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CHAPTER 1

Introduction

1.1 Reliability Definition

Reliability is an important concept in the planning,

design, and operation of systems. We always expect

long-lasting performances of products in use, electric power

which does not fail, and so on. These features are tied to

reliability design. Reliability considerations are playing an

increasing role in virtually all engineering disciplines. As

demands increase for systems that perform better and cost less

there is a concomitant requirement to minimize the

probability of failures. We need the deep insight into

failures and their prevention which is to be gained by

comparing and contrasting the reliability characteristics of

systems of differing characteristics: dam structure design,

electromechanical machinery, and plant structures, to name a

few [46].

The term reliability may be applied to almost any object,

which is the reason that the terms system, device, equipment,

and component are all used in the definition. Each of these

terms, however, has a somewhat different connotation. In a

general probabilistic approach to reliability, it does not

matter what the object of analysis is called. We will assume

if there is no need to separate each subject of reliability



analysis, the system can be considered as a set of interacting

components working together as an integrated whole.

A system is said to fail when it ceases to perform its

intended function. When there is total cessation of

function-- an electric circuit breaks, a structure collapse

—

the system has clearly failed.

On the other hand, reliability is defined positively, in

terms of a system performing its intended function, and no

distinction is made between types of failures.

1.2 Performance and Reliability

Much of engineering endeavor is concerned with designing

and building products for improved performance. We want good

performance as well as reliability. In the real world, there

are always trade-offs between these two features.

Load is most often used in the mechanical sense of stress

on a structure. We interpret it generally so that it may be

the thermal load caused by high temperature, the electric load

on a generator, and so on. Whatever the nature of the load on

a system or its components may be, we can understand the

system performance through accelerating load to test the

system utilization life. Thus, by applying the load test, we

can know the weak design of the whole system or approximately

how the system can resist the external loads.



CHAPTER 2

Reliability Concepts

2.1 Introduction

Generally, reliability is defined as the probability that

a system will perform properly for a specified period of time

under a given set of operating condition [46] . Unreliability

is in contrast with reliability; it is defined as the

probability that the system is no longer functioning properly.

Similarly, the treatment of operating conditions requires an

understanding both of the loading to which the system is

subjected and of the environment within which it must operate.

Nevertheless, the most important variable to which we must

relate reliability is time, in that loads can be changed from

time to time and the system's resistant strength can become

weaker as time goes on.

We first examine reliability as a function of time, and

this leads to the definition of hazard rate, which is a very

important concept in reliability work. Examining the time

dependence of hazard rates allows us to gain insight into the

study of failures. This charateristic is very useful in the

nature of reliability. Similarly, the time dependence of

failures can be viewed in terms of failure modes to

differentiate between failures caused by different mechanisms.



2.2 Basic Formulations

For a given set of operating conditions, the reliability

is defined as the probability that a system survives for some

specified period of time. This may be expressed in terms of

the random variable T, the time to failure. The probability

density function (p.d.f.) has the following meaning

probability that failure takes place

at a time between t and t+dt

f(t)dt = P(t i T s t+dt) (2.1)

From Eq. 2.1 it is possible to prove that the CDF (cumulative

distribution function) has the following meaning

probability that failure takes place

at a time less than or equal to t

F(t) = P(T s t) (2.2)

Then the reliability is

probability that a system operates

without failure for a length of time t

R(t) = PIT > t) (2.3)

Therefore, from Eqs . 2.2 and 2.3, we know that

R(t) = 1 - F(t) (2.4)

It is traditional to describe the failure law in terms of the

density function



f(t) = F (t) (2.5)

which must have the properties that

f(t) >

f(t)dt = 1
J

or equivalently

r
c

F(t) = fU)dx (2.6)
J

Then the reliability can be written as

t

R(t)=l-F(t)=l-[ f(x)dx (2.7)

R(t) = f(x)dx (2.8)
t

From the properties of the p.d.f., it is clear that F(t) is a

monotone non-decreasing function of t with

F(0) = (2.9)

and

F(x) = 1 (2.10)

Eq. 2.7 can be differentiated to give the p.d.f. of failure

time in terms of the reliability



d
f (t) = R(t) (2.11)

dt

We now define the hazard rate in terms of the reliability and

the p.d.f. of time to failure as follows. Let Mt)dt be the

probability that the system will fail at some time in t < T <

t+dt, given that it has not yet failed at T = t. Thus it is

the conditional probability

Mt)dt = P(t < T < t+dt|T > t) (2.12)

we have

P[ (T > t) n (T < t+dt)

I

P(t < T < t+dt|T > t) = (2.13)
P(T > t)

the numerator on the right-hand side is an alternative way of

writing the p.d.f.; that is,

Pf(T > t)~(T < t+dt) I = Pit < T < t+dtl = f(t)dt (2.14)

the denominator of Eq. 2.13 is just R(t), as seen on Eq. 2.3.

Therefore, combining these equations, we obtain

f (t)

\(t) = (2.15)
R(t)

This function is called the hazard rate or instantaneous

failure rate or often simply failure rate.

A useful way to express the reliability and the



p.d.f. is in terms of the hazard rate. We can change Eq. 2.15

to obtain the hazard rate in terms of the reliability,

1 d
> (t) = R(t)

R(t) dt

then multiplying by dt, we obtain

dR(t)
Mtldt = -

(2.16)

(2.17)
R(t)

We now have four different but interrelated functions for

describing a statistical failure law for a component or a

system . The relationship between them except hazard rate is

shown in Fig. 2.1.

f (t)

/ f,tl (height)

^S*(i\ R(tN
^^^ (area) (area)

t (time)

Figure 2.1 Relationship between the three performance

functions



2.3 The Bathtub Curve

The behavior of Mt) with time may be quite revealing to

an expressional pattern with respect to the causes of failure.

It may have the general characteristics of a "bathtub" curve

shown in Fig. 2.2; this curve is somewhat descriptive of human

life times.

The short period of time on the left-hand side of Fig.

2.2 is a region of high but decreasing failure rates. This is

referred to as the period of early failures or, in human

populations infant mortality. Referring to mechanical units,

we can say they are defective pieces of equipments prone to

failure because they were not manufactured or constructed

properly. We can call this phenomenon "burn-in".

_Burn-in

period
-Useful life period

-

-Wearout period -

Decreasing

hazard rate

Constant hazard rate Increasing hazard rate

Operating time (component age or life)

Figure 2.2 Bathtub Curve



The middle section of the bathtub curve contains the

smallest and most nearly constant failure rates; this is

referred to as the useful life period. Failures during this

period of time are frequently referred to as "random

failures"

.

On the right-hand side of the bathtub curve is a region

of increasing failure rates; during this period of time aging

failures are said to take place. For mechanical units, for

example, there may be cumulative effects such as corrosion,

fatigue, and diffusion of materials. We can say that this

period is "wearout" period.



CHAPTER 3

Stress-Strength Interference Reliability Models

3.1 Introduction

We define stress and strength as follows [16] :

Stress s : that load which tends to produce a failure of a

component, a device or a material. The term load may be

defined as mechanical load, environment, temperature, electric

current, etc.

Strength S : the ability of the component, a device or a

material to accomplish its required mission satisfactorily

without a failure when subject to the external loading and

environment

.

For many cases both stress and strength may be described

as random variables. Strength may vary from component to

component because of variations in the material properties due

to variations in the production processes, etc. Therefore,

when estimating the expected strength distribution of an

equipment or a component all the important variabilities and

their distributions must be considered and known (or assumed)

.

The techniques to predict the expected reliability from

the variability distributions of stress and strength are

presented in [16,17,40,46,62].

10



3.2 General Expression for Reliability-

Let the density function for the stress s be denoted by

/ (•), and that for strength S by /_() as shown in Figure 3.1
s a

Then by definition,

R = P (S > s) = P (S - s > 0) (3.1)

We now present the argument developed by Kapur and

Laraberson [40]. The shaded portion in Figure 3.1 shows the

interference area, which is in some sense indicative of the

probability of failure. The enlarged interference area is

shown in Figure 3 . 2

The probability of a stress value lying in a small

interval of width ds is equal to the area of the element ds;

that is, up to differentials of a higher order,

Stress f (s)
s

Strength fg(S)

Interference Area

Figure 3.1 Stress-Strength Interference

11



f
s
(S) &

f
s
(s)

f (s)-
s

Figure 3.2 Computation of Reliability-enlarged portion of

the interference area

As is-

P
I

s„ ^ S S S + —
|

* f
5
<S0» di

The probability that the strength is greater than a

certain stress s is given by

P(S > s ) =
[ f_(S)dS

o J S

The probability of the stress value lying in the small

interval ds and the strength S exceeding the stress given by s

in this small interval ds under the assumption that the stress

and the strength random variables are independent is given by

f (s Ids- f_(S)dSso J S
s
o

(3.2)

12



Now the reliability of the component is the probability

that the strength S is greater than the stress s for all

possible values of the stress s and is given by

R = [ 1(b)
J S [I f

g
(S)dS | ds (3.3)

We can show the idea in Fig. 3.3 where the reliability is the

volume over the shaded area

Reliability can also be computed on the basis that the

stress is less than the strength. Again assume that the stress

and the strength are independent variables. Using the same

method as above, the reliability of the component for all the

possible values of the strength S is

= L f
s
(s) [J

o

S

f
s

( S,ds] (3.4)

and we can show the idea as in Fig. 3.4

Stress s

Figure 3.3 Reliability for fixed stress s

13



Stress s

Figure 3.4 Reliability for fixed strength S

The same result can be obtained more simply by the geometrical

argument.

Let S = strength, s = stress

P(S s S s S+dS, s i s £ s+ds)

= f (S)dS-f
s
(s)ds

Then reliability

R = PIS i s)

J
f (S)dS f

s
(s)ds

where A, stands for the shaded area in Fig. 3.3 and 3.4.

Thus, we can write the reliability as

X> CD X S

R =
\

f
s
(S)f

s
(s)dS ds = | f

s
(s)f

s
(S)ds dS

s

14



The unreliability is defined as

F = probability of failure =l-R=P(Ss s)

Substituting for R from Equation 3.3 yields

F = PIS i s) = 1 -
j

f
s
(s) M f

g
(S)dS|ds]

i -
f
"<„<«> [i - r,o]d.

00

F
g
(s) -f

s
(s)ds (3.5)

Alternatively, using Equation 3.4 we have

F = PIS s s) = 1 -
j fg'Slli f_(s)ds|dS

X
= 1 -

I
f„(S) '!
S S

=
f [1 - F = (S) ] f-(S)dS (3.6)
j s i

Now define y = S - s. Then y is called the interference

random variable. Define the reliability as

R = P( y > ) (3.7)

which means the component reliability has non-zero value only

15



when the strength is greater than the stress. Assume that s

and S are non-negative independent random variables, and that

the p.d.f. of S is f_(S). Looking again at Eqs . 3.1 and 3.2,

assume now that the strength S is fixed and that s has random

magnitudes. Then from Eqs. 3.1 and 3 . 2 we can get the result

x

f (y)dy = f (S)dS-J f
g
(s)ds (3.8)

v
s

where the value of S is greater than the value of s in Eq. 3.8

The range of s can be from to i, so

X
f (y) =

[ f (S) -f (s)ds S > s
y J

=
[ f c (y+s)-f (s)ds S > s (3.9)
J s

hence the reliability is given by y from to infinity

x

R =
f

f (y)dy
'

v

x x
=

f
f_(y+s) t (s)dsdy (3.10)

J J S s

and the unreliability is

«
F = 1 - R = f c (y+s)f (s)dsdy (3.11)

J -x J

o

We illustrate the use of this formula for some particular

distributions in the next section.

16



3.3 Reliability for Normally Distributed Strength and Stress

Assume that the probability density function for a normally

distributed stress s is given by

1 r 1
f
s - «

i -|

f (s) = exp ,

s o /2lT L 2 L a J -I

-00 < s < ®

and the probability density function for

distributed strength S is given by

2

f
s
(S) =

as/
2n

exp
t- -H-^

(3.12)

normally

-oc < s < w (3.13)

Define y = S - s, the interference random variable, as

before. It is known that the random variable y is normally

distributed with a mean of

(3.14)

and a standard deviation of

a =
y

2 2C + cr
S s

(3.15)

The reliability R can be expressed in terms of y as

R = Ply > 0)

17



<7 / 2« ' L 2 * cr -"
J

dy

To evaluate the integral, a change of variables is needed.

Let z = (y - A1 ) lo , which is the standard normal variable,
v v

Then o dz = dy . When y = 0, the lower limit of the integral is
y

given by

Therefore

/'
.

R =

2"

"c /'

2 2
a + a
S s

2 /-,-z /2
dz

(3.16)

= 1 M (3.17)

3.3.1 Numerical Example

A component has been designed to withstand a certain level

of stress which is normally distributed with a mean of 30,000

kPa (kPa stands for kilo-newton/m ) and a standard deviation

of 3,000 kPa. The strength of the component is normally

distributed with a mean of 40,000 kPa and a standard deviation

of 4,000 kPa. Calculate the reliability of the component.

We are given that

18



S - N(40,000, 4,000
2

) kPa

s ~ N(30,000, 3,000
2

) kPa

Then from Eq. 3.16 the lower limit of the integral for R is Z
Q

= -2.0, and hence R = 1 - #(-2) = 0.977.

3.3.2 Numerical Example

A new component is to be designed; it will be subject to

a tensile stress. There are variations in the load and the

tensile stress is found to be normally distributed with a mean

of 35,000 psi and standard deviation of 4,000 psi. The

manufacturing operations create a residual compressive stress

that is normally distributed with a mean of 10,000 psi and

standard deviation of 1,500 psi. A strength analysis showed

that the mean value of the strength is 50,000 psi. Now we

want to know the maximum value of the standard deviation for

the strength that will insure that the component reliability

does not drop below 0.999. We are given that

s
t

~ N(35,000, 4,000
2

) psi

s ~ N(10,000, 1,500
2

) psi
c

where s^ is the tensile stress and s is the residual
t c

compressive stress. The mean effective stress s is obtained

by

s = s - s
c

= 35,000 - 10,000 = 25,000 psi

19



with standard deviation

a = /a 2
+ a 2

s / s
t

= 4,272 psi

From the normal tables, the value of Z
Q
associated with a

reliability of 0.999 is Z
Q

= -3.1. Setting

50000-25000
- 3.1 = - -

—

/CTg+<4272)
2

solving for cr we obtain

a = 6,840 psi

20



3.4 Reliability for Lognormally Distributed Strength and

Stress

The usual form of a lognormal density function is

1
r

x

f (y) = exp (In
y ya /~2n L 2a

y - n)
2

I

, y > (3.18)

y

where y is the random variable. The parameters U and o are the

mean and the standard deviation, respectively, of the variable

In y.

The first step is to develop the relationships for the

lognormal distribution. Let x = In y, then dx (l/y)dy. From

Eq. 3.18

r

1

exp - —

:

/!¥ L 2<7
3

f(x) = - - exp I
—- (x - ^)

2

I, -» < x < »
a fxR L 2a

2

Now consider the exponent of e in the expression

a> 1 (• , 1 -. , x-fJ ,2-,

E(y) = E(e
x

) = ' e* exp -
\
dx = A (say)

J -i> a /ITU LLj-11
- a J >

It has the form

1 , x-li >2 1
2

X - = x - -(x - 2x;< + // )

2 "- a J 2a

21



2
C

u +

2

° 1
r 2 T
x - in + a )

\

2 2<r
2 L -I

Therefore

2
2

CT %. 00 1 r IX - (jU+CT ) 1

Ely) = exp U< + — exp
x a /2n L 2ct

r IX - Ifil-u J I -|

dx

= expf ix * 1 (3.19)
L 2 J

To compute the variance of y we observe that

oo 1 r 1 n

E(y
2

) = exp 2x - —-( x - ix ) dx
J -x cr/T^ L 2<T J

Considering the exponent of e in the expression for E(y ),

1
2

2x - —-( X - V )

2a
2

Ux -
( IX + 2a

2
) + 111 + 2ct

2

2cj

which, when substituted back and simplified as before, yields.

Ely
2

)
= exp 2 1 // + a

2
)

Hence by definition of variance,

Varly) = Ely
2

)
- (Ely))

2
= B

2
(say)

22



(2tt+cr ) [/ -
,]

Now if y denotes the median of y, then we may write

0.5
y 1 r 1

exp - —- (In y - ju)
|

dy
yd/ 2t ^ 2ct

(3.20)

Using the transformation x = In y,

r In y 1

0.5 = exp
jo a / 2 n [-P

(x - A<) dx

yields

C - lny (3.21)

y . e"

Returning now to the original problem in which S and s

are lognormally distributed, we define the safety factor y =

S/s, where y is also a random variable. We know

S = e
In S

and

(i,„
c

= In S
In S

In s

IJ. = In s
In s

where S and s are the medians of S and s respectively.

23



Now

In y = In S - In s

EQn y) = E(ln S) - E(ln s)

u, = u „ - it. (3.22)
In y In S In s

In y = In S - In s

S
y = —

—

We also know that for independently distributed normal

variables

ct = /a
2 +a

2
(3.23)

In y / In S In s

the system is reliable if the safety factor y exceeds 1 and

the probability of this is

R = P( > 1 ) = P( y > 1 ) =
J

f
v
(y)dy

Let Z = ( In y - |i, ) /o",
, i.e. Z is the standard normal

In y In y

variate. When y = 1, we get Z = Z (say) where

z
o

m

ln 1 - "m y ln S - ln s

a.
ln y

/ 2 2

/ In S ln s

24



The reliability can be computed as

</> (Z)dz (3.24)

where <4(Z) is the p.d.f. for the standard normal variate Z.

3.4.1 Numerical Example

Assume that the strength S and the stress s are lognormally

distributed with the following parameters :

E(S) = 100,000 kPa,

E(s) = 60,000 kPa,

Compute the reliability.

Let

E(ln S) ft. and

10,000 kPa

20,000 kPa

E(ln s) = l-i

Vardn S) = o and Vardn s) = cr

For a generic lognormal variable where /' and o are the

moments of In y we know Ely ) = exp \2{fJ + a ) , and from Eq.

3.20 we observe that

Var(y)

[Ely)]
2

= e - 1

which after rearranging, leads to

B
2

,.[-

25



We now can compute the strength S

.[-Jr
+ i] -mi.o

and from Equation 3.19, we have

CT
Z „ ln + l| = ln 1.01 = 0.00995

1
2

ln E(S) cr = 11.50795
2

S

similarly, for the stress we have

0.10535 H = 10.94942
s ----- s

Therefore

,

<MZ)dZ

where Z
n

is given by the equation :

^S "
^ s 11.50795-10.94942

z „ = = - 1.64J

fa + <7 / 0.00995+0.10535

From the normal table, we have R = 0.9495

26



3.5 Reliability for Exponentially Distributed Strength and

Stress

In this case we have, for strength S,

f
s
(S) = V

g
e

s
,

s s < *

and, for stress s

f( s)=A e
s

,
< s < a

Using Equation 3.3, we have

R = j f
s
(s) Ij f

s
(S)dS| ds

.
J

q

X
fl

. « [e
s ]as

J + X
J

S s

-
(W S

(X
B

+ V e ds

S s

(3.25)

27



3.6 Reliability for Normally (Exponentially) Distributed

Strength and Exponentially (Normally) Distributed Stress

For a normally distributed strength the density function is

1 r S - li.

f
s
(S) - exp -

ct„ PUT L 2

» < S < <*>

and the density function for an exponentially distributed

stress is

- I s

f
s
(s) = X, e s i

From Equation 3.4

[I ! vH*R =
J

f
s
(S) I

yields

°s/^
exp[--H-^H1 --']s 1

2 v a

as/ 2n
exp

[- tP?) l
ds

CTs/ 2?r -["j-E*)
]••-"-

28



1 - *

where T =

''q 1

L CT

s
as/^

xp [" rT-[ (s^s+ws
)2 + 2

"s
CT
s

l - *V
s]]

ds

For convenience, we let t = (S-Z^+Wg) /CTg , then <7

g
dt = dS . The

reliability assumes the form

-•-•[--sg
2tt

expf- -exp - (2n s
X-\

2
c'

>

s
) dt

where x = V XCT
s

1 - * exp -< 2Vs- A

S
CT
S>

S s S

]
"{- ^F-}

(3.26)

When the distribution for the strength and the stress are

interchanged, that is, when the strength has an exponential

density function with parameter *.. and the stress is normal

with parameters jU and o , Equation 3.3 can be used to obtain

the following expression for the reliability :

R - I
f
s
(s)

[ I
s
V s)ds

J
d£

29



Therefore

1 r s-*(

exp
J

o
a
s/^

[l-l+exp(- >
g
s)

|

in the method used above, let t = ^ s~^' S
+X

s
a
s

}
/a

s'
then °

s
dt '

ds. We get

7
s

r = *[- ?5-] +exp [- -f [
av B

- x
l<}} x - •(- -V^l

s S S-,

(3.27)

3.6.1 Numerical Example

The strength of a component is normally distributed with ^ s
=

100 MPa (MPa stands for Mega-newton/m ) and <?

s
= 10 MPa. The

stresses acting on the component follow the exponential

distribution with mean value 50 MPa. Compute the reliability.

Using Equation 3.26, we have

r 1
f
2(100)

r
l<k ,-, r

*(-10) - exp — 1 " *
L 2 L 50 L50 J JJ

L
L 10

100-
10

SO

= 1 0.0 e"
1 - 98

' [1 - 0.0]

0.86194
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3.7 Reliability for Gamma Distributed Strength and Stress

The gamma density function for a random variable x is given by

f | x) = x
°~ 1

e
( X/ 3 )

; a > , 3 > , < x < x

U°' r(a)

First consider the case when 3 » 1; we let a = m and a
g

= n

, so that

f (S) = S
m " 1

e"
S

' £ S < x
S T(m)

and

„ , .

X n-l-s, 0^s<x
f (s) = s ' e
S

T(n)

Using Eq. 3 . 9 we have

x

fly) =
f

f Q (y + s) -f (s)ds y 2

y J s

In the same manner; let ? = S - s, we say / is the excess

value of S - s. Then

f ,,, = —i •[
"

<; + s)
m - 1

e-
<;ts>

-e-
s

ds, r >

' r(m>r(n)

For mathmatical convenience, let v = s/?; then dv = (l/;)ds,

and

f,(;) = — ;
m*n-l.

e
-;.r "

v
n-l

(1 + ^m-1
. #

- 2rv
d„

' r(m)r(n)
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Since

R =
J

t Ir) dr

if we let u = v/ (1 + 2v) , the reliability assumes the form

r (m + n) 1/2

R = (1 - U )«
,
- 1

-U
n- 1du

r(m)r(n) o

This integral can be recognized as the incomplete beta

function; hence

r (m + n)

R = B (m,n) (3.28)
r(m)r(n)

An example dealing with this case is shown in the next

section.

3.7.1 Numerical Example - incomplete beta function

The incomplete beta function is defined as

x t^a-t)"- 1

B (m,n) =
I

dt
B(m, n)

i,n) =
|

This is a constant whose value is determined by m and n and

the integration limit x. We want to find, for given m and n

values, the unique x value which makes the area (probability

)

equal to 0.5, as illustrated in Fig. 3.5. For the integral to
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be well defined, the values of m and n must be greater than

zero. We use values from 0.5 to 5, in steps of 0.5, for both

m and n, and summarize the results in Table 3.1. As we can

see from Table 3.1, when the values of m and n are equal, the

graph of the integrand found is symmetrical and the x value is

0.5 for all equal m and n values. In the situation where m >

n, the graph is a left-skewed curve. The bigger the value of

m, the higher the value of x is. On the other hand, in the

situation where n > m, the graph is a right-skewed curve. The

bigger the value of n, the lower the value of x is.

To solve for the desired mid-point x in the treatment

above, we use a FORTRAN program with IMSL routine MDBETA. The

program listing is in Appendix A.

Figure 3.5 p.d.f. of Incomplete Beta Function
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Table 3.1 median values of the Incomplete Beta Function

x value

^\ n
m N 0.5 1.0 1.5 2.0 2.5

0.5 0.500 0.250 0.163 0.121 0.096

1.0 0.750 0.500 0.370 0.293 0.242

1.5 0.837 0.630 0.500 0.414 0.352

2.0 0.879 0.707 0.586 0.500 0.436
2.5 0.904 0.758 0.648 0.564 0.500

3.0 0.921 0.794 0.693 0.614 0.551

3.5 0.933 0.820 0.728 0.654 0.593
4.0 0.941 0.841 0.756 0.686 0.628

4.5 0.948 0.857 0.779 0.713 0.657
5.0 0.953 0.871 0.798 0.736 0.682

x value

m X 3.0 3.5 4.0 4.5 5.0

0.5 0.079 0.067 0.059 0.052 0.047
1.0 0.206 0.180 0.159 0.143 0.129
1.5 0.307 0.272 0.244 0.221 0.202
2.0 0.386 0.346 0.314 0.287 0.264
2.5 0.449 0.407 0.372 0.343 0.318
3.0 0.500 0.457 0.421 0.391 0.364
3.5 0.543 0.500 0.464 0.432 0.405
4.0 0.579 0.536 0.500 0.468 0.440
4.5 0.609 0.568 0.532 0.500 0.472
5.0 0.636 0.595 0.560 0.528 0.500
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Now consider the case when 3 * 1. The strength and stress

equations are

1 » i " (S/V
f (S) = -S e ; 9>0,a>0, OsS<«
S 3™ rtm)

S

and

1 , -Is/3 )

f (s) = -s -e ; 3 >0,n>0,0<s<*
s

3
n r(n)

s

s

Using Equation 3.9 as before and the same integration

techniques we have

R = [ f (y) dy

, - , . m- 1 n- 1

<iv

r(m) r(n) J [l+(l + r) v]
m+n

where v - s/y and r = 3

g
/ ?

s
- Now let u = rv/ (1+ ( 1+r) v) , then

r (m + n)

R = • B (m,n) (3.29)
r(m)r (n )

r/<1+r>

There are three special cases :

1. if m = a = 1 and n = a = 1, then S and s are

exponentially distributed. The reliability from Eq. 3.29

reduces to
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r<2)
R =

r(i>r (i)

r
r/< i+r> r

du = -

1 + r ?
s

+ 3
g

2. if IB a =1 and n = a x 1, then the strength S is

exponentially distributed and the stress s is gamma

distributed, and

r (n+1)

r<l)r (n)

r/ < i + r> ?

s
n

ri*u. [-J_]
n

-[-!-]
l 1+r J l 3+s J

(3.30)

s S

3. if m = a * 1 and n = a = 1, then the strength has a

gamma distribution and the stress has an exponential

distribution, and

T (m+1)

r (m)r (1)

r/(i*r>
, . * m- 1 , .,

(1-u) du = 1 -

i

1 + r-"

I-2-]
s S

(3.31)
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3.8 Reliability for Weibull Distributed Strength and Stress

The probability density functions of the strength and the

stress for the Weibull model are

f
s
(S)

s - s V 1

exp
S - S -, S

S < S < °°

and

f
s
(s) =

3 -1
s

• exp
s - s -, s

[-^1 S < S < 3D

respectively. The probability of failure given in Eq. 3.6 will

be

F = P(S s s)

exp
S - s i s

t

1^) s - s
-,3-1

exp
fS - S i

dS

For mathematical convenience, let

f s - s -. h

so that

3„ r S - S -,

?
S

1

dy

s s

dS
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Therefore

F = exp
'/"<

S -s B-,

[—:
)] >~s J

(3.32)

The values of the integral in Equation 3.32 have been

computed by numerical integration methods [47,48] for

different combinations of the parameters for strength and

stress .
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3.9 Chain Model

The chain model discussed in this section is a particular

case of the weakest link model [46,491. It is assumed that a

"chain" is made up of identical "links" in the sense that

breaking strengths of all the links in the chain have the same

probability distribution. The chain breaks when its weakest

link fails, and this occurence is assumed to be dependent only

upon the variability of the link strengths based on a

probability distribution of strengths.

Similarly, the stress to be applied to a given link is

assumed to have its own probability distribution. The

probability that the link does not break is then the

probability that its strength exceeds the applied stress.

When the links are assembled to form a chain, it is

assumed that a stress which is applied to the chain as a

whole, is also applied equally to each of the links.

We first assume that the breaking strength, or simply

"strength", of a link is known only in terms of a probability

distribution of strengths. We know that the probability that

the link strength lies between the values a and b is

r
b

F
g
(b) - F

s
(a) =

J

f
s
(S)dS (3.33)

where F (•) is the strength CDF. Similarly, we assume stress

to be defined by a probability density function and CDF F {),
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such that

r
d

F (d) - F (c) = fjslds (3.34)
s s J

c
s

is the probability that the stress lies between magnitudes c

and d where d > c.

Now consider the process of forming a chain of n links

selected from a population whose link strength probability-

density function is given by fg(S). This is the same as

selecting a random sample S. , •
, S

n
of link strengths from a

population with probability density £
g
(S) . The chain has

strength equal to that of its weakest link; i.e., the strength

Y of an n-link chain is equal to the minimum of the S. , (i
< 1 1 x

= 1, , n) .

The problem is to express the probability distribution of

Y
(

in terms of fg(S). Let f
n
(y> denote the probability

density function of Jf{1} ; and let Y(l)
= S cl ,

(arbitrarily

picked as the minimum of the S. ; (i = !,- , n) . Then, as

shown in Fig. 3.6, the S. points fall into mutually exclusive

cells, and we can use the multinominal distribution [6,pp 118]

to express the probability that out of n points, one of them,

say S , falls in the interval (y,y+dy), and all other points

S ,•'•', S fall in a region to the right of y.
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one here

i,

none here , i
n-1 values here

y y+dy

Figure 3.6 Scattering of n points

Thus

,

n ! .

P(y < Y, .,< y+dy) = f (y)dy = f _ (y)dy[l-F (y) ]

(1) y<i> ll-(n-l)!
S S

(3.35)

and therefore

t (y) = n[l - F (y)]
n_1

f
s
(y) (3.36)

"c l )

The strength distribution function of the n-link chain is

given by

r
y

F (y) = t (w)do (3.37)
^(ii J n "in

n[l - F
s
(«)]

n 1
f
s
(<a)dw

We use a transformation of variables; let u = F (u) then du =

f (o)d«. When (> = then u =
, and when u = y then u - F

g
(y) ,

that Eq. 3.37 becomes

f

F
S
(y) n-1

F (y) = n
S

(1 - u)
n ^u (3.38)

y
( i >
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Thus

F
s
(y)

f„ (y)
'< i >

[-<i - u,
n
]

= 1 -
[:

1 -
1 1 - F

s
(y) (3.39)

Now for any stress s with probability density f
s
<s), the

probability that the chain strength r£lJ
exceeds the stress s

applied to the chain is, from Equation 3.3

P(y,,,> s) =
[ f (s)-[l - F (s)]ds (3.40)

1 J y
c

l

>

or, using Equation 3.39

£ (s) [1 - F
s
(s)] ds (3.41)

where R is the reliability of the n-link chain
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3.10 Graphical Approach for Empirically Determined Stress and

Strength Distributions

This technique is used to determine the reliability of a

component from experimental data; it may be applied to any

distribution The transform is based on Eq. 3.3 and we will

let G stand for the probability that when there is a known

stress s and the strength S is greater than s

x
G(s) = PIS > s) =

| f
g
(S)dS

1 - f.(S)dS (3.42)
J S

= i - F
s
(s)

Similarly, let H stand for the cumulative probability of

stress

H(s) =
f

f (u)du = F (s) (3.43)
J S s

Eq. 3.43 is rewritten to the form

dH = f Islds (3.44)

Obviously when s ranges from to infinity, H takes value

from to 1. By substituting Eqs . 3.42 and 3.44 in Eq. 3.3 we

get reliability
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f GdH
J

(3.45)

Equation 3.45 suggests that the area under a G vs .
H plot

would represent the reliability of the component. Based on

strength and stress data, we can determine for various values

of s, the values of F (s) and F (»), and hence those of G and

H. Plotting these values of G and H and measuring the area

graphically is all that is needed to determine the component

reliability.

3.10.1 Numerical Example

The stress applied to a component is exponentially

distributed, where it is assumed that the stress cannot be

less than 10,000 psi. The mean life of the component is

20,000 hour. Hence, the density function for the stress may be

written as the shifted exponential density

0, s < 10,000

f
s

( S )

10,000
exp

(s-10,000)

10,000
s > 10,000

The strength of the component is assumed to follow a

Weibull distribution; the material used is such that the

strength is never less than 15,000 psi. The strength

distribution is assumed to have the parameters
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S = 15,000, e = 20,000, and 3=2
o

Hence the strength p.d.f. is given by

f„(S) -
2(S - 15,000)

(20,000-15000)
exp

S - 15,000
:-,

L20, 000-1 5,000

2(S - 15,000)

(5,000)
exp

(S - 15,000)

(5,000)
S s 15,000

The cumulative distribution functions for the stress and

the strength are given by

(s - 10,000)'
F (s) = 1 - exp
s 10,000

F
S
(S) = 1 - exp

(S - 15,000)

(5,000)

Hence

G(s) =
j

f
s
(S)dS = 1 - F

g
(s) = exp

(s - 15,000)

(5,000)

and

H(s) f (s)ds = F (s) = 1 - exp
J S S

(s - 10,000)

10,000

The values of H and G are computed for various values of

s as shown Table 3.2.
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Table 3.2 H and G values

Stress
s H G

Stress
s H G

10000 0.0000 1.0000 23800 0.7484 0.0452

12000 0.1813 1.0000 24000 0.7534 0.0392

14000 0.3297 1.0000 24200 0.7583 0.0339

15000 0.3935 1.0000 24400 0.7631 0.0292

15400 0.4173 0.9936 24800 0.7724 0.0215

15600 0.4288 0.9857 25000 0.7769 0.0183

15800 0.4401 0.9747 25200 0.7813 0.0156

16000 0.4512 0.9608 25400 0.7856 0.0132

16600 0.4832 0.9027 25800 0.7940 0.0094

17000 0.5034 0.8521 26500 0.8080 0.0051

17200 0.5133 0.8240 27500 0.8262 0.0019

17600 0.5323 0.7631 28500 0.8428 0.0009

18000 0.5507 0.6977 29500 0.8577 0.0002

18400 0.5683 0.6298 30000 0.8647 0.0001

18800 0.5852 0.5612 32000 0.8892 0.0001

19200 0.6015 0.4938 34000 0.9093 0.0000

19600 0.6171 0.4290 36000 0.9257 0.0000

20000 0.6321 0.3679 38000 0.9392 0.0000

20400 0.6466 0.3115 40000 0.9502 0.0000

20800 0.6604 0.2604 42000 0.9592 0.0000

21200 0.6737 0.2149 44000 0.9666 0.0000

21600 0.6865 0.1751 46000 0.9727 0.0000

22000 0.6988 0.1409 48000 0.9776 0.0000

22400 0.7106 0.1119 50000 0.9817 0.0000

22800 0.7220 0.0877 52000 0.9850 0.0000

23000 0.7275 0.0773 54000 0.9877 0.0000

23200 0.7329 0.0679 56000 0.9900 0.0000

23400 0.7382 0.0595 58000 0.9918 0.0000

23600 0.7433 0.0519 60000 0.9933 0.0000
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A plot of G vs. H is shown in Figure 3.7. The area under

the curve measures 0.609 [40, pp 150], which is therefore the

estimated reliability of the item.

Q
!ot Of G VS. H

t-r-

0.9-

0.8-

0.7-

0.6-

0.5-

0.4-1
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0.2-

0.1
-

9 -)
1

-—
r 1 i i i r i

0.2

Figure 3.7 Plot of G vs . H
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CHAPTER 4

Time Dependent Stress-Strength Models

4.1 Introduction

Stress-strength interference models, as introduced in

Chapter 3, are good for a single stress application and these

stress-strength models are independent of time. In real life,

however, this may not necessarily be true. The component

strength may change with time and a component may experience

repeated application of stresses. In other words, the stress

or load may follow a random pattern with respect to time t.

Examples of time-dependent reliability models are

weakening caused by aging or cumulative damage. As better

estimates of distributions become available from a performance

history, these models provide a means for reassessing

reliability.

As discussed in Chapter 2, the bathtub curve is the

paradigm hazard function. We can see from Fig. 2.2 that; in

the early "burn-in" region there is a decreasing failure rate,

in the "chance failure" region there is a nearly constant

failure rate, and in the "wearout" region there is an

increasing failure rate. We will discuss how these models are

applied in the stress-strength models.

Further, we assumed that the system strength is a

variable [46] described by a p.d.f., fg(S). Such statictical
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variability is to be expected because of variations in the

properties of materials and in dimensional tolerances and from

innumerable other variables in the manufacturing and

construction processes. In these cases, there may be an

initial burn-in period of decreasing failure rate.

If the strength of the system is not independent of time,

then we can take into account the wear effects that cause

failure rates to increase with time, such as degradation of

strength, which is often divided into three categories. If

strength varies only with time, it is referred to as aging.

If the strength of a system decreases with the number of times

that it has been loaded, cyclic damage is said to occur. If

the strength decrease depends both on the number of times that

loading takes place and on the loading magnitudes, the

phenomena are referred to as cumulative damage. We will

concentrate our discussion on the aging effect.
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4.2 Failure Rates and Repetitive Stress

In the preceding chapter it was assumed that a system

would fail under a single stress. In this section we examine

the reliability of a system under repeated stress of random

magnitude. We restrict our attention to a known strength that

is independent of time .

Suppose that a system is subjected to repeated stresses,

as indicated by Fig. 4.1a and b. The two graphs differ in

that the stresses in Fig. 4.1a occur at fixed intervals,

whereas those in Fig. 4.1b occur at random intervals.

However, we are now more interested in the distribution of

magnitudes rather than in their spacing over time. We assume

that the stress magnitudes are random and independent;

further, we will collect data to find out what is the

probability distribution according to how many counts in each

different stress, and what kind of distribution it would seem

to be

.

For a system with fixed, time-independent strength S, the

reliability R(S) for any single stress occurance is

independent of the reliabilities from the other occurances.

That is,

R(S) = f (s)ds (4.1)
J s

and the probability of surviving n such stresses is
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Stress

Time (t)

At

(a) Periodic stress, interval At

Stress

Time (t)

(b) stress at random intervals

Figure 4.1 Repetitive stresses of random magnitudes
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R (S) = t R(S) ]" (4-2)
n

To convert this expression to R(t|S), the reliability as a

function of time, we must determine how frequently the

stresses occur. Two cases are considered, periodic stress, and

stress at random Poisson-distributed time intervals.

4.2.1 Periodic Stress

For stress at fixed time intervals we use the identity exp[ln

G] = G to convert the form of Eq. 4.2 to

R (S) = [R(S)]
n

= exp[ln R(S)
n

]
(4.3)

n

= exp[n In R(S)

]

(4.4)

If the probability of failure during any one stress is

small, then 1 - R(S) = F(S) 1, and we may expand the natural

logarithm on the right-hand side of Equation 4.4 as

In R(S) = ln[l - F(S)] » - F(S) (4.5)

Thus a approximation to Eq. 4.3 is

R (S) = exp[-n-F(S)

]

(4.6)
n

To convert the independent variable from count n to time

t, we must know the interval it at which the stresses take

place. With it known, we can say that at time t there have

already been

52



n = (4.7)

it

stresses. Thus, combining Eqs . 4.6 and 4.7, we find the time

dependence of the reliability, for given strength S, to be

r
F(S)

1
R(t IS) = exp t (4.8)

L At J

or simply

R(tlS) = e
_i3(S)t

,
(4.9)

where the strength-dependent failure rate is given by

MS) = F(S)/At (4.10)

Periodic phenomena are often discussed in terms of the

return period T(S) for a stress that exceeds the strength S,

defined by

At
T(S) = (4.11)

1 - R(S)

Equation 4.11 is exactly the reciprocal of Equation 4.10. The

reliability given by Equation 4.8 may be written as

R(tlS) = e-t/T'S' (4.12)

T(S) is used to represent the frequency at which a stress
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greater than strength S may be expected to recur. It is

usually applied to natural stresses on a calendar-year basis.

Numerical Example

Historically, a design rule for structures subjected to

flooding has been to design for a flood with a return period

of twice the design life. If this criterion is used, what is

the probability of failure during the design life ?

Let T be the design life. Then T(S) 2T and

R(t) = e"
t/2T

The probability of failure during design life is

1 - R(T) = 1 - e
"T/2T

= 1 - e~
1/2

= 0.393

4.2.2 Stress at Random Intervals

We now consider the other case that of non-periodic stress. In

random stress the time until the next stress occurs is

independent of when the last stress occured. In this situation

the Poisson distribution is applicable. The random events are

now taken to be peaks in the stresses, such as indicated in

Fig. 4.1 b.
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The probability of there being n stresses during time t

is given by the Poisson formula

e-
At (U) n

P (t ) = (4.13)
n n !

where * is the mean frequency of the stress. Now we take

Equation 4.1 as the conditional probability that the system

will survive, given n stresses and fixed strength S. Thus the

reliability for given strength S is obtained from summing over

R(tlS) = V R
n
(S) 'P

n
(t> (4.14)

n=0

combining Equation 4.13 and 4.14 with Eq. 4.1, we have

[R(SUt]
n (4.15)

n !

n=0

Noting, however, that the exponential may be expanded as

""Ie

[R(S)U]
n

R(SPt _ \ (4.16)

so Equation 4.15 can be written as
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,,,„, -U R(SPt
R(t IS) = e e

-Ud-R(S) )

e

= e
XtF(S)

(4 _ 17)

= e
~ h{S)t

, (say) (4.18)

where constant failure rate is given by

MS) = > 'F(S) (4.19)

Just as for the periodic stress mentioned before, we have

once again obtained an expression for a time-independent

failure rate for fixed system strength. The close relation

between Eq. 4.10 and Eq. 4.19 for stress at random intervals

is apparent. If we define x as the mean time between

stresses, we have for periodic stress T = At. Similarly, if

the stress is a Poisson process, the mean time between stress

may be shown to be r = l/l. Thus in either case,

h(S) = F(S)/t (4.20)

This expression is thus valid for stresses at totally

correlated time intervals ( i . e . , periodic) as well as at

totally uncorrelated time intervals (Poisson) . It is

56



understandable that empirical data often yield constant

failure rate for intermediate cases in which the stress

intervals are partially correlated.

The observed increase in failures with decreased strength

is clear from Equation 4.10 and 4.19. In both we have

MS) x F(S) =
f

f (s)ds (4.21)
J

S
S

Numerical Example [46, pp 203]

A telecommunications leasing firm finds that during the

one-year warrantee period, six percent of its telephones are

returned at least once because they have been dropped and

damaged. An extensive program earlier indicated that in only

20% of the drops should telephones be damaged. Assuming that

the dropping of telephones in normal use is a Poisson process,

(a) what is the MTBD (mean time between drops)? (b) Determine

the probabilities that the telephone will not be dropped, will

be dropped once, and will be dropped more than once during a

year of service, (c) If the telephones are redesigned so that

only 4% of drops cause damage, what fraction of the phones

will be returned with dropping damage at least once during the

first year of service ?
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-UFO)
i) The fraction of telephones not returned is R - e

We know that F(S) = 20% = 0.2, t = 1 (year), so

„ nM -A.-10.2
0.94 = e

i- ..[-L-] -> = In 1

= 0.3094/year
0.2 *- 0.94

MTBD = 1M = 3.23 year

(b) From Equation 3.44 we have

p (o) = e~
X1

= e
"

- 3094 = 0.734 (no drops)

P (0) = Vl-e"
1 ' 1 = 0.3094e~

0-3094
= 0.227 (one drop)

1 - P
Q
(0) - P

1
(0) = 1 - 0.734 - 0.227 = 0.039

(more than one drop)

-VtF(S) -0.3094(0.04)1
(c) For the improved design R = e = e

= 0.9877. Therefore the fraction of the phones returned

at least once is

1 - 0.9877 = 1.23%
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4.3 Burn-in

The results of the previous section assume that the system

strength S has a fixed value. To examine burn-in, we now relax

this restriction and assume that the strength is a random

variable described by a p.d.f, Jf
g
(S). This probability

distribution may be viewed in two different ways. For

mass-produced items it may be represent the variability in

capacity within the batch of manufactured items. For single

or few-of-a-kind systems, such as large structures or

industrial plants, the p.d.f. may represent the designer's

uncertainty about the as-built strength of the system. In

either case we retain, for now, the assumption that the

strength does not change with time.

The reliability R(t|S) is just a conditional probability,

given the strength. Therefore, we may obtain the expected

value of the reliability R(t) by averaging over strength S

R(t) =
j

f
s
(S)R(t|S)dS (4.22)

Now suppose that we employ the constant failure rate model

given by Eq. 4.18 for R(t|S). We have

R(t) = [ fc (S) e~
XiS)t

dS (4.23)

Let us consider two cases. In the first case we assume
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that the variation in strength is small, given by a normal

p.d.f. with a small standard deviation. We also assume that

the variation of the failure rate over the range of the

strength is so small that it can be ignored. Hence, Eq.4.23

simply reduces to Eq. 4.18. The second case is slightly

different; some fraction, say pd
, of the system under

consideration are flawed in a serious way; these flaws will

cause early or burn-in failures.

Before describing the probability density that systems

are flawed, we will introduce the Dirac delta function.

Dirac delta function

If the normal distribution is used to describe a random

variable x, the mean M is the measure of the average value of

x and the standard deviation o is a measure of the dispersion

of x about l> . Suppose that we consider a series of

measurements of a quantity with increasing precision. The

p.d.f. for the measurements might look similar to Fig. 4.2.

Figure 4.2 Normal distributions with different values of

variance

.
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As the precision is increased—decreasing the uncertainty —the

value of a decreases. In the limit where there is no

uncertainty (i.e. a 0), x is no longer a random variable,

for we know that x = P.

The Dirac delta function is used to treat this situation.

It may be defined as

5 (x - v) = lim
a

exp
2?i a L 2a J

(4.24)

Two most important properties immediately follow from this

definition :

S(x - IX) =
X = II,

X * II,

(4.25)

and

/J+E

8 (x - AOdx = 1, £ > 0. (4.26)

li-

e

Specifically, even though 6(0) is infinite, the area under the

curve is equal to one.

The primary use of the Dirac delta function is to

simplify integrals in which one of the variables has a fixed

value

.
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Now back to the burn-in, we write the p.d.f. of strength in

terms of Dirac delta functions as

f
s
(S) = (1 - Pd

)8(S - S ) + Pd
- S (S - S

d ), (4.27)

where p < 1 is the probability that the system is defective,
d

The first term on the right-hand side corresponds to the

probability that the system will be a properly built system

with specified design strength S . The second term corresponds

to the probability that the system will be defective and have

a reduced strength Sd
< SQ

. By using the Dirac delta function,

we are assuming that in the first term the strength

variability of the properly built systems can be ignored and

in the second term the situation might arise, for example, if

a critical component were to be left out of a small fraction

of the systems in assembly with some probability pd
-

To see the effect on the failure rate, we first

substitute Eq . 4.27 into Eq. 4.22 :

R(t) =
J

1(1 - Pd
)S(S - S

o
) + pd

5(S - S
d )J

R(t|S)dS

= (1 - Pd
)-j 6(S - S

Q
)R(t|S)dS + pd -[ MS - S

d
)R(t|S)dS

(1 - pd
) R(t|S

o
) + pd

-R(t|S
d )

6 2



-MSJt
(1 - Pd

)e

-ii(S
d

) t
(4.28)

Since the failure rate increases with decreased strength, we

know that S(S.) >A(S
Q

) . From the Chapter 2, definition of hit)

hit)
fit)

R(t)

R(t)

R(t)
(4.29)

after evaluating the derivative of Eq. 4.28, we obtain

Pd
MSd )

1 + r^TT'Mi:'' exp
l"
(MSd)|-(MSd)-/l(S ) )tl-

hit) = hiS
o

)- (4.30)

1 + exp [-« (S
d
)-A(S ))t|

The burn-in effect may be seen more explicitly by

considering a system whose probability of defective is small,

p « 1, but the defect greatly increased the failure rate,

his.) his ). In this case the equation for hit) reduces to
d o

hit) - MS I

pd
MS

d» -MS.lt 1

1 e
d

MS )

(4.31)

Thus the failure rate decreases from an initial value of hiS
Q )

+ p,i(SJ at time zero to the value his) of the unflawed
d d °

system after the defective units have failed.
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4.4 Wearout

As we know from the burn-in phenomenon, the decreasing failure

rates of burn-in are due to the variance of strength of a

system. If the strength of a system is steady and has no

variance, there is no burn-in effect. In general, wearout from

aging may be viewed as a determministic phenomenon that would

be present even if both stress and strength were known

exactly. Suppose that a system has a strength that is a known

function of time, S = S (t) , and that at any time there is no

uncertainty in its value. If there is a constant stress s,

such as in Fig. 4.3, the system will fail at time t
f

for which

W " S (4.32)

as illustrated in Fig. 4.4. The reliability for this system

is then

Stress

Time (t)

constant stress

Figure 4.3 Pattern of stress variation
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R(t) =

::

t < t.

t > t.

(4.33)

Generally, neither stress nor strength is known exactly,

and the probability density functions f
g
(S) and f

g
(s) give

rise to a p.d.f. of times to failure fit) . The corresponding

R(t) is then characterized by a failure rate that increases

with time, provided only that the strength is a decreasing

function of time. We will assume in the following model that

the strength is a known function of time in which there is no

variability, whereas the stress is treated as a random

variable

.

We now consider a system whose strength is known with

certainty, but its stress is repetitive and of random

magnitude, as in Fig. 4.1a.

s (t)

Time
* t

Figure 4.4 Strength vs. time for a system under
constant stress
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Suppose that we let S be the strength at the time of the

nth stress. Then the probability of surviving the nth stress

is just R(S ), given by Eq. 4.1. Since the magnitudes of the

successive stresses are independent of one another, we may

write the probability of surviving the first n stresses as

R
n

= R(S
1
)R(S

2
)R(S

3
) R(S (4.34)

Then, taking the exponential of In R , we obtain

R = exp I * R(V
L ft»l

(4.35)

Assuming that the probability of failure for any one stress is

small, F(S ) = 1 - R(S ) 1 , we then obtain

R - exp I F(V (4.36)

To illustrate that the failure rate increases with time, there

is a special model proposed by Lewis [54, pp 207] where it is

assumed that the S decreases with n so that F(S ) increases
n n

linearly with the stress application according to the rule

F(S ) * F (1 + £n)

,

(4.37)
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According to Lewis, we can obtain the sum of F(S
n

)

I
*»1

F(S^) = n + (4.38)

Finally, if we assume that the stresses appear with a mean

time between stress application of r, we may change variables

to write the result in terms of time :

t = n-T (4.39)

Therefore, Eqs . 4.36 through 4.39 yield

r
£t

- F 1 +
°L 2T

R(t) = exp
£t -, t

2i

(4.40)

Using Eq. 4.29, we see that for the model the failure rate

increases with time t

hit)
At L T >

(4.41)

In this situation, it is just like in Fig. 2.2 "wearout"

period; the hazard rate is increasing with time.
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CHAPTER 5

Extreme-Value Distributions

5.1 Introduction

A salient feature from Fig. 3.1 is the important fact

that the probability of failure depends strongly on the lower

tail of the strength distribution and on the upper tail of th

stress distribution. The normal distribution and exponential

distribution are useful in representing these tails when there

are many contributions, no one of which is dominant. Still,

there are many situations that the tails are not described

well by the normal or exponential distribution, when the

stress or strength is not determined by either the sum or the

product of many relatively small contributions. In contrast,

it may be the extreme of many contributions that governs the

stress or the strength [54, pp 185]. For example, it is not the

sum of the accelerations but rather the extreme value that

determines the primary earthquake loading on a structure.

Extreme-value distributions have proved to be very useful in

the analysis of reliability problems of this nature [34] .

We will briefly introduce the maximum extreme-value

distribution for the treatment of stresses, and the minimum

extreme-value distribution for strength determination. We then

proceed to the standard asymptotic extreme-value distributions

for large numbers of random variables which are useful in
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treating a variety of reliability problems.

5.2 Distribution of the ith Order Statistic

Consider the ith order statistic [10], X<
4

}

,
which has

arisen from a probability density t
x
(x) and a distribution

function F (x) . It is assumed that n observations have been

recorded, and that one needs to find the probability density

function of X. , . , say f
x

(x).

Let E denote the event that the ith ordered observation

X lies between x and x+dx. This implies that i-1
c i >

observations occur before x, and n-i observations after x+dx.

Then we can see this concept better in Fig. 5.1.

PfEl = P(x i X
t

. s x+dx) = f
x

(x)dx

i-1 r l n
~ 2

= [f v (x)1 f
y
(x)dx|l - F

v
(x)|

(i-1) 111 (n-i) I
L " J L J

The corresponding density function for X
<
j

)
is

(5.1)

f. (x) - i[»
]

[f
x
(x)]' [l -

' X

C i )

Specifically, if i = 1, f„ (x) is the probability density
< i >

function of the first (smallest) order statistic
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f (x)
f (x)dx

« one obs. here

x x+dx

Figure 5.1 Basic reliability concept

n-1
f v

(x)
X
cl)

n[l - F
x
(x) I f

x
(x (5.3)

and, if i = n, f (x) is the probability density function of

<n»

the last (largest) order statistic

f (x) = n [f
x
(x) 1 f

x
(x)

cn> L J

(5.4)

The distribution function of X
( i }

and X
(n)

can be

obtained as follows

F
x

(x) = P(X fl)
•- x) = 1 - P(X

(l)
> x)

and we know

P(X
C1 ,

>- x) = P<X
t
* x, X

2
, x X

n
= x)

= P(X
t
i x) PIX

2

>~ x) -P(X
n

^ x)

[l - F
x
(x)]

r

(5.5)
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therefore,

< 1 >

Next consider F
x

(x) ,

<n>

F
x

(X) - 1 - [l " F
X
U)1 (5.6)

F
x

(x) " P(X
(n >

£ x)

= Ptx^ x, X
2
i x X

n
s x)

= PfXji x) P(X
2

s x) • -P(X
n

^ x)

F
x

(x) = |f
x
(x)1 (5-7)

<n> L J

5.2.1 Numerical Example - Smallest Value

We can refer to section 3.9, the chain model, as the

standard type of smallest value problem. Suppose that the

original p.d.f. is exponential, then

f
x
(x) = e

F
x
(x) = 1 - e

* X

Then it follows that

F v (x) = 1 - ll - F
v
(x)

<i)
[l - F

x
(x)]

r

„ -Xnx
1 - e
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and

f
x

(x) = nX-e'n
' x

( 1 >

5.2.2 Numerical Example - Largest Value

We still use the exponential distribution as the original

p.d.f . , then

F
\ n>

U) =
[
F
x
U)

]

n

and

[' "
•-"]*

, n-1 ,

f
x

(x) = nX-(l - e~
x

) e

<n>
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5.3 Asymptotic Extreme-Value Distributions

The extreme-value distributions discussed in the

preceeding section serve to illustrate, in a simple way, the

effect of maximum extreme values and minimum extreme values.

In practice, however, the use of Eqs . 5.6 and 5.7 for the CDFs

may become cumbersome. Often n, the number of variables, is

very large and the assumption that all the X
n

are identically

distributed may not be valid.

There are three classes of asymptotic extreme-value

distributions [59], the CDFs for which are given in Table 5.1.

They may be shown to arise when n, the number of variables

over which the extreme is taken, becomes large, with only a

few restrictions on the forms of the original distributions.

The distributions differ both in the domain of the

extreme-value variable and in the form of the upper or lower

tail of the original distributions.

The application of the extreme-value distributions can be

seen in [3,15,24,25,28,31,34,52].
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Table 5.1 Extreme-Value Distributions

Distributions of the largest value x

Type I

-(x - u)/e] -CD £ x s CD

F
x
(x) = exp|- e e >

Type II

r r 1
~

n * - °
F
x

( x) = exp ^- |——

J

e > , ra >

Type III

{-{-
u - x-,m x s u

F (x) = exp - — e > 0, m >

Distributions of the smallest value x

Type I

. , i 1 r
(x - u)/el

r
x
(x) = 1 - exp I- e

Type II

F
x
(x) = 1 - exp

Type III

fX- U-s Jin

F v (x) = 1 - exp ai

-X < X £ X

-x < x £

; > , m >

u < x < x
e > 0, m >
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Chapter 6

Conclusion

6.1 Introduction

The purpose of investigating mechanical interference

reliability theory is to develop some basic concepts based on

the stress-strength models. The cases discussed in this

report all focused on the application of real working

components. A component may be endowed with a certain

strength and, at the same time, bear outside world stresses

against the strength. By knowing how the stress-strength

interference affects the reliability, we may be able to

improve the component structure to get higher reliability.

A useful concept used in the interference theory is the

hazard rate. When dealing with a real-life situation, the

hazard rate concept can explain how mechanical reliability

reflects the bathtub curve formation. Further, we can expand

this idea to the extreme cases, which focus on the

minimum-value strength and the maximum-value stress, to

understand how the reliability will change, subject to some

critical conditions.

In the feature of the complex design of modern systems,

highly dependable performance is always the prerequisite for

all system design. The stress-strength interference model can

be applied to the accelerated testing which involves

75



deliberate increase in stress in order to shorten test time or

to detect the weak point of the whole system. Through fully

understanding the stress-strength interaction, system failures

can be decreased noticably.

6.2 Conclusion

From the previous study, the following conclusions can be

drawn :

1. Interference is a useful tool for realizing the

effects of stress and strength interaction.

2. Decreasing the original variability of the strength of

the system will prolong the useful life of the system.

3. The time wearout effect on components is the necessary

factor to understand the component useful life.

4. When the member of individual components in the system

becomes very large, we can use the extreme-value

distribution.

5. By applying the extreme-value distribution, we can

detect the weakest point of the whole system strength

and the strongest point of possible outside stress.

Through understanding the relationship between stress

and strength, the better design can be possibly made.

6. The optimal reliability depends on :

i) deciding the stress probability density function
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ii) deciding the strength probability density function

7. The way to improve the mechanical reliability

i) decrease the maximum-value for stress

ii) increase the minimum-value for strength
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APPENDIX A

IMSL program for computing incomplete beta function

C

C This is the program to compute the incomplete
C beta function by calling IMSL subroutine
C

REAL A, B, P, X
NUM=10

C
C The iteration work
C

DO 100 N=l, NUM
A=N*0.5
WRITE (6, 90)

A

90 FORMAT (3X,' A VALUE IS : ',F4.D
DO 200 J=l, NUM
B=J*0.5
P =0.5

C

C Calling the IMSL subroutine
C

CALL MDBETI(P,A,B,X,IER)
WRITE(6,95)B,X

95 FORMAT (3X,'B VALUE IS :
'

, F4 . 1 , 10X ,

' X : ' ,2X,F5.3)
200 CONTINUE
100 CONTINUE

STOP
END
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ABSTRACT

The technique of stress-strength interference model

applied in mechanical reliability is often used in realizing

how the system interacts with outside pressure. By building up

the ideal model, the basic reliability concept can be

established. The bathtub curve is not necessarily true in any

real world situation; nevertheless, it can be proven to be

accepted in the mechanical stress-strength interference model.

The extreme case is suitably applicable when the sample size

is very large or the sample occurrence is rare. The

extreme-value distribution will enlarge the usage of the

interference model to a practival method. Knowing how the

stress is loading on the system, a effective design for the

system to resist the most possible impulse can be possibly

achieved.

This report is a review of the literature related to

mechanical stress-strength interference theory. The

literature is reviewed from early 1940 's to 1987.


