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Invariant manifolds for dissipative systems
A. G. Ramma�

Department of Mathematics, Kansas State University, Manhattan, Kansas 66506-2602,
USA

�Received 18 November 2008; accepted 2 March 2009; published online 2 April 2009�

A method is given for a study of a nonlinear evolution equation for finding “slow”
invariant manifolds. The method is studied for the evolution problem u̇=−Au
+ ��Au ,u� / �u ,u��u, u�0�=u0, where A is a linear, self-adjoint, possibly unbounded
operator in a Hilbert space. Global existence and uniqueness of the solution to this
problem are proven. Asymptotic behavior of the solution as t→� is studied. Ana-
lytic solution of the above nonlinear evolution problem is found. Conditions are
given on the spectrum of A and on the initial data u0 for the trajectory u�t� not to
have a strong limit in H as t→� and not to stay in any finite-dimensional space. In
this sense the motion is chaotic. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3105924�

I. INTRODUCTION

In Refs. 1 and 2 the dissipative dynamical systems, described by the evolution equation

u̇ = − F�u�, u�0� = u0, �1�

are studied. The map F :H→H in �1� is a map in a Hilbert space H. This map is assumed
monotone,

�F�u� − F�v�,u − v� � 0. �2�

Physically this assumption implies dissipativity of the dynamical system. Passive nonlinear �and
linear� networks give an example of a wide class of dissipative systems.6,7 A monotone operator F,
satisfying �2�, generates a semigroup S�t� such that the unique solution to �1� is u�t�=S�t�u0. A
subset H0 of H is called invariant with respect to S�t� if S�t�u0�H0∀ t�0 provided that u0

�H0. The problem we are interested in consists of finding invariant subsets of S�t�. In Ref. 1 a
method for finding these subsets is proposed. These subsets are assumed to be smooth manifolds.
In Ref. 16 invariant manifolds and attractors are studied for a number of nonlinear physical
systems.

We describe the method for equations with linear operators. In this case the method consists
of solving the problem,

u̇ = − Au + bu, b ª b�t� ª b�u�t�� =
�Au,u�
�u,u�

, u�0� = u0. �3�

Here A�0 is a linear operator in H, which replaces F in �1� in the case of linear equations. We
assume that A is closed, densely defined, self-adjoint. By Es=E��−� ,s��, we denote its resolution
of the identity, Es=Es+0. We assume that Esu0�0 for all s� �m ,m+��, where m is the infimum of
the spectrum of A and ��0 is a fixed number.

The idea behind Eq. �3� is simple: we subtract from Au its projection onto the unit vector
u / �u�. If the difference equals to zero, then we found a linear invariant subspace for A.
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This idea is motivated in Ref. 1 for the case when A is a matrix in a finite-dimensional space.
In Ref. 1 one can find many applications of this idea to physical chemistry, polymer science, and
statistical physics. In Ref. 3 and in recent paper,4 this idea is also used. However, a justification of
this idea for the general case of a nonlinear monotone operator F in Eq. �1� is still an open
problem. In our paper this problem is solved for linear, possibly unbounded, self-adjoint operator
A�0 in an infinite-dimensional Hilbert space H.

It turns out that problem �3� has a unique global solution, that is, the solution u�t� is defined
for all t�0, and u�t� converges strongly in H, as t→�, to a limit which belongs to the eigenspace
of A corresponding to the minimal eigenvalue of A in the segment �m ,m+��. If there are no
eigenvalues of A in this segment, then u�t� does not converge strongly in H as t→�. If there are
infinitely many eigenvalues in the segment �m ,m+�� and their infimum m is an eigenvalue of A,
then u�t� converges strongly to an element of the eigenspace of A corresponding to the eigenvalue
m. Therefore, one can find an invariant with respect to A linear manifold �subspace� by solving
problem �3� and studying the behavior of the solution u�t� as t→�. Some of these conclusions
remain valid if A is not self-adjoint but its spectrum lies in an angle �arg ������ /2. If F is
nonlinear, then one cannot, in general, expect the existence of a linear invariant manifold for F.

In Sec. II the existence and uniqueness of the solution u�t� to problem �3� are discussed. In
Sec. III the existence and nonexistence of the strong limit of the solution u�t� as t→� are
discussed as well as the time evolution of the invariant subspaces of the operator A. In Sec. IV a
closed-form solution to problem �3� is obtained.

An interesting, unexpected, and quite novel result in our paper is an analytic solution to the
Cauchy problem for the nonlinear operator, Eq. �3�. This solution allows us to prove global
existence and uniqueness of the solution to problem �3�. Apparently, this result is not possible to
obtain by the known techniques, based on the assumption that B satisfies a Lipschitz condition,
because the operator B�u�ª−Au+ ��Au ,u� / �u ,u��u does not satisfy this condition if A is un-
bounded. Therefore even the local existence of the solution to problem �3� is not guaranteed a
priori if the operator A is unbounded. Note also that even if A�0, the operator B is not necessarily
monotone. Therefore the known results on the semigroups, generated by maximal monotone
operators, are not applicable to problem �3� if A is unbounded.

Another novel, as it seems, physical phenomenon, discussed in our paper, is the occurence of
a chaotic motion of a special type in the infinite-dimensional dynamical system, described by Eq.
�3�. Namely, we give conditions on the spectrum of A and on the initial element u0 which are
sufficient for the trajectory of the solution u�t� to �3� not to have a strong limit in H and not to stay
in any finite-dimensional subspace of H. In this sense the motion is chaotic �see Remark 2 in Sec.
III�.

II. EXISTENCE AND UNIQUENESS OF THE SOLUTION

Global existence and uniqueness of the solution to problem �3� in the case when A is a linear
unbounded self-adjoint operator are proven in Sec. IV by a novel method, see Theorem 4.1. In
Sec. II we assume that A is a bounded linear self-adjoint operator and give a simple proof of the
global existence and uniqueness of the solution to problem �3�. This proof is based on the known
techniques, in contrast to the proof in Sec. IV.

If �3� has a solution, then multiplying �3� by u one gets �u̇ ,u�=0. This implies �u�t� ,u�t��
= �u0 ,u0�=const, t�0, so �u�t��= �u0��0, t�0, and, therefore, the map u0→u, u�t�=S�t�u0 is
isometric.

Let A be a bounded operator and 	 be a subset of the spectrum 
�A� of the operator A. In the
argument in Sec. III one has 	= �m ,m+��, where � is a positive number. The part of A, which acts
in the invariant subspace E�	�H of A, will be of interest for us. This part, that is, the operator
E�	�A, is bounded because 	 is a bounded interval. Therefore the assumption that A is bounded
is not a restrictive one for our purposes. In Sec. IV we will get rid of this assumption.

If A is bounded, then problem �3� has a unique local solution because its right-hand side is
Lipschitz. This solution is global because supt�0�u�t��= �u0���. If A=A�, then the solution to �3�
satisfies the following relation:
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u�t� = e−tA+�0
t b�s�dsu0 = e�0

t b�s�dse−tAu0. �4�

III. BASIC RESULTS

Briefly, the basic results of this section can be described as follows.
If the infimum m of the spectrum 
�A� of the operator A is an isolated eigenvalue and the

projection of the initial data u0 onto the eigenspece Hm, corresponding to this eigenvalue, is
nonzero, then there exists a strong limit of the solution to problem �3� as t→�, limt→� u�t�=v,
v�Hm, and �v�= �u0�.

The eigenspace Hm in this case is the slow linear invariant manifold for the dissipative
dynamical system described by the problem �3�. It is “slow” because the part of the solution u�t�
in Hm is changing in time slower than the part corresponding to the other parts of the spectrum of
A.

If the interval 	= �m ,m+�� consists of the points of absolutely continuous spectrum of A, and
the projection of the initial data u0 onto the invariant subspace E�	�H of A is nonzero, then there
does not exist strong limit in H of the solution u�t� to problem �3� as t→�; the trajectory of the
solution u�t� does not stay in any fixed finite-dimensional subspace of H or in any fixed compact
subset of H; it does stay on an infinite-dimensional sphere �u�t��= �u0� in H. In this sense the
trajectory of the solution u�t� is chaotic.

More detailed formulation of the results is given in lemmas, theorems, claims, corollaries, and
remarks.

A. Large-time behavior of the solution.

Let us assume that u0�E��m ,m+���HªE�	�H for an arbitrarily small ��0. Then formula
�4� shows that u�t��E�	�H, and, by the spectral theorem for the self-adjoint operator A, one has

b�s� =
�Au�s�,u�s��
�u�s�,u�s��

=

�
m

m+�

�d�E�u,u�

�u0,u0�
�

�m + ��
�u0�2 �E�	�u�2 � m + � .

Lemma III.1: If H=H1 � H2, H1 and H2 are invariant with respect to A subspaces, Hj =E�	 j�H,
j=1,2, 	1�	2=0” , then u�t�=u1�t� � u2�t�, uj�t��Hj. If sup��	1

�ªm1�m2ª inf��	2
�, then

limt→��u2�t�� / �u1�t��=0.
Proof: Equation �3� is equivalent to the following equations:

u̇1 = − Au1 + bu1, u̇2 = − Au2 + bu2, �5�

u1�0� = u01 = E�	1�u0, u2�0� = E�	2�u0. �6�

One has �u1 ,u2�=0 and

uj�t� = e−tA+�0
t b�s�dsu0j, j = 1,2. �7�

Therefore,

lim
t→�

�u2�t��2

�u1�t��2 = lim
t→�

�
	2

e−2std�Esu0,u0�

�
	1

e−2std�Esu0,u0�
� lim

t→�

e−2m2t�u02�2

e−2m1t�u01�2 = 0. �8�

Lemma III.1 is proven. �
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Lemma III.1 allows one to neglect, as t→�, the part of the solution to problem �3�, corre-
sponding to the part of A in H2=E�	2�H if inf 	2�sup 	1. Therefore, when one studies large-
time behavior of the solution to �3�, one may assume without loss of generality that the operator
A is bounded.

Lemma 3.1 can be stated in a stronger form.
Claim 1: Suppose that m1=m2ª��m and assume that for an arbitrarily small fixed 
�0,

the spectrum of A is continuous in the interval ��−
 ,�+
� . Then the conclusion of Lemma 3.1
remains valid.

Let us prove this claim. According to formula �8� it is sufficient to prove that

J ª lim
t→�

�
	2

e−2std�Esu0,u0�

�
	1

e−2std�Esu0,u0�
= 0. �9�

For an arbitrarily small fixed 
�0, Lemma 3.1 yields

J1 ª lim
t→�

�
	2\��,�+
�

e−2std�Esu0,u0�

�
	1

e−2std�Esu0,u0�
= 0. �10�

Let d�Esu0 ,u0�ªd��s ;u0�ªd��s�. Since the spectrum of A is continuous in the interval ��
−
 ,�+
�, one has lim
→0����+
�−�����=0. Thus,

J2 ª lim
t→�

�
�

�+


e−2std�Esu0,u0�

�
	1

e−2std�Esu0,u0�
� lim

t→�

�
�

�+


d��s�

�
	1

d��s�
= ���� + 
� − �����/�E�	1�u0� = o�1�

as 
→0, where o�1� is uniform with respect to t�0.
Therefore, J�o�1�, and since J does not depend on 
 and 
 can be taken arbitrarily small, it

follows that J=0. Claim 1 is proven. �

One may strengthen Lemma 3.1 further. Namely, the following claim holds.
Claim 2: Suppose that 
�0 is a small fixed number. Assume that the spectrum of A in the

interval �m ,m+
� is arbitrary, containing, possibly, countably many eigenvalues � j, which may
form a dense set in the interval �m ,m+
�, so that the spectrum of A in �m ,m+
� contains a
singular component. Assume that m is an eigenvalue of A, possibly of infinite multiplicity. Let Hm

be the corresponding eigenspace, Pm be the orthogonal projector onto Hm, and assume that
Pmu0�0. Let H1ªHm and H2ªH1

�. Then the conclusion of Lemma 3.1 remains valid.
Proof: The idea of the proof is the same as in the proof of Lemma 3.1 and Claim 1. The role

of 	1 is now played by the point m; the denominator in �8� is e−2mt�Pmu0�2�0. In the formula
analogous to �10�, one takes 	1=�=m and replaces 	2 \ �� ,�+
� by �m ,m+
�. The function
�Esu0 ,u0�ª��s� is a monotone function. It has a unique decomposition into a sum ��s�=�d�s�
+�c�s� of continuous part �c�s� and singular part �d�s�, corresponding to the jumps of �. We want
to prove that

lim
t→�
�

m+0

m+


e−2t�s−m�d��s� = 0.

This follows from the Lebesgue dominant convergence theorem because the function e−2t�s−m�

converges to zero in measure � as t→�. �

042701-4 A. G. Ramm J. Math. Phys. 50, 042701 �2009�

Downloaded 09 Aug 2012 to 129.130.37.132. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



Corollary 1: If 
�A� denotes the spectrum of A, inf 
�A�=m, m is an isolated eigenvalue of
A, and H1 is the corresponding eigenspace, dim H1��, then Lemma III.1 implies that u�t�, the
solution to (3), converges strongly, at an exponential rate, to an element of H1. The subspace H1

is an invariant linear manifold for problem (3).
Lemma III.2: Assume that u01�0 and m is an isolated eigenvalue of A. Then there exists the

strong limit,

lim
t→�

u�t� = u01
�u0�
�u01�

. �11�

Proof: From Lemma III.1 it follows that

lim
t→�

�u1�t�� = �u0� . �12�

From �5� and �6� one gets

u1�t� = e−mt+�0
t b�s�dsu01, �u1�t��2 = e−2mt+2�0

t b�s�ds�u01�2. �13�

From �12� and �13� it follows that

lim
t→�

e−mt+�0
t b�s�ds =

�u0�
�u01�

. �14�

Consequently, formula �11� is established. �

Corollary 2: Under the assumption of Lemma III.1 the solution to (3) tends to an element of
H1 as t→�, provided that u01�0.

This conclusion remains valid even if dimension of H1 is infinite because the time evolution
of every component uj�t�ª �u�t� ,ej�, where 	ej
 forms an orthonormal basis of H1, is independent
of j.

Let us discuss the case when the point m=inf 
�A� is not an isolated point of spectrum.
First, let us assume that m is a point of continuous spectrum of A and not an eigenvalue. In this

case the operator A has no eigenvalues in H�ªE�	��H, 	�= �m ,m+��. Assume that Es=Es+0 and
E�	��u0�0, ∀�� �0,�0�, where �0�0 is a small fixed number.

Lemma III.3: If the spectrum of A in H�0
is continuous and does not contain embedded

eigenvalues, and if E�	�0
�u0�0, then there does not exist strong limit of the solution u�t� to (3) as

t→�.
Proof: Suppose

lim
t→�

u�t� = f . �15�

By Lemma III.1 one may assume that A is bounded, with �A��m+�0, and that u0=u01

ªE�	�0
�u0. Indeed, take u02=0, and then u�t��H�0

,

�u�t�� = �u0� = �f� . �16�

If �15� holds and A is bounded, then limt→��Au�t�−Af�=0, and

lim
t→�

�Au�t�,u�t��
�u�t�,u�t��

=
�Af , f�

�f�2 ª � . �17�

From Eqs. �15�–�17� and �3� the existence of the limit

lim
t→�

u̇ ª w = − Af + �f , � =
�Af , f�

�f�2 , �18�

follows.
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Let us prove that w=0, that is, that f is an eigenvector and � is the corresponding eigenvalue.
Since we have assumed that the set �m ,m+�0� does not contain eigenvalues, this contradic-

tion will prove that the strong limit (15) cannot exist.
To prove that w=0, take an arbitrary ��H and let ��t�ª �u�t� ,��. Then

lim
t→�

��t� = �f ,��, �̇ = �u̇,��, lim
t→�

�̇ = �w,�� .

Choose �=w. Then

lim
t→�

��t� = �f ,w�, lim
t→�

�̇�t� = �w,w� . �19�

Let us prove that �f ,w�=0. If this is done, then �19� implies w=0 and Lemma III.3 is proven.
To prove that �f ,w�=0, rewrite Eq. �18� as

w = − Af + f
�Af , f�
�f , f�

�20�

multiply �20� by f and get the desired conclusion:

�w, f� = 0. �21�

Relations �19� take the form:

lim
t→�

��t� = 0, lim
t→�

�̇�t� = const ª c � 0, �22�

if �w��0.
Relations �22� imply const=0. Indeed, the second relation �22� implies

��t2� − ��t1� = �t2 − t1��c + o�1��, as t2,t1 → � . �23�

This contradicts the first relation �22� unless c=0. Lemma III.3 is proved. �

Remark 1: In the proof of Lemma 3.4 we assumed that A is a bounded self-adjoint operator.
This is done without loss of generality. If A is unbounded, its spectrum is a union of two non-
overlapping components, say, �m ,m+�� and �m+� ,��. We assume that E��m ,m+���u0�0 for
some �, m����. Then the part u2�t� of the solution u�t�, which lies in the invariant with respect
to A subspace E��m+� ,���H, is o��u1�t��� as t→�, where u1�t� is the part of the solution u�t�,
which lies in the invariant with respect to A subspace E��m ,m+���H. Therefore, one may neglect
u2�t� and consider the part A1 of the operator A in the invariant subspace E��m ,m+���H. In this
subspace A1 is a bounded self-adjoint operator.

Remark 2: It follows from Lemma III.3 that the trajectory u�t�, 0� t��, cannot stay in a
finite-dimensional subspace of H or in a precompact subset of H. Indeed, this trajectory stays on
the sphere �u�t��= �u0�, so it stays in a bounded set. A bounded set in a finite-dimensional subspace
of H is precompact. Therefore, there is a sequence tn, n=1,2 , . . . ., such that unªu�tn�→v as n
→�. One may assume that tn→� because one may consider the bounded set u�tn� with tn=n, for
example. The argument, used in the proof of Lemma III.3, in this case yields an existence of an
eigenvalue �� �m ,m+�� of A, contrary to the assumption, made in Lemma III.3. Therefore the
trajectory u�t�, 0� t��, must travel in an infinite-dimensional subspace of H.

This can be interpreted as a “chaotic” behavior of the solution to the evolution problem (3)
if A has continuous spectrum in the interval �m ,m+�� and does not have eigenvalues in this
interval.

Let A be a Schrödinger operator −�2+q�x�, and assume that q is a real-valued function,
�q�x��=O��1+ �x � �−a�, a�2, x�R3, and A�0. Then m=0 is the infimum of the spectrum of A. It
is proved in Refs. 14 and 15 that under these assumptions m is not an eigenvalue of A. Therefore,
Lemma III.3 is applicable to this A.
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Lemma III.4: If �� �m ,m+�0� is the only eigenvalue of A on the interval �m ,m+�0�, and
there exists the strong limit of u�t� in H, that is, (15) holds, then

Af = �f . �24�

Proof: The conclusion of this lemma follows from Lemma III.3. �

Corollary 3: Assume that there are infinitely many eigenvalues �1��2�¯ in the interval
�m ,m+�0�, and there are no other points of spectrum of A. Assume that P1u0�0, where P1 is the
orthoprojector onto the eigenspace of A corresponding to the eigenvalue �1. Assume also that the
limit (15) exists. Then f � P1H.

Proof: Under the assumptions of Corollary 3 the limiting point of the eigenvalues � j exists in
�m ,m+�0� and is larger than �1.

If the infimum of 
�A� is not an eigenvalue of A, and �� �m ,m+�0� is an eigenvalue of A,
then the limit of u�t�, as t→�, does not exist if E��m ,m+���u0�0 for m+���. This follows
from Lemma 3.3. Indeed, the part of the solution u�t� of problem �3�, which lies in E��m ,m
+���H, dominates, as t→�, the part which lies in E��m+� ,m+�0��H, and by Lemma III.3 there
does not exist the strong limit of E��m ,m+���u�t� in H. Thus, Corollary 3 is proven. �

Will the solution u�t� to �3� tend to a limit if m=inf 
�A� is an eigenvalue embedded in the
continuous spectrum of A?

Theorem III.5: Assume that m is an eigenvalue of A, and Pmu0�0, where Pm is the ortho-
projector onto Hm, and Hm is the eigenspace of A corresponding to the eigenvalue m. Then there
exists the limit (15) and f �Hm.

Proof: The conclusion of Theorem 3.5 follows from Claim 2 as follows. One writes u�t�
=u1�t�+u2�t�, where u1�t��Hm and u2�t��Hm and limt→��u2�t�� / �u1�t��=0. Therefore there exists
the limit �15� and f = ��u0� / �Pmu0��Pmu0. This result is similar to the one in Lemma 3.2. �

Remark 3: Our arguments can be generalized to some classes of non-self-adjoint operators.
For example, assume that A is a bounded operator, with a discrete spectrum, Re 
�A��m�0, its
eigenvalues are of finite multiplicity and isolated, except, possibly, one limiting point m�0. In
this case one can write

e−tA =
1

2�i
�

C
ets�A + sI�−1ds, t � 0,

where the contour C encircles the spectrum of A. If the eigenvectors of A form a Riesz basis of H,
then one can solve problem �3� using expansions in eigenvectors,

u�t� = �
j=1

�

cj�t�� j, A� j = � j� j . �25�

A basis 	� j
 j=1
� of H is called a Riesz basis if there is a bounded linear operator B :H→H, such that

B−1 :H→H is bounded, and B� j =� j, where 	� j
 j=1
� is an orthonormal basis of H.

Sufficient conditions for a non-self-adjoint operator A to have a Riesz basis consisting of its
root vectors are known �see, e.g., Refs. 5 and 9–13�. Eigenfunction expansion theorems for
non-self-adjoint Schrödinger operators in the whole space with complex-valued rapidly decaying
potentials were obtained in Refs. 9 and 12, and for the Schrödinger operators in the exterior
domains in Refs. 10, 11, and 13, one finds their applications to the eigenmode expansion and
singularity expansion methods in diffraction theory.

Equation �3� implies

ċj = − cj�t�� j + b�t�cj�t�, cj�0� = u0j , �26�

where u0j are defined by the formula
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u0 = �
j=1

�

u0j� j , �27�

and b�t�=b�t ,u0�. Thus

cj�t� = e−�jt+�0
t b�s�dsu0j . �28�

This formula allows one to conclude that limt→�	�cj+1�t�� /cj�t�
=0 if R� j �R� j+1.

B. Evolution of the invariant subspaces.

Let H0�H be an invariant subspace of A and u�t� be the solution of �3�. Then

u�t� = T�t�u0 = e−tA+�0
t b�s�dsu0, b�s� = b�s,u0� , �29�

and �T�t�u0�= �u�t��. Let 	v j
 be an orthonormal basis of H0. If v j�t� solves problem �3� with u0

=v j, then �v j�t��= �v j�=1, ∀t�0, v j�t��H0 ∀t�0 because v j�t�=e−tA+�0
t bj�s�dsv j. Since e�0

t bj�s�ds is
a scalar factor and H0 is an invariant subspace of the operator e−tA, it follows that T�t�H0�H0.
Since b�s ,u0� depends on u0 nonlinearly, the mapping T :u0→u�t� is nonlinear and isometric. If
P�t� is an orthogonal projector �projection operator� on the one-dimensional subspace, spanned by
v j�t�, that is,

Pjf ª �f ,v j�t��v j�t�, �v j�t�� = �v j�0�� ª �v j� = 1,

then

Ṗj f ª �f , v̇ j�t��v j�t� + �f ,v j�t��v̇ j�t� = �f ,− Av j�t� + bj�t�v j�t��v j�t� + �f ,v j�t���− Av j�t� + bj�t�v j�t��

= − PjAf + 2bj�t�Pjf − APjf . �30�

Since f is arbitrary, this implies

Ṗj�t� = − �Pj�t�A + APj�t�� + 2bj�t�Pj�t�, Pj�0� = Pj0, �31�

Pj0 ª �f ,v j�0��v j�0� . �32�

Equation �31� is nonlinear because bj�t� depends nonlinearly on Pj�t�.

IV. ANALYTIC SOLUTION OF THE EVOLUTION PROBLEM

The main result of this section is an analytic �closed form� formula for the solution to non-
linear evolution problem �3�. This formula is valid for unbounded self-adjoint operators A�0 and
yields existence and uniqueness of the solution to �3�.

One may assume without loss of generality that �u0�= �u�t��=1 because b�t�ªb�u�t��
= �Au ,u� / �u ,u� is invariant under the transformation u→�u, where ��0 is a constant, and �3� is
also invariant under such transformation. Thus, we assume throughout this section that

A = A� � m � 0, �u0� = �u�t�� = 1,

and denote

y�t� ª �Au�t�,u�t��, z�t� ª �
0

t

y�s�ds ,

where u�t� is the solution to �3�, so
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ż = y, z�0� = 0.

Formula �29� can be rewritten as

u�t� = eze−tAu0. �33�

Applying the operator A to �33� and multiplying by u, one gets

ż = e2zh�t�, z�0� = 0; h�t� ª �Ae−2tAu0,u0� . �34�

Integrating this equation one obtains

z�t� = −
1

2
ln�1 − 2�

0

t

h�s�ds
,y�t� = ż�t� =
h�t�

1 − 2�
0

t

h�s�ds

. �35�

This yields an analytic formula for the solution to �3� under the assumption that �u0�t��=1,

u�t� =
e−tAu0

�1 − 2�
0

t

h�s�ds
1/2 , h�t� ª �Ae−2tAu0,u0� . �36�

Note that 2�0
t h�s�ds�1, so that the above calculations are justified. Moreover, if �u0�=1, then

formula �36� implies that �u�t��=1 for all t�0.
Let us check this statement. Using the spectral theory one gets

h�t� = �
m

�

se−2std�Esu0,u0�, u0 � D�A� . �37�

Therefore, using �37� and the assumption

�
m

�

d�Esu0,u0� = �u0�2 = 1,

one gets

1 − 2�
m

t

h���d� = 1 − 2�
m

�

s
1 − e−2st

2s
d�Esu0,u0� = �

m

�

e−2std�Esu0,u0� � 1, ∀ t � 0. �38�

Equations �36� and �38� imply that �u�t��=1 for all t�0,

�u�t��2 =
�e−2tAu0,u0�

�
m

�

e−2std�Esu0,u0�
= 1. �39�

We have proven that �3� has a unique global solution if A=A��m�0 is an unbounded operator.
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Theorem IV.1: If A=A��m�0, then problem (3) has a unique global solution for any u0

�D�A�, and this solution is given by formula (36).
From the analytic formula �36� for the solution to problem �3�, which can be rewritten as

u�t� =

�
m

�

e−tsdEsu0

��
m

�

e−2tsd��s�
1/2 , ��s� ª �Esu0,u0� , �40�

due to formula �38�, one can make some conclusions about asymptotic behavior of u�t� as t
→� in the case when m is an eigenvalue imbedded in the continuous spectrum of A on the interval
�m ,m+��. Let us assume that for the given u0 the function ��s� is absolutely continuous on the
interval �m ,m+�� and has a jump at s=m, d��s�=r�s�ds, s� �m ,m+��, where r�s��L1�m ,m
+�� and ��m+0�−��m�ªq�0. Then the asymptotic behavior of u�t� as t→� can be obtained by
integration by parts. One has

��
m

�

e−2tsd��s�
1/2

= �qe−2tm + �
m

�

e−2tsr�s�ds
1/2

= e−tm�q1/2 + o�1��, t → � . �41�

Let us assume that the resolution of the identity Es is differentiable in a suitable sense on the
interval �m ,m+�� with respect to an absolutely continuous measure operator projector so that

�
m

�

e−tsdEsu0 = e−tm�Pmu0 + o�1��, t → � , �42�

where Pm is an orthoprojector onto the eigensubspace of A, corresponding to the eigenvalue m.
Then, limt→�u�t�=cPmu0, where c is a constant. This means that this eigenspace is an attractor for
the infinite-dimensional dynamical system described by �3�, provided that the above assumptions
hold.

Concerning the differentiation of the spectral projector Es with respect to a scalar measure one
may read, for example, Ref. 8, pp. 242–246.

Here is an example of the representation of dE� as an integral operator. Let A=−L, where
L=	 is the Laplacian in R3. Then m=0,

dE�u0 = �
R3

��x,y,��u0�y�dyd� ,

where u0�C0
��R3� and ��x ,y ,��=sin��1/2�x−y�� /4�2�x−y� �see, e.g., Ref. 8�.
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