A SEQUENTIAL PASCAL MANUAL FOR FORTRAN PROGRAMMERS
by
JERRY DEAN RAWLINSON
B. S., University of Illinois, 1964

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIEN@
Department of G@ter Science
KANSAS STATE UNIVERSITY

Manhattan, Kansas
1977

Approved by:

Major Profess

LD
20067

Ry
1977

2
5"’3 CONTENTS

Document
0. INTRODUCTION..... PR | 15
1. SIMPLE FEATURES...esesessessnscsssnsossasanss 1.1
2. CONTROL STRUCTURES. .. s seseeseeasasencansnnnes 2.1
3. SIMEXE DRTA TYPES:ssis s sanwiesssssmmmisisss Bal
by ARBAYS.....oevenvenesnonasansoncossnsensnanee bu1
Sy BECOMDS wumes s s e & § s pwainned & sivsmens s 55 Sal
6. PROGRAM AND PROCEDURE STRUCTURE......eveeeen. 6.1
7. PARAMETERS...c.evevnnnnnennns W swewsiiass Bl
8. INPUT/OUTPUT...vuuveneensonncnsensonanssanees 8.1
9. STANDARD PREFIX..eevvvvesenesvosnsssnnssnsens 9.1
10. RUNNING THE PROGRAM......00veeveen. TP, . : I |
11. DIFFERENCES BETWEEN "PASCAL" AND "SPASCAL"... 11.1

ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
- COPY AVAILABLE

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

TABLE OF FIGURES

As the main body of this report consists of nothing but slides,
the table of contents and the first slide in each slide set form a

tree structure for locating figures depicting particular subjects.
EXAMPLE

Locate a slide showing operations that can be

performed on arrays:

1. The table of contents indicates the
‘array slide set begins on page 4.1.

2. Page 4.1 indicates that slide(s)
- showing operations on arrays begin

on page 4.9,

INTRODUCTION

1, PASCAL, SEQUENTIAL PASCAL, AND CONCURRENT PASCAL.

The programming language Pascal was developed by Niklaus Wirth and
was specifically designed as a general purpose language which could be
used for systematic programming. As a result, Pascal is very readable
and can be used in top-down program design in which the final source
language program still reflects the structured design and lends itself
to systematic verification.S

Sequential Pascal (SPASCAL) refers to a specific implementation of
Pascal defined by Per Brinch Hansen and Alfred Hartmann of California
Institute of Technology for a PDP-11/45 computer. SPASCAL differs from
Wirth's definition of Pascal in several areas because of restrictions and
extensions required for the implementation.

Concurrent Pascal (CPASCAL) has also been defined by Brinch Hansen
and was designed for structured programming of computer operating systems.,
CPASCAL is an extension of SPASCAL which allows concurrent processes,
monitors and classes and was used by Brinch Hamsen to write a single user

operating system called SOLO for the PDP-11/45 computer.

2. [KANSAS STATE UNIVERSITY IMPLEMENTATION OF PASCAL,

Kansas State University Department of Computer Science has implemented
SPASCAL, CPASCAL, and SOLO as defined by Brinch Hansen for the
INTERDATA 8/32 computer. This implementation was made as part of a
research project investigating computer networks. Pascal was chosen
because it enforces structured programming, contains very powerful data
structures, is very readable, and the SPASCAL compiler can detect many

errors which would not be found at compile time using other languages.

3. OBJECTIVE OF THIS REPORT.

This report is designed to serve as an instructional aid for
introducing persons who can at least read FORTRAN programs to the
Kansas State University implementation of SPASCAL. The design concept
is to expand on the student's existing knowledge of FORTRAN so that

" 0.1.1

he may begin programming in SPASCAL as quickly as possible. This report
is not designed to be either a user guide or a self-contained primer

for SPASCAL. Rather, the report attempts to provide a set of primer
examples which may be used in conjuction with a short course or series |,
of lectures. The format of the examples should provide the student

with an overview of SPASCAL in an effective and efficient manner.

4. REPORT DESIGN.

This report has been designed to provide a top-down learning process
for the student. The report consists of a series of slides for which the
instructor must provide his own narrative. The slides are divided into
logical learning sets, and the sets are ordered in the sequence in which they
should be presented. Early examples in the slide sequence intentionally conceal
some details of SPASCAL so that specific teaching points may be emphasized. '
Later examples in the sequence enumerate upon the basic concepts introduced
earlier.

Each set of slides has been designed to provide the student with a
quick overview of a particular subject while requiring a minimum of reading. .
Examples are used to allow the student to compare FORTRAN and SPASCAL
so that he may quickly grasp similarities and differences between the two

languages.

5. INSTRUCTOR GUIDELINES.

As stated above, the slides in this report have been organized for
sequential presentation. No narrative has been provided as it is assumed
each instructor will desire to develop his own narrative to fit
his particular teaching style. :

It is recommended that each student be provided with a copy of this
report sc that he may make notes on individual slides and use the report
for future reference when programming.

The following references should be available for supplemental study:

Pascal User Manual and Report (3)

Sequential Pascal Report (1)
KSU Pascal Editor (PEDIT) (4)
The Solo Operating System Job Interface (2)

0.1.2

WARNING: Students must be made aware of the differences which exist
between SPASCAL and Pascal as defined in Pascal User Manual and Report.

These differences have been summarized in Slide Set 11 and are also
annotated in the Cross Reference Table in this section (page 0.1.5).

All "PASCAL" examples shown in this report are based on the Brinch Hansen
definition of SPASCAL as implemented at Kansas State University.

All FORTRAN examples in this report are based on ASCII FORTRAN.
Students should be made aware of this as some of the FORTRAN exampled
may differ from what can be done on the particular FORTRAN implementation
they have been working with.

Italic characters in all examples indicate either an error condition
or a facility that is not included in the language.

Students may notice that all PASCAL program examples have been
indented to emphasize program structure while theFORTRAN program examples
have not been indented. This was done based on an assumption that most
persons familiar with FORTRAN are accustomed to seeing FORTRAN programs
which have not been indented. It should be pointed out that while SPASCAL
does not require indention, it is a good programming practice which improves
pregram readability.

The Cross Reference Table in this section is designed to assist
instructnrs in narrative preparation. The table matches each slide set
with the supplemental reference which best describes elements within the
slide set. The table also indicates differences between the supplemental
reference and SPASCAL.

Most of the SPASCAL examples in this report have been compiled
on the Kansas State University implementation of SPASCAL. A card deck
containing all of the examples compiled is available through the Department

of Computer Science, Kansas State University.

6. CONCLUSION.

After compiling the examples on the INTERDATA 8/32 computer, numerous
changes were made based on differences discovered between the written
manuals on which the report was based and the actual implementation
All examples in the report reflect the actual implementation on the
INTERDATA 8/32. Any additional discrepancies noted by users of the
report should be brought to the attention of the KSU department of

Computer Science.

0.1.3

Individuals familiar with FORTRAN were provided draft copies of
the report and asked to comment on it. Those who reviewed the report
felt that it met the stated objective by providing a quick introduction
to SPASCAL. As expected, the report does not stand alone. Individuals
who knew only FORTRAN experienced some difficulty with new concepts
such as enumeration types and records when reading through the report
on their own. However, these individuals were able to understand
the concepts very quickly when they were talked through the examples in
the same manner as an instructor would. The comments provided by these
individuals were very helpfull and resulted in several changes and
additions in the final report to improve the clarity of examples.

Individuals familiar with FORTRAN will find SPASCAL to be a very
versatile language due to the increased number of control structures
and type declaration facilities available in the language. By using these
facilities, SPASCAL can provide for a more direct solution to many
problems than is possible in FORTRAN.

The primary disadvantages of the current implementation of SPASCAL are
it's 1/0 limitations and the lack of many predefined functions that
FORTRAN users are accustomed to. FORTRAN users may also find it inconvenient
not to be able to assign, operate, or use as parameters mixed integer
and real numbers/variables. However, this is an excellent software
engineering feature as many otherwise difficult to find errors are avoided
by forcing the individual writing a program to declare his intention to
change type.

In summary, SPASCAL is a very flexible general purpose language
which is outstanding for use in structured programming. This report will
provide instructors with an aid which can significantly reduce the time
required to introduce SPASCAL to individuals familiar with FORTRAN and
should be applicable to situations in which users merely wish to teach a
new language or a more academic situation such as within a formal

structured programming course.

0.1.3.1

REFERENCES

Brinch Hansen, P. and Hartmann, A. Sequential Pascal Report,

Information Science, Californic Institute of Technology, 1975.

Brinch Hansen, P. The Solo Operating System Job Interface,

Information Science, California Institute of Technology,1975.

Jensen, K. and Wirth, N. Pascal User Manual and Report,

Springer-Verlag, 1975,

Neal, D. KSU Pascal Editor, Department of Computer Science,

Kansas State University, 1976.

Wirth, N. Systematic Programming: An Introduction,
Prentice-Hall, 1973.

0.1.4

CROSS REFERENCE TABLE

SLIDE
GROUP REFERENCES* EXCEPTIONS**
1 3 cHap 1, pp 9-11 NO PACKED, LABEL, FILE
: 3 cHap 0, pp 3-8 NO NESTED DECLARATIONS
3 cHap 2, pp 12-15 NOo SIN(X), cos(x),
ARCTAN(X), LN(X)
EXP(x), sarT(X),
s@r(x), Apbp(x),
coLN(x) EoF(x), op
1 cHar 1-5, PP 1-7 -
2 3 CcHAP U, pp 21-33 NO 1/0 CALLS
(WRITELN, READ, ETC.
1 cuap 7, pp 11-16;
cHAP 9, PP 26
3 2 cHap 3, pp 16-19 NO LABELS
% cHAP 5, pp 34-35
1 cHap 7, pp 9-16
4 3 cHAP 6, PP 36-41 INDEX 5 ()
NO PACK, UNPACK
1 cHap 7, pp 17-18
5 2 cHap 7, pp 92-99 NO ENUMERATION
WITHIN RECORDS
-1 cHap 7.4,pp 19-20 :
6 3 cHAapP 11, pp 67-83 NO NESTED PROCEDURES
1 cHap 11-12,
pp 29-35
7 1 cHap, pp 31-32
3 2 CHAP 4, pp 5-7
2 cHap 8, pp 10

0.1.5

TABLE (conT)

g 2 pp 1-18°
10 [t
*] SEQUENTIAL PASCAL REPORT **DIFFERENCES BETWEEN REFERENCE
72 THE SOLO OPERATING SYSTEM AND KSU IMPLEMENTATION OF
JOB INTERFACE SPASCAL
3 PASCAL USER MANUAL AND REPORT
4 Ksu PASCAL EDITOR

0.1.6

PRELIMINARIES

PASCAL (OR SPASCAL)
MEANS SEQUENTIAL PASCAL
AS DISTINCT FROM CONCURRENT PASCAL

KSU IMPLEMENTATION:
-PORTED FROM BRINCH HANSEN'S
PDP-11/45 1MPLEMENTATION AT CALIFORNIA INSTITUTE OF

TEcHNoLoGY (WHICH DIFFERS SLIGHTLY FRoM THE PASCAL
REPORT.)

~SPASCAL PROGRAMS RUN AS A JOB PROCESS UNDER SOLO (SINGLE

USER OPERATING SYSTEM WRITTEN IN CPASCAL, FrRoM BRINCH
HANSEN, ET.AL.)

-SOLO RUNS AS A TASK UNDER 0S-32/MT (80K PARTITION)
ON INTERDATA 8/32,

-CURRENTLY THE PASCAL SOURCE IS INTERPRETED. [THE
INTERPRETER IS WRITTEN IN INTERDATA CommoN MoDE CAL.
(A COMPILER IS BEING DEVELOPED.)

-MAXIMUM PROGRAM SIZE 1S 36K BYTES OF SOURCE TEXT
(1T CAN BE CHANGED)

0.2

WHY PASCAL?

IMMEDIATE
PASCAL ENFORCES STRUCTURE.

—IN PROGRAM FLOW

—-IN DATA TYPES

—-IN DATA STRUCTURES

=IN INTRA-PROCEDURE COMMUNICATION

° THE COMPILER WILL CHECK THE STRUCTURE AND DETECT ERRORS-
WHICH WOULD NOT BE FOUND AT COMPILE TIME USING
OTHER LANGUAGES.

° PASCAL DATA STRUCTURES ARE VERY POWERFUL (TYPES CAN BE
DEFINED BY THE PROGRAMMER)

PASCAL IS VERY READABLE,

FUTURE
° RESEARCHERS ARE BUILDING FORMAL VERIFIERS FOR PASCAL PROGRAMS

° PASCAL HAS A FORMAL SEMANTIC DEFINITION - PROGRAMS SHOULD
PRODUCE THE SAME RESULTS UNDER ALL COMPILERS.

0.3

OMPARISONS WITH FORTRAN

FORTRAN PASCAL
VERSION VERSION

ALL PASCAL PROGRAMS HAVE BEEN
INDENTED TO SHOW DESIRED PROGRAMMING
STYLE. INDENTION MUST BE DONE BY
THE PROGRAMMER, IT IS NOT DONE AUTO-
MATICALLY.

MANY OF THE SLIDES IN THIS PRESENTATION CONTAIN COMPARISONS OF
FORTRAN AND PASCAL PROGRAM ELEMENTS. IF THE COMPARISON PRO-
GRAMS FIT ON THE SAME SLIDE, THE FORTRAN EXAMPLE WILL BE ON THE
LEFT AND THE PASCAL EXAMPLE WILL BE ON THE RIGHT, THE PROGRAMS
ARE NOT ALL IDENTICAL, BUT THEY WILL ILLUSTRATE RELATED FEATURES,

ITALIC CHARACTERS SUCH AS THIS INDICATE AN ERROR CONDITION OR
A FACILITY THAT DOES NOT EXIST IN THE LANGUAGE.

0.4

GROUPS OF SLIDES

(A)

(B)

10

11
12

13

14

15

SIMPLE FEATURES

ConTROL STRUCTURES (NO GO TOS)

SimpLE DaTA TypES (DEFINING NEW TYPES)
ARRAYS (GENERALIZE INDEXING)

RECORDS (NON-UNIFORM ARRAYS)

PROGRAM STRUCTURE

PAssING PARAMETERS (COMPILER CHECKS)
MinimaL [/0

STANDARD PREFIX

RUNNING THE PROGRAM

DIFFERENCES FROM JENSEN/WIRTH

SETS
POINTERS
FILES

OTHER THINGS TO READ

0.5

GROUP 1: SIMPLE FEATURES

- Comments (1.2)

- Buanks (1.2)

- ENp-oF-LINE AND CoNTINUATIONS (1,2)
- ReserveDd Worps (1.4)

- SEPARATORS (1.7)

- IDENTIFIERS AND VARIABLES (1.8)
- INTEGERS AND ReaLs (1.10)

- AssioNMENT (1,11)

- ARITHMETIC OPERATORS (1.12)

- ReLaTionAaL OperaTorRs (1,13)

- LosicaL OperaTors (1.14)

- OPERATOR PRECENDENCE (1.15)

1.1

1 7
S
C THIS IS A FORTRAN COMMENT
[': ;

C FORTRAN ALLOWS ONE STATEMENT PER LINE
C STATEWENT MUST BE WRITTEN IN COLUMNS 7 TO 72
C A LINE DELIMITS A STATEMENT:
o
|
. AB
C=D
E=A+B+C+D
C

C| BLANKS GENERALLY HAVE NO EFFECT WITHIN A
C STATEMENT UNLESS USED FOR DATA:

| A=B

. E=A+B+C+D

| ﬁ D=6+ H

C STATEMENTS ARE CONTINUED BY A CHARACTER IN
C COLUMN SIX:
C

| A=BeCeD+
| *EAF46

1.2

72

“THIS IS A PASCAL COMMENT”

“PASCAL ALLOWS PARTIAL, WHOLE, OR
SEVERAL STATEMENTS ON EACH LINE”

"STATEMENTS ARE CODED IN COLUMNS 1 TO 80
AND ARE SEPARATED BY A SEMICOLON (;) OR DELIMITED BY A
RESERVED WORD” T :

A:=B;
C:=D;L:=A+B+(+D;

“BLANKS AND COMMENTS HAVE NO EFFECT
A:=B; "COMMENT" E :=A+B+C+D;
“CONTINUATION IS AUTOMATIC IF A DELIMITER OR SEPARATOP
IS NOT INSERTED *
A:=B+C+D

+ E+F+G;

1.3

RESERVED WORDS

FORTRAN PASCAL

NONE 31 IN KSU
IMPLEMENTATION
IF(IF.EQ.3)D0=27 | _- MAY NOT BE USED

(MAY NOT BE LEGAL ON AS IDENTIFIERS

SOME COMPILERS)

ARE UNDERLINED
IN THIS PRESENTATION:

BEGIN
END

ARE NOT UNDERLINED

IN AN ACTUAL PROGRAM

1.4

PAS

ESERVED W

S

(KSU IMPLEMENTATION)

OPERATORS

=EEREE

ECLARATIONS

CONST
TYPE
VAR
PROCEDURE
110

PROGRAM

1.5

BEGIN END
CASE OF
WHILE D0
REPEAT UNTIL
IE THEN
EOR DOWNTO
10 ELSE
WITH FORWARD
YPE IDENTIFICATION

ARRAY

RECORD

SET

UNTV

SE W0

CANNOT BE USED AS IDENTIFIERS--
COMPILER WILL NOT ALLOW IT

EG+« BEGIN, VAR, TYPE

KEY WORDS

GOOD IDEA NOT TO USE THESE AS VARIABLES--
BUT COMPILER DOES NOT CHECK
EG. BOOLEAN, REAL, INTEGER, LINE, PAGE, PARAM,

BASIC DATA TYPES USED IN PREFIX
(DEFINED IN GROUP 9)

1.6

SEPARATORS: ;

THESE SEPARATE SYNTACTICAL UNITS

(THEY ALSO DELIMIT TOKENS DURING LEXICAL ANALYSIS)

PAIRED DELIMITERS
N R e I/}

- . THESE (AND OTHERS) MARK
gE_-CﬂBD T Eﬁl}- THE BEGINNING AND END OF
ZEE—I—M ')’ A SYNTACTAL UNIT OR
(-) SEQUENCE OF UNITS

(i ~—= 1)
CASE -— QF -— END

ON-PAIRED DELIMITER

IE == THEN ==

IF -— THEN -— ELSE — THESE (AND OTHERS) DELIMIT
REPEAT --- UNTIL -— THE PARTS OF A SYNTACTIC UNIT,
VAR -—— BUT NOT NECESSARILY THE END
TYPE =~ = ——= OF THE UNIT,

ARRAY -- OF --—-

(EVERYTHING HERE WILL BE EXPLAINED LATER IN CONTEXT)

1.7

- FORMING IDENTIFIERS

EORTRAN PASCAL
CHARACTERS
IN LETTER SET A-Z AND $ A-Z AND _ (UNDERSCORE)
FIRST MUST BE IN LETTER SET MUST BE IN LETTER SET
CHARACTER
FOLLOWING LETTER OR DIGIT LETTER OR DIGIT
CHARACTERS
EXAMPLES
TOTAL TOTAL
I I
A136 A136
$787 $787 (ERROR)
_ABLE (ERROR) _ABLE
2 HITS(ERROR) 2 HITS (ERROR)
cAN D0 (ERROR) CAN,DO (ERROR)
CAN_DO(ERROR) . CAN_DO
SPACES WITHIN LEGAL IN FORTRAN ILLEGAL IN PASCAL
IDENTIFIERS
EXAMPLES
HIT IT HIT IT (ERROR)
MISS IT MISS IT(ERROR)
MAX IMUM © CHARACTERS 80 CHARACTERS
iéﬁg}EICANT BSBALL BSBALL
oame JAPP €0ST (7 CHARACTERS) ADD_COST:} I——
ADD COSTE(8 CHARACTERS) ADD_COSTE

1.8

VARIABLES

DEFAULT

DECLARATION

FORTRAN

I THRU N INTEGER
A THRU H

0 THRU Z REAL
$

OPTIONAL

EXAMPLE

PROGRAM ONE

IMPLICIT INTEGER (C-F)
INTEGER A,B, SAM

REAL 1,J

LOGICAL R

1=3.0
=4
B=K+A

END

1.4

MANDATORY

PROGRAM ONE
NO IMPLICIT IN PASCAL
VAR A,B,SAM: INTEGER;
I,J: REAL;
R: BOOLEAN;

=2;

1=3.0;

:=u4;"ERROR AS K
NOT DECLARED"

:=K+A"ERROR AS X
NOT DECLARED"

oY B — :=E§

NUMERICAL

C TYPES
FORTRAN PASCAL
INTEGER 7 | 7
350 350
0 0
-475 | =475
25E6 | 25E6
27E-4 27E-4
-16E-3 -16E-3
27, 27,
2,346 24345
REAL MUST HAVE A DIGIT
C BEFORE AND AFTER
_ THE DECIMAL POINT
0.36 0.36
25 y 25
27.493 27.433
542' 542,
-2,47 -2.47
25.0E6 25.0E6
~432,15E2 -432.1562
637.2E-4 637.2E-4
~2314,34E -5 -234 :34E-5
5,2F1,3 5,2F1,3
C
1.10

[«10

ASSIGNMENT

SYMBOL

TYPE INTEGER AND REAL
RULES MAY BE MIXED.

BOOLEAN MUST BE IN ALL CASES

ASSIGNED TO BOOLEAN. THE TYPE MUST AGREE.
INTEGER = INTEGER INTEGER:= INTEGER;

REAL = REAL REAL:= REAL;

REAL = INTEGER REAL ;= INTEGER ;(ERROR)
BOOLEAN = BOOLEAN BOOLEAN:= BOOLEAN;
INTEGER = REAL INTEGER ;= REAL ;(ERROR)
REAL = BOOLEAN (ERROR) REAL:= BOOLEAN; (ERROR)

BOOLEAN = INTEGER (ERROR) BOOLEAN:= INTEGER; (ERROR)

(THERE ARE OTHERS)

1.11

ARITHMETIC OPERATORS

FORTRAN PASCAL OPERANDS MUST
- BE SAME TYPE
+ +
OPERANDS
. INTEGER OR REAL
RESULTS

INTEGER OR REAL

ol NONE IN PASCAL
MUST WRITE PROCEDURE

INTEGER DIVISION

/ I DIV J
(OPERANDS INTEGER ONLY)
(RESULT INTEGER)

REAL DIVISION

/ A/B
(OPERANDS REAL)
(RESULT REAL)

INTEGER REMAINDER

NOT AN OPERATOR USE ' I MOD J

FUNCTION MOD(I,J) ' (OPERANDS INTEGER ONLY)

1.12

RELATIONAL OPERATORS

1\

A.LT.B

A.GE.B

A.EQ.B

1.13

. LOGICAL OPERATORS

FORTRAN _PASCAL
NOT, NOT |
.AND, &
.OR. OR
C
1.4

114

OPERATOR PRECEDENCE

 FORTRAN ECEDENC PASCAL

FUNCTION 11 FUNCTION, PROCEDURE,NOT
SUBPROGRAMS

* % 2 NOT IN PASCAL-USE PROCEDURE

ot A 3 2 *, /, DIV, MOD, &

5 - 4 3 + -, OR
;-EQaJINEl)nLTng 5 4 =J<>J <J >J <=J >=
LE., .GE.,.6T

NOT, 6

.AND. 7

,OR. 8

NOTE: MAJOR DIFFERENCE IS IN LOGICAL OPERATOR PRECEDENCE]

1.15
|||6

1,16

LIKE FORTRAN - EVALUATE
EQUAL PRECEDENCE LEFT

TO RIGHT. EXPRESSIONS
IN () ARE EVALUATED
INDEPENDENT OF PRECEDING
AND SUCCEEDING OPERATORS.

EXAMPLE OF LOGICAL OPERATOR PRECEDENCE DIFFERENCE

FORTRAN PASCA]

1.17

GROUP 2: CONTROL STRUCTURES
IF THEN (2.2)
IF THEN ELSE (2.4)
CASE (2.5)
DO, WHILE, & REPEAT FLOW CHARTS (2.8)
LOOP EXAMPLES (2.13)
EXIT FROM THE MIDDLE OF A LOOP (2.19)

21

IF B THEN

B = BOOLEAN EXPRESSION

S = STATEMENT

EXAMPLES

SINGLE
STATEMENT

MULTIPLE
STATEMENT

100

FORTRAN

[F(A.EQ,B)J=1

IFC(A.NE.B)GO TO 100

J=1
k=1
=1
CONTINUE

7,

PASCAL
IF A=B THEN J:=1;

IF A=B THEN
BEGIN J:=1;
K:=1;
L:=1
.
NOTE: NO SEMICOLON AFTER
STATEMENT PRECEDING END

CAUTION

NEVER PUT A SEMICOLON AFTER THEN

IF ADB THEN; J:=1;

Ji=1 WILL ALWAYS EXECUTE,

IF A>B THEN;
BEGIN J:=1;

K:-1; THESE STATEMENTS
e WILL ALWAYS EXECUTE.
L:=1

END;

MUST USE BEGIN END IF MORE THAN
ONE STATEMENT IS TO BE EFFECTED.

IF A>B THEN
J:=1;

Ki=l3 | ThESE STATEMENTS
L.=]- | ALWAYS EXECUTE
')

2.3

1E B THEN S7 ELSE So

B=BOOLEAN EXPR.
31=STATEMENT
82=STATEMENT

51 i
!
FORTRAN PASCAL
SINGLE IF(A.6T.B)J=1 IF ADB THEN J:=1

STATEMENTS [F(A,LE,B)J=2

MULTIPLE IF(A,LE.B)GO TO 100
STATEMENTS J=1
K=1
GO TO 200
100 J=2
K=2
200 CONTINUE

2.4

ELSE J:=2;
NOTE: NEVER PLACE
A SEMICOLON BEFORE

OR AFTER AN ELSE.

IF A>B THEN
BEGIN J:=1;

CASE

E=EXPRESSION
L=LABEL
S=STATEMENT

J

1. EXPRESSION TYPE AND LABEL TYPE MUST AGREE
2. EXPRESSION MAY NOT BE TYPE REAL
3, LABELS MUST BE CONSTANTS

WARNING: AN INTEGER VARIABLE = INTEGER CONSTANT, THESE
ARE DEFINED IN GROUP 3. '

RULES:

EORMAT
CASE E OF

Ll:31;
L2:32J
L3:33}

- CASE EXAMPLE

100

200
300

400

FORTRAN

ASSUME 1,J,K ARE INTEGERS
AND 1.GE.1, I.LE.3

. 5 i
60 T0¢1004500,500), 1
)1

-1

60 TO 400

J=2

60 TO 400

J=3

3

CONTINUE

NOTE: LABELS ARE GLOBAL TO
THE PROGRAM MODULE

2.6

PASCA

“ASSUME 1,J,K DECLARED INTEGER
AND D=1, I{=3"

CASE T OF

: BEGIN J:=1
K:=1 END;

2: J:=2;

3: BEGIN J:=3;
A K:=3 END
END;

NOTE: LABELS ARE LOCAL TO
THE CASE STATEMENT (NOT
GLOBAL TO THE WHOLE MODULE)

CASE EXAMPLE

EORTRAN PASCAL
C ASSUME I,J ARE INTEGER “ASSUME 1, J ARE
C I .GE. 1, I .LE.6 INTEGER AND 1> =1, 1<=6"
IF(I.EQ.1.0R.1.EQ.2)J=1 | CASE I OF
IF(1.EQ.3.0R.1.EQ.4)J=2 1,2: J:=1;
IF(I.EQ.5.0R.1.EQ.6)J=3 3,4: J:=2;
. 5,6: J:=3
; END;
C ASSUME I,J,K,L,FLAG "ASSUME 1, FLAG
C ARE INTEGER DECLARED INTEGER
J,K,L ARE
- , INTEGER CONSTANTS"
IF(1.EQ. J)FLAG=1 CASE I OR
IF(1.EQ.K)FLAG=2 J: FLAG: =1;
IF(I.EQ.L)FLAG=3 K: FLAG: =2;
1 L: FLAG: =3
END;

WARNING: INTEGER CONSTANTS
ARE DIFFERENT FROM INTEGER
VARIABLES!

2d

PASCAL
CASE EXAMPLE

“ASSUME 1,J ARE
INTEGER AND I =1,1 =6"

[:=3
CASE I OF
et M5 U
EXECUTED _5,6: J:=8
(No-0P) END;
“ASSUME [,J ARE
INTEGERS AND I =1, I =6
I: —7
RUN TIME -————e>£ﬁ$£ [OF
ERROR ! ! 1,2: J:=6;
5,6: J:=8

END;

2.7.1

THE FORTRAN DO

SET COUNTER VAL
SET CONTROL VAL

N

INCREMENT
COUNTER VARIABLE

FALSE COUNTER CONTROL

1.
2.

3.

Sl THRU SN EXECUTE AT LEAST ONCE.
COUNTER AND CONTROL MUST BE INTEGER AND GREATER THAN ZERO,

THE COUNTER MAY ONLY BE INCREMENT BY A POSITIVE INTEGER.

2,8

PASCAL

EOR V:=E; TO E9 DO S;

!

V:=succ(v)

V=VARIABLE
v==El E=EXPRESSION
S=STATEMENT
v
Vv <=E2 FALSE—_l
S

1.

2,

V,E, AND E2 MUST BE OF SAME TYPE

TYPE MAY BE: CHARACTER

BOOLEAN
INTEGER

MAY NOT BE: CONSTANT

RecorDp FIELD
FUNCTION IDENTIFIER
ARRAY ELEMENT

ReaL

V MAY NOT BE CHANGED IN S.

V 1S UNDEFINED AFTER COMPLETION OF FOR STATEMENT

V Is ALWAYS INCREMENTED BY ONE FOR INTEGERS.

2.9

PASCAL
EOR V:=E] DOWNTQ E9 DO S;

V:=pRED(V) FALSE

1. V,El AND E2 MUST BE OF COMPATABLE TYPE

2. V TYPE MAY BE: CHARACTER
BOOLEAN
INTEGER
MAY NOT BE: REAL
CONSTANT
RECORD FIELD
FUNCTION IDENTIFIER
~ ARRAY ELEMENT
3. V MAY NOT BE CHANGE® IN S.

4, V 1S UNDEFINED AFTER COMPLETION OF FOR STATEMENT,

5. V IS ALWAYS INCREMENTED BY ONE FOR INTEGERS,
2,10

PASCAL
WHILE B DO S;

B FALSE‘—?L

TRUE

2. NORMALLY USED WHEN NUMBER OF REPETITIONS REQUIRED
3. S WILL NOT BE EXECUTED IF B IS FALSE.

4, B 1S ANY LEGAL BoOLEAN EXPRESSION.

2,11

PASCAL

REPEAT S;;...S, UNTIL B;

—FALSE B

TRUE

BoDY MAY BE A SEQUENCE OF STATEMENTS. (NOTE: BEGIVJ END NOT REQUIRED
NORMALLY USED WHEN NUMBER OF REPETITIONS REQUIRED IS NOT KNOWN.
Sl;...SN IS EXECUTED AT LEAST ONCE.

B 1s ANY LEGAL BOOLEAN EXPRESSION.

2,12

FOR T0 DO EXAMPLES

FORTRAN

C I INTEGER, A,B REAL

C BEGIN PROGRAM
B=13.0

A=1,0
D0 100 I=1,10
A=A+ AB

100 CONTINUE

END

2.13

PASCAL

“ASSUME I DECLARED INTEGER
A,B DECLARED REAL"
BEGIN

B-13.0
A:i=1.0;
FOR [:=1 TO 10 DO A:=A+A/B;

END.

FOR TO DO EXAMPLE 2

YOO

160

FORTRAN PASCAL
ASSUME ALL VARIABLES DECLARED “ASSUME VARIABLES DECLARED
AND INITIALIZED AND INITIALIZED"

BEGIN PROGRAM BEGIN

. FOR I:=1 T0 10 DO
D0 100 I=1,10 BEGIN

A=A+B A:=AB;
C=C+C C:=C+C
CONTINUE END;

END END.

2.14

FOR DOWNTO DO EXAMPLE

100

EORTRAN

ASSUME VARIABLES DECLARED
AND INITIALIZED
BEGIN PROGRAM

D0 100 J=1,10
[=11-J

B=B+B

A(D)=B
CONTINUE

END

2,15

PASCAL

“ASSUME VARIABLES DECLARED
AND INITIALIZED"
BEGIN

FOR 1:=10 DOWNTO 1 DO
BEGIN
B=B+B
AC.[.):=B
END;

END.

WHILE DO EXAMPLES

100

200

EORTRAN

I,K INTEGER
A,B REAL

BEGIN PROGRAM

ASSUME 1 AND K ASSIGNED
INTEGER VALUE

B:=2.0

A=1.0

IF(I.LE.K)GO TO 200
A=A+A/B

I=]-1

GO TO 100

CONTINUE

- END

2.16

PASCAL

“ASSUME 1,K DECLARED INTEGER
. A,B DECLARED REAL"

BEGIN

“ASSUME I AND K ASSIGNED SOME

INTEGER VALUE

-
I

2.0
1.0

B:

A:=1,0; |

WHILE T > K DO

BEGIN A:=A+A/B;
[:=I-1 END;

REPEAT UNTIL EXAMPLES

OO,

100

INCREMENT EXAMPLE

FORTRAN

ASSUME J,B ARE INTEGERS

A IS INTEGER ARRAY INDEXED
FROM 1 TO 100

BEGIN PROGRAM

B=2 2

D0 100 1=2,10041)- 2
A(D)=B*]

CONTINUE

END

2,17

PASCAL

"ASSUME B,1 DECLARED INTEGERS
A IS INTEGER ARRAY INDEXED
FROM 1 TO 100"

BEGIN

B:=2;
I:=0;
REPEAT
[:=1+2;
ACG 1) :=B*]
UN!IE [=100;

END.

REPEAT UNTIL

100

200

EXIT AT END EXAMPLE

FORTRAN

ASSUME ALL VARTABLES DECLARED
BEGIN PROGRAM

QUOTNT=0

IF(X.6GT.Y)GO TO 200
REMAIN=Y

REMAIN=REMAIN-X
QUOTNT=QUOTNT+1
IF(X.LE.REMAIN)GO TO 100
CONTINUE

END

2,18

PASCAL

“ASSUME ALL VARIABLES DECLARED
INTEGER”
BEGIN
IF XY THEN QUOTIENT:=0
ELSE BEGIN
REMAINDER:=Y;
QUOTIENT:=0;
REPEAT
REMAINDER:=REMAINDER-X:
QUOTIENT:=QUOTIENT+1
UNTIL X) REMAINDER

REPEAT UNTIL

MIDDLE EXIT

BEGIN PROGRAM BEGIN

OK=TRUE OK :=TRUE;

D0 100 1=1,100 :=0;

COST=ACI) REPEAT

TOTAL=TOTAL + COST 1:=1+1;

IF(TOTAL.GT.BALNCE)GO TO COST:=AC.1.);

200 TOTAL:=TOTAL + COST;

A(1)=0,0 IF(TOTAL =BALANCE)
100 CONTINUE THEN A(,1.):=0.0

60 T0 300 ELSE OK:=FALSE

300 IFCOK.NE.TRUE)GO TO 400 UNTIL((I=100)0R(0K=FALSE));
: : JIE OK=TRUE THEN BEGIN

400) =1

END END,

2,19

ROUP 3 PLE PES

DECLARATIONS (3.2)
KINDS OF TYPES (3.4)

CONSTANTS ~ (3.5)

NUMBERS (INTEGER AND REAL) (3.6)
CHARACTERS (3.8) |
BOOLEANS (3.9)

ENUMERATIONS (3.10)

STRINGS (3.13)

3.3

FORTRAN

INTEGER 1,Q
REAL R,L
LOGICAL B

DEFAULT K IS INTEGER

DEFAULT X IS REAL

=

=

PASCAL

VAR 1,Q: INTEGER;
VAR R L REAL;
VAR B: BOOLEAN;
“NO DEFAULTS”

VAR 1,Q: INTEGER;
R,L: REAL;
B: BOOLEAN:

TYPE INT= INTEGER:;
RE= REAL;
LOG= BOOLEAN;

VAR 1,Q: INT;
R,L: RE;
B: LOG;

NOTE

> THE TYPE STATEMENT DEFINES
- A TEMPLATE FOR THE INTERNAL LAYOUT OF VARIABLES WHICH
WILL BE DECLARED LATER; (IE, IT DECLARES TYPE IDENTIFIERS)

-IT DOES NOT DECLARE OR ALLOCATE SPACE FOR RUN TIME VARIABLES.
f

> THE VAR STATEMENT DECLARES
~ ~RUN TIME VARIABLES AND SETS THE AMOUNT AND LAYOUT OF THE
SPACE THAT THE VARIABLES WILL USE AT RUN TIME.
-IT DOES NOT INITIALIZE THE VALUE OF ANY VARIABLE.

> THE CONST STATEMENT

=INITIALIZE A VALUE FOR AN IDENTIFIER, WHICH
CANNOT BE CHANGED.

5.3

*

KINDS OF TYPES IN PASCAL

PRIMITIVES Are

OTHER PRIMITIVES ARE

SCALAR ENUMERATIONS ARE

COMPOSITE STRUCTURES

NEW USER DEFINED TYPES

CONSTANTS ARE

INTEGER

BOOLEAN sAME As FORTRAN
REAL

CHAR: i sii SINGLE CHARACTER

POINTER...EFFECTIVELY, AN ADDRESS

USER DEFINED TO BE A LEGAL RANGE
OF VALUES WITH A DEFINED ORDERING

INCLUDE ARRAY,
RECORD
SET

ARE COMBINATIONS OF ALL OF THE ABOVE

NOT REALLY TYPEs (INTEGER, REAL,
STRING)

3.4

CONSTANTS

AN IDENTIFIER WHICH IS
-INITIALIZED AT COMPILE TIME
-HAS INTEGER, REAL, CHAR, STRING, OR BOOLEAN VALUE
-CANNOT BE ASSIGNED TO AT RUN TIME

C MAIN PROGRAM PROGRAM’ MAIN’ ;
INTEGER A,B,D,F(2) CONST B = 'Y’;
REAL E,G C=TRUE; o
LOGICAL C D = 12;
EQUIVALENCE (A), (B) E = 12.6;
DATA B,C,D,E,F F = 'MABLE_’;
/'Y_ _ _',.TRUE., 12,12.6, A= B;
‘MABL','E_ _ _'/ VAR G: REAL;
THESE ARE NOT REALLY CONSTANTS!

WARNING: NOT AN :=

3.5

PASCAL
NUMBERS (INTEGER AND REAL)

MAXIMUM INTEGER = 32767
MAXIMUM REAL = 10%8

Eps ~ 1076
ZER0 2 10738
OPERATION OPERAND 1 OPERAND 2 RESULT
il I I I
R R R
R ERROR
/ R R
I R ERROR
DIV I : I I
RELATIONAL I I B
R R B
R ERROR

3.6

PASCAL
FUNCTIONS ON INTEGERS

PRED (X%s consssvmncmnns YIELDS X-1
SUCCOX) vuvvvennnnnnvia YIELDS X+1
ABS Xiswisiiviniviwine YIELDS ABSOLUTE VALUE OF X
(A NON-NEGATIVE INTEGER)
CHRE Y issiiniwenininans YIELDS A CHARACTER WITH ORDINAL

VALUE X, For 0 < X =< 127
EG: CHR(B5) 1s 'A’

001776, REAL VALUE X
PASCAL
FUNCTIONS ON REALS
BB A s 56 n i w5 ABSOLUTE VALUE
TRUNCCX) + v v e vvnesnnns TRUNCATED INTEGER VALUE OF X

3.7

SINGLE CHARACTER

PROGRAM MAIN;
VAR A : CHAR;
B : BOOLEAN;

BEGIN
ILLEGAL IN FORTRAN A: = '7';
ILLEGAL IN FORTRAN B: =A>"(

END.

OPERATIONS

RELATIONAL OPERATORS ARE ALL DEFINED For CHAR

EUNCTIONS
ORDCX) s visswnvavinns YIELDS INTEGER ORDINAL
' EG: ORD('B') =0RD ('A") +1
ORD('A") = 65
SUCCLR) « samimiminis SUCCESSOR
SUCC('A’) 1s 'B’
PREDCX) s uvvunnsens . . PREDECESSOR

PRED('B’) 1s 'A’

3.8

OV =W =D

L] L1 A NN N NN NN N N = =3 b ol od el o od b s
—lm\nuqmmbum—sc\nmqa\mhuw-ﬁc

nul
soh
stx
etx
eot
enq
ack
bel

ht
1f
vt
fr
cr

si
dle
dc1
dc2
dc3
dc4
nak
syn
etb
can
cm
sub
esc
fs
as
p o
us

ASCII CHARACTER SET

32
33
34
35
36
37
33
39
40
41
42
43
44

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63

45

* ¥ s = R D0 NG oz

O @ <3O N & AN 2 O N e '

A -

64

= Vv n

65
66
67
68
69
70
7
72
73
74
75
-]
77

78

79
80
B1
82
83
84
a5
e6
67
88
89
90

91

92
93
S4
95

I/ MIN X T €SCHWIDUVO=TEIMFNRLANIODMMOO®D >0

" l

97

93

99
160
101
12
1G53
104
1E5
1058
107
1Ca
109
110
111
112
113
114
115
116
117
118
119

120 .

123
122
123
124
125

126 -

127

96

[*-«—-r*!uqxEccrrun.n-oo:ar-xc..u::o-umn.nb'ﬂ

[+ 8
0
-

3' 8'1

BOOLEANS

FORTRAN PASCAL
» TRUE , TRUE
,FALSE, FALSE
PASCAL |
I BOOLEANS
&, OR, NOT YIELDS A BOOLEAN
RELATIONAL (FALSE < TRUE)

PROGRAM "MAIN";
VAR BOY : BOOLEAN;
HT : INTEGER;

BEGIN

BOY: = HT > 190 3

3.9

ENUMERATIONS

CAN BE

AN ORDERED SEQUENCE OF INTEGERS

ORDERED SEQUENCE FALSE, TRUE

ORDERED SEQUENCE OF CHARACTERS

- A SEQUENCE OF IDENTIFIERS (uP TO 120)
(THE SEQUENCE DEFINES AN ORDERING)

- A SUBSEQUENCE OF ANY OTHER ENUMERATION

(CALLED A SUBRANGE)

3,10

Y(NYP

63 = ih3
‘INOY = :G3 |
£(,M,)I0NS = 63 N3
THITY < SMY = :Z3 _ 63 = 3
6 = 13 ¢ =63
NI934 SYILOVYVHD TTANVH LONNY)
INYL" = Z3
INOY " "1 43 6 = 13
r31d03d :53 G =NV ‘b = SN
£,2,"" N, 163 ¢ =NO¥ ‘7 =HIY¥ T=T11d
FCINYL ISV 123 _ 0T OL 0 J9NWY NI T3
01" '0 13 WA o | 23 WI1901
‘NOY “SD¥ “HOI¥ “T119) = 31d03d TdAL 63 “H3 ‘T3 YI93INI

“NIVW WYE90dd NIVIW

3.11

UNCTIONS ON ENU TIONS
ALL RELATIONAL OPERATIONS ARE DEFINED
SUCC, PRED ARE DEFINED, EG.

SUCC(RON) 1s RUS , But SUCCCJAN) 1s NOT DEFINED

ENUMERATIONS ARE USED IN CASE STATEMENTS, IN VARIANT RECORDS.
EG; CONTINUING LAST EXAMPLE

G0 To (101,101,102,101,102),E5 CASE E5 QF

101 E2 = .TRUE. RICH, BILL, RON: E2:= TRUE;
GO TO 103 RUS, JAN : E2: = FALSE
102 E3 =,FALSE, END;

102 CONTINUE

3.12

"aNd

o= 2T TIWUN

Y NHOP, = }TANVN
f3STY4 = 123 BT
AL = 23 NFHL

TIWYN > ZIWYN dT
£, A90g, = *ZIWYN
T/ ANNHOP, = S TIWYN
NT934
“Nv31004 +¢3
“9ONIYLS ‘CIWYN “TIWYN HVA
“4YH) J0 ('9°°T") AVHYYV = 99NINLS JdAI
‘NIviW WVH904d

"AS4" = 23

hOT 0L 09

ALt =24
COT TOT 00T ((T)ZAWYN - (2)TIWYN) 4l
COTTOT 00T ((T)ZAWYN - (D) TIWYN) I

(€)ZS = (&) CAWN
(D) ¢S = (1) 3N
(OTS = (2 TN
(DTS = (DT3WYN

/ ~ "A.,9404,/2S
/. AN, “,NHOP, /TS V1Y@
¢3 vI1901
(CYZIWYN (2) TIWYN YI93INI
(2)2S (DTS ¥I93INI
NIVW Wvd90ud

SYILIVAUVHI 40 AVHYV NV SV Q3IAIIHIOV J¥V SONIYULS

SONTHIS

00T

¢0T
10T

3.13

1. A STRING MUST CONTAIN AN EVEN NUMBER OF CHARACTERS.
2. FOR STRING ASSIGNMENT (WITH EXPLICIT INDEXING), THE
WHILE STRING MUST BE ASSIGNED., EG. IN THE LAST EXAMPLE

NAMELl: ‘JOHN' 1s ILLEGAL

OPERATIONS ON STRINGS
RELATIONAL OPERATORS - THE STRINGS MUST BE THE SAME LENGTH.

Ec: 'JOHNNY' 'BILL' 1S ILLEGAL

3.14

GROUP 4 ARRAYS

ARRAYS (4,2)

EXAMPLES - ENUMERATION INDEXING (4,3)

NON-NUMERIC COMPONENTS (4,7.2)
OPERATIONS IN ARRAYS (4.9

Llll

EORTRAN

FIXED NUMBER OF
COMPONENTS ALL OF
SAME TYPE

COMPONENT TYPES:
INTEGER
REAL
DOUBLE PRECISION
LOGICAL
COMPLEX
{LITERAL POSSIBLE)

SUBSCRIPTS:
NONZERO INTEGER
USE “(1,)”

DECLARATION:

WITH DIMENSION, INTEGER,
REAL, ETC., STATEMENTS

STATIC ALLOCATION OF
VARIABLES (EXCEPT
FOR DUMMY ARGUMENTS)

4.2

PASCAL

FIXED NUMBER OF
COMPONENTS ALL OF
SAME TYPE

COMPONENT TYPES:

MAY BE ANY TYPE!

SUBSCRIPTS:
ANY ENUMERATION!
USE "(.1,J.)"

DECLARATION:
MAY BE DECLARED

IN TYPE OR VAR STATEMENT

STATIC ALLCCATION OF
VARIABLES IN MAIN: .
PROGRAM

ARRAY EXAMPLES

FORTRAN PASCAL
C MAIN PROGRAM PROGRAM MAIN;
, VAR
! J: INTEGER; |
DIMENSION AC10), 1(10,20) A: ARRAY(.1..10.) QF REAL;
: I: ARRAY(.1..10,1..20.)0F INTEGER,
C BEGIN PROGRAM BEGIN
J="2 Ji=2;
AW = 2.5 AGJ): = 2.5;
1(J,J) =3 1.J,J.): =3;
END - END.

4.3

G

ARRAY EXAMPLES

FORTRAN PASCAL

MAIN PROGRAM | PROGRAM MAIN ;
. TYPE IROW = 1..20; |
VEC = ARRAY (.IROW.) OF REAL

REAL B(20),C(20) VAR INDEX:IROW;

B BJC . VEC}

Z BEGIY

INDEX := 20

I MUST BE IN RANGE 1 TO 20 BC.INDEX) : = 10.05
B(I) = 10. INDEX; = 21,

: -
END END

RUN TIME ERROR PROGRAM “MAIN“; |
VAR A: ARRAY (.'A'.."Z'.) OF REAL;
BEGIN

AC W') = 3,0;

END.

4.4

ARRAY EXAMPLES

PROGRAM MAIN;

VAR A: ARRAY (,1..10.) OF ARRAY (.11..20.) OF REAL;
B: REAL;

BEGIN

B: = AC.L.)(.15.);

END.

4.5

WH04 ¥3HLI3 NI 3INOC 3€ NVI SAVHYY
NO NOISN3WIQ 37dILTINW 40 H9NIX3AN! TJION

3 -
. fCSTNY = i
FCS = i FCSTCRY = i
FCSTCHOY = i N9
NT93
W 4
W g W J0

“WW 30 ('0Z''TTOT' 1) AVEEY :v WVA ('0Z''TI') AVYWV 40 ("OT''T")AVEEY :v TVA

‘NIVW WYY90dd ‘NIVW WVd50dd
T¥ISvd

4,6

MAIN

RED = 1, WHITE = 2, BLUE =3

INTEGER FLAG (3,
DATA X/'BRIG", '
‘cooL’, !

FLAG(1,1) = X(1)
FLAG(1,2) = X(2)
FLAG(2,1) = X(3)
FLAG(2,2) = X(4)
FLAG(3,1) = X(5)
FLAG(3,2) = X(b)

END

2), X(6)
HT_ _', "PURE','_ _ _. ',
"/

4,7.1

PASCAL

ARRAY EXAMPLE
PROGRAM "MAIN*;

TYPE COLOR = (RED, WHITE, BLUE);
STRING6 = ARRAY (.1..6.) OF CHAR;
VAR FLAG: ARRAY (.COLOR.) OF STRING6;

BEGIN
FLAGC.RED.): = 'BRIGHT’;

FLAG(.WHITE.): = 'PURE_ _';
FLAG(,BLUE,): = ‘COOL_ _';

4.,7,2

NOTE ARRAYS REQUIRE STATIC ALLOCATION

EG.
VAR MAX: 100..500;

VAR BILL; ARRAY (1..MAX) OF INTEGER;

IS ILLEGAL FOR DECLARING A NEW ARRAY BECAUSE
1,.MAX IS AN ILLEGAL ENUMERATION SINCE MAX IS

NOT A CONSTANT.

4.8

PASCAL

PERATIONS ON WHO YS

PROVIDED THAT THE ARRAYS
£ g ARE THE SAME TYPE AND SIZE.
RESULT IS TRUE OR FALSE

<>

REMEMBER: STRINGS ARE AN EXCEPTION:
ALL THE RELATIONAL OPERATORS WORK FOR
STRINGS OF THE SAME SIZE.

OPERATIONS ON SINGLE COMPONENTS

ANY OPERATION THAT IS LEGAL FOR THAT TYPE OF
COMPONENT.

4.9

GROUP 5: RECORDS

GENERALIZATIONS (5.2)
EXAMPLES: MIXED COMPONENTS (5.3.1)
REFERENCING COMPONENTS (WITH DO) (5.3.2)
NESTED RECORDS (5.4)
ARRAYS OF RECORDS (5.5)
CONSTRAINTS (5.6)

VARIANT RECORD EXAMPLE (5.8)

5.1

COR

GENERAL

ARRAYS

ALL COMPONENTS ARE SAME TYPE

ALL COMPONENTS SAME SIZE
(1IE. ARRAY IS RECTANGULAR)

TYPES OF COMPONENTS FIXED AT
COMPILE TIME (STATIC)

COMPONENTS ARE GIVEN INDICES;
EG. |
1,2,3,000
'A’)'B')’C,J|l| o
RED, WHITE, BLUE,...

COMPONENTS ARE ACCESSED BY
INDEXING; EG.

BILLC.1.)

BOB(."A".)

HUEC. RED.)

5ol

OF ARR

RECORDS

COMPONENTS CAN BE DIFFERENT TYPES

COMPONENTS CAN BE DIFFERENT SIZES

POSSIBLE TYPES OF COMPONENTS
(CALL VARIANTS) ENUMERATED AT
COMPILE TIME (STATIC); ACTUAL
TYPE OF COMPONENT CAN BE
DETERMINED AT RUN TIME (DYNAMIC).

*WARNING: SPACE FOR THE MAXIMUM
SIZE VARIANT IS ALLOCATED
STATICALLY.

COMPONENTS ARE GIVEN NAMES;
EG.
FIELD1,FIELDZ,FIELD3
NAME, AGE, SSNUM

COMPONENTS ARE ACCESSED BY NAME
QUALIFICATION, EG.
LINE. FIELD2
PERSON , SSNUM

FORTRAN

REAL FIELD4
INTEGER FIELD1, FIELDZ, LINE(13)
LOGICAL FIELD3(10)

EQUIVALENCE (LINEC1), FIELD1), (LINE(2), FIELD2),
(LINE(3), FIELD3(), (LINE(13), FIELDH)

DATA I1='A_ _ _*
FIELDI = 11
FIELD2 = 3
FIELD3(7) = .TRUE.
FIELD4 = 13,31
C THESE ARE NOT REALLY THE SAME AS

C RECORD FIELD NAMES

5.3.1

[=

PASCAL

EXAMPLE 1

VAR: LINE: RECORD
FIELD1: CHAR;
FIELD2: INTEGER;
FIELD3: ARRAY(.1..10.) OF BOOLEAN;
FIELD4: REAL

END;
BEGIN
LINE.FIELDL: = 'A’;
LINE.FIELD2: = 3;

LINE.FIELD3(.7.): = TRUE;
LINE,FIELD4: = 13.31

END.
BEGIN
WITH LINE DO
BEGIN FIELD1: = 'A’;
- FIELD2: = 33
FIELD3(.7.): = TRUE ;
 FIELDY: = 13.31
END;
END..

Dided

PASCAL
EXAMPLE :

“RECORDS CAN BE NESTED”
TYPE STRING1Z = ARRAY(.1..12.) OF CHAR:
STRINGS = ARRAY(.1..8.) OF CHAR;

VAR MAN: RECORD
NAME: STRING1Z
AGE: INTEGER;

THE.%‘E HAVE'_ WIFE: MD

BLEPERSS AGE: INTEGER

SCOPE NAME: STRINGS;
CHILDREN: BOOLEAN
END;

OR

“RECORDS CAN BE NESTED THIS WAY”
TIYPE STRING8= ARRAY (.1..8.) OF CHAR;
TYPE WREC = RECORD
AGE: INTEGER;
NAME: STRINGS;
CHILDREN: BOOLEAM
END;
VAR MAN: RECORD
AGE: INTEGER;
NAME: STRINGS;
WIFE: WREC
END;

WITH MAN DO BEGIN
NAME:= 'BILLY_ _ _";
AGE:= 30; |
WIFE.NAME:="WALLY_ _ _";

WIFE.CHILDREN:=TRUE
END;

+ 5.

EXAMPLE

“AN ARRAY OF RECORDS”

IYPE STRING8= ARRAY (.1..8.) QF CHAR;

IYPE LINE = RECORD

FIELDL:
FIELD2:
FIELD3:
FIELDY:

END;

CHAR;
INTEGER;
STRINGS;
REAL

VAR TABLE: ARRAY (.1..100.) OF LINE;

BEGIN

TABLE(,15,) .FIELD3:= "IT_WORKS';
TABLE(.13,) . FIELD2:= 87;
TABLE(.13.).FIELDA:=13.31;

5.5

VARIABLES MUST BE DECLARED BEFORE THEY
ARE_USED

TYPE STRING8= ARRAY(1..8.)0F CHAR;
TYPE MAN= RECORD

NAME : STRINGS;

AGE : INTEGER;

WIFE WOMAN <— ILLEGAL

END;
TYPE WOMAN= RECORD
NAME : STRINGS;

AGE : INTEGER
END;

ALSQ, STRUCTURES CANNOT BE RECURSIVELY DEFINED,

5.6

CONSTRAINTS

"L EGAL” "LEGAL"
VAR. LINE: RECORD TYPE F2 = 1 .. 10;
FIELDL: INTEGER; VAR LINE : RECORD
FIELD2: 1 .. 10 FIELDL: INTEGER:
END; FIELD2: F2
END;

ENUMERATION MAY BE DIRECTLY DEFINED WITHIN A RECORD
DEFINITION |

B

PASCAL
SUPPOSE WE WANT AN ARRAY OF RECORDS

TYPE STRING8= ARRAY (1..8) OF CHAR;
TYPE SEXTYP= (MALE, FEMALE);

TYPE PERSON= RECORD
“SOMETHING HERE"

END;
VAR TABLE: ARRAY (.1..100,)Q0F PERSON;

WHERE
FOR MEN, WE WANT: FOR WOMEN WE WANT:
TYPE WINDEX= 1..100° TYPE PERSON= RECORD
TYPE PERSON= RECORD NAME: STRINGS;
NAME: STRINGS; SEX: SEXTYPE;
SEX: SEXTYP; AGE: INTEGER;
AGE: INTEGER; NUMBER: INTEGER;
WIFE: WINDEX CHILDREN: ARRAY(.1..3.)
END; OF STRINGS

END;

THIS KIND OF PROGRAMMING IS VERY USEFUL; IT OCCURS COMMONLY IN
PASCAL PROGRAMS

5.8

THAT IS:

- THE RECORD DOES NOT ALWAYS HAVE THE SAME FORM
(1IE. DIFFERENT INSTANCES OF THE RECORD TYPE DO NOT ALL
HAVE THE SAME FORM)

- THE VARYING PART IS THE LAST COMPONENT OF THE RECORD

- THE TYPE OF THE VARIABLE COMPONENT IS ONE OF AT MOST 16
DIFFERENT SPECIFIED ALTERNATIVES

- FOR ANY INSTANCE OF THE RECORD,
THE ACTUAL TYPE OF THE VARIABLE COMPONENT
DEPENDS UPON THE VALUE OF A PRIOR COMPONENT OF
THE RECORD WHICH IS AN ENUMERATION TYPE OF AT
MOST 16 DIFFERENT VALUES
(ea. 0..15 or IDO, , 1D15)

- WE CAN AFFORD TO ALLOCATE SPACE WITH EVERY INSTANCE OF THE
RECORD FOR THE LARGEST ALTERNATIVE COMPONENT.
(HENCE THE RECORD HAS A FIXED ALLOCATION SIZE EVEN
THOUGH ONE COMPONENT IS VARIABLE,)

5.9

PASCAL

TYPE STRINGS = ARRAY (1..8) OF CHAR;
TYPE SEXTYP = (MALE, FEMALE);
TYPE WINDEX = 1..10;
TYPE PERSON = RECORD
NAME: : STRINGS;
AGE : INTEGER;
CASE SEX: SEXTYP OF
MALE: (WIFE: WINDEX);
FEMALE: (NUMBER: INTEGER;
CHILDREN: ARRAY (.1..3.) OF STRINGS)

VAR TABLE: ARRAY(.1..100.) OF PERSON;
1:1..10;
SEXUAL : SEXTYP;

BEGIN

[:2 8,
SEXUAL :=MALE ; o
WITH TABLE(.I.) DO BEGIN
NAME :="JONES_ _ _';
AGE :=38;
SEX:=SEXUAL;
CASE SEXUAL OF ~
MALE: WIFE: = 8;
FEMALE: BEGIN NUMBER:=1; |
CHILDREN(.1.):="HAPPY_ _ _'
END “BEGIN”
END “CASE"

END_ "WITH”;

5.10

NOTES ABOUT VARIANT RECORDS

>

USE OF END TO CLOSE BOTH THE VARIANT PART OF THE
RECORD AND THE RECORD ITSELF

USE OF “(” “)” IN THE VARIANT SYNTAX - DIFFERENT THAN
CASE_STATEMENT SYNTAX

USE OF THE TAG VARIABLE (SEX) AND THE TAG VARIABLE DECLARATION
(SEX:SEXTYP) AFTER CASE - DIFFERENT THAN CASE_STATEMENT
SYNTAX

THE TAG VARIABLE MUST BE AN ENUMERATION WITH 2 TO 16 VALUES
(6. 0,.15)

IT IS POSSIBLE THAT FOR SOME OF THE TAG VALUES., THE
VARIANT COMPONENT IS NULL (1E. NO COMPONENT)

2ald

SET 6 PROGRAM & PROCEDURE STRUCTURE

GENERAL FEATURES (6.2)

EXAMPLES - LOCAL/GLOBAL VARIABLES (6.3)
- DYNAMIC ALLOCATION (6.4)

CONSTRAINTS (6.5)
EXAMPLES - NESTED PROCEDURES (ILLEGAL) (6.6)
- FORWARD REFERENCE (RESTRICTED) (6.7)

- RECURSIVE PROCEDURE (6.8)
- INDIRECT RECURSION (WITH EORWARD) (6.9)

bl

SUBPROGRAMS

FORTRAN

-SUBPROGRAMS ARE CALLED
SUBROUTINES (OR FUNCTIONS)

-SUBPROGRAMS ARE SEPARATE
BLOCKS, NOT WITHIN THE MAIN
PROGRAM

-MAIN AND SUBS CAN BE
COMPILED AS A GROUP OR
COMPILED SEPARATELY AND
THEN "“LINKED”.

-MUST USE AN EXPLICIT
“CALL" FOR SUBROUTINES
~EXPLICIT "RETURN"

-ALL SUBPROGRAM VARIABLES ARE
LOCAL UNLESS DECLARED "“COMMON

~ALL VARIABLES ARE ALLOCATED
STATICALLY

n

6.2

PASCAL

-SUBPROGRAMS ARE CALLED
PROCEDURES (OR FUNCTIONS)

-EACH SUBPROGRAM MUST BE A
DECLARATIONS STATEMENT BEFORE THE
BODY OF THE MAIN PROGRAM (EACH
WHOLE PROCEDURE IS ONE DECLARATION)
-MAIN AND SUBS ARE COMPILED
TOGETHER (NO “LINKING"” PROCESS)
HOWEVER= PROGRAMS CAN CALL OTHER
PROGRAMS AND EVEN PASS SOME
PARAMETERS.,

-SUBPROGRAMS ARE INVOICED BY NAME.

-RETURN IS IMPLICIT

-ALL SUBPROGRAM VARIABLES (WHICH
MUST BE DECLARED) ARE LOCAL. ANY
VARIABLE NOT DECLARED IN THE
SUBPROGRAM IS GLOBAL TO THE MAIN
PROGRAM, (EXAMPLE 1)

-SUBPROGRAM VARIABLES ARE ALLOCATED
DYNAMICALLY (SEE EXAMPLE 2)

MAIN
COMMON NCAT
INTEGER NCAT

NCAT = 1000

CALL SUBL

NCAT STILL 1000
CALL SUB2

NOW NCAT IS 2
END

SUBROUTINE SUB2

COMMON NCAT
INTEGER NCAT
NCAT = 2
RETURN

END

SUBROUTINE SUBI1

INTEGER NCAT
NCAT = 2
RETURN

END

E

PLE]

PROGRAM “MAIN"
VAR NCAT: INTEGER;

PROCEDURE SUB2
BEGIN
NCAT :=2
END “SUB2”;

PROCEDURE SUB1
VAR NCAT: INTEGER;
BEGIN
NCAT: =2
END ”SUBl}

NCAT :=1000;

SUB1; “NCAT STILL 10007
SUB2; ”NOW NCAT IS 2°
END.

NCAT IS GLOBAL FOR MAIN AND SUBL

NCAT IS LOCAL IN SUB2

6.3

EXAMPLE 2

C MAIN PROGRAM “MAIN";
COMMON/COM/NCAT, CAT(1000) CONST NCAT = 1000
NCAT = 1000 TYPE ATYPE=ARRAY(.1,.NCAT.)
: - OF REAL;
! VAR CAT:ATYP: I:INTEGER;
CALL SUBL o
. PROCEDURE SUBI;
: VAR CATL: ATYPE; [:1..NCAT;
' BEGIN
CALL SUB2 :
, CAT(.1.):=CAT1(.1.);
END EN_D_"SUB]."}
SUBROUTINE SUBL OCEDURE SUB2;.
COMMON/COM/NCAT , CAT (1000) VAR CAT2:ATYPE;
DIMENSION CAT1(1000)) I:1..NCAT;
. BEGIN
CAT(D) = CATL(D) CAT(.1.) :=CAT2.1.);
RETURN END “SUB2”;
END

BEGIN
SUBROUTINE SUB2 :
COMMON/ COM/NCAT, CAR(1000) SUB1;

: SUB2;

CAT(I) =CAT2(I) :

: END.

RETURN

END
STATIC ALLOCATION: DYNAMIC ALLOCATION:
AppProx. 3003 cELLS APPROX. 2002 CELLS ALLOCATED
ALLOCATED FOR DATA FOR DATA. (CAT1 AND CAT2 BOTH

USE SAME CELLS ON RUN-TIME STACK,

6.1 BUT AT DIFFERENT TIMES)

(.5

CONSTRAINTS

SUBROUTINES CANNOT BE NESTED

NO ORDERING OF SUBPROGRAMS
1S REQUIRED

NO RECURSION ALLOWED

6.5

SUBPROGRAM DECLARATIONS CANNOT BE
NESTED (THIS IMPLEMENTATION)
(SEE EXAMPLE 3)

SUBPROGRAMS MUST BE ORDERED SO THAT
THE DECLARATION PRECEEDS THE
REFERENCE TO THE SUBPROGRAM,
(ExAMPLE 4)

RECURSIVE CALLS ARE ALLOWED
(EXAMPLE 5); INDIRECT RECURSION
REQUIRES THE FORWARD DECLARATION

SO AS TO AVOID THE REFERENCE-BEFORE-
DECLARATION CONSTRAINT (EXAMPLE 6)

6.6

ILLEGAL

EXAMPLE 3
PROGRAM MAIN ;
VAR A,B: INTEGER;

PROCEDURE SUB1;
VAR C,D: INTEGER;

PROCEDURE SUB2;
BEGIN

END "suB2" ;
BEGIN
L}

SUB2;

END “SUBL";
BEGIN

NESTED PROCEDURES ARE ILLEGAL

6.6

6.7

ILLEGAL PASCAL EGAL PAS
PROGRAM MAIN; | PROGRAM MAIN ;
EROCEDURE 4. PROCEDURE B;
BEGIN B'EGIN
B'; END "B"j
Z | PROCEDURE A;
END nptt .
PROCEDURF B, BEG_M
: B;
 END *p”;
BEGIN
A;
ENDJ]

REFERENCE TO A PROCEDURE BEFORE ITS DECLARATION
IS ILLEGAL)

6.7

b

ILLEGAL IN
FORTRAN

EXAMPLE 5

6.8

PROGRAM "MAIN
VAR I: INTEGER;
PROCEDURE FACTORIAL;

BEGIN

i:=l-l;
IF 1>=2 THEN FACTORIAL;

END “FACTORIAL”;
EETH o

[:=5;

FACTORIAL;

END.

RECURSIVE PROCEDURE
(CALLS ITSELF)

ILLEGAL 1IN //%

FORTRAN

URSION

PROGRAM MAIN ;
VAR 1: INTEGER;
PROCEDURE B(PARAMETER LIST); FORWARD
PROCEDURE A (PARAMETER LIST);
VAR J: INTEGER;
BEGIN

IE T >J THEN B(I-1);

NOTES: '
Q

-PARAMETERS ARE LISTED

WITH THE “FORWARD"” DECLARATION
-PARAMETERS ARE NOT LISTED
WITH THE SECOND DECLARATION
-COMPILER CANNOT DETERMINE
(STATICALLY) IF THIS WILL CAUSE
RUN-TIME STACK OVERFLOW,
(AVOID THIS TYPE OF
PROGRAMMING IF POSSIBLE!)

NOTE:
PROCEDURE CALL!

NoT A(.1.)

END "A";
PROCEDURE B

VAR K: INTEGER;
) BEGIN

IE. 1> K THEN ACI-1);

END "Bﬂ;
BEGIN

1=5;
ACD);

END.

G P ERS

GENERAL (7.2)

PARAMETER LINKAGE (7.3)

VARIABLE PARAMETERS (7.4)
CONSTANT (VALUE) PARAMETERS (7.5)
PARAMETER SYNTAX (7.6)

PARAMETER SPECIFICATIONS (7.7)
TYPE CHECKING EXAMPLES (7.8)
UNIVERSAL LINKAGE (7.13)
FUNCTIONS VS PROCEDURES (7.15)

CHECK ON MOVING (7.16)

/.1

G_PARAMETERS

UBPROG

U

(ALSO CALLED ARGUMENTS)

FORMAL PARAMETERS = THOSE DECLARED IN THE SUBPROGRAM BODY

ACTUAL PARAMETERS = THOSE PASSED TO (OR FROM) THE SUBPROGRAM
BY THE CALLING PROGRAM

FORTRAN
MUST AGREE IN NUMBER
ARGUMENTS AND FORMAL
PARAMETERS MUST BE IN
SAME ORDER.
NOT CHECKED BY THE COMPILER!
NOT CHECKED AT RUN-TIME!

NOT CHECKED BY THE COMPILER!

CAN BE DECLARED OR JUST
USE TYPE DEFAULTS

SPECIFICATIONS MIXED IN WITH

DECLARATIONS OF LOCAL
VARIABLES

I

PASCAL

MUST AGREE IN NUMBER
ARGUMENTS AND FORMAL
PARAMETERS MUST BE IN
SAME ORDER.

MUST AGREE IN TYPE!!!!

(THE COMPILER CHECK THIS!)

STRUCTURES PASSED AS PARAMETERS

MUST ALSO AGREE IN SIZE!!
(PART OF TYPE CHECKING)

PARAMETERS MUST BE DECLARED
(CALL THIE "SPECIFIED")

SPECIFICATIONS INCLUDED IN
THE PROCEDURE LINE

KINDS OF P

FORTRAN

BY LOCATION:

AN ADDRESS IS CALCULATED FOR
EACH ACTUAL PARAMETER AND THESE
ADDRESSES ARE LINKED INTO THE
SUBPROGRAM (EXPRESSIONS ARE
EVALUATED AND A LOCATION IS
ASSIGNED TO STORE EACH
EXPRESSION VALUE)

7.3

KAGE
PASCAL

OPTION:

EITHER: BY "ACCESS VALUE".
AT THE TIME OF THE CALL,

THE ADDRESS OF EACH LOCAL
VARIABLE IS CALCULATED AND
LINKED INTO THE SUBPROGRAM.
HOWEVER, THE COMPILER WILL
NOT ALIOW ASSIGNMENT TO THE
FORMAL PARAMETERS., EXPRESSIONS
IN THE ACTUAL PARAMETER LIST
ARE EVALUATED AND LOCATIONS
ARE ASSIGNED.

NOTE:

=THUS IT IS IMPOSSIBLE FOR
THE PROCEDURE TO CHANGE THE
VALUE OF THE ACTUAL
PARAMETER.,

-THESE ARE CALLED VALUE

PARAMETERS

OR: BY REFERENCE (USING VAR):
THE ACTUAL PARAMETER MUST BE
EITHER:

=A VARIABLE
-AN ARRAY COMPONENT
—A RECORD COMPONWENT

FOR EACH PARAMETER, THE VARIABLE
OR COMPONENT ADDRESS IS CALCULATE
AND LINKED INTO THE PROCEDURE AT
THE TIME OF THE CALL.
NOTE: THESE ARE CALLED
E_PARAMETERS

KINDS OF PARAMETER LINKAGES (CONT.)

BY FUNCTION-VALUE

THE VALUE OF A FUNCTION
SUBPROGRAM IS RETURNED
AS THE RESULT OF A
FUNCTION REFERENCE.

7I73Il

BY EUNCTION-VALUE

THE VALUE OF A FUNCTION
SUBPROGRAM IS RETURNED
AS THE RESULT OF A
FUNCTION REFERENCE.

ABLE PARAMETER

PROGRAM MAIN
VAR I,J: INTEGER;

PROCEDURE SUB1 (VAR K: INTEGER);

B_Eﬁm nSUBlu

EN.DJ' nSUBlu
B_E_G_I.N HMAIN"‘

SUBL(I);

SUBL(J);

E_N_D_. HMAIN”

RESULTS OF PROCEDURES MUST BE VARIABLE PARAMETERS.,

VARIABLE PARAMETERS IN THE PROCEDURE HEADING ARE NOT

ALLOCATED STORAGE SPACE, THEY USE THE STORAGE LOCATION ALLOCATED
FOR THE CALLING PARAMETER. \EX. K PQINTS TO THE STORAGE LOCATION
OF I OR J WHEN SUBZ IS CALLED ABOVE).

7.4

PASCAL
CONSTANT C(VALUE) PARAMETERS

PROGRAM MAIN;
VAR 1,J: INTEGER;
PROCEDURE SUB1 (K: INTEGER);
VAR L: INTEGER;
BEGIN “SUB1”

“ILLEGAL AS K IS CONSTANT”

K:= K+ 2;

L:=K*4;

END “SUB1":
BEGIN “MAIN®

SUBL (I);
SUBL (J);

EN—D. l HMAIN"

1. CONSTANT PARAMETERS ARE ASSIGNED STORAGE SPACE.
2. VALUE OF CALLING PARAMETER IS NEVER CHANGED BY PROCEDURE.

7.5

PASCAL
' IATIONS

PROCEDURE JIM (I: INTEGER;
J: INTEGER;
W: REAL;
VAR X: REAL;
VAR Y: REAL;
VAR Z: INTEGER);

SAME AS: PROCEDURE JIM (I,J: INTEGER; W: REAL;
VAR X, Y: REAL;
VAR Z: INTEGER);

(OR IT COULD ALL BE WRITTEN ON ONE LINE)

NOTE: IT IS A GOOD HABIT TO GROUP ALL THE CONSTANT
PARAMETERS BEFORE THE VARIABLE PARAMETERS

7.6

ETER SPECIFIC S

MUST BE TYPE IDENTIFIER

ILLEGAL

PROGRAM MAIN;
VAR X: ARRAY (.1..10.) OF INTEGER;
PROCEDURE A (¥: armAY (.1..10.) OF INTEGER) ;

i

PROGRAM MAIN;

TYPE ARR = ARRAY (.1..10.) OF INTEGER:
VAR X: ARR;

PROCEDURE A(Y:ARR) ;

7

IYPE CHECKING

EORTRAN
MAIN PROGRAM

INTEGER I,J

=10
CALL A(I,J)

WOW, THIS IS LEGAL
ACTUALLY USEFULL SOMETIMES

END
SUBROUTINE A(X,Y)

INTEGER X
REAL Y

IF (X.LE.20) Y= 5.6

RETURN
END

/.8

PASCAL
PROGRAM MAIN;
VAR 1,J: INTEGER;
PROCEDURE A(X: INTEGER;
VAR Y: REAL);

BEGIN'
IF X<=20 THEN Y:= 5.6;

Etb A,
BEGIN “MAIN"
I:= 10 ;
A(I.J);
“THIS IS ILLEGAL AND
WON'T COMPILE AS J AND
Y ARE DIFFERENT TYPES”

END.

[YPE CHECKING

FORTRAN

MAIN

REAL Z,Y
ONE= 1,0
=10

¥ =10
CALL A (ONE)
CALL ACY+Z)
WOW |
ALL LEGAL
END

SUBROUTINE A(X)
X=X+ 1.0
RETURN

END

PASCAL

PROGRAM MAIN;
CONST ONE = 1.0;
VAR Z,Y : REAL;
PROCEDURE A (VAR X: REAL);
~ BEGIN X:= X+1.0
END “A";
- BEGIN
A(OEE);
Z:=1.0;
Y:=1.0;

A(Z+7Y)

“"WONT COMPILE”

END.

ILLEGAL

NOTE: THESE WOULD BE LEGAL
IF THE PARAMETER WERE
DECLARED AS A CONSTANT
PARAMETER (IE NO VAR
IN THE DECLARATION)

79

MAIN
DIMENSION Y(10)

CALL ACY(7))
WOW, LEGAL

END

SUBROUTINE A(X)
DIMENSION X(4)

X(4)=1.0

RETURN

END

HE

7.10

PROGRAM “MAIN";
TYPE B= ARRAY (.1..3.) OF REAL;
VAR Y: ARRAY (,1..10.) OF REAL;
PROCEDURE A(VAR X: B);

BEGIN

X(.4,):=1.,0

END “A”;

BEGIN

A (¥Y(.7.))

“WONT COMPILE -
[YPE ERROR:
REAL % ARRAY OF REAL”

TYPE CHECKING

PROGRAM “MAIN”
TYPE B= ARRAY (.1..20.) OF REAL:
VAR Y: ARRAY (.1..10.) OF REAL;
PROCEDURE A(X: B);

BEGIN

m ”A"J
BEGIN

A (Y);

“WONT COMPILE”
END.

SIZE ERROR.

ARRAY (.1..10.) = ARRAY (.1..20.)

/.11

F NI
THE SIZE CHECK IS RELAXED FOR STRINGS:

THE ACTUAL STRING MAY BE LESS THAN OR EQUAL TO THE
FORMAL STRING.

PROGRAM MAIN;
TYPE STRING8= ARRAY (.1..8.) OF CHAR

VAR X: ARRAY (.1..10.) OF CHAR;
Y: ARRAY (.1..6.) OF CHAR;

PROCEDURE A(Z: STRINGS);
VAR 1: INTEGER;
BEGIN
EﬂD HAH;

BEGIN

ACY); "THIS IS LEGAL!”

A(X); "THIS IS ILLEGAL"

END.
WARNING: Z(.7.,) 1S SOME VALUE BEYOND Y
WARNING: IF Z WERE A VAR PARAMETER, THEN ASSIGNMENT To z(.7.)

or z(.8,) wou%n OVERWRITE SOMETHING IN MEMORY BEYOND
vy awruL!

/.12

SOMETIMES IT IS NECESSARY TO CHEAT ON PARAMETER TYPE
CHECKING!

(USUALLY FOR I/0 PROCEDURES) w
THE ADDITIONAL LINKING MECHANISM UNIVERSAL (UNIV) REMOVES
THE TYPE CHECK PART OF THE LINKAGE, BUT STILL ENFORCES THE

SIZE CHECK.

(DOES NOT WORK FOR POINTER VARIABLES, WHICH ARE INTRODUCED
LATER)

HENCE YOU NEED TO KNOW STOREAGE REQUIREMENTS OF DIFFERENT TYPFS:

DATA TYPFS #ORNS NF STORAGF
CHAR |

BOOLEAN

LOWER. . UPPER 1
IDENTIFIERS

INTEGER _ |

REAL 4

SET 8

STRING (M CHAR) M/2

7.13

LEGAL

PROGRAM MAIN,
TYPE STRINGX= ARRAY (.1..16.) OF CHAR;

VAR A: ARRAY (.1..2.) OF REAL;
PROCEDURE STORE (X: UNIV STRINGX);

BEGIN —

"USEFULL BECAUSE 1/0
PROCEDURES HANDLE ONLY
CHARACTERS OR ARRAYS OF
CHARACTERS”

END "STORE”;
BEGIN
STORE (A);
END.

COMMON UNIVERSAL TYPES ARE “LINE” AND "PAGE”
WHICH ARE DEFINED IN THE STANDARD PREFIX.

/.14

PASCAL

EUNCTION PARAMETERS MUST BE: CONSTANT

PROCEDURE PARAMETERS MAY BE: CONSTANT OR VARIABLE

7.15

EDURE TION S

EORTRAN PASCAL
SUBROUTINES ARE CALLED BY A A ROUTINE CALLED AS A
STATEMENT (CALL SUBL) STATEMENT MUST BE A

PROCEDURE CALL.
FUNCTIONS ARE ALWAYS CALLED AS A ROUTINE CALLED AS A
A FACTOR IN AN EXPRESSION FACTOR IN AN EXPRESSION
HUST BE A EUNCTION CALL.
C MAIN PROGRAN PROGRAI MAIN; |

CALL SUBL BEGIN “MAIN”
CALL SUB2(A,B) .
¢ SUBROUTINE CALLS

SUBL

. SUB2(A,B) ;

F= FUNC1(C) “PROCEDURE CALLS”

IF (FUNC1(B).LT.1000)I=1 ,

- IF FUNCL(B)> 1000 THEN I=1;
éND "FUNCTION CALLS”

EHD.' HMAINM

7,16

FORTRAN FUNCTIONS

1. A VALUE IS ASSIGNED AND RETURNED AS THE FUNCTION NAME

2. VALUE RETURNED MUST BE ASSIGNED TO FUNCTION IDENTIFIER
WITHIN THE FUNCTION

3. THE FUNCTION AND ITS ASSIGNED VALUE MAY BE OF DIFFERENT TYPE
(EX. REAL= INTEGER)

L, PARAMETERS MAY RETURN A VALUE TO THE CALLING PROGRAM!!

100

200

MULTIPLICATION OF POSITIVE INTEGERS

MAIN
INTEGER 1,J,K
BEGIN MAIN

N e
i m
=W

ULINT (1,J)

END

FUNCTION MULINT (L,M)
INTEGER L,M,N

N=0

IF(L.LE.0) GO TO 200
N=N+M

=L-1

GO TO 100

MULINT= N

RETURN

END

1.17

NoTE: [.EQ.B AFTER
FUNCTION COMPLETES

PASCAL FUNCTIONS

1. A SINGLE VALUE IS RETURNED UNDER FUNCTION NAME,

2. THE VALUE RETURNED MUST BE ASSIGNED TO THE FUNCTION
IDENTIFIER WITHIN THE FUNCTION BLOCK.,

3. THE FUNCTION AND ITS ASSIGNED VALUE MUST BE OF
COMPATIBLE TYPE

4. PARAMETERS CANNOT RETURN A VALUE (PASSED AS CONSTANTS)

“MULTIPLICATION OF POSITIVE INTEGERS”

PROGRAI MAIN;
VAR 1,J,K: INTEGER

FUNCTION MULINT (L,M:INTEGER): INTEGER;

“L>0, M>0"
VARLL N : INTEGER;
3 BEGIN

Ll;= L

N:= 0;

WHILE L1>0 DO

BEGIN N:= N + M;
L1:= L1-1 END;

MULINT:= N

END "FUNCTION MULINT";

BEGIN “MAIN”

]
¥

KL-—---
ZU\IM

JLINTCL0)

END. “MAIN” “NOTE 1,J ARE NOT CHANGED AFTER FUNCTION COMPLETES"
7.18

CAN BE DONE
IN FORTRAN

RESTRICTION

KSU (CIT) IMPLEMENTATION
WILL NOT ALLOW

FUNCTION NAMES OR PROCEDURE NAWES
TO BE PASSED AS AN ACTUAL PARAMETER
T0 A SUBPROGRAM

NOTE: THIS CAN BE DONE IN THE
WINSEN/WIRTH PASCAL REPORT

7.19

Grour &: SimpLE INPUT/QUTPUT

1/0 PRIMITIVES
Line ORIENTED ROUTINES

Four CoNVERSION ROUTINES

g.1

PrRiMITIVES PROVIDED IN THE STANDARD PREFIX

Fo E ONSOLE

IDENTIFY (HEADER: LINE)......4++ INITIALIZATION TO IDENTIFY
THE CALLING PROGRAM; LINE 1s
DEFINED IN THE STANDARD PREFIX
AS A TYPE OF ARRAY OF 132
CHARACTERS

~ ACCEPT (VAR C: LHAB)} READ AND PRINT, RESPECTIVELY,
DISPLAY (C: CHAR) C T A SINGLE CHARACTER TO THE

PASCAL consoLE; THE ASCII LINE
FEED cHARACTER (1 CHR (10))
IS USED TO TERMINATE EACH LINE
OF INPUT AND OUTPUT

For CHARACTER ORIENTED DeEvices (SEE ALSO GROUP 9)

WRITEARGivveevvuesansnsesess USED TO IDENTIFY THE FILE OR
' DEVICE DRIVER TO BE ACCESSED
READARG . v vvvvvusevsssranensssessUSED TO CHECK THE SUCCESS OR
FAILURE OF THE FILE OR DEVICE
'ACCESS
READ (VAR C: CHAR) INPUT AND OUTPUT, RESPECTIVELY,
WRITE (¢ C: CHAR) OF A SINGLE CHARACTER FROM/TO

THE FILE OR DEVICE DRIVER
SPECIFIED USING WRITEARG.

8.2

ExTENDED I/0 RouTinES (NOT IN STANDARD PREFIX)

ROLINE (NAME; IDENTIFIER; VAR INLINE: LINE; VAR R: BOOLEAN)
WRTLINE (NAME:IDENTIFIER; OUTLINE: LINE; VAR R: BOOLEAN)

USED TO READ/WRITE A LINE OF CHARACTERS
FROM/TO A FILE OR DEVICE DRIVER; WHERE

NAME-—==-=—===me— A STRING OF LENGTH 12 WHICH
IS THE NAME OF A FILE OR AN
[/0 DRIVER, SUCH AS LISTED
oN PAaGe 10.4

INLINE, OUTLINE----aA sTRING oF LENGTH LINELENGTH

) (132); TERMINATED WITH THE
CHARACTER EM (DEFINED AS CHR
(25) IN THE PREFIX).

R-=-mmmm - RESULT: FALSE INDICTS AN [/0 ERROR.
CONRDLN (VAR INLINE: LINE)------- siMILAR To RDLINE anp WRTLN,
CONWRTLN (OUTLINE: LINE) EXCEPT THESE READ/WRITE FROM/TO

THE PASCAL CONSOLE, AND THE
LINE 1S TERMINATED BY A NL
CHARACTER.,

8.3

CoNVERSION RouTINES (NOT IN STANDARD PREFIX)

INT_TO_STR CINT, WIDTH: INTEGER;
VAR INDEX: INTEGER;
VAR R: CONVTERR;
VAR OUTLINE: LINE)

---INTEGER_TO_STRING CONVERSION, WHERE
INT «vvvseeees INTEGER TO BE CONVERTED
WIDTHWIDTH OF "winDow” IN QUTLINE

INDEX ¢4 ¢: et STARTING POSITION OF "“WINDOW"” IN
OUTLINE; SET To STARTING POSITION
OF NEXT POSSIBLE WINDOW
Retvevensess \RETURN PARAMETER:

CONVTERR;....ENUMERATION TYPE OF:

OK.+..u...CONVERSION DONE
INGEXERR.. ILLEGAL WINDOW POSITION
WIDTHERR.. ILLEGAL WINDOW SIZE
LPRSN

RPRSN

NOTINT USED LATER
OVERFLOW

NOTFIXED

TRANS.....1/0 DEVICE ERROR

8.4

FIXED_TO_STR (NUMB: REAL;
WIDTH, LPRECISION, RPRECISION: INTEGER;
" VAR INDEX: INTEGER
VAR R: CONVTERR;
VAR OUTLINE; LINE)

=——REAL NUMBER TO STRING CONVERSION, USING FIXED POINT
NOTATION; WHERE

NUMB. . ''innn REAL NUMBER TO BE CONVERTED
LPRECISION. .. .NUMBER OF SPACES ALLOWED TO LEFT
 OF DECIMAL POINT, INCLUDING THE
SIGN
RPRECISION. .. .NUMBER OF SPACES ALLOWED TO RIGHT
OF DECIMAL POINT

NoTE: INDEX = LPRECISION + RPRECISION -+ 1

CONVTERR....., ADDITION VALUES ARE:
~ LPRSN..... ILLEGAL LPRECISION
RPRSN..... ILLEGAL RPRECISION

&5

STR_TO_INT (VAR INT: INTEGER;
WIDTH: INTEGER;
VAR INDEX: INTEGER;
VAR R: CONVTERR;
VAR INLINE; LINE)

--=STRING TO INTEGER CONVERSION; WHERE

INVisssawinin INTEGER VALUE DETERMINED

WIDTH........WIDTH OF WINDOW TO BE PROCESSED;
HOWEVER, IF THE WINDOW IS SET TO ZERO,
THEN THE WINDOW IS EXPANDED UNTIL AN
INTEGER IS CONVERTED OR UNTIL AN ERROR
1S DETECTED.

CONVTERR.....ADDITIONAL VALUES ARE:
NOTINT.....SCANNING SYNTAX ERROR
OVERFLOW. ..INTEGER TOO LARGE TO CONVERT

8.6

STR_TO_FIXED (VAR NUMB; REAL;
WIDTH: INTEGER;
"~ VAR INDEX: INTEGER,
VAR R: CONVTERR;
VAR INLINE: LINE)

———=STRING TO REAL NUMBER CONVERSION, ASSUMING A FIXED POINT

NOTATION, WHERE

~ NUMBR. v evevinn REAL VALUE TO BE DETERMINED
CONVTERR. ADDITION VALUES ARE:
NOTFIXED...... SCANNING SYNTAX ERROR

8.7

GROUP G: STANDARD PREFIX

PROGRAM FORMAT (9.2)
PURPOSE OF PREFIX (9.3)
PREFIX CONSTANTS (9.4)
PREFIX PROCEDURES (9.5)
FILE PROCEDURES (9.6)
ANNOTATED PREFIX (9.7)

9,1

“HEADER COMMENTS”

(OPTION, OPTION . . .)

STANDARD_PREFIX_
DECLARATIONS
(WITH_OUT COMMENTS)

(ABOUT 120 LINES)

INCLUDES PROGRAM STATEMENT_|

PROGRAM P(VAR PARAM:ARGLIST);

YOUR_DECLARATIONS_HERE

BEGIN
“BODY OF PROGRAM HERE”

END. | DATA_STARTS_HERE

(IF ANY)

3

9.2

&——SKIP IF NO OPTIONS SELECTED

: NAME OF PROGRAM 1S "p”
WHICH CAN BE CHANGED, USING
THE EDITOR); HOWEVER, THE
PROGRAM IS INVOKED BY FILE
NAME, WHICH MAY NOT BE “P".

URPOSES EFI
DEFINES COMMONLY USED CONSTANTS
DEFINES COMMONLY USED TYPES

LISTS NAMES OF PROCEDURES WHICH ARE ENTRY POINTS
TO SOLO SYSTEM

. IDENTIFIES PARAM, WHICH IS USED TO PASS PARAMETERS TO AND FROM
THE PROGRAM

9.5

PREFIX CONSTANTS

NL = "NEW_LINE” OR "LINE_FEED”

FF = "FORM_FEED"

CR = "CARRIAGE RETURN”

EM = "END_OF_MEDIUM_MARK” FOR STREAM 1/0.

PAGELENGTH = 512 BYTES

LINELENGTH = 132 CHARS

IDLENGH = 12 = MAX LENGTH FOR IDENTIFIERS USED AS PARAMETERS

MAXARG = 10 = MAX NUMBER OF ARGUMENT TO/FROM THE PROSPAM

9.4

EF OCEDURE

P ES
MARK, RELEASE
1/0 PROCEDURES
READ, WRITE _ _ _ CHARACTER I1/0, READER/PRINTER

IDENTIFY, ACCEPT, DISPLAY _ _ _ CHARACTER 1/0, PASCAL CONSOLE
10 TRANSFER _ _ _ PAGE 1/0 TO DEVICE

10 MOVE _ _ _ DEVICE CONTROL

{ED TYP

ARRAYS OF CHAR: PAGE, LINE, IDENTIFIER |

10 DEVICES: TYPEDEVICE, DISKDEVICE, TAPEDEVICE,
PRINTDEVICE, CARDDEVICE.

10 OPERATIONS: INPUT, OUTPUT, MOVE, CONTROL

10 RESULTS: COMPLETE, INTERVENTION, TRANSMISSION,
FAILURE, ENDFILE, ENDMEDIUM, STARTMEDIUM

OTHER_CONSTANTS: WRITEECF, REWIND, VPSPACE,
BACKSPACE

9.5

PROCEDURES
OPEN, CLOSE
GET, PUT
LOOKUP, LENGTH
RELATED TYPES

FILEKINDS: EMPTY, SCRATCH, ASCII, SEQCODE, CONCODE
OTHER_CONSTANTS: FILE, FILE ATTRCIBUTE)

N GRAM_COMMUN N
READARG, WRITEARG _ _ _ EXCHANGE PARAMETERS WITH OTHER PROGRAM
TASK _ _ _ CHECK TASK NAME
RUN _ _ _ RUN A PROGRAM
-~

TASKKINDS: INPUTTASK, JOBTASK, OUTPUTTASK

ARGTAGS: NILTYPE, BOOLTYPE, INTTYPE, IDTYPE, PTRTYPE

PROGRESUITS: TERMINATED, OVERFLOW, POINTERERROR,
RANGEERROR, VARIANTERROR, HEAPLIMIT, STACKLIMIT,
CODELIMIT, TIMELIMIT, CALLERROR

9.6

AVPPENNTIX 1 = ARDOTATICD ParvrIx

"o PER BRINCH HANSEN

ihFORMATION SCLELNCE
cALIFORITA IRSTITUTE OF TFCHMOLOCLY

UTILITY PROGRAMS FGR
THE SOLO SYSTE

18 HAY 1975M

IES S XS EE LS &7
y AMAOTATEUS =
* PREFIX #
kK kkkEkkEEXT (D

(CHECK« NUMBERs TFSTs XREF)
: vy A PROUGRAF i6Y »E PRECEDED PY CCGi'PILFR CPTIONS
EMCLOSFL 1v PARENTHESES Ci:LY THE FIRST CHARACTER
OF Al OPTIUH 185 ExaMlitlh, THE OPTICHS HAVE THE FOLLOWING
EFFECT:
CHErK = ThE GEHERATED CCOF WILL NOT MAKE THE
FULLOJIN.G CHECRS:
A) CONSTANT E'UHERATICH RANGE CHECKS
(CUNCURKENT ALl SEGUFNTIAL)Y .
B) USE CGF 1L VALLED POINTERS (SEGUENTIAL
DMLY)i
C) ItLEGAL VARIART FIlEL{: CHECKS{SEGUENTIAL
DisLY) e
NUPRER = THE GENERATED COLE WILL cONnTAIN LINE
MUACERS OF THE PFOCRANK'S TEXT FOR THE
BEGINHILNG CF RCUTTHES oRLY (“OR[MAL
PrODUCTIOH MOGE - spkUdLl LOT bk USED
WHILE UCRGOGING A pEROGHAM.)
TEST - Ttit CumPILER wlLL FRINT THE IRTERMEDIATE
COLE For ALL PAaSSts.
XPEF = Thi. COFPILEK uILL PROGDULCE A CROSS REFERENCE
TAEBLE « s b

CoNST NL = ®*(z21ns)*: FF = 2212301 Ch = (213333 EM = *{:25:)'
ny ThE COLSTAWNT L (LINE FEED) 1> Tl LOGICAHL
Etip OF LYW CHARACTER 1Iv PASCal . 1T IS8 TRANSLATED BY THE
KERMEL IrTO A CARRIAGE RETUF, (Cck) FOR COsPATIBILITY WITH
58/42=0.T DRIVFES, THFE Edii OF FUTint CHARACTER (EmMm) IS USED
FOR TERi:INaTIliG A STREfIT UF CHLACTER ORICHTED TRANSHISSIONS
(SEE READ sl RRITEL) Sv

ColST PAGFLEMGTH = 81723

TYPE PAGE = AKEAY (.1.ePaGILiILGTH,) GF CHiRG
ng A PAUF 1S T sTanuidD Ll T CF naTA T THE SOLO SYSTEM,
DATA IS STORLD (i 120TH lan g0t TaARD As PAGES, IT Ay BE
CHAIIGED T ChaBACTER &Y CiitpaCitR THANSFERS BETWELM PROCESSES
BY ThE SobLu DaTha HUFFEL RO ITG S G

CconuaT LD ol = 124
TyPE LTHD = ARRRY (. 1.eLTibLFGGTH,Y CF CHapl
Mg A LIDF TS Tre o IT OF TRATMSFCR TO TUHE LINE
PINTER. T1 15 Al SO CGasul'LY oSFb A4S Tur PARAMETER FOR

2.7

ROUTIMNES THAT [CISPLAY RROR MECSSAGFS fﬂ THE COnSOLE, 5™

“GHST ICLENGTH = 12 '

TYyPh IUEHTIFIER = ARRAY (.1..10LEROTHG) OF ChaRj
wy AN TOFUTIFIFR IS USED FOR PaSSING PARAMETERS AND FILE NAMES,
ALL FILEnarES ®AY BE A HAXTMNUS OF TWELVE (12) CHARACTERS
UNDER S010. bH*

ny UP TO TWO (2) FILES MAY BE ,CCESSED DIRECTLY GY THE PROGRAM
RUBIING Tid THE J0it PROCESS AT allY TIAC., THESE FILES ARE
MAMIPULATED BY TuF INTERFACE RNUTINES GETs PUT OPENs CLOSE. A%D
LENGTH. EITHER N¢ THE IOPKOCESSES HAY ACCESS 0#LY ONE FILE AT A
TIsE. 5"

TYPE FILEKIND = (FHPTYs SCRATCHs ASCIILs SFAUCOREs COKCONE):
ny THESE AKE THE STANGAKD FILE TYPES USED 8Y SOLO, 5"

TYPE. FILEATTR = RECQURO

Krins FIILFKINDS

ANDR: INWTEGERS

PROTECTED: BOOLLCAN;

NOTUSEDS ARRAY (.1e45.) OF INTEGER

EliD:

ny THIS TYFE DNFSCRIBES A DISK FILE. IT 1S RETURNED BY THE'
CSOLU LNOKiw INTECRFACE PRUCRDUKE, aLDR 15 THE ADDRESS OF THE
FILE'S PAGFITAP (SFE HBRINCH=HANSEMN: *DISK SCHEDULING AT COMPILE
Tl L x 1)e SM

TYPE IOBEVICE =])
(TYPEDEVICE, DISKAFEVICE, TAFECEVICEs PRINTUEVICE, CARDPCVICE):
wy THIS 1S AN BAUSERATION UF THE ACTUAL KERNEL PHYSICAL
DEVICES. ARY FHUGERATION WITH FIVF (5) ELERENTS WILL SUFFICE
FUR DEVICE SPECIFICATION, IT Is THE POSITION IH THE EMUMERATION
WHICH IS IiPORTANT. S" -

TYPE IOOPERATION = (InPUT, CaTPUT, =2VE. CONTROL) S
ny THESE ARE THE vALlD CPURATTIGHS FOR PHYSICAL NEVICES, THE
COLTROL nNPFRATION DESERVES SPLCIabL ATTEXTION, THE EXECUTION OF
A COMTROL OPERATIZHN TO THT D31SREVICE CansSES rviE SYSTER
TO oE REINTTIALIZEO USIIG TiiD ;RG FIELD oF THE TOPARAM AS THE
DISK ADCKFSS ar «liICH T9 FINLO THE CUHCUJRREST colle TO BE LOAGED
AS THT HEY sYSTEwi. THIS FaCILITY IS 43cCd oY THE SOLO START
PRUSHK& e FOR EXamMFLE, Tie USE OF THE LO5THAOL OPERATION ON
THE CO:SOLE IS TO PWAKE THE P2GCESS wAIT Fuk THE NEXT BELL KEY
TO BE ENTERED oil THZ cusOLL. THIS FUHCTION IS HOT VFRY USEFUL UfE:
S0LD BECAUSE SOI O INCLULUUES p SHECTAL PRoCESS (THE WATCHDOG PROCESS
WHICH USES TiHIIS FULCTIJr TO RELOAU SuULO. a4

TYPE I0ARG = (URITEFOFe REWI 0D UPSPACE, HACKIPACE) :
ny THIS FROEHERATICK DLSCHIBCS THD FUHCTIONS THATY
MY BE USED wITh THE (UVE OPERATION T3 T4E TAPENEVICE,
THEY ARE SELF EaPLANATORY,. SW

TyPE IORESULT = :
(COMPLETC sy INIERVFNTION, TRANSITISSION, FALILUKE,
ElFILFy o gl e STaaTiedTusld s
"y Torarl anbh Tal vablas ST oagses KETURHEL oY ThE KCRiEL
LIl ReSPONSE T0 [/70 RELUEST o, THE itA2P 1R FRON
0s5/32=-uT NFVICF IsoEPLuOEHT 3TATUS TO THFSE STATUSES IS

3.8

AS FOLI OuwS:

03/732=-nT STATUS PASCAl STATUS
0n CGHPLETF
An [NTERVELTION
f13] : TRAISNISSION -
Ca (ANY RBIT) , © FaILURE '
sa ; : ENDFTLE
9p ENDLEDINA

THE STARTMNFOUIG STATUS IS wO0T THAPLEMENTED OH‘ANY=
CURRENTLY SUPPORTED DEVICE., 5w

TYPE IOPARAM = RECORD

OPFRATION: IOOPERATIOl:

STaTuS: IGRUSULTS

ARG? ICARG

FHDS

ny THIS RFCORD TS THE ACTUAL PALRANFTER WHICH IS PASSED
TO THE KrRyEL 170 ROUTINES To (ONTRCOL I/0 REGQUESTS,
REQUESTS aAxE ST TO THE KERMCL VIa THE SOLO IOTRANSFER
INTERFACF PRUCEGURE, 5"

TYPE TASKKIND = (INPUTTASK, JOBTASK, GUTPUTTASK)
wy THIS ENGRERATINN L1STS THE THREF SOLU PROCESS PARTITIONS
INTO YWHICH A SFUFNTIAL PROGRA: MAy BE LoaCED,
A SEGUFNTIAL PROGRAN SAY JETER VINE HWHICAH PARTITION
IT IS TN THKOUGH THE USC OF THgE TASK INTFRFACE
FUICTINN, 5"

TYPE ARGTAG = _ .
(HILTYPE. 320LTYPF., INTTYPFs IDTYPE. PTRTYPF)
vy TuIS EERATION SPECIFIES THE TYPES THAT
PERaETERS AND ARGUNMESTS HaY ASSUriF. THEY CORRESPOND
TO 10 ARGHHENT. BOOLEAlve INTEGEKs ILENTIFIERs AND
PUIITER, &"

TYPE POINTER = «B8001 EAN:
wy THIS 1S A Ditiidy DEFLAITIOW *HICi#H ALLOWS THE
PASSING uF POTI!TERS BETwECH SELUENTIAL PROGRANXS
(St SECTInN Ot PASSING PULINTERS.) g

TYPE ARGTYPE = RECORD
CASE TAS: ARGTAG OF

BILTYPE, o00LTYPZ: (LoobL: ROOLEAM) &

TLTTYP s (Iil: IwTLCGER)S

IDTYPF: (ID: LuESNTIFIER)S

FTRTYPE: (PTR: PULITER}

END 3

vy THIS RFCORD DESCRIEES THE ARGUIFHTS (AND PaRAPETERS)
WHICH MAY E PASSED A5 SEQUEITL L FROGRAMS RUNMNING
UsGER SOI 0. ARGILMIENTS WAY KE FASSFL Anuils THE THREE
PHOCESS PAKTITIOAS BY EanudS uF THC REAJARG AND
WRITEARG LITEKFACE PROCLOURES, A PROGRAH
AAY ALSG RE CALLEU ANE PASSED o LIST OF PARARETERS
(AN ARGLIST) and nE ExECUTED T1i: Trie SAHE PARTITION BY
MEANS OF TeHE SuwLD RUH ROUTINE. 5" - :

CoNlsST ™

i
Tapdl i)

AAARG = 103

WGUIST = ABRPAY {eleomA0ARG,) UF ARGIYPL:

wy AS HOTFR ABOVE A StautiiTIaL PRUGKAY miaY BE CALLED
BY AMDOTHFR BY MEANS OF THU RU INTFEFACE PROCCDURE,

e D)

A BAXINMUM OF s (10) PadabETERS FAY BE PASSED T0 THE
CALLED PLOGRAM IN AW ARGLIST., 3%

TYPE ARGSFQ = (IMpPe 0UT);
wy THIS ENUNERATTON SPECIFIES THE DESTINATION OF
A ARGHHMFNSE REQUEST (KREADAKG A WRITEAKG)s THE
JONI PROCFSS PaY USE EITHER EMUCERATION, THE IRPUT
PRUCESS #aAY OnLY 0ISE THE OQUT 400 TwE OUTPUT PROCESS .
MAY OHLY HSE THE INP AS ARGUHFET DESTINATIONS. s*

TYPE PROGRESULT = , : -
(TERMINATED, OVFRFLOV, POINTERERROR, RANGEERROR, VARIANTERROR,
HEAPLINMIT, STACKE 11T, COONELISGIT,y TILOELIMITe CaALLERROR):

ny THIS FHUMERATION REPRESENTS THE STANODARD
COMPLETION CODES GENERATEL oY THE KERHEL UPON
PROGAFM EXIT OR ERRCOR, TERRINATED SEPRCSFNTS

THE FACT THAT THE PROGRAr CULTROLLEL: 1TS TERMINATION,
ALL OTHER TNSTANCES HEPRESLNT CRRO’RS LDETECTED a8y
THE KERMNFL OR SULU. TINgLIMIT IS 10T CURRENTLY
ISPLEMENTED IN SOLO, OVERFLOW IS pRLTECTED ON REAL
(FLOATING POINT) 3UT NCT INTEGER ARITHMETIC,

ALSU, THE KERWEL #aPS o732 ILLFGAL THSTRUCTION

Al MEMORY FAULT FRRORS INTO OVERFLOW,., THIS IS
GLNERALLY CAUSID Y EXECUTING i PRGGRAM FILE JHICH
15 LABELFN AS SFRCOBE,s bUT WnICiH ACTUALLY IS NOT
COAPILER GFHERATEDN (E.G. AR ASCII FILE READ FROM
TAPE.) 5»

PROCENDURE READ (VAR C: CHAR):
PROCEJURE JRITE(C: rHaR)i
ny THESE KROUTIHES CONTROL CHARSCTER BY CHARACTER
ODATA TRAMSFER GETwEEN THE JOL LHU THE INPUT AND
QUTPUT PROCESSES. THE SYHCHRNNLIZATION OF THIS
IS dahiiLED BY a SOLO PACGELUFFE: ¢i0,1ITUOR. THE
TYPICAL PROGRAININLG SEQUEWCE ustD FUR READING A
TEX1 FILF TN THE JOB PHUCESS IS5 AS FOLLOWS:
WRITEARGIINLP. ARG} SPECIFY FILE
REPEAT (OF TYyPE ASCII OR SEQCODE)
READCCY S '
cee PrOCESS CHARACTER

UNTIL € = E43 END OF MEDIUM
REANARGI INP ¢ ARG) &
IF HMOT ARG.UB00L THE! .. 3 ERRORS OCCURED

I% TRAMSHISSION.
T PROGRANHIMS SFCQUENCE FUOR WRITING A TEXT FILE
CHARACTER hY CHARACTER TU THE ouTPUT PROCESS IS
AS FULLOUS:

WRITEARG(QUT +ARG) § SPECIFY FILE
SHILE HOT O0HE_GEERATING w0 (*HEXTY OR TYPE SEqr2LE
BEGIN

. e GENERATE CHARACTER C
WRITEIC)Y

EnDe

C:= Fi1s

LRITE(C):

IF FITE_IS_HNFXT THEM

B LT
REAL A i T G) 4
LENUT_OF _FILL _IN_PAGES 2= aARGWINT

(A MK 3.10

READARG(OUT y ARG) ¢
IF ROV ARG.HUUL THEN +.. 8 ERRORS OCCURED
I TRANSHAISSION, 5"

PROCEOURE OPECW(F: FILFY Iu: LOUENTIFIZRG VAR FOUND: 300LEANYS
PiOCCUURE CLOSE(F: FILE):) -
PROCLDJRE GET(F: FIITE: P: INTEGERY VAR LLOCK: UAlIV PASE)§
PRUOCLDURE PUTIF: FItE: P: IUTEGER: VAR SBLUCK: UNIV pPAGE):
FIBHCTION JENGTIVF: FIIC): LUrEGeER: —
wy THESE ROUTLOLS ALLOW THE SEQUENTIAL PROGRAM
ACCESS TO THE SOLO RESIUDEWT FILLC sSYSTod. THE
PROCEODURE 9PE« READIES Tl FTLur WITH THE GIVEN
1JERTIFIFR FUR OATA TRAISFER, AFTIR JOPEMN HAS
B Cullt €0 1ddF FILE IS KIFERKFD Ty 8Y THE FILE
ENUMERATTION (1 OR 2). CLOSE 1S THE INVERSE OF
OPEH YHIcH PURGES THE ACCESsSABILITY OF TE GIVEN
FILE ENUMERATION, BET Al PUT ALLOY FUR THE
TRAMSFER FrOR DR T9 THE FILE P,.GLE THJIEXED
BY P. LFHISTH RETURNIS THE LENGTH (IN PAGFS) OF
THE GIVEN FILE LNGMLRATION (IT MUST CURRZHTLY
EE OPEHNEN.) bH®

PROCEDURE MARK (VAR TOP! IUTEGER) S

PROCEDURE RELEASLE(TOP: IaTEGER)§
wy THESE TwO0 WITTINLES ARE USED TO cONTROL THE
DYMMIIC STORAGL CAPABILITIES Or SEwUENTIAL PASCAL.
THE PROCEMIRC +inkK RETURIS ail IGTEGCER CORKESPONDING
TU THE CHRREHT HELP TGP, THE PRIICEJURE RELEASE
REVEHSES 7415 aild SETS THE HELP Tip TO THE
PROGRAIT SUPPLIEYD vaLUE, (SEE THE SECTIon OH
PASSING FOINTLHS). D¥

PRUCEDURE IDENTTIFY(KEADER: LINE)S
PLOCENURE ACCEPT(VAK C3I CiHAR)S
PxGCEOURE DISPLAY(C: CHAR)
ny THESE ROAUTIWES ALLOW THE SENJENTIAL PROGRAM
ACCCSS Ta Trg PescCal COGrSULE, THC PROCENURE
IDEUTIFY SHOuLa 3f EXECUTEwD 16 THID INITIALIZATION
Aid AFTER CALLIIG alidTHER PRIGaaS (LSING RUM,)
T SO0LY TYPLRESOGKCE ~O0JdITuR 410 TER:1ZAL CLASS
KEEP Tiack OF PRISAFD TOZATITIFS And OISPLAY THEM
Jdil THE CnisCLE .HE:+ wLCESSARY. THE HEaveEr IS
A PROGRAFGER JEFICICD STrING (Y.6. THE PRINGRAM
WNacqE .} ACCEPT IS USci T HCCZIVLD A CilARACTER
FRO% THE CONSOLE A0 DISPLAY IS U3F Tg SEND A
CHARACTER, T AACII LIdE FEE: CHARACTER
(DECIMAL CGDL 10) IS USES Tu TFRATRATE A LIKE OF
TRAIUSHISSION 0 THE COLSOLE, HUTH OH INPUT AND
UJTPUT, §®

PROCLOURE READPAGF (VAR BLOCK: UMIV PAGE; vARR COF: B23LEAN)
PROCEDURE ARITEPALE (/I CCK: U IV PAGES: EOF: 3CnoLEA) 3
wy THESE TH0 ROUTIHECS ALLYY FOit TRaNSFER OF
DATA BETWJECDH TYL I4PUre JU3e .o JuiTPdT
PROCFSSES, LTIneE READ Apd WKITE THE SYCHRONTIZATION
I3 HAMDLED) BY THE S0LU PadEdurrElR »onNITuR, HZRE 4
HOLCVERy ToE 0 aF SCuius (D) CHaRAaCTES DOES
ol STy To0T oL ur TeloooanIssDo, I iTEADe =1TH
EACH CaLy A BuaabLias BEuF 13 [.CLudbe, IF T[ills
gaolial IS Ty, IT S16IFIZS THAT THIS PAGE

9.11

IS EAPTY ariD THAT THE LAST PaGH TRAMSFERFD IS
THC LAST. A4S T USEING Kiad and) WRITE,
TAE JOi PRGCLAS uUST FLKST IuSTRUCT T:1E 10 PROGRAM
TO LOAD THFE CORRECT PRIGHMLS 1MTY ThE IOPROCESSES
BY ULST G TE "RITHFARS RIOUTIUF LND T30 THE STATUS
OF THE CniPLETEUD TRAMSFER AFTRR EOF USING THE
RZAUARG ROTINE. S
PROCLOURE READLL'IF (VAR TEXT: UNIV LINE);:
PROCENURE WRITELINE(TrXT: Jidiv LINE) .
ny THESE RaoUTINES ARE i10-0PS Tno THf Ju3 PROCESS,
IN THE InPUT PRUCFSS, READLINE aAY RE USED TO
REWUEST a CARD LAAGE FROM THE SI9LO CaRNPHROCESS
PRUCESS. SINILARLY The OUTPUT PROCESS AAY USE THE
AR ITELINEG PROCEDURE TG SEWU A LIRE 10 Tt PRINTERPROCESS
PROCESS. 5"
PROCEDURE READARG (St ARGSEw: VAR akG: ARGTYPE)Y:
PEOCENURE #RITEARG(S: ARGSEQ: ARG ARGTYPF) S
ny THESE TuO PHROCESSES HAVE fEfil RCFERED TO
SEVEhaL TINES ailOVE, THEY ARE THE PRIMARY
SOURCE OF PROCESS SYNCHROJIZATION IH SEGUENMTIAL
PASCaL UnDFR 59LV. IWITIaLLy S0LG LOADS THE 0O
PRIAGRAIT INTO THE JO08 PRUCESS PALRTITION AND THE IO
PRUGRAM TRTO 30CTH THE IAPUT Afhy OUTPUT
PROCESS PARTITIONS. 30 ACCEPTS CONIMANIS FROM
THE CUNSOLF asd L0oADS THE aPLRAPRILTE PROGRAMS
USI®Ns THF RUI} ROUTINRC, I1 IS TrhtEil THE RESPONSIBILITY
COF THE SERQUENTIAL PASCAL PROsrax To NOTIFY THE
10 PROGRANM OF &4dICH URIVER ShiduL) SE LOANDED IN
THE 1LPUT G OUTPUT PROCESS PaRTITIONS, THIS
IS DOMNE USING THE WRITCARG ROUTINE WITH THE NAME
OF THE (SEGCOOE)Y DRIVER TO 4L LOADFDe JR THE
(A3CII) FILE 1O BF TRAISFEREZU FROG CISK (USING
THL DISK pRIVEX)Y. WHEY TRAUSFLR IS COMPLETED.
TriE JO03 PROCLCSS DCTERMGIKES THID STATUS JF THE
CIAPLETE TRANSFER FROMN THZ 10 PRJIGRA™M 3Y USE OF THE
READARG RONTIVE AS SHOWH I READ ALD WRITE ABOVE,
PRUSRAAS VRITTE 1 Tu EXECUTE I THE IANPUT AND
QUTPUT PROCESS PARTITIunS NEEQ 3T USE THESE
ROUTIKNES a3 ALl CuURQINLATICS IS PCRFORGED BY
THE 19 PROwRAl. 5"

PROCEQURE LOJIKUP{ID: TOCUTTIFTIER; VAR ATTR: FIIEATTR: VAR FoUND: BOOLEAMN)?3
My [HIS ROGTINE ALLOWS THE SECQUENTIAL PASCAL
PROGRAT TO LETERMINE UntTinlER A GIVFN FILE EXISTS
Al IF SO WHAT 1TSS ATTRIRJTES RE. IT USES
TAE RESInEaT SaL0 FILE RIJTINC T SEARCH THE
DISK CaTatLoG. a»

PROCEDURE IOTRAMSFER
(ucyICes TunEvICE;: vAR pARail: IGPAXAL G Ya’ oLOCK: UHIV PAGE)
wy TRIS rROUTIOE ALLOWS Tivl SCALENTTAL PASCAL
PROGKAT TO ACCESS A PHYSICAL nNEVICT ((£.6. THE
TaPl URIVEY FOR DaTA TRAISFER, THI PARARETERS
ARE DESCRIBEC 16 THEIR TYCE Qo InITIOY AROVE, 5»

PROCEJURE T040VE(DEVICE: IOGEVICES Jark PALRANST IDPARAM) &
ny THIS nod T ALLOWS Fol THE COUTROL OF
PoSITIONT g OF PralCial 3 VICYS, IT 123
CUurREMTLY 05LLY IA2LENCGTED FOR THE TACL (TAPENDEVICE). 5w

.12

FUNCTIOH TASK: TASKKTND; ,
C oy THIS FUNCTION ALLOUS Toil SOJEGTIAL PASCAL
PRUGAAG TO DETERAINT LMYV WHICt PROCESS PARTITION
IT HAS BFFN LOANED. TiilS 18 NFCESSadY To DETERMINE
WHAT FACILITIES ARE AVAILABLE THROnGH THESE
INTERFACF KUUTIHES., S® '

PROCENURE RUM(IO: INENTIFTER: VAR paRaN: ARGLTST

VAR LTNES LITCGERS VAR REZSULTE PROGRESULT)

ny AS LOTED ABOVE, TdE RUN PROCEOURE ALLQAS A

SEQUENTIAL PASCAL PROGHRAS T2 Cabl ANOTHER PROGRAH.
THE TIDENTIFIER IS THE NAMC OF THAE SEWUCOUE DISK
FILE CuNTATHING THE DESIRED PROGRAN.. THE LINE
WILL IDERTIFY THE oLIde JUIEER T49 ERROR IN THE
EVENT OF ARNORsAL TERMINATION, TiHr PARAMATERS
NEEDED By THE PrOsRaM SHIULD aF SUpPLIED IN
THE PARAM ARGLIST. THE FIRST oF ThESE (PARAM(.1.))
IS STANDARDLY A BOOLEAR WHICH LILL BE RETURNED
BY THE CalLEU PRIOGRAM TO HOTIFY JdnFTHER 17
COMPLETEN PRUCESSIie NORMALLY. - 3"

PROGRAM P{VAR PARAM: ARGLIST):
wy THIS 1S5 THE PRAGRA™T STATERE.:T WhICH SIGHNIFIES
THE EH ofF THE PREFIX. IT ALSA CONTALUS THE
PARASETERS WHICH HAVE REE™ PASSED TU THIS PROGRAM.
THEY MAY DE ACCESSED AS PARAG({.Ie)e ®

wINSERT YOUR PROGRAMN HERF AND YOU'RE READY TO GO, GOOD LUCKI®

3.13

GROUP 10: RUNNING THE PROGRAM

LOADING SOLO (10.2)

CONSOLE COMMANDS (10.3)
SAMPLE RUN (10.5)

SAMPLE PROGRAM (10.6)
COMPILER OPTIONS (10.7)
COMPILER ERROR MESSAGES (10.8)

RUN TIME ERROR MESSAGES (10.12)

10.1

LOADING SOLO/PASCAL AS AN 0S-32M/T TASK

(Assume all necessary files are initialized on disk., see

Pascal Packaging Manual.)

$COPY; 0S-32M/T

"AT THE OPERATORS CONSOLE"
PASCAL CAR, SYS2;PASCAL.VD
"BRING UP PASCAL UNDER SOLO AT CARROSEL"
"VWIRTUAL DISK = SYS2:PASCAL.VD"
"$COPY IS ON"

"SYSTEM CUES USER WITH 'DO:' AT PASCAL TERMINAL"

10.2

@l

GETTING HELP WITH PASCAL OPERATOR COMMANDS

 type |
HELP cues user to type LIST
command name w/o parameters. explains the parameters.

e.g:

command name with parameters executes command

object program name with any parameters executes program

vo! -

coPY
COPY:

TRY AGAIN

_ COPY(SOURCE, DESTINATION: IDENTIFIER) Yo
~Dd: ~ '

CONCAT
CONCAT:
TRY AGAIN

CDNCAT{SOURCE(.I.),.}.,SDURCE(.S.),DESTINATISH: IDENTIFIER)
DO:

10.3

SELECTED COMMANDS AT THE PASCAL OPERATORS CONSOLE

FILE OPERATIONS
COPY . ., . . . copies a file

DO executes a2 command or a file of commands
CONCAT concatenate files

FILE stores a file on disk

LIST list all files of selected types -

these use "devices":

INPUT

CARD = card reader

APPEND = card + append standard prefix
CONSOLE= PASCAL console

DISK = virtual disk

OUTPUT

PRINTER = virtual printer

REMOVE = remove prefix PRINTER

EDITING
EDIT simple editor from C.I.T.
PEDIT. similar to 0S-32M/T editor

RUON compile and run
SPASCAL . . . compiles a program

name. eXecutes named PASCAL object program

10.4

SAMPLE RUN

“AT THE PASCAL CONSOLE"

KSU PASCAL INTERPRETER RO0-00

Do:

"READ CARDS"

COPY (CARDS ,MYFILE)

DO: 5
“"EDIT SAMPLE PROGRAM"

PEDIT(MYFILE)

PEDIT:

RE
38 END;

EOF
CH/;/.
38 END,
EN
DO:
CONCAT (PREFIX,MYFILE ,MYFILE)
DO:
"COMPILE"
SPASCAL(MYFILE,PRINTER, OBFFILE)
DO:
"EXECUTE WITH 1/0 TO CONSOLE"
OBFFILE
THIS IS A STRING
THIS IS A STRING
COMPARE
OBFILE
THIS IS A STRING
THIS IS
NO COMPARE
OBFFILE
THIS IS A STRING
THIX IS A STRING
NO COMPARE

10.5

SAMPLE PROGRAM (PREFIX OMITTED)

VAR STRINGL«STRIMNG2:LINES
I:INTEGER: OR:inOULLCANS

ROCEDIREREAT-TEAT VAR TEXTS CYTYI V8 —
VAR T:INTEGER; C:CHAR;
HEGIN
Ti=03 =
REFEAT
t=I+13
ARCCERPTCY
TEXT(.I.)
UNTIL C=iiL;
[}

4
¥
.
L]

=Cs

WRITETEAT(TEXTILINEY

F ol S Y ¥ S |
Loy W LR

woon -

O T =~

™ =4 se o0 5 a

BEGIN
READTEAT(STRING1)

DL Tt o Sl ¥ 2. .J D¢ 2 F 00 P Y
NREAUTEATISOITRINGZT

IF OK
THEN WRITETEXT(*CONPARE(:10:)") i
W“_EE%H' : 3 : Mn ‘n a -]
FND.

10.6

" COMPILER OPTIONS

NUMBER only procedures declared will be numbered

(reduces amount of code X 25%)

CHECK (really no check) eliminates run time
checks for legal enumeration values, non NIL

printer values,
TEST for debugging the compiler.

XBED produce a cross reference table.

Default: mnone of the above.

10.7

COMPILATION ERROR MESSAGES

Example:
xrye¥s PLSY 2 LI 9) COMSTALT DFH SYMTAX
xev b ke PASS 3 LIV 210 IHVALIG HARE USAGE

= e
¥ wd — \ Vil

PASS1 LEXICAL ANALYSIS

*ENDLESS COMMENT,!
¢ INVALID NUMBER, !
'TABLE OVERFLOW, '
*INVALID STRING, !
*BAD CHARACTER. !

10.8

SYNTAX

'*SEGL PROGRAM,
*DECLARATION,
*CONSTANT DFN,
'*TYPE DFN,
'TYPE.,

s YENUMERATION TYP,.
*SUBRANGE TYPE,

-

*SET TYPE,

{ *ARRAY TYPE,
{*"RECORD TYPE,
[*STACK LENGTH.

(*VAR DECLARATION,

[*ROUTINE,

| *PROCEDURE,
!*FUNCTION,
"'WITH STHT,
. YPARAMETER,
. 'BODY,
"9STMT LIST,
V'STATEMENT,
' *ID STHMT.

I *ARGUMENT,

{*COMPOUND STMT.,

‘*IF STMT,
[*CASE STMT,

I*LABEL LIST,
{"WHILE STMT,
[YREPEAT STMT,
[YFOR STMT,
'"CYCLE STMT,
. *EXPRESSION,
'*VARIABLE,
"YCONSTANT,
"*INIT STHMT,
*TERMINATION,
.'PREFIX.,

. *INTERFACE,

[*POINTER TYPE,

10.9

- W B W ®» W % 9 & @ % A9 %
f s s e at m - .

‘syNTP\X»'

P

(
{

0

ASS 4 SEMATIC CHECKS

*UNRESOLVED ROUTINE,
'AMBIGUOUS IDENTIFIER,
*COMPILER ABORT,
"INVALID CONSTANT,

VPINVALID SUBRANGE,

*MISSING ARGUMENT,
*NOT A ROUTINE,

. *TOO MANY ARGUMENTS,

\'LABEL VALUE TOO LARGE,
[*INVALID LABEL,
[*AMBIGUOUS LABEL,
{*INVALID WITH VARIABLE,
{YINVALID INITIALIZATION,
(*NOT A FUNCTION,
[*INVALID NAME USAGE.,

! *INVALID SELECTION.
{*INVALID SUBSCRIPTING,
{YINVALID INTERFACE,

t *INVALID CALL,

' *INVALID POINTING,
"PINVALID RESOLUTION,

PASS 4 MORE SEMATIC CHECKS

" INVALID NESTING,

‘v ADDRESS OVERFLOW,
"*ACTIVE VARIABLE,
'YQUEUE VARIABLE.,
*NESTED PROCESS.
c*INVALID ENTRY VARIABLE.

*INVALID FUNCTION TYPE,

‘*RECORD ENUMERATION.,

"YLONG ENUMERATION,

"¢ INVALID INDEX TYPE.
‘*INVALID MEMBER TYPE.
'*PROCESS STACK USAGE.,
E P

"t INVALID PARAMETER.
"*COMPILER ABORT.

'10DD LENGTH STRING TYPE.
"*INVALID RESOLUTION.

' *INVALID TAG TYPE.,
:*RECORD POINTER TYPE.

10.10

- m- =

e R Y

".-‘.....--‘-‘-“‘-

')
')
1

- & ® =@ & 9
B e

PASS 6

MORE SEMANTIC ANALYSIS

[*COMPILER ABORT,
. "OPERAND TYPE.
C*NOT A VARIABLE,
"*NOT ASSIGNABLE, *.
"TINVALID INITIALIZATION,

- - =

CODE GENERATION AND FLOW ANALYSIS

L
R

_1TQO MUCH STACK,
*TO0 MUCH CODE.

10.11

FORM1

FORM2

ERROR

TASK NAME:
TASK NAME:
TASK NAME:

TASK NAME:
TASK NAME:
TASK NAME:

MESSAGES

1) OVERFLOWERROR .

2) POINTERERROR
3) RANGEERROR

4) VARIANTERROR.
5) HEAPLIMIT .,
6) STACKLIMIT.

RUN TIME ERROR MESSAGES

SYSTEM LINE "LINE NUMBER"
"ERROR MESSAGE"
TASK PAUSED

JOB LINE "LINE NUMBER"
"ERROR MESSAGE"
TASK PAUSED

. « « +» arithmetic error

+ +« o » o 11legal pointer

¢« « » o« o 1llegal value for an enumeration

.« « « « . illegal value for an enumeration in a record
« + « « . exceed size of HEAP

« » « « «» exceed size of execution stack

Examples

*PASCAL CAR, USR6:A/PASCAL.VD2

%11:28:17
#11:28:17
#%11:38:17
*T CAR
*CAN
*11:28:17

CAR:SYSTEM LINE 280¢
CAR:RANGE ERROR
CAR:TASK PAUSED

CAR:END OF TASK 255

10,12

GROUP 11: DIFFERENCES BETWEEN PASCAL

REPORT AND SPASCAL (11.2)

11.1

DIFFERENCES
USER MANUAL AND REPOI

{COMMENTY}
beqin (UPPER AND LOWER CASE)
ARRAY 11..1010F INTEGER
+ (FOR POINTERS)
PACKED
AND
EILE
ForwARD (NOT RESERVED)
G0 _TO
LABEL
NIL

NOT HERE

PROGRA

1l 2

KSU IMPLEMENTATION

"COMMENT”
BEGIN (UPPER CASE ONLY)
ARRAY (.1..10.) OF INTEGER
@ (FOR POINTERS)

NOT IN KSU IMPLEMENTATION

&

NOT IN KSU IMPLEMENTATION
FORWARD (RESERVED WORD)

NoT IN KSU.IMPLEMENTATION
NOT IN KSU IMPLEMENTATIORN
NOT IN KSU IMPLEMENTATION

UNIV

PREFIX + PREFIX ROUTINES,
PROGRAM

A SEQUENTIAL PASCAL MANUAL FOR FORTRAN PROGRAMMERS

by

JERRY DEAN RAWLINSON
B. S., University of Illinois, 1964

AN ABSTRACT OF A MASTER'S REPCRT

mitt;ed in partial fulfillnent of the
requirements foz; the degree
MASTER OF SCIENCE
Bepartinéntf _of Computer St;ience
© KANSAS STATE UNIVERSITY

Manhattan, Kansas

1977

This report is designed to serve as an instructional aid in the
introduction of FORTRAN programmers to the Kansas State University (XSU)
implementation of the programming language Sequential Pascal,

The report has been structured to take maximum advantage of the
FORTRAN programmer's previously acquired knowledge of the FORTRAN
language, Basic language terms are not defined as the programmer is assumed
to be familiar with them, Based on this assumption, FORTRAN and Sequential
Pascal examples are presented in a sequence designed to allow the
programmer to quickly grasp the similarities and differences between
the two langugges. Typical FORTRAN programming problems are presented
along with the correspon?ing Sequential Pascal solution, This approach
allows the user to make direct comparisons between the two languages and
provides for quick reference when the user wishes to find a Sequential
Pascal solution to a typical FORTRAN programming problem,

Significant differences between the two languages are emphasized
through the use of illustrations and warning statements, Programming
exaﬁples are also used to introduce the user to Sequential Pascal
capabilities which can not be duplicated in FORTRAN.

‘ The use of this feport as an instructional aid should significantly
reduce the time required to train a FORTRAN programmer to write

Sequential Pascal programs,

