.xil.

.;; *^ k=0 ^

Suppose that the error obtained by this approximation is R^^,

and that the prescribed maximiira error is £ •

If we write A

(9) f(x) = ^b^ + T. h^T^U) :

we have

^n - :3IT

^n-l - ^512

V2=^ y ^n + 22a.J

"n-S = i:2 1 ("i'l ^n-l *
2'^
«]



.yWBJpl..
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b - ^
n-lj. pia-l

i2i
^ -^ '^

Til "--2
' ^^v

We now define .

n

^ j=n-l-k' J'

Suppose Bj^< C -Rn» ^^"^ ^+1^^ ^ "^n* *^®^ ^® siraply substract

the last k terras of the series (9), from the series (8), and

by so doing obtain an approximation with maximuim error

Vk ^^n -^ ^- ,: .

- 'V >/

We will now rei^-ork the previous example employing these

ideas. We have that [ = 0.01, R^ = O.OO38, and |aij| = ^
^''"'

' 1 '•
• " ' ^' ''

•

Ihen .'; > "v
' ^ » •. '^

:

b^ = ^ • -ry Bj^ = 0.000521

\ =^ B2 = 0.005792 -^ ...

^3 K [ FT + JI] ^

Now £ -R^ = 0.0062. Since 62^0. 0062 and Bo > 0.0062 our

approximation is

i'(„\ - „x^ T _, :^ x^ ^ x^ ^ x^ . x^ 1 TAx) .f (X) - e ^ 1 + X t -2j -^ jr •*

IfT
+ 5T " [16-^ ^ ^

^1 T|,(x)]
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with an error Ro not exceeding R^ + B2 = 0.0095. Performing

the indicated substraction we obtain, as before,

^5^ 1 ["382 + 383X 4 208x^ 4 68x^]e^

with the maximum error Ro with the prescribed tolerance.

As the exponential function approximation indicates,

truncated power series have .the property that the maximum error

occurs at the end points of the interval of interest. If we

approximate the fijinction f{x) » sin^gvx for -li x 1 1, the

trxincated Taylor series expansion about x = is

(10) sin^Trx<*1.5708x - 0.6i^.60x^ 4 0.0797x^ - 0.00i|.7x'^.

Now economizing this series approximation by use of Chebyshev

polynomials we obtain .,

(11) sin^gTrxft 1.1336T3l(x) - 0.138lT2(x) 4 0.00I|.5T^(x) .

The representation of sin^g x is thereby achieved vrith

the storage of only three numbers, the coefficients of T-,(x),

T^(x), and Tk(x); the right of (11) may then be readily evalu-

ated .

The desk-machine user is seldom attracted by the compact-

ness of (11); he usually insists on seeing the function values

and differences in order to ascertain at a glance the behavior

of the function, and to obtain a reliable check against isolated

* V -At*, -k

/ r'*" ^..A
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computing errors. However, for an automatic computer, which

is much less prone to isolated errors, the Chebyshev series

representation is preferable.

In this particular example, we note that the Taylor series

expansion has one more term than (11); if the Taylor series is

truncated after the third term, its maximum error is larger than

that for series (11).

This is a simple example of the general property that, in

a given finite range, an approximation in Chebyshev series of

prescribed degree represents a function of a real variable more

accurately than a truncated Taylor series of the same degree.

In the special case where the function happens to be a poly-
'

nomial of the required degree, the Chebyshev and Taylor repre-

sentations are equally accurate, each being a rearrangement of

the other. Moreover, any fionction which can be represented by

an orthodox single-entry table can be represented by a single

Chebyshev series, whereas a Taylor series valid over the \ihole

tabular range may not exist. . ,
" "

We may summarize by restating that a trimcated Chebyshev

series is normally a good approximation to the best polynomial

representation in the sense of Chebyshev' s criteria. However,

it transpires that in practical applications the truncated

Chebyshev series is usually very close to the best possible

polynomial; the refinements necessary to improve it are seldom

worthwhile.



CONCLUSION
'. / •

"

V In conclusion, in this report \iq have defined the Chebyshev

polynomials by means of the relation T^(x) = cos(n arccos x)

.

We have shown how they satisfy certain differential equations

arising from the solution of the Sturm-Liouville problem. Also,

we have shoxm that they can be obtained from a particular gen-

erating function, a Rodrigues-type formula, and a three terra

recurrence relation. V7e have shown that Chebyshev polynomials

are orthogonal over f-l, Ij v/ith respect to a certain v/eight

factor. They also possess the useful property that |t^(x)| £ 1

and Tj^(x) obtains its extreme values alternately of (-1) at

n f 1 points over the interval [-1, IJ •

We have utilized the Fourier Series property that the

Pourier-Chebyshev series minimizes the average square error.

An example is given to illustrate this idea. One of the most

important properties discussed in this report leads to the

minimax principle, along with the proof and an example to fit

the principle. Then from the minimax principle, the economi-

zation of power series was developed and it was shown that

certain fianctions can be evaluated numerically by this econo-

mizing process. The study of Chebyshev polynomials leads to

many interesting mathematical problems.
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The name "Chebyshev polynomials" is in honor of the Russian

mathematician P. P. Chebyshev (l821-l89ii.) . Most of his contri-

butions to mathematics Mere in the area of number theory.

In this report the basic definition of the Chebyshev poly-

nomials we have employed is given by Tj^(x) = cos(n arccos x)

.

\Ie have shown how they satisfy certain differential equations

arising from the solution of a specific Sturm-Liouville problem.

Also, we have shown that they can be obtained from a particiilar

generating function, a Rodrigues-type formula, and a three term

recurrence relation. We have shown that Chebyshev polynomials

are orthogonal over [-1, ij vxith respect to a certain weight

factor. They also possess the useful property that |Tj^(x)J £ 1

and that T (x) obtains its extreme values of -1 at n+1 points

over the interval [-1, ij • -

'

..

¥e have utilized the Po\irier Series property that the

Pourier-Chebyshev series minimizes the average square error. , .

An example is given to illustrate this idea. One of the most

important properties discussed in this report leads to the

minimax principle, along with the proof and an example illus-

trating the principle. Then from the minimax principle, the

economization of pov:er series was developed and it was shown

that certain functions can be evaluated efficiently, numerical-

ly* by this economizing process. -
"


