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Abstract 

Groundwater contamination with arsenic (As), a naturally occurring metalloid, is a 

worldwide problem. Over 100 million people are at health risk due to arsenic contaminated 

groundwater, especially in the Bengal Basin in south-east Asia. Dissolved organic matter (DOM), 

geology and geomicrobiology are important factors affecting arsenic mobility. This study focuses 

on interactions of different aspects of natural organic matter in arsenic-contaminated 

environments. A literature review specifically includes past studies done on fundamentals of 

arsenic geology, geomicrobiology, DOM characterization and relevant analytical methods and 

tools. Based on background information already collected, this research is focused on specific 

research questions and corresponding hypotheses.  

The overarching goal of this investigation is to better understand the mechanisms by which 

DOM influences arsenic mobilization. The specific goals of this research are: 1) to evaluate role 

of oxidized humic quinones in reductive dissolution of Fe-As minerals and subsequent arsenic 

mobilization via electron shuttling, 2) to quantify the rate of microbially mediated reductive 

dissolution in the presence of oxidized humic quinones, 3) to evaluate DOM-Fe-As ternary 

complex formation and its influence on arsenic mobility and 4) to characterize DOM in the arsenic-

contaminated aquifers of West Bengal, India and evaluate its role in arsenic mobilization using 

groundwater flow and contaminant transport modeling approach.  

Results of this study revealed that oxidized quinone like moieties (such as fulvic acids) 

serve as an electron shuttle and enhance the reductive dissolution process under reducing 

conditions, hence mobilize the arsenic in groundwater. Another key result from this study 

suggested that arsenic binds with non-aromatic portion of the humic-like DOM under reducing 

conditions and increases its solution concentration. A field study conducted in West Bengal, India 

revealed that the mechanisms studied in the laboratory exists in reducing aquifer. A groundwater 

flow and reactive transport model was created to explain multiple interactions of DOM and arsenic 

spatial scales. Broader impacts of this study include significant addition to scientific knowledge 

about subsurface biogeochemistry and the role of DOM in biogeochemical reactions in the 

subsurface. 
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Abstract 

Groundwater contamination with arsenic (As), a naturally occurring metalloid, is a 

worldwide problem. Over 100 million people are at health risk due to arsenic contaminated 

groundwater, especially in the Bengal Basin in south-east Asia. Dissolved organic matter (DOM), 

geology and geomicrobiology are important factors affecting arsenic mobility. This study focuses 

on interactions of different aspects of natural organic matter in arsenic-contaminated 

environments. A literature review specifically includes past studies done on fundamentals of 

arsenic geology, geomicrobiology, DOM characterization and relevant analytical methods and 

tools. Based on background information already collected, this research is focused on specific 

research questions and corresponding hypotheses.  

The overarching goal of this investigation is to better understand the mechanisms by which 

DOM influences arsenic mobilization. The specific goals of this research are: 1) to evaluate role 

of oxidized humic quinones in reductive dissolution of Fe-As minerals and subsequent arsenic 

mobilization via electron shuttling, 2) to quantify the rate of microbially mediated reductive 

dissolution in the presence of oxidized humic quinones, 3) to evaluate DOM-Fe-As ternary 

complex formation and its influence on arsenic mobility and 4) to characterize DOM in the arsenic-

contaminated aquifers of West Bengal, India and evaluate its role in arsenic mobilization using 

groundwater flow and contaminant transport modeling approach.  

Results of this study revealed that oxidized quinone like moieties (such as fulvic acids) 

serve as an electron shuttle and enhance the reductive dissolution process under reducing 

conditions, hence mobilize the arsenic in groundwater. Another key result from this study 

suggested that arsenic binds with non-aromatic portion of the humic-like DOM under reducing 

conditions and increases its solution concentration. A field study conducted in West Bengal, India 

revealed that the mechanisms studied in the laboratory exists in reducing aquifer. A groundwater 

flow and reactive transport model was created to explain multiple interactions of DOM and arsenic 

spatial scales. Broader impacts of this study include significant addition to scientific knowledge 

about subsurface biogeochemistry and the role of DOM in biogeochemical reactions in the 

subsurface. 
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Chapter 1 - Introduction 

Groundwater is an important source of drinking water in south and south-east Asia. 

Generally, groundwater is considered to be cleaner and safer to drink than the surface water since 

anthropogenic activities have polluted surface water sources over the last few decades. In Bengal 

Basin, the presence of geogenic arsenic (As) had led to high dissolved As concentrations and 

caused detrimental health effects to over 100 million people in India, Bangladesh, China, 

Myanmar, Pakistan, Vietnam, Nepal and Cambodia (Fendorf et al., 2010, Figure 1). Bio-

geochemical transport processes in the aquifer have potential to also impact the quality of 

groundwater and these processes are studied. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Distribution of As in South and South-East Asia (adopted from Van 

Geen et al., 2011) 
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An overview of existing scientific information about As contamination in reducing aquifers 

is presented that identifies the key research questions related to bio-geochemical transport 

processes that lead to arsenic mobilization. Chapter 1 provides an introduction to the As 

contamination problem in Bengal Basin, characteristics of As, and an overview of hypotheses 

proposed to explain mechanisms causing As contamination. In Chapter 2, a detailed account of 

prior relevant research is discussed. This review of literature is used as a basis for research 

questions addressed in this dissertation. The Chapter 3 discusses the methodologies used in 

laboratory experiments, field investigations and for mathematical modeling. The Chapter 4 

explains the influence of the geochemical and organic matter characteristics on As mobility in the 

Murshidabad district of West Bengal, India. In Chapter 5, arsenic mobility due to formation of 

aqueous complexes between aromatic dissolved organic matter (DOM), As and iron (Fe) is 

discussed. Chapter 6 describes the electron shuttling abilities of aromatic DOM which enhance the 

process of microbial reductive dissolution of Fe and As minerals. In Chapter 7, bio-geochemical 

transport processes in the two geologically distinct (varying As concentrations) aquifers in Nadia 

and Hooghly districts of West Bengal, India are described. The summary of results, conclusions 

and prospects for future work is discussed in Chapter 8.  

Characteristics of Arsenic 

Arsenic is denoted as 3rd member of VA group in the periodic table. The atomic number of 

As is 33 and its atomic mass is 74.9216 gmol-1. Four oxidation states of As are known as As-3, zero 

valent As, As3+ and As5+, however, arsenite As3+ and arsenate As5+ are the most common oxidation 

states found in the nature. The background As concentration in natural water has been reported to 

be 1-2 µgL-1 (WHO, 2011). There are about 200 known minerals with arsenic as the major 
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constituent. Arsenopyrite (FeAsS), realgar (As4S4) and orpiment (As2S3) have been considered as 

major ore minerals of the arsenic (Smedley and Kinniburgh, 2002).  

In aquifers, the native form of arsenic has been considered to be As5+ as HxAsO4
x-3, often 

adsorbed to wide range of minerals such as hydroxides and oxyhydroxides of iron and aluminum 

(Ying et al., 2012). As3+ on the contrary, occurs as natural H3AsO3 species in non-sulfide 

environments and tend to adsorb on hydroxides, oxides and oxyhydroxides of iron (Gupta and 

Chen, 1978; Masue et al., 2007; Raven et al., 1998; Dixit and Hering, 2003; Herbel and Fendorf, 

2006; Ying et al., 2012). As3+ has been considered to be more soluble and hence more bio-

available, as it forms weak complexes and upon changes in the hydrochemistry; the weak bonds 

break easily resulting in mobilization of As3+ in solution (Tufano and Fendorf, 2008).  

 

 

 

 

 

 

 

 

Arsenic has also 

been known as a redox sensitive element (Figure 2). Typically, H2AsO4
- and HAs2O4

2- species 

occur under oxidizing conditions (Eh>100 mV and pH 6-7.5) while under reducing conditions (Eh 

Figure 2 pe-pH diagram for predominant aqueous species of 

arsenic at equilibrium and 250C and 1 atm pressure (Nordstrom 

and Archer, 2003) 
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< 100 mV and pH 6-7.5) H3AsO3
0 is the dominant species. Under very reducing conditions (Eh < 

250 mV), arsenic has often been found to form the mineral orpiment (As2S3) where the sulfide 

(HS-, S2- and H2S) species are predominant. However, both As3+ and As5+ species occur in nature 

as the rate of redox transformation is slow (Smedley and Kinniburgh, 2002; Mukherjee et al., 

2009). In general, the redox conditions strongly governs the ratio of As3+ to As5+ species.   

Occurrence of Arsenic 

Arsenic contamination in Bengal basin is designated (Smith et al., 2000) as “The largest 

poisoning of a population in history”. In late 1980s, surface water used to be the main source of 

drinking water, which was severely polluted by pathogens (Smith et al., 2000). With the support 

from UNICEF, governments of India and Bangladesh installed about 4 million tube wells for 

obtaining drinking water. Unfortunately, a huge population was diagnosed with 

hyperpigmentation, peripheral neuropathy, bladder and lung cancer, skin cancer and peripheral 

vascular diseases (Zaloga et al., 1985; Pierce et al., 2012). Elevated levels of dissolved As are 

known to be responsible for severe health risks to about 60 million people in India and Bangladesh 

alone. Now, the World Health Organization (2011) has set maximum allowable As in drinking 

water as 10 ugL-1. 

 The presence of sedimentary As in Bengal basin aquifers is termed as “geogenic” i.e., of 

natural origin since it is present in the aquifer sediments. The major rivers transported As rich 

Himalayan sediments to the Bengal Basin and deposited that during the quaternary period. 

Multiple bio-geochemical processes and redox conditions lead to mobilization of As. In other parts 

of the world as well, various sources of As are reported to contaminate the groundwater. Sulfide 

mineral deposits in British Columbia in Canada and in northern Bavaria in Germany leach As into 

the groundwater (Smedley and Kinniburgh, 2002). Aquifers in California, Nevada, Idaho and 
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South Dakota in the USA, China, Taiwan and Mongolia also hold significant sedimentary As that 

contaminates the groundwater. Arsenic contamination in Northern Chile, Mexico and Argentina 

(Mukherjee et al., 2006) is attributed to deposition of volcanic ash. Mining activities (Fairbanks, 

Alaska, USA; Moira Lake, Ontario, Canada; Brazil; Australia; Thailand) and geothermal activities 

(New Zealand, Russia, USA, Chile and France) also trigger As contamination.   

Contributions 

Hydro-geochemical controls in Bengal Basin aquifers have been widely studied. Most 

studies reported groundwater quality and emphasize the varying distribution of dissolved As. 

Earlier, many studies examined the (1) nature of sediments, (2) adsorption of As onto the oxidized 

iron minerals and (3) potential of excessive pumping in mobilizing As. Recent studies examined 

the role of anoxic microorganisms and sedimentary carbon in mediating the process of reductive 

dissolution. This is concisely the status of existing research relevant to this study.  

Figure 3 Map depicting global arsenic occurrence (Smedley and Kinniburgh, 2002) 
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 In this study, detailed analyses of DOM revealed that the characteristics of DOM were 

drastically different in high and low As sites in the Murshidabad district of West Bengal, India. 

Laboratory experiments showed that the aromatic DOM forms aqueous complexes with As and 

maintains an elevated dissolved As concentration. Another experiment showed that aromatic DOM 

accelerates the rate of microbial reductive dissolution of iron minerals by shuttling an electron 

from microorganisms to the mineral surface abiotically. An in-situ study with data collected in the 

field and subsequent model investigations demonstrated the geochemical processes and projected 

future transport conditions 
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Chapter 2 - Review of literature 

Arsenic Contamination in Bengal Basin 

Several studies have reported the arsenic contamination in Bengal basin as the greatest 

natural mass poisoning in human history (Bhattacharya et al., 1997; Nickson et al., 1998; Smith 

et al., 2000; McArthur et al., 2001; Dowling et al., 2002; Paul, 2004; Ravenscroft et al., 2005, 

Routh et al., 2005; Acharya and Shah, 2007; Datta et al., 2011; Sankar et al., 2014 and references 

therein). Groundwater in seven districts in the state of West Bengal, India and most parts of 

Bangladesh has been reported to be contaminated with As. In West Bengal, the affected districts 

are namely Malda, Murshidabad, Burdwan, Howrah, and Hooghly, Nadia, North 24-Paraganas 

and South 24-Paraganas. Typically, As contaminated aquifers have been located at a depth of 60 

m in these areas (McArthur, et al., 2001 and 2004; Dowling et al., 2002; Datta et al., 2011). 

Younger alluvial deposition by Ganga-Meghana-Brahmaputra Rivers during the Holocene age 

covers most of these areas. These alluvial deposits have been known to be enriched in As. Older 

deposits below alluvial deposits designated as the Suja formation during Pleistocene age have been 

reported to arsenic free. Arsenic-rich Himalayan rocks eroded and transported to the Bengal basin 

formed in the foreland basin of the Himalayan mountain chain have been postulated as sedimentary 

As in fluvial deposits (Nickson et al., 2000). Earlier it was also postulated that the base metal 

deposits in the upstream areas of Bengal basin could be possible source of As contamination 

(Nickson et al., 1998); however this idea was rejected as the quantities were so low. Nickson 

(2000) also described the presence of coal seams and basalts of Rajmahal basin and isolated sulfide 

minerals containing about 0.8 % As in Darjeeling Himalayas and Gondwana coal seams as possible 

sources of As. In general, arsenic adsorbed on the oxides, hydroxides and oxyhydroxides of iron 

(Nickson et al., 2000; McArthur et al., 2001; BGS, 2001; Dowling et al., 2002; Ravenscroft et al., 
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2005; Datta et al., 2011; Sankar, 2013 and references therein). These references document the 

sources of As contamination in Bengal basin. 

Geology of Bengal Basin 

The Bengal basin was formed as a result of India-Asia collision as the flexural subsidence 

of the Indian lithosphere created Ganges Plain foreland basin in front of the Himalayan mountain 

ranges during late Quaternary period (Singh, 2004; Sinha et al., 2005). The basin was named as 

GBM delta as it formed due to sediment deposition by meandering of three major rivers Ganges, 

Meghana and Brahmaputra (Morgan and McIntyre, 1959; McArthur et al., 2011; Mukherjee et al., 

2008; Hoque et al., 2011). The basin ranges between the Himalayan mountain ranges on the north 

to the Precambrian, Peninsular Indian craton in the south. The basin has been chrono-

stratigraphically classified to hold two major types of sedimentary units as the older Pleistocene 

and the younger Holocene unit (Morgan and McIntyre, 1959; Mukherjee et al., 2008; Datta et al., 

2011; McArthur et al., 2008 and 2011). McArthur (2008) reported that the current paleo-inter-

fluvial areas (highlands) in the basin were exposed, and a thin layer of paleosol was deposited 

during the last glacial maximum (~20 ka before present) when sea level was substantially lower. 

The low-stand of sea level caused deep erosion in paleo-channels (current low-lying areas) in the 

basin by paleo-rivers followed by weathering due to heavy rainfall during the warmer climate 

regime and developed a widespread paleosol of impermeable clay that has been found widely 

today across the basin (McArthur et al., 2008; Hozque et al., 2011). The Rajmahal hills to West 

and north-west boundaries of the basin are basalt lava traps of lower Jurassic age and are upper 

part of Gondwana system. Shillong plateau or Garo or Khasi or Jaintia hills composed of Archean 

quartzite, slates and schists with massive granitic intrusions with interbedded basaltic traps and 

overlain by Eocene sandstones and limestones beds, mark the northeastern boundary of the Bengal 
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basin. The Tripura hills and Chittagong marks the northeastern and southeastern boundary of the 

basin, while the western boundary is marked by Chottonagpur plateau which is composed of 

granites, amphibolite, carbonates and quartzities of Precambrian age (Morgan and McIntyre, 

1959). The River Ganges from the northwest and the River Brahmaputra from northeast transports 

sediments from Himalayas, while the River Meghana brings sediments from Shillong Plateau 

(Morgan and McIntyre, 1959).  

Hydrological Controls 

Hydrological controls in the Bengal basin have been discussed in Mukherjee (2007) and 

several other studies. Briefly, the Bengal basin groundwater system is influenced by the rainfall 

due to the southeast monsoon winds. October/November to May/June is considered to be the dry 

season while June/July to September/October is considered to be the wet season. CGWB (1994) 

reported the annual rainfall ranges from 1200 mm to 2000 mm. In the delta region, precipitation 

exceeds annual potential evapotranspiration (Allison, 1998), and frequent floods occur in the 

lowlands of the basin due to heavy rainfall during monsoon period together with snow melt from 

the Himalayas. Considering the topography, the northern part of the Bengal basin has hydraulic 

gradient of 1 m/km while the southern part near the delta region has lower hydraulic gradient of 

0.01 m/km in its alluvial aquifers. These alluvial aquifers in this area have been found to be highly 

productive with the water table mostly within 15 m of ground level. Although there are some 

seasonal variations based on irrigation pumping, the average yearly water table remains the same, 

suggesting that there is sufficient recharge replenishing the groundwater systems (BGS/DPHE, 

2001). The estimated transmissivity (T) values vary from 3300 to 7000 m2/day in the northern 

district of Murshidabad, 5000 to 8800 m2/day in the North 24-Paraganas and 500 to 3000 m2/day 

in the South 24-Paraganas with average storativity (S) of 0.03 (Mukherjee et al., 2007). The 
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porosity of the alluvial aquifers has been reported to be 0.2 (Harvey, 2002). The hydraulic 

conductivity (K) has been reported to vary from 10 to 100 m/day (BGS/DPHE, 2001). The natural 

groundwater flux to the Bay of Bengal from the Bengal basin was estimated to be 2E11 m3/year, 

which was 19% of the total surface water flux (Basu et al., 2001) and 15% of the Ganges-

Brahmaputra river flux (Dowling et al., 2003). The river Bhagirathi – Hooghly has been considered 

to be a losing stream along most of its length and recharges the shallow aquifers (Ghosh and 

Mukherjee, 2002).  

Mechanisms of Arsenic Release 

The scientific agreement on sedimentary As to be the primary and main source of As 

contamination in groundwater in Bengal basin led to further questions such as why As was 

mobilized in the fluvial alluvium in Bengal basin deposited during the Holocene. One of the earlier 

proposed mechanisms was that the drawdown in aquifers permitted atmospheric oxygen to invade 

the aquifer and resulted into oxidation of arsenopyrite minerals in alluvial sediments (Mallick and 

Rajagopal, 1996; Mandal et al., 1998; Roy Chowdhury et al., 1999).  Acharya (1999) proposed 

that the over application of phosphorous fertilizers leached significant amounts of phosphates into 

the groundwater, which displaced the arsenic anions adsorbed to iron minerals by competitive 

anion exchange and released As into the groundwater. Although it was found that pyrite was 

present in the aquifer sediments (Nickson et al., 1998 and 2000), the presence of pyrite indicated 

that it has not been oxidized and is potentially a sink for and not a source of arsenic in the Bengal 

basin (McArthur et al., 2001). It was also shown that even in case of pyrite oxidation, the released 

arsenic would re-adsorb onto oxyhydroxides of iron rather than being in solution (Mok and Wai, 

1994; Savage et al., 2000). The mechanism of pyrite oxidation was not strongly supported by 

anoxic conditions in groundwater and lower sulfate concentrations in high arsenic groundwater 
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(DPHE, 1999 and 2000; McArthur et al., 2001). Finally, a more likely mechanism for anoxic 

conditions in Bengal basin aquifer was proposed and it was widely accepted that arsenic was 

released by reductive dissolution of iron oxyhydroxides (Bhattacharya et al., 2997; Nickson et al., 

1998 and 2000). This mechanism was previously used to explain presence of arsenic in anoxic 

surface waters (Aggett and O’Brien, 1985; Cullen and Reimer, 1989; Belzile and Tessier, 1990; 

Ahmann et al., 1997) and in anoxic groundwaters (Matisoff et al., 1982; Cullen and Reimer, 1989; 

Korte, 1991; Korte and Fernando, 1991; Bhattacharya et al., 1997; Nickson et al., 1998 and 2000, 

McArthur et al., 2001).  

Microbially Mediated Reductive Dissolution  

It was determined that the reduction of iron minerals was driven by microbial metabolism 

of organic matter (Chapelle and Lovley, 1992; Nealson, 1997; Lovley, 1997; Banfield et al., 1998; 

Chapelle, 2000).  This was supported by several studies that reported high concentrations of 

dissolved iron (DPHE, 2000; Nickson et al., 1998 and 2000; Safiullah, 1998) and high 

concentrations of bicarbonates (McArthur et al., 2001) in the groundwater of Bengal basin 

aquifers. Many recent studies have found hydrochemical data in strong agreement with this 

mechanism (Dowling et al., 2002; Hasan et al., 2007; Sankar et al., 2014). The labile organic 

carbon required in the microbially mediated reductive dissolution mechanism was thought to be 

drawn to depth from ponds and other surface water laden with sewage (Harvey et al., 2006; 

Neumann et al., 2010), however, dispersed sedimentary organic matter has also been implicated 

as a major source (McArthur et al., 2004; Sengupta et al., 2008; Datta et al., 2011). Harvey (2002) 

and Saunders (2008) showed the increase in dissolved As concentration upon injection of labile 

carbon into the aquifer, supporting the role of labile carbon in arsenic release by stimulating 

microbially-mediated reductive dissolution of iron minerals.  
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The Role of Dissolved Organic Matter 

Recently, additional roles have been proposed for DOM in aquifers in the Bengal Basin 

that may have important consequences for iron and arsenic mobilization (Wang et al., 2006; 

Mladenov et al., 2010). Dissolved organic carbon (DOC) has been considered to be the largest 

pool of organic carbon in most aquatic ecosystems (Cole et al., 1999, 2007). The term DOM has 

been considered to include DOC as well as other organic compounds expected to be involved in 

most ecological processes (Zsolnay, 2003). Mladenov (2010) characterized DOM in Holocene 

aquifers in central Bangladesh and provided valuable information on the role of DOM in arsenic 

mobility. Terrestrially-derived and microbially-derived components of DOM were observed at 

different depths where As concentration was considerably high. Determination of the redox state 

of DOM suggested that fluorescent quinone-like moieties were more reduced in the deeper, older 

groundwater of the Holocene aquifer (Mladenov et al., 2010).  

Different mechanisms have been hypothesized by which the DOM could mobilize the 

arsenic. For instance, humic substances, a biologically refractory class of DOM, are involved in 

complexation reactions with Fe and As (Liu et al., 2011; Sharma, 2010), competition with As for 

sorption sites (Bauer and Blodau, 2006) , and electron shuttling reactions (Lovley et al., 1996, 1998 

and 1999; Scott et al., 1998; Klapper et al., 2002; Kappler et al., 2004; Jiang et al., 2008; Wolf et 

al., 2009; Mladenov et al., 2010, 2015). Therefore, DOM of both labile and recalcitrant quality 

may enhance the process of arsenic release by several mechanisms, including by serving as an 

electron donor (i.e., as direct source of energy) and by more chemically reactive mechanisms 

involving humic substances (Mladenov et al., 2015). Characterization of biologically labile as well 

as humic and chemically reactive fractions of DOM provides the potential to develop insights into 

the sources of DOM and, therefore, its influence on arsenic mobility.  
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Chapter 3 - Hypotheses and objectives 

Several geochemical and hydrological processes are important for arsenic mobility in 

aquifers. This study is focused on interactions of these different processes in the reducing aquifers 

contaminated with natural or geogenic arsenic. The overarching goal is to better understand the 

mechanisms by which DOM influences arsenic mobilization. The specific goals are: (1) to explore 

the key characteristics of DOM in aquifers that are distinct in dissolved arsenic concentrations, (2) 

to evaluate the role of oxidized humic substances in reductive dissolution of Fe minerals and 

subsequent arsenic mobilization via electron shuttling, (3) to evaluate binary or ternary complex 

formation of DOM with As and Fe, (4) to understand biogeochemical transport processes with the 

flow of groundwater. 

To achieve these goals, laboratory experiments, analyses of samples collected in field and 

groundwater flow and transport modeling were performed.   

Hypothesis # 1: Higher arsenic concentrations in Holocene aquifers and lower 

concentrations in Pleistocene aquifers are linked with the contrasting quality of DOM in the 

aquifers.  

In order to test this hypothesis, groundwater samples from high arsenic wells (aquifer with younger 

or Holocene period sediment deposition) and low arsenic wells (aquifer with older or Pleistocene 

period sediment deposition) in Murshidabad district, West Bengal, India were analyzed for water 

chemistry and characteristics of DOM.  

Hypothesis 2 Humic substances act as intermediate electron shuttles and the rate of 

microbial iron/arsenic reduction is accelerated by the presence of humic substances. 

This hypothesis was tested by conducting two separate laboratory experiments. The first 

experiment was set up to find out whether microbially reduced humic substances isolated from 
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high arsenic groundwater shuttles the electron(s) and reduce the iron minerals independent of 

microbial metabolism. In the second experiment, iron reducing bacteria were grown in the 

presence of humic substances to determine whether the rate of iron reduction is accelerated.  

Hypothesis 3 Arsenic and iron forms aqueous complexes with dissolved organic matter. 

To test this hypothesis, fluorescence titrations were carried out between DOM-Fe, DOM-As and 

DOM-Fe-As. Quenching of fluorescence was quantified to be linked with aqueous complex 

formation. Further, structural information about the DOM molecule during the reaction was 

obtained by nuclear magnetic resonance spectroscopic analysis.  

Hypothesis 4 Groundwater flow and biogeochemical transport results in spatially 

discontinuous arsenic concentrations. 

In order to test this hypothesis, hydrogeological models of two aquifers (1) the Bengal basin 

aquifer, West Bengal, India and (2) the Mahomet Bedrock Valley (MBV) aquifer, IL, USA were 

developed. Different hydro geochemical scenarios were simulated to understand flow and 

transport processes in the aquifers. 

Hypothesis 5 Monsoonal recharge influences the quality of dissolved organic matter in 

shallow alluvial aquifer and subsequently the arsenic mobility.  

This hypothesis was tested by collecting the groundwater samples from a shallow aquifer (high 

arsenic site in Nadia district) and a deeper aquifer (low arsenic site in Hooghly district) in West 

Bengal before and after the monsoon. A detailed examination of DOM quality by absorbance and 

fluorescence spectroscopy, along with hydrochemical analyses of groundwater was conducted.  
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Chapter 4 - Methodology 

Field Investigations 

Three months of fieldwork in Nadia, West Bengal was conducted for the current research 

work during May – August 2015. During the fieldwork, intensive groundwater sampling was done 

with focus to study DOM in groundwater in relation to Arsenic concentrations. The selection of 

sites was done in consultation with host Prof. Chatterjee at University of Kalyani. This institute 

maintains five multi-level piezometers at two sites (Chakudanga (23°4'57.42"N, 88°38'9.96"E) 

and Shahispur (23° 4'18.47"N, 88°36'34.96"E)), located east of the River Hooghly by about 12 

kilometers, near the town of Chakdah. This area typically exhibits reduced aquifers characterized 

by Holocene sediments and elevated dissolved arsenic. These two sites were selected primarily 

because of access to piezometers.  

Groundwater samples were collected from piezometers as well as drinking tube-wells 

surrounding piezometers within 500 m distance. In order to study DOM in groundwater where 

arsenic is in low concentrations, two sites were selected 12 kilometers west of River Hooghly, near 

the town of Naksha. This area typically exhibits relatively lower concentrations of dissolved 

arsenic, and the aquifer is characterized by Pleistocene sediments. There are no pre-installed 

piezometers in this study area; hence groundwater samples from two villages Bele (23° 3'40.55"N, 

88°21'7.81"E) and Radhanagar (23° 3'18.22"N, 88°20'41.10"E) were collected. Surface water 

samples were also collected from the ponds in nearby areas with significantly large surface areas. 

During sample collection, information about the tube-well (i.e., depth), the method of installation, 

the age of well etc. was collected from the head of household. Geographic coordinates of all tube-

wells were recorded using a handheld GPS device.  
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Monsoons impact groundwater flux and may influence the characteristics of DOM and 

mechanism of their transport or their functions. To understand the impact of the monsoon on DOM 

quality, a sampling strategy to collect samples before (in dry season) and after (in wet season) 

monsoon was used. The monsoon started around 15th June 2015 in the study area. Samples 

collected during 4th – 11th June 2015 were representative of the pre-monsoon season while those 

collected during 20th July – 13th August 2015 were representative of the post-monsoon season.  

 

 

 

 

 

 

 

 

 

Figure 4 Google Earth Map showing the study area. Sampling sites are shown in Yellow. 

Inset shows the location map. 
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Sample collection and storage 

Tube-wells were pumped at a slow and steady rate manually for about 45 minutes to 

remove accumulated water, and then samples were filtered using a handheld vacuum pump device 

through a 0.7micron glass fiber filter. The filtered sample was collected in one 60 ml and two 125 

ml clean HDPE bottles. For sample preservation, 200 microliters of 70% hydrochloric acid was 

added to one of 125 ml bottles, while 200 microliters of 70% nitric acid was added to another 125 

ml bottle to maintain the pH of sample below 2. All the bottles were appropriately labeled and 

stored at 4oC in dark.  

 

 

 

 

Figure 5 Enlarged view of four sampling sites and locations of sampled wells 
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Field measurements  

The dissolved oxygen was measured using a field probe in flowing water while the pump 

was running. The pH was measured using a pH probe in still water samples collected in clean and 

rinsed container. An additional filtered sample was used to measure chemical parameters using 

field test-kits. Alkalinity was measured using a field titration unit (Chemetrics K9810 and K9815). 

Arsenic was measured using color strip analysis kits (HACH 2800000 and HACH 2822800). The 

Figure 6 Typical drinking water tube well (Top Left), a surface water pond close to a 

tube well (Top Right), multilevel piezometers (Bottom Left) and the pre-rinsed bottles 

(125 mL and 250 mL) used to collect the samples (Bottom Right). 
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total and ferrous iron was measured using field test kits (Chemetrics K6210 and K6210D) on 

filtered samples. Calibration of instruments, preparation of reagents and test kits was done in the 

chemistry lab at the University of Kalyani. Samples were shipped to US for further analysis at 

Kansas State University and San Diego State University. Three dimensional fluorescence 

spectroscopy analysis, total organic carbon, bulk protein analysis of anions and total arsenic was 

done at San Diego State University.  

 

 

 

 

 

 

 

 

 

Laboratory Analyses 

Anions in the water samples were measured using a Ion Chromatograph (Dionex ion 

chromatography system) at the Biology Department, San Diego State University. A total of 40 

tube wells and 10 pond water samples were analyzed, and all the samples were measured in 

triplicates for redundancy of the analyses. Standards were prepared for eight inorganic (chloride, 

bromide, fluoride, nitrate, nitrite, phosphate, sulfate and arsenate) and five organics (acetate, 

Figure 7 Field measurement of total and ferrous iron using Chemetrics K6210 and 

K6210D (Left). Field measurement of arsenic using HACH 2800000 and HACH 

2822800 (Right). 
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citrate, formate, lactate and oxalate) anions. The samples for anion analysis were taken from 125 

mL unfiltered unacidified plastic bottles. Later, 1.5 mL of the sample was transferred to an IC vial 

and placed in the auto-sampler of the IC unit.  

Concentration of Fe2+ was measured by reacting the sample with Ferrozine reagent (5 mL 

Ferrozine reagent (Stookey, 1970) per 2 mL of sample). The presence of Fe2+ is indicated by a 

purple color upon reaction. This ferrous – Ferrozine complex absorbs at a λmax of 562 nm. 

Standards were prepared using Fe (NH4)2(SO4)2.6H2O ferrous ammonium sulfate hexahydrate 

(FW = 392.14). Blank was prepared using 2 mL of deionized water. All the reagents and standards 

were freshly prepared on the day of the analyses. Detailed procedures and preparation of reagents 

is provided in the Appendix. Filtered water samples (20 mL) acidified in the field using 70% 

hydrochloric acid were used for DOC and TN analyses. The analyses were carried out on a TOC-

L Shimadzu Total Organic Carbon Analyzer. The standard operating procedure for TOC analyzer 

is included in the Appendix.  

Bulk Protein Analysis 

The method involves reaction of protein with cupric sulfate and tartrate in an alkaline 

solution, resulting in formation of tetradentate copper-protein complexes. When the Folin-

Ciocalteu Reagent (Miller, 1959; Hartree, 1972) is added, it is effectively reduced in proportion 

to these chelated copper complexes, producing a water-soluble product whose blue color can be 

measured at 750 nm. Accordingly, protein concentrations generally are determined and reported 

with reference to standards of a common protein such as bovine serum albumin (BSA). This 

method has rarely been used to quantify protein content of water and groundwater samples, where 

the expected protein concentrations are low.  
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The 10 ml of groundwater sample was taken in a 50 ml polypropylene Falcon conical 

centrifuge tube (Fisher # 14-432-22). This sample was instantaneously frozen by inserting and 

swirling the centrifuge tube in a beaker containing a solution (slurry) of 99.5% tthyl alcohol (Sigma 

# 459844) and dry ice for about 15-20 minutes, making sure that the sample is frozen as a thin 

sheet of ice inside the centrifuge tube. The frozen samples were dried using a freeze-drying unit 

(combined of a freezer -150 oC and a vacuum pump) for 24 hours, allowing frozen samples to 

sublime completely. After freeze drying, 1 mL of 18.2 MOhm-cm ultrapure water was added to 

the centrifuge tube and vortex mixed. The solution was then transferred to a 1.5 ml polypropylene 

micro-centrifuge tube (Fisher # 05-408-130) and centrifuged at 10000 x G for 5 minutes. After 

centrifuging, the clear solution in the top layer was used for analyses, and the precipitate (white 

color precipitate of the Ca / Mg salts) was separated. 

A modified Lowry Protein Assay Kit (Thermo Scientific 23240) was used to quantify the 

bulk proteins in pre-processed groundwater and surface water samples (Hartree, 1972). Aliquots 

of 40 uL were transferred to a 96 well polypropylene microplate. The modified Lowry Reagent 

(cupric sulfate, potassium iodide and sodium tartrate in an alkaline sodium carbonate buffer) was 

added (200 uL) to each well using a multi-channel pipettor. The microplate was covered and mixed 

for 30 seconds using the plate reader’s vibration program. It was then allowed to stabilize for 

exactly 10 minutes at room temperature. Then, 20 uL of 1N Folin-Ciocalteu reagent (Hartree, 

1972) (stock solution of 2N Folin-Ciocalteu reagent was diluted 50% in 18.2 MOhm-cm ultrapure 

water) was added to each well using a multi-channel pipettor. The microplate was covered and 

incubated for 30 minutes at room temperature. The absorbance at 750 nm was measured for all the 

wells. Ultrapure water (18.2 MOhm-cm) was used as blank, and standards were prepared using 

dilutions of Bovine Serum Albumin (BSA) in ultrapure water (1000, 500, 250, 125, 25, 5, 1 and 0 
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μg/ml). All the blanks and standards were analyzed in exactly same way as samples in the same 

microplate. All the samples, blanks and standards were analyzed in triplicates. The average value 

of the absorbance at 750 nm of the blank triplicates was subtracted from all other individual 

standards and unknown samples. A standard curve was prepared by plotting the blank corrected 

absorbance values for the standards vs. the known concentrations. This curve was used to 

determine the protein concentration for each unknown sample. Absorbance data for unknown 

samples was fitted to standard curve using a four-parameter curve-fitting algorithm for accurate 

estimation of protein concentrations. Detailed procedure of analysis and preparation of reagents is 

provided in the Appendix.      

Spectroscopic Analyses of DOM 

UV-visible absorbance and fluorescence spectroscopic techniques have been used to study 

DOM in a wide range of environments from marine waters (Kalle, 1949; Duursma and Marchand, 

1974) to groundwater (Mladenov et al, 2010, 2013, 2015). Absorbance data was used for 

calculating absorbance at 254 nm (abs254) where molecules with specific bonding arrangement 

such as the conjugated systems in aromatic compounds exhibit greatest absorptivity (Weishaar et 

al., 2003). Specific UV absorbance (SUVA254) indicating aromaticity of DOM was also calculated 

by normalizing the absorbance at 254 nm (abs254) with DOC concentration. Two spectral slopes 

S275-295 indicative of molecular weight and degree of photo-bleaching and S350-400 indicative of 

colored DOM (CDOM) and contributions from terrestrially derived DOM (Helms et al., 2008) 

were determined. The spectral slope ratio SR (S275-295 / S350-400) was calculated where SR > 1 is 

indicative of low CDOM found in marine water samples, whereas SR < 1 is characteristic of 

terrestrially dominated, high CDOM samples (Helms et al., 2008). An increase in the SR value was 

observed due to reduced molecular weight of DOM and photo-bleaching, whereas a decrease in 
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the SR value was observed due to microbial activities i.e. microbial production or preservation of 

long wavelength absorbing substances (Helms et al., 2008; Moran et al., 2000; Vahatalo and 

Wetzel, 2004). Fluorescence index (FI) that typically suggests the source of DOM, ~1.3 – 1.4 being 

terrestrially derived DOM and ~1.7 -1.9 being microbially derived DOM was calculated 

(McKnight et al., 2001; Cory and McKnight, 2005). Freshness index (β:α) (Parlanti et al., 2000) 

ranging from 0.4 – 0.6 represent recently derived DOM while that between 0.6 – 1 represent 

processed DOM (Fellman et al., 2010). Higher values of humification index (HIX) indicate higher 

degree of DOM humification (Ohno, 2002). 

In the current study, the UV-visible absorbance and EEM spectra were measured 

simultaneously using a Jobin Yvon Aqualog Fluorometer with a clean quartz cuvette of 0.01 m 

path length. Integration time was set to 0.25 seconds, and an excitation range from 240 nm to 450 

nm with 3 nm increments was used. Emission spectra were obtained from 212 nm to 619 nm with 

increments of 3.28 nm (according to instrument specifications). Fluorescence signals were 

collected in signal to reference (S:R) mode, and EEMs were corrected for the inner filter effect 

(Ohno, 2002), Raman normalized (using 18.3 MΩ cm Milli-Q ultra-pure water at ~350 nm), and 

blank subtracted. First and second order Rayleigh scattering bands also were excised (Stedmon 

and Bro, 2008). A quinine sulfate standard was also run, giving a value of 1 R.U. = 2.495 quinine 

sulfate units (QSU). Absorbance data was collected simultaneously on the same Aqualog 

Fluorometer between 240 nm to 450 nm wavelengths with a resolution of 3 nm. Absorption 

coefficients, a, were calculated as, 

𝑎 = 2.303 ∗ 𝐴/𝑙 

Where A = absorbance measured and l = path length (0.01m). Spectral slopes were calculated 

from the log transformed absorbance coefficients between 275 – 295 nm (S275-295) and 350 – 400 
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nm (S350-400). The FI is calculated as the ratio of fluorescence intensities at 470 nm and 520 nm 

emission and 370 nm excitation. The β:α was determined as the ratio of emission intensity at 380 

nm with maximum intensity between 420-435 nm at excitation wavelength of 310 nm (Parlanti et 

al., 2000). The HIX was calculated as the ratio of peak area under the emission spectra at 435-480 

nm to peak area from 300-345 nm obtained at an excitation wavelength of 254 nm (Zsolnay, 2003). 

Area under the curve was estimated by trapezoidal area calculation with increments of 1 nm for 

excitation and emission wavelengths. All corrections were performed using a computer program 

implemented in MATLAB (R2014a). Corrected three dimensional fluorescence excitation 

emission matrix (EEM) data was fitted to a four component PARAFAC model (Harshman, 1970; 

Stedmon et al., 2003; Stedmon and Bro, 2008).  

PARAFAC Modeling using Fluorescence Data 

           DOM Fluor toolbox (Stedmon and Bro, 2008) was used to build a PARAFAC model for 

this sample dataset. The sample set included corrected EEMs from surface and groundwater with 

varying fluorescent intensities. In order to avoid false identification of extremely high or low 

concentration samples as outliers by PARAFAC, these EEMs were normalized using a modified 

method of Murphy (2013). In brief, each intensity value in the matrix was divided by the maximum 

intensity of that sample instead of dividing by the sum of squares of all intensities in that sample. 

This presets all the EEMs to a maximum intensity of 1, according to: 

𝐼(𝑖, 𝑗)𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝐼(𝑖, 𝑗)𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐼𝑚𝑎𝑥
.  

Outliers were removed from the PARAFAC model dataset if they met one of these conditions: 

negative spectral slope ratios, very high FI (> 2) that corresponded to a FI peak emission location 

> 470 nm, and, β:α values >1 indicating shift of peak in the 310 nm emission spectra. The dataset 
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was then fitted to a non-negativity constrained PARAFAC model according to Stedmon et al., 

(2003). Additional outliers were identified by calculating the leverage of each sample and 

wavelength. Samples with leverages approaching 1 were examined to ensure that there was no 

analytical error before being considered as outliers (Stedmon and Bro, 2008).  After removing 

outliers, a total of 60 samples were used. A four-component model was validated by split half 

analysis and random initialization techniques by running ten, four component models. For all the 

samples, the residual (difference between actual and modeled EEM) did not exceed 10% of the 

intensity in the original EEM (Cawley et al., 2012), which indicates an acceptable model fit 

(Stedmon and Bro, 2008).  After complete validation, the actual intensities of each component 

were obtained by multiplying the intensity of each component by the maximum intensity (Imax) of 

the original EEM used in the normalization. Two indices based on PARAFAC components were 

developed to provide further insights into the nature of DOM. The humic:protein index was 

calculated as the ratio of the sum of humic-like DOM components to the sum of protein-like DOM 

components obtained from the PARAFAC model, according to: 

ℎ𝑢𝑚𝑖𝑐: 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 =
∑𝐻𝑢𝑚𝑖𝑐 − 𝑙𝑖𝑘𝑒 𝐷𝑂𝑀 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

∑𝑃𝑟𝑜𝑡𝑒𝑖𝑛 − 𝑙𝑖𝑘𝑒 𝐷𝑂𝑀 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
 . 

The (terr: microb) index was calculated as the ratio of the sum of terrestrially-derived to 

microbially-derived DOM components obtained from the PARAFAC model, according to: 

terr: microb =
∑𝑇𝑒𝑟𝑟𝑒𝑠𝑡𝑟𝑖𝑎𝑙𝑙𝑦 𝐷𝑒𝑟𝑟𝑖𝑣𝑒𝑑 𝐷𝑂𝑀 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

∑𝑀𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙𝑙𝑦 𝐷𝑒𝑟𝑟𝑖𝑣𝑒𝑑 𝐷𝑂𝑀 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
 . 

Statistical Analyses 

Statistical analyses were carried out to determine descriptive parameters such as minimum, 

maximum, average and standard deviation of the data. Since the arsenic concentrations were not 

normally distributed, a non-parametric Mann – Whitney – Wilcoxon (MWW) U test was used to 
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compare the statistically significant variability among samples. Regression analyses was used to 

obtain R2 and p statistics for correlation between two datasets. All statistical operations were 

performed using Microsoft Excel and MATLAB (R2014a). 

Bio-geochemical Methods 

Electron Shuttling Experiment 

 Geobacter metallireducens Lovley et al. (ATCC 53774) pure culture was used and initial 

cultures were propagated by incubating the cells at 300C in freshly prepared ferric citrate medium 

(ATCC 1768) for 7 days. The pH of the medium was maintained between 6.8 – 7.0 after bubbling 

80% N2 and 20% CO2. Suwanee River Fulvic Acid (SRFA) was used to study the growth rate of 

G. metallireducens and was obtained from International Humic Substances Society (IHSS # 

2S101H).  Ferric citrate (Fisher # 3388) and Goethite (Schwertmann and Cornell, 2007) were used 

as liquid and solid phase electron acceptor respectively. Dissolved Fe2+ was quantified by 

Ferrozine method (Stookey, 1970, Appendix) on a UV-Spectrophotometer. Bangladesh Fulvic 

Acid (BFA) samples were isolated from the groundwater ranging from 7 – 15 m depths and <5 to 

>30 years old age. (Mladenov et al., 2015).  

 The study site was located in the Ganges Brahmaputra Delta (GBD) in central Bangladesh 

and underlay Holocene aquifers (5 – 30 m, elevated As) and deep Holocene aquifers (40 – 90 m, 

low As) separated by one or multiple layers of fine-grained sediment (Zheng et al., 2005).  BFA 

samples were re-dissolved in 18.2 MΩ-cm Milli-Q ultra-pure water to obtain final concentration 

of 2 mg. mL-1. Nutrients (as per ATCC 1768, except ferric citrate) were added and dissolved to 

BFA solutions in appropriate amounts. An industrial grade N2 gas was bubbled through the BFA 

solutions for 1 hour in 18 x 150 mm glass anaerobic tubes and tubes were sealed under N2 head 
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with 20 mm blue butyl rubber stopper and aluminum seal. 100 µL of each BFA sample was 

analyzed on Horiba Aqualog fluorometer to acquire fluorescence data.   

As per ATCC 53774 propagation protocol, the frozen vials were thawed under anaerobic 

conditions and an aliquot of pure culture was transferred into previously prepared 10 ml of ferric 

citrate medium into sealed anaerobic test tube by a sterilized needle. After 7 days’ incubation, 0.5 

mL aliquot from the first test tube was transferred to second, three such transfers were made. Fe2+ 

concentration was measured at each stage to monitor the growth using Ferrozine method. In order 

to obtain, healthy bacterial cells possibly free from any dissolved iron trace, a successive filtration 

process was used. From the actively growing culture, 5 ml was filtered through 0.2-micron nylon 

sterilized syringe filter, pre-rinsed with 20 ml of anaerobic (N2 purged) 18.2 MΩ-cm Milli-Q ultra-

pure water. The filtrate contained the medium constituents, microbially produced Fe2+ and 

remainder ferric citrate while bacterial cells were retained on the filter. This filter was then 

backwashed using 2 mL of ultra-pure water to collect bacterial cells. To this, 3 mL of ultra-pure 

water was added and total 5 mL volume was again filtered through a new filter. This process was 

successively repeated four times to avoid any traces of culture medium and Fe2+. At the end of 5th 

backwash, 400 µL of solution containing bacterial cells per 1 mL of the BFA medium was added 

for inoculation. After 7-day incubation under anaerobic conditions and room temperature, BFA 

sample was filtered through 0.2 µm sterile filter to separate bacterial cells. The filtrate aliquot of 

1 mL was added to 1 mL of 55.93 mM freshly prepared ferric citrate solution in a 1.5 mL micro 

centrifuge tube. After allowing specific reaction times (0, 2, 4, 5, 6, 7 and 8 hours), an aliquot of 

the sample was tested for Fe2+ concentration using Ferrozine method. 
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Geobacter growth study and bio-geochemical modeling 

 Sodium acetate (2 mM) as primary electron donor and Goethite (10 mM) as primary 

electron acceptor were added to a 250 mL glass serum bottle containing 100 mL of ATCC 1768 

medium. The medium was bubbled with 80% N2 and 20% CO2 to achieve final pH of 6.8 – 7. The 

bottles were sealed under N2 head and sterilized in autoclave at liquid cycle. One sample was 

prepared with HS by adding 6 mgL-1 of SRFA while the other sample only had acetate. A 0.2 mL 

aliquot of G. metallireducens culture was injected into each sample. Blanks were prepared in 

similar way without adding the bacteria. Sample bottles were incubated at room temperature under 

anaerobic conditions for 18 days. Fe2+ concentrations were measured using Ferrozine method to 

monitor the bacterial growth in all the samples. An iterative algorithm (Geochemist’s Workbench 

10.0 Professional) was used to model theoretical growth of the bacteria using Monod kinetic 

equation (Roden et al., 2006) modified to include thermodynamic potential factor FT (Bethke et 

al., 2008) and surface properties of Goethite to simulate environmentally relevant conditions. Fe2+ 

concentrations measured during the experiment were fitted to the modeled values to obtain kinetic 

rate constant.  

𝑟 = 𝑘 ∗ [𝑋] ∗
𝑚𝐷

𝑚𝐷 + 𝑘𝐷
∗

(
[𝑋]
𝑚𝐴)

(
[𝑋]
𝑚𝐴) + 𝑘𝐴

∗ 𝐹𝑇                                 

The rate of iron reaction (r) can be expressed by the above equation, where k is reaction rate 

constant, X is biomass concentration, mA and mD are molality of electron acceptor and donor 

respectively, kA and kD are half saturation constants for electron acceptor and donor respectively. 

Thermodynamic potential factor (FT) is calculated by second equation  𝐹𝑇 = 1 − exp (
𝑑𝐺𝑅+𝑛∗𝑑𝑃

𝑥∗𝑅∗𝑇
), 
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where dGR is the free energy change of the metabolic reaction in kJ/mol, n is the number of ATPs 

produced, dGP is the free energy change of ATP synthesis in kJ/mol, x is the average number of 

times the rate determining step occurs, R is the gas constant and T is absolute temperature (Jin et 

al., 2013). 

Groundwater Modeling 

Groundwater flow in three dimensional domains was modeled by a finite difference 

equation given below, 

𝜕

𝜕𝑥
(𝐾𝑥𝑥

𝜕ℎ

𝜕𝑋
) +

𝜕

𝜕𝑦
(𝐾𝑦𝑦

𝜕ℎ

𝜕𝑦
) +

𝜕

𝜕𝑋
(𝐾𝑧𝑧

𝜕ℎ

𝜕𝑧
) + 𝑊 = 𝑆𝑠

𝜕ℎ

𝜕𝑡
 

Where KXX, KYY and KZZ are values of hydraulic conductivity along the x, y and z coordinate axes; 

h is the potentiometric head; W is a volumetric flux per unit volume representing source and/or 

sinks of water, with W<0.0 for flow out of the groundwater system and W>0.0 for flow; Ss is the 

specific storage of the porous material and t is the time.  

 The model domain for West Bengal aquifer was defined using a shapefile of four districts 

of West Bengal (Murshidabad, Nadia, South 24 Parganas and North 24 Parganas). The major rivers 

(spatially varying head), the Bay of Bengal (constant head) and the net recharge rate were used to 

define the boundary conditions in the model domain. Stratigraphy of the model domain was 

defined by interpolating the horizons in 97 georeferenced borehole lithologs (Mukherjee et al., 

2007). Mainly four types of sediments were observed within the 300 m depth of model domain as 

clay, sandy clay, sand and gravels. Horizontal hydraulic conductivities were defined for each 

material based on values estimated in previous studies (KXX = KYY = 0.01 m/d for Clay, 4 m/d for 

Sandy Clay, 42 m/d for Sand and 60 m/d for Gravel). Vertical hydraulic conductivities were 

defined by vertical anisotropy (KXX/KZZ = 10) for each material.  
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Flow Model 

Three dimensional flow in the complex stratigraphic model was modeled using USGS 

MODFLOW-NWT program which uses the Newton solution method and unstructured, 

asymmetric matrix solvers to calculate groundwater head (Knoll and Keyes, 2004). A three-

dimensional grid of size 151.19 km x 404.62 km x 300 m was defined to completely include the 

model area with cell size of 1.5 km x 4 km x 30 m. The top elevations and starting heads were set 

to the elevations obtained from digital elevation model of the study area. Coverages of model area, 

boundary conditions were mapped to three-dimensional grid. The hydraulic conductivity values 

were assigned to each grid cell by mapping the stratigraphic model to this grid using overlay 

method. The head was computed using a steady state simulation.  

 In order to focus on the area where groundwater samples were collected during summer 

2015 fieldwork, two stage telescopic grid refinement was used. A new model boundary of 10.33 

km x 16.96 km x 300 m with a cell size of 103 m x 169 m x 30 m was created to cover completely 

the two field sites in Nadia district. The boundary conditions were defined by specifying the head 

to each boundary cell as computed in the regional model. No other boundary conditions were 

mapped to this local model except the stratigraphy for this area was cropped from the regional 

stratigraphic model. A new MODFLOW-NWT simulation was run to compute the heads. This 

local model was further refined by second stage grid refinement. A new model spanning 4.99 km 

x 2.24 km x 300 m with cell size of 50 m x 23 m x 30 m was developed. The boundary conditions 

and stratigraphy were assigned using heads computed in previous local model. Heads were 

computed again using MODFLOW-NWT and used for further analyses.   

 

 



31 

 

Transport model 

Outputs from steady state MODFLOW simulation on the local model was used to track 

particles using the post-processing tool MODPATH to estimate the time of travel for particles 

moving through the system. Particles were created within the cells bounded by the field sites where 

the samples were collected. These particles were tracked backwards in time to the beginning to 

understand the flow direction. And to calculate the velocity of groundwater flow. Flow paths of 

the particles assigned in the lower layers in varying stratigraphic units were used to study the 

behavior of different materials and their hydraulic properties influencing the flow and transport 

processes.  

Arsenic mobilization is a result of multiple biogeochemical reactions that take place in 

groundwater flow through the porous media, the geochemical reactions in the arsenic contaminated 

aquifer were modeled using a reactive multicomponent three-dimensional transport code RT3D 

incorporated in MT3DMS 5.3. In the local model computed heads from MODFLOW model were 

used in RT3D with a stress period of 10 years. Advection, dispersion, source/sink mixing and 

chemical reaction packages were activated in this model using porosity and longitudinal 

dispersivity values from the material properties. Equilibrium between aqueous Fe2+ and Fe3+ was 

considered as the background in the model, since in the reducing aquifers of West Bengal, mainly 

reductive dissolution of iron minerals has been reported to release arsenic in groundwater. 

Oxidized iron minerals were represented as Fe (OH)3 and the equilibrium reaction based on pH 

and pe is given by, Fe (OH)3 + 3H+  Fe3+ + 3H2O and Fe3+ +e-  Fe2+. Initial concentrations 

of all the species, pH and pe values for all the cells in the grid were assigned and PHREEQC 

geochemical database was used to define thermodynamic parameters of the reactants and products. 
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Chapter 5 - Contrasting Dissolved Organic Matter Quality in 

Groundwater in Holocene and Pleistocene Aquifers and 

Implications for Influencing Arsenic Mobility 

 

Highlights 

 Dissolved organic matter in Holocene and Pleistocene aquifers was 

characterized. 

 PARAFAC modeling identified 4 unique fluorescent components of DOM in 

groundwater. 

 OM in groundwater in the Holocene aquifer was microbially-processed and 

humic-like. 

 Humic DOM may be involved in promoting As mobilization in Holocene 

aquifer. 

 Absence of humic-like DOM in Pleistocene aquifer reflects lack of microbial 

processing of DOM. 

 

 

Figure 8 Contrasting DOM quality in groundwater in the Holocene and the Pleistocene aquifers 

(Kulkarni H.V. et al., 2016) 
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ABSTRACT 

The discontinuous nature of elevated arsenic (As) in drinking water wells of West Bengal 

and other regions in the Bengal Basin has led to increased interest in the role that sediment-derived 

organic matter may play in enhancing reductive dissolution and AS mobilization. Higher As 

concentrations have been observed in groundwater in reduced Holocene (grey) aquifers when 

compared to oxidized Pleistocene (orange) aquifers. In order to evaluate if differences in the 

chemical character of dissolved organic matter (DOM) are present in groundwater in the Holocene 

and the Pleistocene aquifers that may influence dissolved As concentrations, shallow groundwater 

and surface water samples were collected from four study sites in Murshidabad district, West 

Bengal, India, and analyzed for water chemistry parameters and characteristics of DOM. For wells 

known to typically contain high As concentrations (in Holocene sediments) in Beldanga (10 – 

4622 µg/L, at 35-45 m depth) and Hariharpara (5 – 695 µg/L, at 6-37, depth) sites, as well as wells 

characterized by low As concentrations (Pleistocene sediments) in Nabagram (0 – 16 µg/L, at 20-

45 m depth) and Kandi (5 – 50 µg/L, at 20-55 m depth), detailed DOM characterization was carried 

out using fluorescence spectroscopy and parallel factor analysis (PARAFAC). Results from 

statistical analysis of a variety of optical (absorbance and fluorescence) DOM properties revealed 

that the DOM in groundwater in the Holocene aquifer had high humification index (HIX) and low 

freshness index (β:α) values, whereas groundwater in the Pleistocene aquifer comprised more 

labile and microbial DOM sources. Consistent with the more labile nature of DOM in groundwater 

in the Pleistocene aquifer, two ratios 1) humic-like to protein-like components (humic:protein) and 

2) terrestrially-derived to microbially-derived components (terr:microb) obtained from a four-

component PARAFAC model were 1.9 and 2.9 times greater, respectively, in groundwater in the 
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Holocene aquifer than that in Pleistocene aquifer, which suggests that the absence of humic-like 

DOM may be an important limitation to As mobility.    

INTRODUCTION 

Approximately 43 million people in West Bengal and 22 million in Bangladesh have been 

exposed to arsenic (As) concentrations greater than the World Health Organization guideline for 

drinking water (10 µg/L) (Sankar et al., 2014; Datta et al., 2011; Bhattacharya et al., 1997; 

Nickson et al., 1998; Smith et al., 2000; McArthur et al., 2001; Dowling et al., 2002; 

Roychowdhury et al., 2002; Ravenscroft et al., 2005; Acharyya and Shah, 2006; Datta et al., 

2009). Microbially-mediated reductive dissolution of iron oxyhydroxides minerals has been 

invoked as one of the prominent mechanisms for the mobilization of sediment-bound As into 

reducing groundwater (McArthur et al., 2001; Dowling et al., 2002; Hasan et al., 2007; Sankar et 

al., 2014). The driver of this mechanism is labile dissolved organic matter (DOM). It has been 

hypothesized that labile DOM is drawn to depth from ponds and other surface waters laden with 

sewage (Harvey et al., 2006; Neumann et al., 2010), however, dispersed sedimentary organic 

matter has also been implicated as a source (McArthur et al., 2004; Sengupta et al., 2008; Datta 

et al., 2011, Neumann et al., 2014).  

Recently, additional roles have been proposed for DOM in aquifers in the Bengal Basin that 

may have important consequences for iron and As mobilization (Wang et al., 2006; Mladenov et 

al., 2010). For instance, humic substances, a biologically refractory class of DOM, are involved in 

complexation reactions with Fe and As (Liu et al., 2011; Sharma,2010), competition with As for 

sorption sites (Bauer and Blodau, 2006) , and electron shuttling reactions (Lovley et al., 1996, 1998 

and 1999; Scott et al., 1998; Klapper et al., 2002; Kappler et al., 2004; Jiang et al., 2008; Wolf et 
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al., 2009; Mladenov et al., 2010, 2015). Therefore, DOM of both labile and recalcitrant quality 

may enhance the process of As release by several mechanisms, including by serving as an electron 

donor (i.e. as direct source of energy) and by more chemically reactive mechanisms involving 

humic substances (Mladenov et al., 2015).  

Characterization of biologically labile as well as humic and chemically reactive fractions of 

DOM provides insights into the sources of DOM and, therefore, its potential influence on As 

mobility. Absorbance and fluorescence spectroscopy techniques have opened a new window for 

the characterization of DOM (Coble, 1996) and have proven to be sensitive, reliable and rapid 

techniques for identifying DOM sources and transformations. For example, absorbance over the 

ultraviolet range of wavelengths provides a quantitative measure of source and molecular weight 

of DOM (Helms et al., 2008), while indices obtained from three dimensional fluorescence analysis 

provide insight into DOM source, age, freshness, and degree of processing in the environment. In 

addition, PARAFAC modeling of excitation-emission matrix (EEM) data allows quantification of 

humic-like, protein-like, terrestrially-derived and microbially-derived fluorescent components of 

DOM (McKnight et al., 2001; Cory and McKnight, 2005; Mladenov et al., 2011; Mladenov et al., 

2015). 

Shallow groundwater (< 40 m deep), the main source of drinking water for most communities 

within the Bengal Basin, is largely free of pathogenic bacteria. However, it has a wide range of As 

concentrations and its DOM sources may comprise both labile microbially-derived DOM 

transported to depth and terrestrially-derived DOM originating from dispersed sedimentary 

materials, subsurface peat deposits, or other lignaceous organic matter sources. In an investigation 

of the characteristics of the DOM in groundwater in the Holocene aquifer near Araihazar, 

Bangladesh, Mladenov et al. 2010 found through incubation experiments that, over time, 
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sediments released DOM with terrestrially-derived fluorescence properties. Results obtained from 

fluorescence spectroscopy of groundwater samples in the same aquifer found higher amino acid-

like fluorescence in samples from young (~1.6 years), low As wells, whereas samples from 11 – 

14 m depth with As concentration ~550 µg/l and age of ~ 19 years had lower amino acid-like 

fluorescence and more lignaceous dissolved organic matter (Mladenov et al., 2010). In 

groundwater samples in 12,300 – 48,500 years old (Acharyya et al., 2000) Pleistocene aquifers, 

more oxidized organic matter and microbial signatures were reported (Sutton et al., 2009).  

The geochemistry of water and sediments in the Pleistocene aquifer in the region has also 

been studied, and the Pleistocene aquifer is known to contain much lower dissolved As 

concentrations than the Holocene aquifer as a result of more strongly oxidizing conditions that 

occurred when the sediments were deposited (Fendorf et al., 2010). Anaerobic incubation 

experiments with Pleistocene sediments, lactate as carbon source and metal reducing bacteria 

Shewanella, showed that phosphorous-extractable As increased even without addition of lactate 

(Dhar et al., 2011). Therefore, arsenic mobilization from the Pleistocene sediments may not have 

been caused by labile DOM. Much still remains to be understood about the similarities or 

differences in groundwater chemistry, particularly of the organic geochemistry that may influence 

As mobilization in Pleistocene and Holocene aquifers. 

To our knowledge, the chemical and optical properties of DOM in groundwater in the 

Pleistocene aquifer have not yet been extensively studied. Therefore, this study evaluates the 

optical spectroscopic characteristics of DOM in groundwater in both the Pleistocene and Holocene 

aquifers in wells that are high and low in As. A unique feature of this study is that the sampling 

sites in Holocene and Pleistocene aquifers are located at similar depths, in close proximity to each 

other, on either side of a hydrologic divide that separates the two geologic formations, and are thus 
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subject to similar environmental and population pressures. Dissolved organic carbon (DOC) 

concentrations and UV-visible absorbance and fluorescence spectroscopy were employed to 

characterize the freshness and humification of groundwater DOM. This study further employs 

parallel factor analysis (PARAFAC) multivariate analysis modeling of fluorescence spectra from 

samples collected exclusively from the Bengal Basin. This first PARAFAC model of Bengal Basin 

groundwater fluorescence quantifies the relative amounts of protein-like and humic-like DOM 

components in groundwater in the Pleistocene and Holocene aquifers with different As 

concentrations.  

MATERIALS AND METHODS 

Study Site  

Figure 9 Map of study area showing locations of samples collected. Insets to the 

left show concentrations of dissolved Arsenic at four study sites (Kulkarni H.V. et 

al., 2016) 
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To characterize DOM in groundwater in the Holocene aquifer, 32 wells were sampled 

covering a wide spatial extent (~623 km2) in the Beldanga and Hariharpara blocks located to the 

east of River Bhagirathi (Figure S1) in which the geology is characterized by ~7000 years before 

present younger Holocene sediments (Acharyya et al., 2000, Biwas and Roy, Mukherjee et al., 

2007). These sites to the east of the river are known to have a large proportion of high dissolved 

As wells (Datta et al., 2011; Sankar et al., 2014). To characterize DOM in groundwater in the 

Pleistocene areas, 23 wells covering a wide spatial extent (~544 km2) in the Nabagram and Kandi 

blocks, located to the West of River Bhagirathi and characterized by 12,300 – 48,600 years before 

present (Acharyya et al., 2000) Pleistocene sediments, were sampled. These sites are known to 

have wells generally low in dissolved As (Datta et al., 2011; Moran et al., 2000). Lithological 

evidence suggests the presence of a clay layer at 100 m depth below the study area on both sides 

of the river (Mukherjee et al., 2007).   Description of sediment type, total As, total iron and organic 

matter in sediments at all study sites is given in Table 1 (Sankar, 2013).  In Beldanga, the maximum 

As concentration in older (Holocene) silty clay was 18.09 mg/kg, the total Fe concentration varied 

between 14.72 – 32.97 g/kg, and organic matter content was between 57.7 – 171.4 mg/kg at 15 m 

depth. In Hariharpara, the maximum As concentration was 15.54 mg/kg in older (Holocene) dark 

grey sticky clay while the concentration of total Fe was 26.22 – 31.73 g/kg and organic matter was 

55.85 – 61.15 mg/kg at 6 m depth. Characterization of sedimentary organic matter in similar 

geological setting in Nadia district, West Bengal (Rowland et al., 2006) revealed the abundance of 

apolar compounds dominated by high molecular weight n-alkanes with small amounts of hopanes 

and steranes. Components of less abundant polar compounds were primarily the n-alkanols and 

small amounts of sterols. Rowland et al. (2006) also suggested that a significant fraction of organic 
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matter was presumably recalcitrant macromolecular material, which would be less available as a 

labile carbon source (electron donor) for microbial activities. In Nabagram, the highest sediment 

As concentration was 10.42 mg/kg with total Fe of 12.9 – 25.61 g/kg and organic matter content 

of 62.78 – 74.64 mg/kg at 3 m depth in reddish (Pleistocene) grey colored clay. In Kandi, the 

maximum sediment As was 15.67 mg/kg with total Fe of 25.39 – 36.12 g/kg and organic matter 

of 118.9 – 122.4 mg/kg at 12.2 m depth in reddish (Pleistocene) grey colored clay (Sankar, 2013).   

The characteristics of sedimentary organic matter in Pleistocene age sediments have been 

reported in the literature. Ghosh et al. (2015) (a study conducted in Pleistocene brown sand aquifer 

of Nadia, West Bengal, a site just to the south of our study area) reported that the organic matter 

deposited during the Pleistocene was mainly from terrestrial, higher plant origin indicated by high 

molecular weight (HMW) n-alkanes and unsaturated alkanoic acids. However, low molecular 

weight (LMW) n-alkanes and n-alkanoic acids were also present and believed to be derived from 

microbial cells (Ghosh et al., 2015). Presence of terrestrially derived as well as microbially derived 

organic matter in Pleistocene sediments at other locations has also been reported by several other 

studies such as in aquifers of Red River Delta, Vietnam (Lawati et al., 2012; Eiche et al., 2016), 

in eastern Netherlands (Hartog et al., 2004) and Bangladesh (Hossain et al. 2009).  

 Mukherjee et al. (2007) reported the transmissivity of 3300 – 7000 m2/day, permeability of 

42 m/day for sand and 0.01 m/day for clay and porosity of 0.2 for the Holocene aquifer. Generally, 

the older (Pleistocene, typically yellow-reddish) sediments have a lower permeability than recent 

(Holocene, typically grey) sediments (Mukherjee et al., 2007). Ravenscroft et al. (2005) had 

reported the permeability of Pleistocene sands to be 20-30 m/day while that for Holocene sands to 

be 40-60 m/day for Pleistocene and Holocene sands with the same medium grain size. The lower 

permeability of Pleistocene sands was thus attributed to the presence of secondary clays and iron 
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oxides that partially clog the pore throats (Ravenscroft et al., 2005). The same study also reported 

that Pleistocene clays were thicker and more consolidated than Holocene aquitards, resulting in 

lower vertical permeability and lower specific yield in Pleistocene aquifer systems (Ravenscroft et 

al., 2005). Groundwater pumping for domestic and irrigation purposes was estimated as 3.32E-04, 

8.84E-05 and 1.33E-04 m3/m2/day during pre-monsoon, monsoon and post-monsoon seasons 

respectively. (Mukherjee et al., 2007). 
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Table 1 Description of sediment characteristics based on analyses of four sediment cores collected from study area (Sankar, 2013 and 

Sankar et al., 2014) and the characteristics of sedimentary organic matter obtained from sites in similar geologic settings (Rowland et 

al., 2006 and Ghosh et al., 2015). 

#Sediment Description from Sankar (2013): 1Silty clay; 2Sand; 3Dark grey sticky clay; 4Medium grained sand; 5Reddish grey colored clay; 6Grey 

colored medium grained sand; 7Reddish color medium grained sand; 8Dark grey colored fine-medium sand. 

*Data obtained from analyses of Holocene sediments from Nadia district, West Bengal, India. 
+Data obtained from Pleistocene sediments from Nadia district, West Bengal, India.  

Location 
Depth 

(m) 

AsT 

(mg/kg) 

FeT 

(g/kg) 

Organic 

Matter 

(mg/kg) 

Sediment 

Description# 
Age 

Organic Matter 

 Characteristics 

Beldanga 

N 23 56.392 

E 88 16.206 

3 18.06 32.97 57.7 1 

Holocene, 

~7000 years 

before 

present 

Abundant high molecular 

weight n-alkanes, hopanes 

and steranes; Less abundant 

n-alkanols and sterols 

(Rowland et al., 2006*) 

 

15 18.09 21.56 171.4 1 

27 16.52 24.6 55.3 1 

30.5 9.71 11.91 53.2 2 

Hariharpara 

N 24 03.651 

E 88 21.395 

3 12.78 26.22 59.2 3 

6 15.54 31.73 56.5 3 

15 8.3 6.8 55.85 4 

27.4 6.03 31.73 61.15 4 

Nabagram 

N 23 12.156 

E 88 13.492 

9.1 10.42 19.55 74.64 5 

Pleistocene, 

12,300 – 

48,600 years 

before 

present 

 High molecular weight 

(HMW) n-alkanes; Low 

molecular weight (LMW) n-

alkanes; Mono-unsaturated 

n-alkanoic acids; LMW n-

alkanoic acids; Sterol and 

stanol monomers; Lipids 

(Ghosh et al., 2015+) 

43 6.36 8.75 62.78 6 

Kandi 

N 23 58.570 

E 88 06.814 

3 7.4 6.46 - 7 

12.2 15.67 25.39 118.9 5 

21 11.04 36.12 - 5 

27 5.6 5.29 121.8 8 

30.5 9.51 31.74 - 3 

33.5 9.92 35.5 122.4 3 
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Sample Collection and Storage 

For representative sampling of surface water and groundwater, samples were collected from 

11 surface ponds (PW), 37 shallow depth tube wells (TW) (10 - 40 m), 3 deep tube wells (TW) 

(>40 m) and 11 irrigation wells (IW) (10-46 m). A total of 43 samples from the Holocene area (27 

TW, 5 IW and 11 PW) and 29 from the Pleistocene area (20 TW, 3 IW and 6 PW) were analyzed. 

Samples were filtered through a 0.7 µm nominal pore size pre-combusted glass fiber filter in the 

field and stored at 40C until analysis. To avoid quenching effects from lowering pH, samples were 

not acidified either in field or in lab prior to fluorescence analysis.  

Spectroscopic Analyses 

UV-visible absorbance and fluorescence spectroscopic techniques have been used to study 

DOM in a wide range of environments from marine waters (Kalle, 1949; Duursma and Marchand, 

1974) to groundwater (Mladenov et al, 2010, 2013, 2015). Spectroscopic data was acquired using 

Jobin Yvon Aqualog Fluorometer. A filtered water sample was excited with range of wavelengths 

from 240 nm to 450 nm with 3 nm increments and integration time of 0.25 seconds. From 

absorbance data, absorption coefficient “a” was calculated as, a = 2.303*A/L, where A is the 

absorbance and L is the path length (0.01 m). Absorbance at 254 nm (abs254) has been used to 

understand characteristics of organic molecules as the molecules with specific binding 

arrangements such as the conjugated systems in aromatic compounds exhibit greatest absorptivity 

at 254 nm (Weishaar et al., 2013). Log-transformed absorbance coefficients were used to calculate 

spectral slope between 275 nm to 295 nm (S275-295) and between 350 nm to 400 nm (S350-400). The 

former has been shown to be an indicator of molecular weight and degree of photo bleaching while 

the latter represents chromophoric DOM (CDOM) and contributions from terrestrially-derived 
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DOM (Helms et al., 2008). The spectral slope ratio (SR) was calculated by taking the ratio of S275-

295 and S350-400. A SR>1 indicates marine-like DOM and SR<1 is characteristics of terrestrially 

dominated high CDOM samples (Helms et al., 2008). An increase in SR values has been attributed 

to reduced molecular weight of DOM and photo bleaching while microbial activities such as 

microbial production or preservation of long wavelength absorbing substances have been observed 

to decrease SR (Helms et al., 2008; Moran et al., 2000; Vahatalo and Wetzel, 2004).  

Emission spectra were collected in signal to reference (S:R) mode from 212 nm to 619 nm 

with 3.28 nm increment (instrument default). EEMs were corrected for the inner filter effect 

(Ohno, 2002), Raman normalized (using 18.3 MΩ cm Milli-Q ultra-pure water at ~350 nm), and 

blank subtracted. First and second order Rayleigh scattering bands were excised (Stedmon and 

Bro, 2008). A quinine sulfate standard was also run, giving a value of 1 R.U. = 2.495 quinine 

sulfate units (QSU). The fluorescence Index (FI) was calculated as the ratio of fluorescence 

intensities at 470 nm and 520 nm emission and 370 nm excitation. Lower values of FI (~1.3-1.4) 

indicate terrestrial sources of DOM while higher values (~1.7-1.9) indicate microbially-derived 

DOM (McKnight et al., 2001; Cory and McKnight, 2005). The freshness index (β:α) was 

calculated as the ratio of emission intensity at 380 nm to the maximum intensity between 420 nm 

to 435 nm at an excitation wavelength of 310 nm (Parlanti et al., 2000). More recently derived 

DOM is represented by β, while α represents highly decomposed DOM (Wilson and Xenopoulos, 

2008; Fellman et al., 2010).  The humification index (HIX) was calculated as the ratio of peak 

area under the emission spectra at 435 nm to 480 nm to peak area from 300 nm to 345 nm at an 

excitation wavelength of 254 nm (Zsolnay, 2003). Higher values of the HIX indicate a higher 

degree of DOM humification (Ohno, 2002). All the corrections, data processing and calculations 

of indices were performed using MATLAB R2014a (Figure S3 and Figure S4). Corrected three 
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dimensional fluorescence excitation emission matrix (EEM) data was fitted to a four component 

PARAFAC model (Harshman, 1970; Stedmon et al., 2003; Stedmon and Bro, 2008). Statistical 

analyses were performed for descriptive statistics parameters. Since the As concentrations were 

not normally distributed, a non-parametric Mann – Whitney – Wilcoxon (MWW) U test was used 

to compare the statistically significant variability among samples.  
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Figure 11 Representation of emission spectra used for fluorescence indices 

calculation 

Figure 10 Representation of emission spectra used for fluorescence peaks calculation 
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PARAFAC Modeling 

 The DOM Fluor toolbox (Stedmon and Bro, 2008) was used to build a PARAFAC model 

for this sample dataset. The sample set included corrected EEMs from surface and groundwater 

with varying fluorescence intensities. In order to avoid false identification of extremely high or 

low concentration samples as outliers by PARAFAC, these EEMs were normalized using a 

modified method of Murphy et al. (2013). In brief, each intensity value in the matrix was divided 

by the maximum intensity of that sample instead of dividing by the sum of squares of all intensities 

in that sample. This presets all the EEMs to a maximum intensity of 1, according to: 

𝐼(𝑖, 𝑗)𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝐼(𝑖, 𝑗)𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐼𝑚𝑎𝑥
.  

Outliers were removed from the PARAFAC model dataset if they met one of these conditions: 

negative spectral slope ratios, very high FI (> 2) that corresponded to a FI peak emission location 

> 470 nm, and, β:α values >1 indicating shift of peak in the 310 nm emission spectra. The dataset 

was then fitted to a non-negativity constrained PARAFAC model according to Stedmon et al. 

(2003). Additional outliers were identified by calculating the leverage of each sample and 

wavelength. Samples with leverages approaching 1 were examined to ensure that there was no 

analytical error before being considered as outliers (Stedmon and Bro, 2008).  After removing 

outliers, a total of 60 samples were used. A four-component model was validated by split half 

analysis (Figure 3) and random initialization techniques by running ten, four component models. 

For all the samples, the residual (difference between actual and modeled EEM) did not exceed 

10% of the intensity in the original EEM (Cawley et al., 2012), which indicates an acceptable 

model fit (Stedmon and Bro, 2008).  After complete validation, the actual intensities of each 

component were obtained by multiplying the intensity of each component by the maximum 
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intensity (Imax) of the original EEM used in the normalization. Two indices based on PARAFAC 

components were developed to provide further insights into the nature of DOM. The humic:protein 

index was calculated as the ratio of the sum of humic-like DOM components to the sum of protein-

like DOM components obtained from the PARAFAC model, according to: 

ℎ𝑢𝑚𝑖𝑐: 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 =
∑𝐻𝑢𝑚𝑖𝑐 − 𝑙𝑖𝑘𝑒 𝐷𝑂𝑀 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

∑𝑃𝑟𝑜𝑡𝑒𝑖𝑛 − 𝑙𝑖𝑘𝑒 𝐷𝑂𝑀 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
 . 

The terrestrial:microbial (terr:microb) index was calculated as the ratio of the sum of terrestrially-

derived to microbially-derived DOM components obtained from the PARAFAC model, according 

to: 

terr: microb =
∑𝑇𝑒𝑟𝑟𝑒𝑠𝑡𝑟𝑖𝑎𝑙𝑙𝑦 𝐷𝑒𝑟𝑟𝑖𝑣𝑒𝑑 𝐷𝑂𝑀 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

∑𝑀𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙𝑙𝑦 𝐷𝑒𝑟𝑟𝑖𝑣𝑒𝑑 𝐷𝑂𝑀 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
 . 

 

Figure 12 Split half analysis for four component PARAFAC model showing validation of the 

model 
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RESULTS 

Comparison of chemical and DOM properties in groundwater in 

Holocene and the Pleistocene aquifers 

Significantly higher dissolved As concentrations in the groundwater in Holocene aquifer 

than that in Pleistocene (p < 0.05, Table 3) were observed, where concentrations in the former 

ranged from 5 µg/L to 1264 µg/L (average = 261 µg/L), and those in the latter ranged from 0.4 

µg/L to 50 µg/L (average = 14.5 µg/L) (Table 2). More than 70% of the groundwater samples in 

the Holocene aquifer contained As concentrations > 50 µg/L, which is the Indian drinking water 

standard (Datta et al., 2011; IS 10500, 2012). All of the groundwater samples in the Pleistocene 

aquifer contained As concentrations < 50 µg/L. Groundwater collected from the Holocene aquifer 

had higher average dissolved Fe concentrations (average = 3.19 mg/L), and was more reducing 

(average = -44.3 mV) than in Pleistocene sites. DOC concentrations were also significantly higher 

(p < 0.05) in groundwater in the Holocene aquifer (average = 2.94 mg/L) than in the Pleistocene 

aquifer (average = 1.79 mg/L) (Table 2). 

Similar to the trends noted for DOC concentration, a254 values (Table 2) were significantly 

higher (p < 0.05; Table 3) in groundwater in the Holocene aquifer (average = 0.047 a.u.) compared 

to that in the Pleistocene aquifer (average =0.034 a.u.). However, SUVA254 values did not show 

any statistically significant difference (p>0.05; Table 3) between groundwater in the Holocene 

(average = 2.26 L.mg-1.m-1) and Pleistocene (average = 2.35 L.mg-1.m-1) aquifer. SR values (Table 

2) were significantly lower (p < 0.05; Table 3) in groundwater in the Holocene aquifer (average 

=1.33) than that in the Pleistocene aquifer (average = 1.78). Groundwater in the Pleistocene aquifer 

had notably higher intensities 1.65 Raman Units (R.U.) in the protein-like region (PARAFAC 
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component C3), at 1.65 Raman Units (R.U.), compared to that in the Holocene aquifer, at, 0.38 

R.U. (Figure 1a and 1b). The FI (Table 2) was similar for groundwater in both the Pleistocene 

(mean of 1.73) and Holocene (mean of 1.72) aquifers, and at the high end of the typical FI range 

(1.2 – 1.8). The β:α was statistically lower (p < 0.05; Table 3) in groundwater in the Holocene 

aquifer (average = 0.77) than that in the Pleistocene aquifer (average = 1.0; Table 2). The HIX was 

significantly higher (p < 0.05; Table 3) in groundwater in the Holocene aquifer (average = 6.79) 

than that in the Pleistocene (average = 3.34).  

 

 

Figure 13 Representative EEM spectra (a) Groundwater in Holocene aquifer, (b) 

Groundwater in Pleistocene aquifer, (c) Surface water. Note different intensity scale on (c) 
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Table 2 Properties of groundwater (GW) in Holocene and Pleistocene aquifers and overlying 

surface water (SW) 

 

Analysis type Holocene SW Pleistocene SW Holocene GW 
Pleistocene 

GW 
2Water Chemistry 

 
Total Dissolved 

Arsenic (µg/L) 
35.2  38.1 

(0 – 110.3) 

3.13  2.71 

(0 – 4.69) 

261  285 

(5 – 1263) 

14.5  10 

(0.4 - 50) 

 
Total Dissolved 

Iron (mg/L) 
6.57  21.3 

(0 – 70.8) 

0.06  0.08 

(0 – 0.15) 

3.19  3.86 

(0 – 13.6) 

0.52  0.39 

(0.07 – 1.03) 

 

Dissolved 

Organic 

Carbon (mg/L) 

7.28  2.49 

(2.64 – 9.62) 

9.84  1.90 

(8.67 – 12.03) 

2.94  1.97 

(1.25 – 6.76) 

1.79  1.48 

(0.85 – 4.91) 

 ORP NA NA 
-44.25  49.08 

(-108 – 69) 

+74.48  71.58 

(-55 – 156.5) 

Absorbance  

 3Abs254  (a.u.) 
0.23  0.08 

(0.08 – 0.38) 

0.22  0.11 

(0.11 – 0.35) 

0.047  0.01 

(0.02 – 0.08) 

0.034  0.01 

(0.02 – 0.05) 

 
4SUVA  

(L.mg-1.m-1) 
2.65  0.22 

2.48 – 3.16 

3.03  0.17 

2.92 – 3.23 

2.26  1.13 

0.60 – 4.19 

2.35  1.20 

0.93 – 4.65 

 5S275_295 
-0.02  0 

(-0.02 – -0.01) 

-0.02  0 

(-0.02 – -0.01) 

-0.02  0.00 

(-0.02 - -0.01) 

-0.02  0.00 

(-0.02 - -0.01) 

 6S350_400 
-0.01  0 

(-0.02 – -0.01) 

-0.01  0 

(-0.01 – -0.01) 

-0.01  0.01 

(-0.03 - 0) 

-0.01  0.00 

(-0.02 - -0.01) 

 7SR 
1.26  0.22 

(0.84 – 1.73) 

1.27  0.14 

(1.08 – 1.42) 

1.33  0.47 

(0.69 – 2.34) 

1.78  0.43 

(1.10 – 2.54) 
8Fluorescence Indices 

 FI 
1.60  0.04 

(1.55 – 1.70) 

1.63  0.03 

(1.60 – 1.67) 

1.73  0.06 

(1.59 – 1.83) 

1.72  0.10 

(1.54 – 1.88) 

 β:α 
0.85  0.10 

(0.77 – 1.12) 

0.76  0.04 

(0.72 – 0.81) 

0.77  0.06 

(0.68 – 0.96) 

0.99  0.14 

(0.66 – 1.09) 

 HIX 
5.39  0.89 

(3.38 – 6.31) 

6.38  2.21 

(4.06 – 9.06) 

6.79  1.98 

(3.48 – 10.45) 

3.34  1.38 

(1.67 – 7.25) 
9PARAFAC (R.U.) 

 C1 
3.57  2.99 

(1 – 11.48) 

3.73  2.54 

(0.89 – 6.07) 

1.87  3.21 

(0.23 – 17.13) 

2.47  3.37 

(0.17 – 10.08) 

 C2 
2.28  1.41 

(0.79 – 5.30) 

2.56  1.69 

(0.66 – 4.07) 

1.18  1.56 

(0.19 – 8.14) 

2.18  2.82 

(0.19 – 8.15) 

 C3 
1.24  0.87 

(0.38 – 3.21) 

0.94  0.47 

(0.42 – 1.55) 

0.38  0.5 

(0.05 – 2.59) 

1.65  2.26 

(0.17 – 6.67) 

 C4 
1.73  2.60 

(0.38 – 9.51) 

1.27  1.16 

(0 – 2.30) 

0.6  1.76 

(0 – 9.9) 

3.93  6.4 

(0.03 – 20.02) 
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Analysis type Holocene SW Pleistocene SW Holocene GW 
Pleistocene 

GW 

Calculated Parameters 

 

Total 

Fluorescence 

(R.U.) 

8.84  7.60 

(2.74 – 29.50) 

8.50  5.84 

(1.96 – 13.83) 

4.03  6.88 

(0.53 – 37.02) 

10.23  14.77 

(0.63 – 44.93) 

 % C1 
40.45  1.97 

(36.56 – 43.77) 

44.27  0.81 

(43.29 – 45.22) 

46.25  3.19 

(40.25 – 51.43) 

27.76  8.59 

(22.37 – 52.25) 

 % C2 
28.14  3.42 

(17.96 – 30.33) 

31.29  2.35 

(28.98 – 34.18) 

33.40  3.63 

(22 – 39.06) 

25.79  4.77 

(18.14 – 34.72) 

 % C3 
14.96  3.47 

(10.87 – 20.67) 

14.43  6.19 

(8.28 – 21.40) 

11.81  4.35 

(4.98 – 23.19) 

18.17  4.08 

(13.90 – 29.05) 

 % C4 
16.46  5.81 

(11.01 – 32.24) 

10.01  9.17 

(0 – 17.33) 

8.53  6.66 

(0 – 26.75) 

26.28  13.10 

(2.45 – 44.57) 

 10Humic:protein 
5.98  1.43 

(3.84 – 8.20) 

7.07  3.21 

(3.67 – 11.08) 

8.53  3.42 

(3.31 – 19.10) 

4.71  1.03 

(2.44 – 6.19) 

 11terr:microb 
2.23  0.38 

(1.32 – 2.78) 

3.15  0.55 

(2.61 – 3.80) 

4.27  1.52 

(2.15 – 7.71) 

1.44  1.24 

(0.68 – 5.11) 
1All numbers are expressed as average value  standard deviation, minimum – maximum range in 

parenthesis.  
2Data source: Sankar et al., 2014, except oxidation reduction potential (ORP) data from 2014 field season.  
3Absorbance at 254 nm. 
4Specific ultra-violet absorbance.  
5Spectral Slope between 275 nm and 295 nm. 
6Spectral Slope between 400 nm and 350 nm 
7Spectral Slope Ratio (S275_295 / S350_400)  
8Fluorescence Index (FI), Freshness Index (β:α), Humification Index (HIX).  
9C1 to C4 = Four components obtained by PARAFAC model. 
10Ratio of humic like to protein like component obtained by PARAFAC model = (C1+C2+C4) / (C3). 
11Ratio of terrestrially produced DOM to microbially produced DOM = (C1+C2) / (C3+C4). 
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Table 3 P statistics (non-parametric Mann-Whitney-Wilcoxon Test) * showing statistical variation 

among DOM properties in samples 

*Values in shaded cells: P<0.05 indicate statistically different parameter 

 

 

 

 

 

Analysis type 
Holocene – 

Pleistocene SW 

Holocene – 

Pleistocene 

GW 

GW – SW 

Holocene 

GW – SW 

Pleistocene 

Total Dissolved 

Arsenic (µg/l) 
0.048 <0.001 0.012 0.014 

DOC (mg/l) 0.121 0.003 0.00014 0.00275 

Absorbance 

 Abs 254 (a.u.) 0.5 0.01 <0.001 <0.001 

 
SUVA (L.mg-1.m-

1) 0.024 0.303 0.197 0.146 

 S275-295 0.01 0.49 0.46 0.44 

 S350-400 0.19 0.02 0.47 0.02 

 SR 0.33 <0.001 0.30 0.01 

Fluorescence Indices 

 FI 0.07 0.40 <0.001 0.04 

 β:α <0.001 <0.001 <0.001 <0.001 

 HIX 0.22 <0.001 0.01 <0.001 

PARAFAC (R.U.) 

 C1 0.50 0.18 <0.001 0.12 

 C2 0.50 0.45 <0.001 0.19 

 C3 0.37 0.03 <0.001 0.25 

 C4 0.40 <0.001 <0.001 0.39 

Calculated Parameters 

 Humic: protein 0.33 <0.001 0.01 0.22 

 terr:microb <0.001 <0.001 <0.001 <0.001 
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Figure 14 EEM spectra (left) and emission-excitation curve (right) showing 

loadings of four PARAFAC components identified in the model 
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Comparison of groundwater and surface water DOM properties 

In both the high As (Holocene sediments) and low As (Pleistocene sediments) locations in 

our study area, DOC concentrations and optical spectroscopic properties related to DOC 

concentration (abs254) were significantly different between groundwater and surface water samples 

(Tables 2 and 3). Overall, the EEMs of surface water samples had distinct fluorescence signatures 

when compared to groundwater samples, with very pronounced peaks in the protein-like region 

and elevated total fluorescence intensity (Figure 1c). Indeed, all fluorescence and PARAFAC 

parameters were significantly different in surface water and groundwater samples (Table 3). 

However, in the low As (Pleistocene sediments) areas, the optical properties of DOM in 

groundwater samples were statistically similar to surface water samples in most properties other 

than Abs254, SR, β:α, HIX (Table 3).  

Table 4 Fluorescence peaks in groundwater (GW) in Holocene and Pleistocene aquifers and 

overlying surface water (SW) 

Analysis type Holocene SW Pleistocene SW Holocene GW Pleistocene GW 

*Fluorescence Peaks (R.U.) 

 Peak A 
3.97  3.50 

(1.13 – 13.57) 

4.01  2.78 

(0.91 – 6.49) 

1.99  3.46 

(0.27 – 18.81) 

4.20  6.01 

(0.25 – 18.41) 

 Peak B 
0.91  0.69 

(0.27 – 2.67) 

0.60  0.34 

(0.25 – 1.08) 

0.25  0.32 

(0.06 – 1.54) 

1.08  1.51 

(0.11 – 4.61) 

 Peak T 
1.20  0.95 

(0.37 – 3.63) 

0.92  0.55 

(0.33 – 1.62) 

0.35  0.55 

(0.06 – 2.62) 

1.61  2.37 

(0.12 – 7.25) 

 Peak C 
1.63  1.12 

(0.51 – 4.12) 

1.80  1.19 

(0.47 – 2.98) 

0.87  1.20 

(0.13 – 6.03) 

1.47  1.99 

(0.10 – 6) 

 
 

Peak M 
2.24  1.56 

(0.72 – 6.06) 

2.37  1.63 

(0.55 – 3.83) 

1.08  1.62 

(0.16 – 8.58) 

2.14  2.89 

(0.19 – 8.52) 

*Peaks A, B, T, C and M are peaks defined by Coble, 1996. 

The intensities of tyrosine-like Peak B, ranging from 0.11 Raman Units (R.U.) to 4.61 R.U. 

(average = 1.08), and tryptophan-like Peak T, ranging from 0.12 R.U. to 7.25 R.U. (average = 
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1.61) in groundwater in Pleistocene aquifer, were also significantly higher (p < 0.05; Table 5) than 

those in groundwater in Holocene aquifer (average of 0.25 and 0.35, respectively; Table 5). 

Table 5 P statistics (non-parametric Mann – Whitney - Wilcoxon Test) * showing statistical 

variation between fluorescence peaks. 

*Values in shaded cells: P<0.05 indicate statistically different parameter 

PARAFAC model components 

The PARAFAC model identified four components (Figure 2), which were similar to 

components identified in other studies (Table 4). C1, C2 and C4 had excitation and emission 

wavelength maxima consistent with humic-like components, whereas C3 was identified as a 

protein-like component, with a peak similar to that of tryptophan. C4 has been identified in other 

studies as a microbial humic-like peak, and C1 and C2 were found to be more commonly derived 

from terrestrial organic material (Table 3). Therefore C1 and C2 are considered to be the terrestrial 

components, and C3 and C4 are taken as the microbial components in this study. The 

humic:protein ratio showed a good correlation (R2 = 0.72, Figure S2) with the ratio of intensities 

of traditional fluorescence peaks Peak B and Peak T to the intensities of Peak A, C and M described 

in Coble et al., 1998. 

Analysis type Holocene – 

Pleistocene SW 

Holocene – 

Pleistocene 

GW 

GW – SW 

Holocene 

GW – SW 

Pleistocene 

Fluorescence Peaks (R.U.) 

 Peak A 0.41 0.29 <0.001 0.29 

 Peak B 0.22 0.03 <0.001 0.29 

 Peak T 0.33 0.02 <0.001 0.29 

 Peak C 0.46 0.28 <0.001 0.19 

 Peak M  0.50 0.37 <0.001 0.25 
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Table 6 Description of PARAFAC components from this study and similar components identified in other studies (not an exhaustive 

list)  

*HMW = High Molecular Weight, LMW = Low Molecular Weight 

Reference 

 

Component 1 

240 (360)/460 

Component 2 

240 (320) / 400 

Component 3 

240 (280) / 344 

Component 4 

240 (280) / 388 

This Study Terrestrial humic-like 
humic-like, impacted by 

agriculture, marine humic 

protein-like, tyrosine and 

tryptophan 
microbial humic-like 

Parlanti et al.,  

(2000) 

α’ - humic like, 

250-260/380-480 

α- humic like, 

330-350/420-480 

Terrestrial source, HMW* 

and aromatic humic-like 

α’ - humic like, 

250-260/380-480 

β-marine humic like, 

310-320/380-420 

Terrestrial source associated 

with microbial, wastewater, 

agricultural activity, LMW* 

humic-like 

δ- tryptophan like, 

270-280/320-350 

γ- tyrosine like, 

270-280/300-320 

amino acids, free or bound in 

proteins, free tryptophan and 

tyrosine, intact proteins, more 

or less degraded peptide 

material 

- 

Stedmon et al., (2003) 
C1 – humic like, 

240-320/428 

C2 – marine humic like, 

impacted by agriculture, 

315/384 

C4 – tryptophan like, 

278/348 

 

- 

Fellman et al., (2009) 

UVC humic like 1, 

320-360/420-460 

UVC humic like 2, 

<260/448-480 

UVA humic like, 

290-325(<250)/370-430 

tyrosine-like, 

270-275/304-312 

tryptophan like, 

270-280/330-368 

U – Unknown, 250(320)/370 

HMW humic, widespread, but 

highest in wetlands and 

forested environments, very 

labile, associated with freshly 

produced DOM 

Williams et al., (2013) 
C1 – terrestrial humic, 

<250/440(468) 

C2 – terrestrial humic, 

<250(310)/420(388) 

C7 – protein like, 

280/342 (318) 

C6 – microbial humic, 

<250(285)/386 

Coble,  

(1996) 

A = UV humic, 260/400-

460; 

C = humic like, 

350/420-480 

A = UV humic, 

260/400-460; 

M = marine humic, 

290-310/370-410 

T = tryptophan like, 

275/340 

B = tyrosine like, 

270/305 

- 

Coble et al.,  

(1990) 

A – UV humic like, 

260/400-460 

C – visible humic like, 

320-360/420-460 

A – UV humic like, 

260/400-460, 

M – visible marine humic, 

290-310/370-410 

T – tryptophan like, 

275/340, 

B – tyrosine like, 

275/305 

N – unknown, 

280/370 
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The HIX, humic:protein ratio, and terr:microb ratio showed distinct differences between the 

fluorescent components in groundwater in the Holocene and Pleistocene aquifers (Tables 1 and 2). 

The average percentages of two of the microbial components, C3 and C4 were statistically lower 

(p < 0.05; Table 3) in groundwater in the Holocene aquifer (at 11.8% and 8.53%, respectively) 

than in groundwater in the Pleistocene aquifer (at 18.2% and 28.3%, respectively; Table 3). As a 

result, the terr:microb ratio (average = 4.27) of groundwater in the Holocene aquifer was 

significantly higher than in groundwater in the Pleistocene aquifer (average = 1.44; Table 2). 

Similarly, the humic:protein ratio was found to be 1.8 times higher in groundwater in the Holocene 

aquifer (average = 8.53) than in the Pleistocene aquifer (average = 4.71). Surface waters from the 

Hariharpara, Beldanga (underlying Holocene aquifer) and Nabagram, Kandi (underlying 

Pleistocene aquifer) were not statistically different with respect to all the parameters analyzed 

except for the terr:microb ratio, which was significantly lower (average = 2.23) in Hariharpara and 

Beldanga areas compared to the Nabagram and Kandi areas (average = 3.15) and β:α, which was 

significantly higher (average = 0.85) in Hariharpara and Beldanga areas compared to the 

Nabagram and Kandi areas (average = 0.76) (Table 2). Groundwater samples were statistically 

different from surface water samples with respect to all parameters except SR for the Holocene 

sites (Table 3). In Pleistocene areas, groundwater samples were statistically different from surface 

water samples in SR, β:α (average 0.99 and 0.77), HIX (average 3.34 and 6.79), humic:protein 

(average 4.71 and 8.53) and terr:microb (average 1.44 and 4.27) respectively (Table 3).  

DISCUSSION 

The difference in As concentration in groundwater in Holocene and Pleistocene aquifers is 

well documented, with Holocene aquifers generally having higher dissolved As concentrations 

than Pleistocene aquifers (Fendorf et al., 2010). Even though Pleistocene sediments can contain 
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substantial amounts of As, dissolved As concentrations were reported as insignificant in 

groundwater of the aquifer (Eiche et al., 2008). It has been suggested that the lower As 

concentrations result from Pleistocene aquifers experiencing more flushing than Holocene aquifers 

due to their older age of deposition (Morgan and McIntire, 1959). However, Ravenscroft et al. 

(2005) instead showed that flushing of Pleistocene sediments is limited because of their lower 

permeability than Holocene sands due to clogging by secondary clays and iron oxides. Even for 

sediments with low As content, Hering and Kneebone (2002) found that generally very low 

concentrations of sedimentary As (1.8 mg/kg) are sufficient to produce dissolved As concentration 

exceeding 10 µgL-1. Sedimentary As found in all the sites in this study including those in the 

Pleistocene aquifer is > 1.8 mg/kg (Table 1), and sediment FeT and organic matter content are also 

present in both Holocene as well as Pleistocene aquifers in significant amounts (Table 1). 

Therefore, the limitation for As mobilization is more complicated, and consideration of microbial 

processing, redox state, and DOM chemical quality merit further investigation.  

DOM characteristics in groundwaters in the Holocene and 

Pleistocene aquifer 

Previous studies have shown that DOC concentrations tend to be substantially higher in 

groundwater of the Holocene aquifer than in groundwater of the Pleistocene aquifer (Sutton et al., 

2009; Datta et al., 2011; Sankar et al., 2014). The lower DOC concentrations in groundwater of 

Pleistocene than Holocene aquifers may limit the release of As from those sediments (Fendorf et 

al., 2010; Berg et al., 2008; Postma et al., 2007; Polizzotto et al., 2008; Harvey et al., 2002). 

Similarly, our study found lower DOC concentrations in groundwater in Pleistocene sediments. 

Harvey et al. (2002) and Saunders et al. (2008) both showed that an increase in dissolved As 
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concentration occurs upon injection of labile carbon into the aquifer. However, even without labile 

carbon addition, DOC concentrations can increase under reducing conditions. Mladenov et al. 

(2010) found that DOC increased from 4.84 to 6.10 mgL-1 in sediment incubations with native 

groundwater in Bangladesh due to the release of DOM from the sediment. Neumann et al. (2014) 

also performed incubations with sediments in Vietnam high in As and found those sediments to 

release DOM that was easily biodegradable. 

Our analyses shed light on the spectroscopic properties of CDOM and suggest that 

differences in the chemical character of CDOM in these two geologically distinct settings may 

have an influence on As release. Despite high FI values in both settings that reflect high amounts 

of microbial activity, several independent measures of DOM character indicate that DOM in 

groundwater in the Pleistocene aquifer was fresher, less biologically processed and less humified, 

than DOM in groundwater in the Holocene aquifer. First, the high SR (~1.78) in groundwater in 

the Pleistocene aquifer was similar to values in systems with low-molecular-weight microbial 

contributions to the DOM pool (Helms et al., 2008). Second, PARAFAC modeling identified 

components that been previously reported in a variety of aquatic environments (Table 4). The 

ratios of terr:microb and humic:protein PARAFAC components in groundwater in the Pleistocene 

aquifer were ~1/2 and 1/3, respectively, of those in groundwater in the Holocene aquifer, indicating 

that CDOM in groundwater in the Pleistocene aquifer was more microbially-derived and less 

humic than in the Holocene aquifer.  

The burial history and lack of microbial communities may help explain why these older 

sediments contain such seemingly young DOM. Paleo-sedimentary studies indicate that the 

Pleistocene sediments in the study area are floodplain deposits of the early Ganges-Brahmaputra 

river system (Hasan et al., 2007; Stollenwerk et al., 2007; Acharyya et al., 2000). In other river 
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systems as well, such as in the Gulf coast Pleistocene sediments in the United States, the 

Pleistocene sediments have been reported to be early river flood plain deposits (Morgan and 

McIntire, 1959; Robert, 1997; Blum and Roberts, 2012). The quantity of glacial ice on the 

continents caused fluctuation in the sea level during the Pleistocene time. Sea level dropped 

abruptly with each glacial advance causing an increase in the discharge of rivers into the sea. This 

caused rapid erosion, weathering and oxidation of the river sediments. At the end of the interglacial 

period, sea level rose with the waning of the glaciers, which lowered the flow gradient of rivers 

and filled the valleys with alluvial sediments (Morgan and McIntire, 1959). The highly weathered 

and oxidized Pleistocene sediments were then buried under recent alluvial deposition (Morgan and 

McIntire, 1959). The buried Pleistocene sediments have been reported to contain 0.13-0.17% TOC 

by weight in sand and 0.2-0.67% by weight in clay and comprise organic matter mainly derived 

from both terrestrial vegetation and microbial constituents (Ghosh et al., 2015). These chemical 

characteristics are consistent with our findings of low HIX, terr:microb and humic:protein ratios, 

and high FI, SR and β:α values, which are indicative of less-processed microbial DOM, in 

groundwater that is in contact with these Pleistocene sediments. Dissolved organic matter with 

such characteristics should be biologically labile and theoretically be able to drive microbial 

reduction of Fe and As in the sediments if reducing conditions predominate, Fe-reducing 

microorganisms are present, and other terminal electron acceptors (oxygen and nitrate) are 

depleted. Although reducing conditions have not explicitly been investigated at our sites, Sankar 

et al., (2014) did measure dissolved oxygen, nitrate, nitrite and sulfate, and did not find significant 

differences between the concentrations of these electron acceptors in the groundwater of the 

Holocene (high As) and Pleistocene (low As) aquifers. Along the same lines, an emerging area of 

research has shown that biologically-labile soil organic matter can persist over long periods of 
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time if conditions, such as physical disconnection between organic matter and microbial 

communities and energy or nutrient limitation, prevail (Schmidt et al., 2012). At least one study 

has investigated microbial communities in the Pleistocene sediments. Lawati et al. (2012) 

demonstrated that the Pleistocene sediments contain a very low abundance of microbial 

population, which they concluded could be responsible for lower As concentrations in the 

groundwater. This microbial limitation may explain why the organic matter in the groundwater 

seems, from our absorbance and fluorescence analyses, to be relatively fresh and unprocessed by 

microorganisms. However, the high FI values and low terr:microb ratios we measured in 

groundwater of the Pleistocene aquifer suggest that microbial constituents should be elevated 

rather than lacking in this setting. To gain more clarity on the presence and role of microbes in 

DOM processing and to better understand why the cascade of reductive dissolution is not 

underway in the Pleistocene aquifer, the composition of the microbial consortia and other factors 

that influence Fe reductive dissolution must be further explored.  

 In contrast to the labile character of CDOM in groundwater of the Pleistocene aquifer, 

groundwater of the Holocene aquifer was found to have CDOM with optical properties similar to 

humic substances. Based on previous studies showing release of Fe, humic DOM (Mladenov et 

al., 2010), and biodegradable DOM (Neumann et al., 2015) from sediments during incubations 

with native groundwater, we expect that sediments are a likely source of DOM in groundwater of 

the Holocene aquifer. A potential scenario, proposed by Mladenov et al. (2015), is that humic 

DOM, containing quinone-like moieties known to shuttle electrons to accelerate Fe reduction 

(Lovley et al. 1996, 1998 and 1999), could be enhancing the same reaction in groundwater leading 

to associated mobilization of As from sediments into groundwater.  
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The lower β:α and SR values (Table 2), similar to those found in wetlands and swamps with 

large amounts of high molecular weight DOM (Helms et al., 2008), for groundwater in the 

Holocene aquifer further indicate more biologically-processed DOM (Fellman et al., 2010). 

Higher HIX values, representative of greater humification of DOM (Zsolnay, 2003; Ohno, 2002), 

also point to a less labile DOM source that may instead participate in humic DOM-stimulated 

reductive dissolution. In addition, DOM with this more chemically-reactive character participates 

in other reactions that may lead to As mobilization, such as complexation and competitive sorption, 

which have been described in other studies (Wang and Mulligan, 2006; Mikutta and Kretzschmar, 

2011). The observation that CDOM in groundwater of the Pleistocene aquifer lacks the humic 

character found in CDOM in groundwater of the Holocene aquifer may reflect both the 

unprocessed nature of the DOM and an absence of humic moieties that could serve important 

functions related to As mobilization, as described above.  

Comparison of DOM chemical character in surface and groundwater 

Surface water samples from Hariharpara and Beldanga contained younger (higher β:α) and 

more microbial (lower terr:microb ratio) DOM than those in Nabagram and Kandi. Characteristics 

of DOM differed significantly between groundwater and surface water. Spectroscopic properties 

suggested that humic and more biologically-processed DOM was found in this order: groundwater 

in Holocene > surface water > groundwater in Pleistocene. The higher values of β:α and lower 

HIX in surface water in Hariharpara and Beldanga, than underlying groundwater in the Holocene 

aquifer may be attributed to mixing of groundwater and surface water, which has been known to 

contain more fresh, microbially-derived and less humified organic matter from sewage and other 

wastewater inputs (Knappett et al., 2011; Mladenov et al., 2015) and algae (Parlanti et al., 2000). 

In contrast, the surface water samples from Nabagram and Kandi were less fresh (lower β:α) and 
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more humified (higher HIX) than the underlying groundwater in the Pleistocene aquifer, thus 

eliminating the possibility of surface water mixing.  

CONCLUSIONS 

The factors affecting the variability in groundwater As concentration in Holocene as well as 

Pleistocene aquifers are still in question and are relevant for an improved understanding of As 

mobility throughout the Bengal Basin. The quality of DOM in these two geological settings in the 

context of As mobility has not been studied. In this study, for Pleistocene sediments located in 

close proximity to Holocene sediments, multiple lines of evidence, including SR, HIX and β:α 

values and humic:protein and terr:microb ratios of PARAFAC components, indicate that the 

CDOM in groundwater in the Pleistocene aquifer contains a higher proportion of protein-like and 

microbially-derived constituents and may be less humified and less biologically-processed than 

DOM in groundwater in the Holocene aquifer, which had elevated As concentrations. The absence 

of humic DOM may indicate that microbial degradation of DOM did not proceed in the Pleistocene 

aquifer as it had in the Holocene. The more proteinaceous and less humic DOM in groundwater of 

the Pleistocene aquifer also would be less likely to participate in reactions, such as complexation, 

electron shuttling, and competition with As for sorption sites. The absence of humic-like DOM 

from groundwater in Pleistocene aquifer may, therefore, be an important limitation to As mobility.  

On the other hand, our spectroscopic analyses indicate that the predominance of humic-like 

DOM in groundwater in the Holocene aquifer may result from mobilization of humic substances 

from the sediments as well as greater microbial processing of DOM. This more humic DOM may 

promote chemical reactions that mobilize or maintain As in solution, such as DOM-As binary or 

DOM-Fe-As ternary complex formation and humic DOM serving as an electron shuttle to 
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accelerate the process of reductive dissolution. Therefore, the results of this study are also relevant 

to the understanding of As mobilization in Holocene aquifers 
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Chapter 6 - Detection of Aqueous Complexes of Arsenic, Iron and 

Dissolved Organic Matter using Fluorescence and 1H NMR 

Spectroscopy. 

ABSTRACT 

 Complexation of arsenic (As) with dissolved organic matter (DOM) in reducing aquifers 

is one of the mechanisms that controls As concentrations in aqueous solution. It has been shown 

that in the presence of dissolved iron (Fe), DOM may bind to As to form ternary complexes (As-

Fe-DOM) or binary complexes (As-DOM) in absence of Fe. Fluorescence spectroscopy with 

excitation-emission matrix (EEM) analysis has been identified as an effective tool for 

characterization of DOM in aquatic environments. Fluorescence has also been used to identify 

some DOM-metal complexes but has not been applied toward identification of complexes of As, 

Fe, and DOM. Recent advances in solution nuclear magnetic resonance (NMR) spectroscopy have 

shed light on the structural characterization of DOM in environmental samples. In this study, we 

applied fluorescence and 1H NMR spectroscopy to detect binary and ternary complex formation 

between As, Fe and Suwanee River Fulvic Acid (SRFA) as the DOM source.  Fluorescence 

quenching experiments were designed using natural ranges of Fe, SRFA, and As concentrations 

and under oxic and oxygen-free conditions. SRFA solution was titrated with Fe only, As only, and 

As with Fe. Results showed clear evidence for the formation of Fe-DOM complexes. No 

fluorescence quenching was observed for As-DOM or Fe-As-DOM complexes, suggesting that 

these complexes do not form between As, Fe, and the aromatic, conjugated, multiple bonds that 

fluoresce in organic compounds. Solutions were further analyzed using 1H NMR spectroscopy, 

and results indicated that a 9.6% change in chemical shifts and a 19.09% change in the ratio of 1H 

NMR peak intensities did occur after addition of As. However, the changes occurred in non-
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aromatic region protons and were negligible in the aromatic region of SRFA. These findings 

suggested that fluorescence quenching by As-DOM complexes was not detected because 

complexes did not form between As and fluorescence-active molecules of SRFA. The 1H NMR 

detection of binary complex formation between As and non-aromatic region protons was found to 

be relevant for studies of arsenic mobility since such complexes could maintain high As 

concentrations in groundwater.  

INTRODUCTION 

Arsenic, a naturally occurring metalloid has caused severe health risk to over 43 million in 

West Bengal, India and over 22 million people in Bangladesh (Sankar et al., 2014; Datta et al., 

2011; Bhattacharya et al., 1997; Smith et al., 2000; McArthur et al., 2001; Dowling et al., 2002; 

Roychowdhury et al., 2002; Ravenscroft et al., 2005; Acharyya and Shah, 2007; Datta et al., 

2009). In most reducing aquifers, dissolved iron (ferric / ferrous) has been found abundantly and 

reductive dissolution of iron minerals has been considered as main mechanism of dissolved arsenic 

release (Nickson et al., 2000). Labile dissolved organic matter (DOM) is the driver for this process, 

stimulating microbial reduction of both Fe minerals and As (V). In addition, DOM influences 

arsenic mobility by forming stable complexes with mineral surfaces, effectively blocking arsenic 

from re-adsorption (Bauer et al., 2006). This ability to form complexes was particularly 

pronounced for reactive constituents of DOM, such as humic and fulvic acids. Humic acids have 

been shown to form Fe-bridged aqueous complexes with dissolved arsenic (Liu et al., 2011). 

Formation of arsenate – ferric – NOM complexes were also observed during dialysis experiments 

(Ritter et al., 2006). Binary and ternary colloidal and dissolved complexes of arsenate, Fe and 

DOM have been detected using ATR-FTIR and Mossbauer-spectroscopy (Sharma et al., 2010).   
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Fluorescence spectroscopy was successfully used to characterize DOM in an arsenic-contaminated 

aquifer of Araihazar, Bangladesh (Mladenov et al., 2010). Using a combination of fulvic acid 

isolation, 13C-NMR spectroscopy, and fluorescence spectroscopy, Mladenov (2015) further 

showed that significant relationships existed between dissolved Fe, As, and fulvic acid molar 

concentrations. Fluorescence spectroscopy has also been utilized to directly measure the formation 

of complexes between fulvic acids and metals via quenching of DOM fluorescence by complexed 

metal cations. For example, complexation between copper and fulvic acid was explored using 

fluorescence quenching titration (Ryan et al., 1982) and interactions between Hg (II) and natural 

DOM (Lu and Jaffe, 2001) Metal ligand complexes of copper and aluminum with DOM were also 

detected and complexation parameters were determined by using fluorescence spectroscopy based 

on PARAFAC analysis (Ohno et al., 2008). 

Optical methods such as fluorescence and absorption spectroscopy have limitations in 

exploring complex heterogeneous properties of DOM such as structure, state of aggregation, 

conformation and surface charge distribution. Solution state NMR has been used to investigate 

these properties of DOM in soil, sediments and water (Earl et al., 1998; Cardoza et al., 2004; 

Simpson et al., 2001, 2011; Wang et al., 2003; Cook et al., 2003, 2004; Lam et al., 2007). Solution 

state NMR spectroscopy provides useful information on structural interactions of molecules that 

are readily soluble after extraction, isolation and pre-concentration steps, such as fulvic acid 

(Nebbioso et al., 2013; Cook et al., 2003; Lam et al., 2007). It has been shown that a highly 

resolved one dimensional 1H NMR spectra can be obtained for isolated and pre-concentrated fulvic 

acid solution because 1) fulvic acid is readily soluble at any pH, 2) high regional mobility occurs 

within macro-molecules and 3) the majority of molecules are small (Cook et al., 2003). Additional 

experiments such as proton correlation spectroscopy (COSY), total correlation spectroscopy 
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(TOCSY), nuclear overhauser effect spectroscopy (NOESY), and a combination of COSY and 

heteronuclear single quantum coherence (HSQC) have been used to obtain structural and 

functional information about protons and protonated carbons (Haiber et al., 1999; Chien et al., 

1998; Hertkorn et al., 1998, 2002; Morris et al., 1999; Fan et al., 2000; Simpson et al., 2001, 

2011, 2012).             

To our knowledge, fluorescence spectroscopy has not been used to investigate As – DOM 

aqueous complex formation. In this study we used three dimensional EEM fluorescence 

spectroscopy to detect binary complexes of Fe – SRFA, As – SRFA and ternary complexes of Fe 

– As – SRFA under environmentally relevant conditions. Further, we used 1D – 1H NMR 

spectroscopy to identify potential locations of complex formation within SRFA. 

MATERIALS AND METHODS 

Sample Preparation for Fluorescence spectroscopy 

DOM stock solution was prepared by dissolving 9.5 mg of SRFA obtained from 

International Humic Substances Society (IHSS Catalog # 2S101H) in 100 mL of ultrapure water 

and stored at 40C in dark. Five different concentration solutions of SRFA were tested for dissolved 

organic carbon using Shimadzu TOC Analyzer which resulted in 52.44% of Total Carbon (data 

not shown). The stock solution of Fe (II) was prepared fresh using reagent grade ferrous sulfate. 

As (III) stock solution (10 mgL-1) was prepared by dissolving appropriate mass of sodium meta-

arsenite (98%, Aldrich). All the solutions were prepared using N2 bubbled 18.3 MΩ cm Milli-Q 

ultra-pure water in the N2 filled glovebox.  

Two concentrations of SRFA 6.25 mgL-1 and 12.5 mgL-1 were used for the complexation 

titration experiment. These concentrations were chosen considering their environmental relevance 

and sensitivity to fluorescence and TOC analysis. For Fe – DOM titration, each SRFA solution 
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was titrated with Fe (II) stock solutions by making final concentration of 0, 0.1, 1, 5, 10 and 20 

mgL-1. For As – DOM titration, each SRFA solution was titrated with As (III) stock solution by 

making final concentrations of  0, 10, 50, 100, 500 and 1000 µgL-1. For Fe – As – DOM ternary 

complex titration, a matrix of samples with combination of two SRFA concentrations (6.25 and 

12.5 mgL-1), three concentrations of ferrous (2, 10 and 20 mgL-1), and five concentrations of As 

(10, 50,100,500 and 1000 µgL-1) were prepared. Necessary blanks were prepared for all the 

samples. All the samples were prepared and analyzed in triplicates. Samples were prepared in 20 

mL clear TOC free glass vials. Samples were mixed for 30 minutes using orbital shaker machine. 

Spectroscopic Analyses 

Samples were analyzed using Jobin Yvon Aqualog Fluorometer with a clean quartz 

cuvette of 0.01 m path length to acquire UV-Vis absorbance and 3D – EEM fluorescence data. 

Integration time was set to 0.25 seconds in S:R mode with a range of excitation wavelengths 

between 240 nm to 450 nm with increment of 3 nm. Absorbance intensities were acquired for the 

same range of excitation wavelengths. Blank data was acquired by running 18.3 MΩ cm Milli-Q 

ultra-pure water. Quinine sulfate standard was run and correlation of 1 Raman Unit = 2.495 

Quinine Sulfate Unit (QSU) was found. Acquired fluorescence data was corrected for inner filter 

effect (Ohno, 2002), normalized by water Raman area and for first and second order Rayleigh 

scattering (Stedmon and Bro, 2008). After all corrections, fluorescence and absorbance data was 

spline interpolated to obtain 1 nm resolution, which was used to calculate all spectroscopic 

properties. 

Absorbance coefficient (a) was calculated by following equation (Weishaar et al., 2003), 

where A is measure absorbance and l is path length of the cuvette,  

𝑎 = 2.303 ∗ 𝐴/𝑙 
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Natural log-transformed absorption coefficients were used to calculate spectral slope between 275 

nm to 295 nm (S275-295) and between 350 nm to 400 nm (S350-400). S275-295 has been considered to 

be indicator of molecular weight and degree of photo-bleaching, while S350-400 of colored DOM 

(CDOM) and contributions from terrestrially derived DOM (Helms et al., 2008). Spectral slope 

ratio (SR = S275-295 / S350-400) was also calculated where, SR > 1 has been found in marine water 

samples with low CDOM, and SR <1 is characteristic of terrestrially dominated, high CDOM 

samples (Helms et al., 2008). An increase in the SR value was observed due to reduced molecular 

weight of DOM and photo-bleaching, whereas a decrease in the SR value was observed due to 

microbial activities i.e. microbial production or preservation of long wavelength absorbing 

substances (Helms et al., 2008; Moran et al., 2000; Vahatalo and Wetzel, 2004). 

Fluorescence Index (FI) as an indicator for the source of DOM i.e. terrestrially-derived (FI 

~ 1.3) or microbially-derived (FI ~ 1.8)  was calculated as the ratio of fluorescence intensities at 

470 nm and 520 nm emission and 370 nm excitation (McKnight et al., 2001; Cory and McKnight, 

2005). Freshness Index (β:α) was calculated to distinguish between recently derived (β:α ~ 0.4 to 

0.6) and processed (β:α ~ 0.8 -1) DOM by taking a ratio of emission intensity at 380 nm with 

maximum intensity between 420-435 nm at excitation wavelength of 310 nm (Parlanti et al., 

2000). Degree of humification was estimated by humification index (HIX) calculated as the ratio 

of peak area under the emission spectra at 435-480 nm to peak area from 300-345 nm obtained at 

an excitation wavelength of 254 nm (Ohno, 2002; Zsolnay, 2003) were higher value of HIX 

indicates higher degree of humification. Fluorescence peaks (Coble, 1996) were also recorded as 

Peak A (260 nm / 380-460 nm) and Peak C (350 nm / 420-480 nm) indicating humic-like DOM, 

Peak M (312 nm / 380-420 nm) indicating marine humic-like DOM, Peak B (275 nm / 310 nm) 
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indicating tyrosine-like or protein-like DOM and Peak T (275 nm /340 nm) indicating tryptophan-

like or protein-like DOM.  

Complexation Modeling 

A modified metal-ligand complexation model based on non-linear regression approach 

(Ryan and Webber, 1982; Luster et al., 1996) was employed to estimate conditional stability 

constant (KC) and complexation capacity (LT). The model shown in the equation inputs included 

measured Peak C intensity (I) at given Fe (II) concentration (FeT) and the intensity of Peak C of 

pure SRFA solution (I0) 

𝐼

𝐼𝑟𝑒𝑓
= 1 + (

𝐼𝐹𝑒𝐿

𝐼𝑟𝑒𝑓
− 1) (

1

2𝐾𝑐𝐿𝑡
){1 + 𝐾𝑐𝐿𝑡 + 𝐾𝑐[𝐹𝑒]𝑡 − √(1 + 𝐾𝑐𝐿𝑡 + 𝐾𝑐[𝐹𝑒]𝑡)2 − 4𝐾𝑐

2𝐿𝑡[𝐹𝑒]𝑡} 

|
𝐼

𝐼𝑟𝑒𝑓
− 1| = |

𝐼𝐹𝑒𝐿

𝐼𝑟𝑒𝑓
− 1| (1 − 𝑒−∝[𝐹𝑒]𝑡) 

Sample Preparation for Solution 1H NMR 

To avoid interference of paramagnetic cations (such as Fe), SRFA was dissolved in 18.3 

MΩ cm Milli-Q ultra-pure water, excess sodium sulfide was added and incubated for 12 hours at 

room temperature. After incubation, solution was centrifuged at 5000 rpm for 30 minutes to 

remove the precipitate and the supernatant was freeze dried using a vacuum freeze drying unit at 

-1500C. Freeze dried SRFA (10 mg) was re-dissolved into 1 mL of D2O. In natural groundwater, 

maximum expected concentration of SRFA may be 6.25 mgL-1 and As concentrations vary from 

0 to 5000 ugL-1. Molar ratio of As to SRFA (MW of SRFA = 1000 Da, MW of As = 74.992) in 

natural groundwater was calculated as 0, 0.02, 0.22, 2.22 and 11.11 for 0, 10, 100, 1000 and 

5000 ugL-1 of As. Since NMR analysis requires such a high and unrealistic concentration of 
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SRFA (10 mgmL-1), respective As doses were calculated as 0, 0.07, 0.69, 6.93and 34.67 mgmL-

1. The volume of sample was 0.8 mL.  

Experimental Conditions  

The 1-D 1H NMR experiments were performed at 25˚C on a Varian 500 NMR System 

(Varian Inc., now Agilent Technologies, Palo Alto, CA) equipped with a 5 mm triple-resonance 

inverse detection pulse field gradient cryogenic probe operating at 499.84 MHz for 1H frequency. 

Briefly, samples had pH of 3.87 after dissolving in D2O. The 1H NMR spectra were acquired with 

presaturation of the HDO peak using 8000 Hz spectral width (SW), 25us pulse width (PW), 1.9 

second acquisition time and 5 second pulse delay time respectively. Calibration of the HDO peak 

was set to 7.42 ppm referenced to sodium 3-trimethylsilyl-propionate-2, 2’, 2, 3’, d4 (TSP). Peak 

area was measured with an integrator. When necessary, spectral resolution was enhanced by 

Lorenzian-Gaussian apotization. Data processing was done using the program VnmrJ 3.2 (Varian 

Inc., Palo Alto, CA). The 1H NMR spectra were subdivided into 4 spectral regions (0.0-1.6, 1.6-

3.3, 3.3-5.5, and 5.5-9.0 ppm). 

RESULTS AND DISUCSSIONS  

Fe-DOM Complexation 

 Our results indicated that quenching of fluorescence by Fe was the most pronounced in 

6.25 mgL-1 than in 12.5 mgL-1 of SRFA. This may be attributed to the limited number of available 

binding sites. Decrease in overall intensities of Peak A, B, T, C and M (Figure 16) of SRFA was 

observed when titrated with Fe. This decrease in intensities of fluorescent peaks was an effect of 

fluorescence quenching due to metal binding as previously reported by Ohno (2008). However, 

effect of metal binding on other spectral properties of DOM have not been reported before. In this 



73 

 

study, absorbance and fluorescence data was acquired for Fe (II) to ensure that the changes in 

spectral properties were attributed to Fe-DOM complex and not due to mere absorption by free Fe 

(II) in the solution.  

 In this study, we found that absorbance at 254 nm (abs254) increased by 55.4 % and this 

increase was strongly correlated (R2 = 0.97) and statistically significant (P = 0) with increase in Fe 

(II) concentration from 0, 0.1, 1, 5, 10 and 20 mgL-1. This was found to be consistent with Yan 

(2013) that reported significant increase in the absorbance as the bound iron absorbs in the 

wavelength range of 220 nm to 440 nm. We observed a decrease by 21.63 % in SR strongly 

correlated (R2 = -0.97, P = 0) with increase in iron, which asserted that iron complexed with SRFA 

must have absorbed more in higher wavelengths (350 nm – 400 nm) than in lower wavelengths 

(275 nm to 295 nm) which was strongly in agreement with results described in Yan (2013). This 

phenomenon was also supported by 35.14% decrease in absolute value of S275-295 (R
2 = 0.82, P = 

.01) suggesting decreased absorption between 275 nm to 295 nm than between 350 nm to 400 nm. 

 

 

 

 

 

 

 



74 

 

 

 

 

 

 

 

 

 

 

  

Figure 15 3D EEMs of 6.25 mgL-1 SRFA titrated with 0, 0.1, 1, 5, 10 and 20 mgL-1 

of Fe 
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Table 7 Results of regression analysis of average (n = 3) spectral properties of Suwanee River Fulvic Acid upon titration with varying 

concentrations of Fe and As. P-value < 0.05 indicates statistically significant correlations with 95% confidence. 

Experiment   Abs254 
S275-

295 

S350-

400 
SR FI FrI HIX 

A B T C M 

260/380-

460 nm 

275/310 

nm 

275/340 

nm 

350/420-

480 nm 

312/380-

420 nm 

SRFA 

Calibration 

R2 0.99 -0.44 0.40 -0.30 0.01 0.21 0.95 0.99 -0.61 0.99 0.99 0.99 

P 0.00 0.22 0.25 0.34 0.90 0.43 0.00 0.00 0.12 0.00 0.00 0.00 

Fe-DOM 2 
R2 0.09 0.44 0.46 -0.20 0.56 0.44 -0.68 -0.94 -0.48 -0.39 -0.94 -0.95 

P 0.55 0.15 0.13 0.36 0.08 0.15 0.04 0.00 0.13 0.18 0.00 0.00 

Fe-DOM 3 
R2 0.97 0.82 0.58 -0.97 0.93 0.97 -0.80 -0.89 -0.27 -0.17 -0.89 -0.89 

P 0.00 0.01 0.08 0.00 0.00 0.00 0.02 0.00 0.29 0.40 0.00 0.00 

As-DOM4 
R2 0.01 0.79 0.26 -0.64 0.73 0.85 -0.49 -0.71 0.01 0.37 -0.63 -0.84 

P 0.84 0.02 0.30 0.05 0.03 0.01 0.12 0.03 0.83 0.20 0.06 0.01 

As-DOM5 
R2 0.73 0.65 0.27 -0.22 0.56 0.30 -0.48 0.11 -0.26 0.12 0.53 -0.18 

P 0.03 0.05 0.29 0.34 0.09 0.26 0.13 0.53 0.30 0.50 0.10 0.40 

As-Fe-

DOM6 

R2 0.51 0.87 -0.12 -0.80 0.30 -0.03 -0.54 -0.09 0.08 0.02 -0.57 -0.07 

P 0.11 0.01 0.48 0.02 0.25 0.72 0.09 0.55 0.86 0.98 0.41 0.60 

As-Fe-

DOM7 

R2 -0.37 0.94 0.36 -0.98 0.00 0.39 0.09 -0.28 -0.34 -0.35 -0.33 -0.27 

P 0.20 0.00 0.21 0.00 0.98 0.18 0.56 0.28 0.22 0.21 0.23 0.29 

As-Fe-

DOM8 

R2 0.07 0.00 -0.04 -0.85 0.01 -0.12 -0.08 0.67 0.03 0.24 0.37 0.27 

P 0.61 0.99 0.70 0.01 0.81 0.49 0.58 0.04 0.76 0.31 0.20 0.29 
1 SRFA concentrations 0, 6.25, 12.5, 25, 50 and 100 mg/l  
2 SRFA (12.5 mgL-1) titrated with 0, 0.1, 1, 5, 10, 20 mg/l of dissolved Fe 
3 SRFA (6.25 mgL-1) titrated with 0, 0.1, 1, 5, 10, 20 mg/l of dissolved Fe 
4 SRFA (12.5 mgL-1) titrated with 0, 10, 50, 100, 500 and 1000 ug/l of dissolved As 
5 SRFA (6.25 mgL-1) titrated with 0, 10, 50, 100, 500 and 1000 ug/l of dissolved As 
6 6.25 mg/l SRFA + 2 mg/l Fe titrated with 0, 10, 50, 100, 500 and 1000 ug/l of dissolved As 
7 6.25 mg/l SRFA + 10 mg/l Fe titrated with 0, 10, 50, 100, 500 and 1000 ug/l of dissolved As 
8 6.25 mg/l SRFA + 20 mg/l Fe titrated with 0, 10, 50, 100, 500 and 1000 ug/l of dissolved As 
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 Increase by 11.78 % of FI strongly correlated iron doses (R2 = 0.93, P = 0) was observed. 

This is consistent with our previous observation of higher absorption at higher wavelengths due to 

iron binding. Increase in FI may be due to extra absorbance at 370 nm causing overall reduction 

in emission intensity and more importantly, absorbance of emitted intensity by the iron present. 

Iron has been shown to absorb more intensity at 520 nm than at 450 nm (Yan et al., 2013) which 

might have caused FI to increase. This observation has wide relevance in environmental samples, 

particularly groundwater samples with high concentrations of dissolved iron. The lower FI and 

higher FI values have been linked with terrestrially-derived and microbially-derived DOM 

respectively (McKnight et al., 2001) based on fulvic acids isolated from streams and rivers 

receiving predominantly terrestrial sources of organic material and from lakes with microbial 

sources of organic material. The groundwaters in reducing aquifers, such as in Bengal basin, 

typically have higher dissolved iron concentrations than the rivers, streams and lakes (Harvey et 

al., 2002; Dowling et al., 2002; McArthur et al., 2001 and 2004; Ravenscroft et al., 2005; Zheng 

et al., 2005; Mukherjee et al., 2007; Datta et al., 2009; Sankar et al., 2014; Mladenov et al., 2015). 

Few studies have reported FI ranging between 1.2 – 1.6 in groundwater beneath Okavango delta 

(Mladenov et al., 2008 and 2013) and 1.4 – 1.6 in groundwater in Bangladesh aquifer (Mladenov 

et al., 2010 and 2015) suggesting terrestrially-derived origin of DOM. In our study we observed 

FI increased from 1.29  0.047 to 1.44  0.028 at 0 mgL-1 to 20 mgL-1 Fe respectively. Although, 

elevated FI values are attributed to microbially-derived DOM sources, such as wastewater inputs 

(Chen et al., 2009; Goldman et al., 2012), in reducing groundwaters, it may also be linked to higher 

dissolved iron concentrations. 

 We also observed 29.15 % increase in β:α strongly correlated (R2 = 0.98, P = 0) with 

increase in Fe (II) concentrations. This observation was also consistent with our previous 
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observation of increase in abs254, FI and decrease in SR. Since β:α was the ratio of emission 

intensity at 380 nm to maximum emission intensity between 420 nm to 435 nm, this increase in 

β:α can be explained by higher absorption by iron at wavelengths between 420 nm to 435 nm than 

at 380 nm. Williams and Xenopoulos (2013) reported β:α ranging from 0.73 to 0.92 in a storm-

water pond with continuous supply of fresh DOM. Interestingly, Mladenov (2013) reported β:α 

ranging from 0.5 to 0.6 in groundwater and slightly lower ~ 0.48 in surface water samples in 

Okavango delta. Although β:α has been used widely as a good indicator of fraction of recently 

derived DOM in various environmental scenarios, particularly in the groundwater, influence of 

dissolved iron that causes β:α to increase should be taken into the considerations.  

 Humification index (HIX) was observed to drop by 55.64 % with a significant correlation 

(R2 = -0.80, P = 0.02) with Fe (II) concentrations. This can primarily be explained by absorption 

of emitted intensities rather than absorption of excitation intensity at 254 nm, as iron absorbs more 

at higher wavelengths. Hence, the area under the emission spectra between 435 nm to 480 nm 

might have decreased much more than that between 300 nm to 345 nm, decreasing the ratio i.e. 

HIX. Increase in HIX was attributed to increase in the degree of aromaticity of DOM (Zsolnay et 

al., 1999; Huguet et al., 2009) while the process of humification to be associated with increase in 

C/H ratio (Stevenson, 1982). The groundwaters have been shown to have higher HIX than surface 

water but lower than top soil pore water (Kalbitz et al., 1999). Results in this study indicated that 

the degree of humification of DOM may be underestimated by the decreased HIX due to presence 

of Fe-DOM binary complexes.    
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Figure 16 Figure 5: Graph showing complexation modeling (Ryan & Webber) using fluorescence 

intensity at peak C, for 6.25 mg/l SRFA titrated with 0, 0.1, 1, 5, 10 and 20 mg/l of Fe. Dotted line 

indicated modeled intensity, square filled dots indicate observed intensity, two solid lines indicate 

sensitivity of conditional stability constant (K).  

 

 As seen in Figure 16, intensities of humic-like peaks were also observed during titration 

with dissolved iron. Intensity of Peak A decreased by 74.54 % (R2 = -0.89, P = 0), of Peak C by 

73.99% (R2 = -0.89, P = 0) and of Peak M by 75.88 % (R2 = -0.89, P = 0). Approximately similar 

percentage of decrease in intensity of all three peaks can be explained by their common emission 

wavelength range from 380 nm to 480 nm. Intensities of Peak C were then used to determine 

complexation parameters by complexation model (Ryan and Webber, 1982). Model revealed the 

conditional stability constant for SRFA – Fe (II) aqueous complex to be 104.71 and the binding 

capacity to be 191 µmol/kg (Figure 17). Log K of 4.71 was consistent with other studies showing 

iron binding with SRFA. For example, recent work using the PHREEQC-Model VI and linear free 
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energy relationship (LFER) method found the conditional log K for phenolic binding sites of 

SRFA (1000 mgL-1) to be 4.46 (Catrouillet et al., 2014; Rose and Waite, 2003). In another study 

using a more environmentally representative SRFA concentration (10 mgL-1) and a differential 

absorbance approach, the NICA-Donnan modeling parameter log K was found to be 6 (Yan et al., 

2013, 2014). Using fluorescence titration and the Ryan and Webber model, similar to that used in 

this study, log K values of 4.91 and 4.85 were measured for Fe complexation of deciduous water-

soluble organic matter (30 mgL-1) and coniferous water soluble organic matter (30 mgL-1), 

respectively (Ohno et al., 2008). Additionally, the ligand (SRFA) concentrations used in the 

present study are relevant to DOM concentrations typically found in arsenic contaminated 

reducing aquifers. Studies with much higher SRFA concentrations reported higher log K values 

for example log K of 11.04 for Fe binding with 10 gL-1 of SRFA (Fujii et al., 2014). 
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As – DOM Complexation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 3D EEMs of 6.25 mgL-1 SRFA titrated with 0, 10, 50, 100, 

500 and 1000 ugL-1 of As 
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Figure 18 3D EEMs of 12.5 mgL-1 SRFA titrated with 0, 10, 50, 100, 500 and 1000 ugL-1 of 

As 
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In As (III) – SRFA titration experiment, any statistically significant correlations (R2 > 0.8 

and P<0.05) were not observed with 6.25 mgL-1 SRFA concentration. In an experiment with 12.5 

mgL-1 SRFA, a good and significant correlation between β:α (R2 =0.85, P = 0.01) and As (III) 

concentrations was observed. However, the increase in β:α in this experiment was not significant 

(7.65%) as compared to increase in β:α in Fe – SRFA titration experiment (29.15 %). Peak M 

intensity was also observed to be in good and significant correlation (R2 = -0.84, P = 0.01) with 

As (III) concentrations. However, this decrease in intensity was again found to be insignificant 

(13.80 %) as compared to that in Fe – SRFA experiment (75.88 %). Further, these two changes in 

β:α and Peak M intensity during As – SRFA experiment were contradictory to known optical 

properties of dissolved As that it absorbs in the lowermost portion of the UV spectrum at 193.7 

nm, and hence alterations in optical properties of SRFA due to As (III) binding were very unlikely 

(Pellegrini, 2010).  

Since, very small change in only two of the optical properties was observed, it was not 

attributed to As (III) – SRFA binding. Perhaps As – SRFA binary complex was not formed in this 

experiment or was not detected with fluorescence spectroscopy. However, such binary complexes 

have been reported to have formed and detected by ATR-FTIR and Mossbauer-spectroscopy 

Figure 19 Correlation of Peak M intensity (left) and FrI (right) with As dosages.   
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(Sharma et al., 2010). To further investigate, As –SRFA samples were analyzed with 1H solution 

NMR spectroscopy which has been discussed later. 

As-Fe-DOM Complexation 

In this experiment, concentration of SRFA was kept constant at 6.25 mgL-1. Three 

concentrations of Fe (II) were used as 2, 10 and 20 mgL-1. These combinations were titrated with 

six different concentrations of As (III) as 0, 10, 50, 100, 500 and 1000 µgL-1. Results of titration 

revealed that with 2 mgL-1 Fe (II), absolute values of S275-295 were found to decrease with a good 

and significant correlation (R2 = 0.87, P = 0.01) with increase in As (III) concentrations. The 

decrease however was not significant (10.55 %) when compared to 54.19 % decrease in Fe – SRFA 

experiment. A good correlation was observed for SR (R2 = -0.80, P = 0.02) which was smaller 

magnitude of decrease (14.69 %) as compared to 21.63% in Fe –SRFA experiment. Similarly, with 

10 mgL-1 of Fe (II), strong and significant correlation was observed for S275-295 (R
2 = 0.94, P = 0) 

as well as for SR (R2 = -0.98, P = 0) with increase in As (III) concentrations. However, the increase 

of 8.32 % in S275-295 and decrease of 6.91 % in SR was not significant as compared to those in 

Fe –SRFA experiment, 54.19 % and 21.63 % respectively. In the experiment with 20 mgL-1 Fe (II) 

concentration, only good and significant correlation was observed for SR (R2 = -0.85, P = 0.01). 

However, this decrease in SR was not significant as well (5.21 %) as compared to 21.63 % in Fe 

– SRFA experiment.  
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Figure 20 3D EEMs of (1) In column 1, solution of 6.25 mg/l SRFA and 2 mg/l Fe titrated with 

0, 10, 50, 100, 500 and 1000 ug/l of As; ; (2) In column 2, solution of 6.25 mg/l SRFA and 10 

mg/l Fe titrated with 0, 10, 50, 100, 500 and 1000 ug/l of As; (3) In column 3, solution of 6.25 

mg/l SRFA and 20 mg/l Fe titrated with 0, 10, 50, 100, 500 and 1000 ug/l of As.  
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These results suggested that lack of very strong and significant correlations was consistent 

with lower wavelength absorption of As. However, there was a notable trend in % decrease of SR 

values. Decrease was 14.69, 6.91 and 5.21 % for 2, 10 and 20 mgL-1 Fe (II) solution respectively. 

This trend was found to be consistent with the observation of Liu (2011) that the small presence 

of dissolved Fe enhances the process of Fe bridged As – DOM complex formation and as the 

concentration of Fe increased the number of binding sites available for As decreased and hence 

less As was bound. However, due to lack of strong and significant correlations and changes in 

other important optical properties, it was not possible to conclude whether ternary complex was 

formed.   

1H NMR SPECTROSCOPY  

Changes in Proton Chemical Shift and Intensity Ratio 

The formation of Fe-bridged ternary complexes of As and DOM has been considered to be 

an important mechanism for maintaining arsenic in circumneutral pH solutions under reducing 

conditions (Sharma et al., 2010). Mikutta and Kretzschmar (2011) identified inner-sphere binding 

of As (V) to Fe-DOM complexes as a way in which these ternary complexes form. Complexes 

directly between As and DOM also have been observed (Liu et al., 2011; Sharma et al., 2010), but 

the specific reaction sites are not known. In our study, we used proton NMR spectroscopy 

(paramagnetic cations such as Fe were removed by sulfide treatment) to obtain further insight into 

the specific As-DOM complexation sites. The NMR spectra resulting from the spin of 1H of pre-

treated SRFA in D2O were comparable to previously collected data (Thorn et al., 1989). In our 

study, seven significant peaks were identified from the 1H NMR analysis and divided into four 

regions for analysis (Figure 22). The peaks indicated the presence of a 1H atom attached to a carbon 

atom in the DOM molecule.  The consistent decrease (Figure 23) in chemical shifts (CS) and 
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intensity ratio at particular peaks can be considered to have effect of arsenic binding at that location 

due to arsenic addition (Figure 23). Shielding (upfield) in chemical shifts was observed in the 1H 

NMR spectra upon addition of 1, 10, 100, 1000 and 5000 ppb of As to the SRFA solution in peak 

C (9.67%) and peak E (7.85%) in Region 2 (1.6 – 3.3 ppm, chemical shift region for aliphatic 

protons attached to carbonyl or carboxyl group) and peak I (3.1%) and peak H (3.5%) in Region 3 

(3.3 – 5.5 ppm, chemical shift region for carbohydrate or polyether or amino acid alpha protons). 

The differences in CS (∆ CS >0.1 ppm) for peaks C and E (methyl and methylene on carboxyl and  

 

 

Region 1 Region 2 Region 3 Region 4 

Figure 21 1D- 1H NMR spectrum of 10 mg/ml SRFA solution after removal of paramagnetic 

cations by sulfide treatment, dissolved in D2O. Peaks in the different regions indicate 

significantly different molecular structures of SRFA. 
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Carbonyl groups), peaks I and H (methyl, methylene or methine attached to oxygen or nitrogen 

including carbohydrate and amino acid) may be attributed to the addition of electron density in 

neighboring atoms or functional groups (Balci, 2005), possibly due to binding of As. 

 NMR peaks in the aliphatic region showed decrease in the peak area while no significant 

differences in chemical shift or in the intensity ratio were observed in aromatic Region. This 

finding helps explain the lack of a quenching effect with the addition of As to the SRFA solution 

in our fluorescence titration experiments. Fluorescence of the DOM molecule is due in large part 

to the presence of aromatic functional groups, and structural changes (such as attachment of Fe or 

Arsenic 10 µg/L Arsenic 100 µg/L 

Arsenic 1000 

µg/L 

Arsenic 5000 

µg/L 

Figure 22 1D- 1H NMR spectra of 10 mg/ml SRFA solution with different dosages of As.   
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As to aromatic functional groups) are detected by fluorescence spectroscopy, but structural 

changes to non-aromatic groups would not be detected. Our 1H NMR results instead implicate As 

binding to non-fluorescent moieties such as, methyl groups, methylene on carboxyl and carbonyl 

groups, and/or methyl, methylene or methine attachment to oxygen or nitrogen. 

Results from 1H NMR analyses provide additional information about the type of complex that is 

formed between As and DOM. Arsenic has been shown to form inner-sphere complexes directly 

via organic functional groups such as hydroxyl groups (Sharma et al., 2010; Warwick et al., 2005; 

Goldberg et al., 2002).  

At the same time, arsenic has been shown to form coordination complexes with DOM via 

metal bridges (Sharma et al., 2010; Redman et al., 2002; Bauer et al., 2006; Ritter et al., 2006; 

Wang et al., 2006; Buschmann et al., 2006; Lin et al., 2004). Results of the SR decrease in As – Fe 

– DOM samples with increasing in As concentrations, described earlier, suggests formation of Fe 

bridged ternary complexes. Thus, inner sphere Fe – DOM and As – DOM complexes and As – Fe 

– DOM coordination complex both were likely formed and detected.   

 

 

Figure 23 Scattered plot of ratio of peak areas obtained by 1H NMR versus As concentration.  
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BROADER IMPLICATIONS 

 The mobility of arsenic in reducing aquifers is known to be greatly influenced by the 

presence of DOM. The importance of the humic-like portion of the DOM pool has also recently 

gained attention with respect to arsenic mobility (Mladenov et al., 2015). Fluorescent and aromatic 

moieties in the DOM molecule have been described to contribute towards arsenic mobility by 

serving as electron shuttles (Lovley et al., 1998; Nevin et al., 2000; Kappler et al., 2004, Mladenov 

et al., 2010, 2015). Complexation of arsenic directly with DOM molecules (binary) or via Fe-

bridging (ternary) has been considered as another significant mechanism controlling arsenic 

mobility. However, the role of non-aromatic DOM moieties in arsenic mobility has rarely been 

reported. Our results from 1H NMR analyses of As – DOM binding suggest that the non-

fluorescent and non-aromatic moieties of DOM molecules such as methyl, methylene, methine 

and carbonyl groups, which cover a substantial fraction of the DOM molecular structure, actually 

play an active role in As – DOM binary complex formation. These new findings assert the 

importance and role of DOM in arsenic mobility. 
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Chapter 7 - A new influence on iron dissolution in Bangladesh 

sediments: electron shuttling by groundwater fulvic acids 

ABSTRACT 

 The electron shuttling behavior of fulvic acid and its role in accelerating iron (Fe) reduction 

were experimentally demonstrated more than two decades ago, and the environmental relevance 

of this mechanism is only now being understood. Here we show that fulvic acids isolated from 

high and low arsenic groundwater aquifers in the Bengal Basin can be reduced by Geobacter 

metallireducens, and are subsequently capable of reducing Fe(III) to Fe(II). Moreover, all four 

Bangladesh groundwater fulvic acids had higher Fe(III) to Fe(II) conversion rates compared to 

Suwannee River Fulvic Acid, a commercially-available FA isolated from a terrestrially-dominated 

surface water source. Until now, microbially-mediated reductive dissolution of Fe 

(oxy)hydroxides, driven by the availability of labile organic matter, was widely accepted as the 

main control on arsenic mobilization in reducing aquifers. Our evidence for the electron shuttling 

ability of Bangladesh FAs implicates electron shuttling as another important control on elevated 

As concentrations in groundwater of the Bengal Basin. 

INTRODUCTION 

 Humic-like moieties in dissolved organic matter (DOM) have been reported to interact and 

enhance the reductive dissolution process of iron and arsenic in the presence of iron-reducing 

bacteria (IRB) under diverse environmental conditions (Scott et al., 1998; Redman et al., 2002; 

Kappler et al., 2004; Oremland et al., 2004; Bauer et al., 2006; Mladenov et al., 2007, 2008, 2010, 

2013, 2015; Wolf et al., 2009; Reza et al., 2010; Palmer et al., 2010; Legg et al., 2012; 

Vaxevanidou et al., 2012; Zheng et al., 2012; Lee, 2013; Pi et al., 2015). An acceleration of 

reductive dissolution of Fe by humic substances was shown by Lovley et al., (1996). In 
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experiments with anthraquinone-2,6,-disulfonate (AQDS, a humic analog), Lovley et al., (1996) 

showed that AQDS was reduced to anthrahydroquinone-2,6-disulfonate (AHDS) by G. 

metallireducens and S. alga, and AHDS could abiotically transfer electrons to Fe (III) with the 

regeneration of AQDS. Further it was demonstrated that other groups of bacteria (including iron, 

sulfate and nitrate reducing bacteria) were capable of reducing the humic substances (HS) and 

abiotically reducing metals (Lovley et al., 1996, 1998). Scott et al. (1998) proposed that organic 

radicals in HS, which are primarily quinone groups, were reduced by accepting electrons from G. 

metallireducens and that this capacity of HS to accept electrons was higher in sedimentary HS than 

that in aquatic HS. It was further investigated that the reduced HS (AHDS) could serve as electron 

donors for a wide group of bacteria (Lovley et al., 1999).  

 Klapper et al. (2002) reported that the electron accepting capacity of HS extracted from 

soil, freshwater and sea water varied with the source and that the excitation emission matrix spectra 

(EEMS) of HS were altered significantly after microbial reduction. In another study, humic acids 

from a freshwater lake were shown to have higher electron-accepting (i.e. oxidized HS) capacity 

near surface and higher electron-donating (i.e. reduced HS) capacity at depth, which was correlated 

with the presence of IRB at deeper layers (Kappler et al., 2004). Jiang (2008) investigated that the 

concentration of HS do not limit their ability to shuttle electrons and accelerate metal reduction, 

even at lower concentrations (<5 mgL-1 C) common in marine and subsurface environments. 

Similar study in the groundwater environment (Mladenov et al., 2008) showed that the DOM with 

reduced fluorescence components (semiquinone-like and hydroquinone-like) was linked with 

potential electron-shuttling role in the dissolution of metal oxides in the groundwater beneath the 

seasonal swamp of the Okavango Delta in northwestern Botswana. HS extracted from deep aquifer 
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in Germany stimulated the microbial iron reduction at concentrations of HS as low as 1 mgL-1 

(Wolf et al., 2009).   

 The large human population residing in the Ganga-Meghana-Brahmaputra River basin, 

mainly in parts of eastern India and Bangladesh, is at health risk due to drinking groundwater with 

high dissolved arsenic (As) concentration (> 10 µgL-1, WHO guidelines) (Bhattacharya et al., 

1997; Nickson et al., 1998; Smith et al., 2000; McArthur et al., 2001; Dowling et al., 2002; 

Roychowdhury et al., 2002; Ravenscroft et al., 2005; Acharyya and Shah, 2006; Datta et al., 2009, 

2011; Sankar et al., 2014). The As in groundwater is natural and mobilized from oxidized iron 

minerals via microbially-mediated reductive dissolution (McArthur et al., 2001; Dowling et al., 

2002; Hasan et al., 2007). This process is primarily driven by labile organic carbon that was 

deposited in the sediments in the past (McArthur et al., 2004; Sengupta et al., 2008; Datta et al., 

2011) or drawn to depth from ponds and other surface water sources (Harvey et al., 2006; 

Neumann et al., 2010). Studies have shown that HS were present in abundance in the reducing 

aquifer of Bangladesh (Reza et al., 2010) and play a dual role (Mladenov et al., 2010) as a labile 

substrate as well as an electron shuttle and implicated in significantly accelerating the reductive 

dissolution resulting in elevated arsenic levels.  Further, Mladenov (2015) isolated fulvic acid (FA) 

groundwater in Araihazar, Bangladesh spanning an age gradient (<5 to >30 years old) and 

investigated source and reactive characteristics in relation with dissolved As concentration. 

 In general, these studies (Mladenov et al., 2008, 2010, 2015; Reza et al., 2010) have 

hypothesized that the HS in high As groundwater serve as electron shuttles to accelerate Fe 

reduction or As reduction and thereby promote mobilization of As from sediments. However, 

direct evidence that the HS isolated from these groundwaters are capable of shuttling the electron 

is still lacking. To our knowledge, the mechanism of electron shuttling by HS in the geologic 
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setting of Bengal basin has not been tested. In the present study, we evaluate the electron shuttling 

abilities of five large volume FA samples isolated in Mladenov (2015) under environmentally 

relevant conditions with Geobacter metallireducens. We also investigate the influence of Suwanee 

River Fulvic Acid (SRFA, a commercially available terrestrial HS) on growth rate of G. 

metallireducens. 

Propagation of Geobacter metallireducens 

  Geobacter metallireducens Lovley et al. (ATCC 53774) pure culture was used and 

initial cultures were propagated by incubating the cells at 300C in freshly prepared ferric citrate 

medium (ATCC 1768) for 7 days. The pH of the medium was maintained between 6.8 – 7.0 after 

bubbling 80% N2 and 20% CO2. Suwanee River Fulvic Acid (SRFA) was used to study the growth 

rate of G. metallireducens and was obtained from International Humic Substances Society (IHSS 

# 2S101H).  Ferric citrate (Fisher # 3388) and Goethite (Schwertmann and Cornell, 2007) were 

used as liquid and solid phase electron acceptor respectively. Dissolved Fe2+ was quantified by 

Ferrozine method (Stookey, 1970) on a UV-Spectrophotometer. Bangladesh Fulvic Acid (BFA) 

samples were isolated from the groundwater ranging from 7 – 15 m depths and <5 to >30 years 

old age. (Mladenov et al., 2015). The study site was located in the Ganges Brahmaputra Delta 

(GBD) in central Bangladesh and underlay Holocene aquifers (5 – 30 m, elevated As) and deep 

Holocene aquifers (40 – 90 m, low As) separated by one or multiple layers of fine-grained sediment 

(Zheng et al., 2005).  BFA samples were re-dissolved in 18.2 MΩ-cm Milli-Q ultra-pure water to 

obtain final concentration of 2 mg.mL-1. Nutrients (as per ATCC 1768, except ferric citrate) were 

added and dissolved to BFA solutions in appropriate amounts. An industrial grade N2 gas was 

bubbled through the BFA solutions for 1 hour in 18 x 150 mm glass anaerobic tubes and tubes 
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were sealed under N2 head with 20 mm blue butyl rubber stopper and aluminum seal. 100 µL of 

each BFA sample was analyzed on Horiba Aqualog fluorometer to acquire fluorescence data.   

 

 

 

 

 

Electron shuttling experimental setup 

 Humic substances used in the electron shuttling experiments have been previously 

described (Mladenov et al., 2015). In brief, chemical characterization of bulk water samples that 

were used to isolate BFA revealed that two of the samples, K12.1 at 7.5 m and K10.2 at 11 m, 

were found to be younger than 5 years old with 3H/3He age (Mladenov et al., 2015). Another water 

sample K8.3 collected at 14.8 m depth was found to have 3H/3He age greater than 30 years in the 

same study. Table 8 shows the chemical parameters for bulk water and BFA isolates adapted from 

Mladenov (2015). Briefly, the sample K8.3 shows high arsenic concentration related with high 

Ar:Al ratio and low % AA-like fluorescence.  

 

 

Figure 25: G. metallireducens cells transfer from the ATCC 1768 medium to Bangladesh Fulvic 

Acid medium by successive filtration process.   
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Table 8 Bulk water and BFA isolate properties (From Mladenov et al., 2015) 

  Bulk Water Properties BFA Isolate Properties 

Sample Depth Age AsT As3+ FeT DOC SUVA AA FI SUVA Ar:Al FI AA 

KSW 0 N.A. 23.3 40 0.01 4.80 2.66 5.7 1.65 4.36 0.4 1.69 11 

K12.1 7.5 <5 2 90 0.5 0.59 1.60 24 1.47 3.86 0.54 1.48 4.9 

K10.2 11 <5 69 100 3.5 0.92 1.72 8 1.46 5.16 0.22 1.45 4.1 

K8.3 14.8 >30 363 94 11 0.93 2.24 4 1.49 4.71 0.64 1.40 3.7 

Depth is in meters below ground; Age is determined as 3H/3He; AsT and As3+ is in µgL-1; FT and DOC is in mgL-1; 

SUVA is in L.mg-1.m-1; AA is % amino acid like fluorescence of overall fluorescence; FI, Ar:Al are dimensionless.  

 

 Characteristics of microbially reduced HS by tracking the changes in its fluorescence 

signature have been studied (Klapper et al., 2002) with surface and marine DOM. In this study, we 

quantified the changes key fluorescence indices for HS (K12.1) isolated from 7.5 m depth and 

characterized by 2 µgL-1 AsT and 0.5 mgL-1 of FeT and younger age (<5 years). The fluorescence 

data was acquired from the sterile filtered sample just after adding clean bacterial cells to BFA 

solution and after 7 days of incubation followed by sterile filtration. 

 As per ATCC 53774 propagation protocol, frozen vial was thawed under anaerobic 

conditions and an aliquot of pure culture was transferred into previously prepared 10 ml of ferric 

citrate medium into sealed anaerobic test tube by a sterilized needle. After 7-day incubation, 0.5 

mL aliquot from the first test tube was transferred to second, three such transfers were made. Fe2+ 

concentration was measured at each stage to monitor the growth using Ferrozine method. In order 

to obtain healthy bacterial cells possibly free from any dissolved iron trace, a successive filtration 

process was used as described in Figure 25. From the actively growing culture, 5 ml was filtered 

through 0.2-micron nylon sterilized syringe filter, pre-rinsed with 20 ml of anaerobic (N2 purged) 

18.2 MΩ-cm Milli-Q ultra-pure water. The filtrate contained the medium constituents, microbially 

produced Fe2+ and remainder ferric citrate while bacterial cells were retained on the filter. This 
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filter was then backwashed using 2 mL of ultra-pure water to collect bacterial cells. To this, 3 mL 

of ultra-pure water was added and total 5 mL volume was again filtered through a new filter. This 

process was successively repeated four times to avoid any traces of culture medium and Fe2+. At 

the end of 5th backwash, 400 µL of solution containing bacterial cells per 1 mL of the BFA medium 

was added for inoculation. After 7-day incubation under anaerobic conditions and room 

temperature, BFA sample was filtered through 0.2 µm sterile filter to separate bacterial cells 

(Figure 26). The filtrate aliquot of 1 mL was added to 1 mL of 55.93 mM freshly prepared ferric 

citrate solution in a 1.5 mL micro centrifuge tube. After allowing specific reaction times (0, 2, 4, 

5, 6, 7 and 8 hours), an aliquot of the sample was tested for Fe2+ concentration using Ferrozine 

method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Procedure to microbially reduce Bangladesh Fulvic Acid, sterile filter and 

measure Fe
2+

 using Ferrozine method.   
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Influence of HS on growth of bacteria    

 

 

 

 

 

 

 

 

 

 

 

Table 9 Composition of growth medium 

Type Compound Concentration 

Primary Electron Donor CH3COONa 2 mM 

Primary Electron Acceptor FeOOH 6 mM 

Medium Composition 

NaHCO3 5 mM 

K2HPO4 1 uM 

NH4Cl 50 uM 

Humic Substances 
Suwanee River Fulvic Acid 2 mgL-1 

Okavango Delta Fulvic Acid 2 mgL-1 

 

 Sodium acetate (2 mM) as primary electron donor and Goethite (10 mM) as primary 

electron acceptor were added to a 250 mL glass serum bottle containing 100 mL of ATCC 1768 

medium (Figure 27, Table 9). The medium was bubbled with 80% N2 and 20% CO2 to achieve 

final pH of 6.8 – 7. The bottles were sealed under N2 head and sterilized in autoclave at liquid 

cycle. One sample was prepared with HS by adding 6 mgL-1 of SRFA while the other sample only 

Figure 27 Samples used for the experiment. “C” in red indicates control samples; “S” in 

green indicates live cultures; SRFA stands for Suwanee River Fulvic Acid; and ODFA 

stands for Okavango Delta Fulvic Acid. 
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had acetate. A 0.2 mL aliquot of G. metallireducens culture was injected into each sample. Blanks 

were prepared in similar way without adding the bacteria. Sample bottles were incubated at room 

temperature under anaerobic conditions for 18 days. Fe2+ concentrations were measured using 

Ferrozine method to monitor the bacterial growth in all the samples. An iterative algorithm 

(Geochemist’s Workbench 10.0 Professional) was used to model theoretical growth of the bacteria 

using Monod kinetic equation (Roden et al., 2006) modified to include thermodynamic potential 

factor FT (Bethke et al., 2008) and surface properties of Goethite to simulate environmentally 

relevant conditions. Fe2+ concentrations measured during the experiment were fitted to the 

modeled values to obtain kinetic rate constant.  

 

 

 

Figure 24 Combination of experimental and biogeochemical model data. 
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𝑟 = 𝑘 ∗ [𝑋] ∗
𝑚𝐷

𝑚𝐷 + 𝑘𝐷
∗

(
[𝑋]
𝑚𝐴)

(
[𝑋]
𝑚𝐴) + 𝑘𝐴

∗ 𝐹𝑇                                 𝐹𝑇 = 1 − exp (
𝑑𝐺𝑅 + 𝑛 ∗ 𝑑𝑃

𝑥 ∗ 𝑅 ∗ 𝑇
) 

 Rate of iron reaction (r) can be expressed by the above equation, where k is reaction rate 

constant, X is biomass concentration, mA and mD are molality of electron acceptor and donor 

respectively, kA and kD are half saturation constants for electron acceptor and donor respectively. 

Thermodynamic potential factor (FT) is calculated by second equation where dGR is the free energy 

change of the metabolic reaction in kJ/mol, m is the number of ATPs produced, dGP is the free 

energy change of ATP synthesis in kJ/mol, X is the average number of times the rate determining 

step occurs, R is the gas constant and T is absolute temperature (Jin et al., 2013). 

RESULTS 

Microbial reduction of BFA 

 Prior to inoculation, fluorescence data were acquired for all the samples (Table 10). 

Fluorescence index (FI) for BFA samples (K12.1, K10.2 and K8.3) was found to be 1.43, 1.36 and 

1.38 respectively while 1.50 for KSW. Fluorescence data was acquired for BFA (K12.1) and SRFA 

after incubating with clean iron reducing bacteria cells for five days with growth nutrients and 

anaerobic conditions. The results revealed the decrease in spectral slope ratio (SR) by 26.04 % and 

5.42 % respectively in K12.1 and SRFA sample. Fluorescence index (FI) was increased by 5.5 % 

in K12.1 sample and by 11.7 % in SRFA sample. Humification index (HIX) was decreased by 

26.41 % in K12.1 and by 25.18% in SRFA sample.  
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Table 10 Optical properties of BFA samples measured just before the experiment and changes in 

properties of two samples K12.1 and SRFA. All the indices are dimensionless. 

 Before Reduction After Reduction 

 SR FI FrI HIX SR FI FrI HIX 

KSW 0.75 1.50 0.54 16.68 - - - - 

K12.1 0.73 1.43 0.54 15.45 0.54 1.51 0.54 11.36 

K10.2 0.72 1.36 0.51 11.64 - - - - 

K8.3 0.96 1.38 0.52 15.48 - - - - 

SRFA 0.74 1.24 0.42 22.33 0.70 1.39 0.42 16.70 

 

Electron shuttling by Bangladesh Fulvic Acids 

 Using 4 different types of Bangladesh fulvic acids (BFAs), we found the Fe(III) was 

reduced to Fe(II) in each electron shuttling experiment. For sample K12.1, 7 data points were 

recorded over time showing that after 8 hours 95% of Fe(III) was converted to Fe(II) and after 4 

hours 64% of Fe(III) was converted to Fe(II). Between 328.07 µM and 530.43 µM of Fe2+ was 

produced over the 8-hour period. In electron shuttling experiments with KSW, KS10, and KS8 

fulvic acids, we allowed Fe(III) to react for 4 hours. KS8 had the highest conversion of Fe(III), 

with 87% (489 µM) converted to Fe(II) (Table 11). Although AQDS and SRFA were microbially 

reduced and reacted with the Fe3+ solution, they produced 51.05 µM and 103.73 µM, respectively, 

immediately upon reaction, and only 271.67 µM and 134.05 µM after 24 h of reaction time (Table 

11).  
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Table 11 Fe2+ produced during abiotic reduction of Fe3+ by Bangladesh fulvic acids and average 

% conversion of Fe3+. 

Sample 
Time 

(hours) 

Fe2+ 

(µM) 

Average Conversion 

% 

KSW 4 
352.73  2.84 

(350.52 – 355.93) 
0.63 

K12.1 0 
328.07  2.66 

(326.1 – 331.1) 
0.59 

 2 
332.72  1.63 

(331.68 – 334.60) 
0.60 

 4 
358.31 2.80 

(356.45 – 361.53) 
0.64 

 5 
489.42  7.06 

(472.63 – 486.38) 
0.86 

 6 
510.54  4.54 

(507.52 – 515.76) 
0.91 

 7 
516.70  2.83 

(514.85 – 519.96) 
0.92 

 8 
530.43  3.059 

(528.45 – 533.95) 
0.95 

K10.2 4 
363.79  15.76 

(351.22 – 381.46) 
0.65 

K8.3 4 
489.03  4.1 

(486.24 – 493.73) 
0.87 

SRFA 0 
103.73  0.27 

(103.42 – 103.92) 
0.19 

SRFA 24 
134.05  1.71 

(132.62 – 135.95) 
0.24 

AQDS 0 
51.05  1.48 

(49.62 – 52.57) 
0.091 

AQDS 24 
271.67  2.17 

(269.24 – 273.39) 
0.49 

 

Influence of HS on growth of bacteria 

 A population of Geobacter metallireducens was incubated using sodium acetate (2 mM) as 

the electron donor and Goethite (10 mM) as the solid phase electron acceptor (Fe3+), with and 

without SRFA (6 mgL-1). Growth of G. metallireducens was monitored by measuring Fe2+ using 

Ferrozine method (Figure 26). When acetate (primary electron donor) was not added to the system, 

Fe2+ increased from 0.36 µM to 35.8 µM only. With acetate but without SRFA, the Fe2+ 

concentration increased from 0.37 µM to 260.6 µM. In the presence of SRFA, the Fe2+ 

concentration increased from 0.43 µM to 366.04 µM. The rate of Fe3+ reduction was also observed 
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to be faster in presence of SRFA than in its absence. Our biogeochemical model calibrated with 

experimental data predicted that the maximum Fe2+ would have been produced ~2.5 days early in 

presence of SRFA  

 

 

 

than that in the absence of SRFA. The reaction rate constant for microbial Fe3+ reduction was 

estimated as 10-3.82 mol.mg-1. s-1 in absence of SRFA and 10-3.69 mol.mg-1s-1 (~1.33 times greater) 

in its presence, Response of microbial growth to various environmental parameters was also 

evaluated using sensitivity analysis. It was observed (Figure 30) that the increase in pH decreases 

the rate of growth and Fe3+ reduction. It was also observed that concentration of electron acceptor 

(Fe3+) was not a major limitation for microbial growth. The presence of 0.8 mM Goethite was 

found to be enough to achieve maximum efficiency of Fe3+ reduction. At higher Goethite 

concentrations (up to 50 mM), the efficiency of reaction remained constant at maximum value.  

 

Figure 29: Graph to left shows the Fe
2+

 generated during growth of G. metallireducens in different 

mediums (only with acetate, only with SRFA/ODFA and with both acetate and SRFA/ODFA). The 

graph to the right shows the blanks i.e. Fe
2+

 measured in mediums without G. metallireducens.     
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DISCUSSION 

 In laboratory studies, the role of HS as intermediate electron acceptors in microbial 

respiration of iron, sulfate and nitrate reducing bacteria, has been well established (Lovley et al., 

1996, 1998 and 1999; Scott et al., 1998). Here, we show for the first time that humic substances 

isolated from groundwater and surface water in Bangladesh are capable of shuttling electrons to 

from Geobacter to Fe(III). After the microbially reduced BFAs were filtered through a 0.2-micron 

sterile filter and the filtrate was reacted with Fe3+, the generation of Fe2+ (Figure 25 and 26) can 

be attributed solely to abiotic iron reduction by the reduced BFA. Interestingly, the older KW8 

fulvic acid, which had the most terrestrially-derived characteristics (low FI), produced a greater 

number of moles of Fe2+ abiotically than the other fulvic acids, which had higher protein-like 

Figure 25 Sensitivity of pH (top left), electron acceptor concentration (top right) 

and initial biomass concentration (bottom left) on microbial iron reduction. 
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fluorescence. This greater electron shuttling capacity of the more terrestrially-derived fulvic acid 

is consistent with the notion that in groundwater with higher fulvic acid concentrations and greater 

terrestrially-derived DOM, As concentrations will be higher because of the ability of humic 

substances to participate in electron shuttling reactions (Mladenov et al., 2010; 2015). Our results 

further show that as FI of the BFAs decreased (signaling more lignaceous and terrestrially derived 

organic matter), the moles of Fe2+ produced after 4 h of reaction increased (R2 = 0.80). Indeed, the 

BFAs with the fresher and more microbially-derived organic matter, highest protein-like 

fluorescence, and lowest groundwater As and Fe concentrations had lower Fe3+ conversion rates 

(at 63% or 19.70 mg L-1) in 4 hours of reaction than the older, more lignaceous KW8 fulvic acid 

(Table 11).  

 The results showing that the electron shuttling ability of SRFA was much lower than that 

of the native fulvic acids indicated that there is great variability among fulvic acids in terms of 

their chemical reactivity. The more rapid conversion of Fe(III) by the BFAs suggests that the humic 

moieties in groundwater in the Bengal Basin are more well-suited to electron transfer than those 

isolated from a surface water system (the Suwannee River), even if the DOM of that system is also 

characterized by lignaceous and terrestrially-derived compounds. 

Fluorescence signature 

 An increase of 5.51% in FI was observed in the sample that was primarily characterized as 

terrestrially-dominated with FI of 1.432, which increased to 1.51 after 7 days of incubation with 

bacterial cells. However, it is important to note here that, FI was measured in the samples after the 

acetate was added. This result is consistent with prior studies that report increases in FI to be 

associated with microbial activities (McKnight et al., 2001; Cory and McKnight, 2005). Similarly, 

SR calculated by taking the ratio of two spectral slopes, S275-295 which is indicative of molecular 
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weight and S350-400 which is indicative of contributions from terrestrially derived DOM (Helms et 

al., 2008) was 0.729 prior to incubation with bacterial cells. After the 7 days incubation, SR 

decreased to 0.539 (26.04%), suggesting decrease in molecular weight possibly due to microbial 

processing i.e. microbial production or preservation of long wavelength absorbing substances 

(Helms et al., 2008; Moran et al., 2000; Vahatalo and Wetzel, 2004). Additionally, HIX of 15.45 

for the sample which is typical for fulvic acids (Zsolnay et al., 1998) was decreased to 11.37 

(26.42%) after 5 days of incubation. This decrease is consistent with other studies that report the 

decrease in HIX denotes change in strong humic character of DOM to a DOM with humic character 

still important but with weak recent autochthonous or a component of bacterial origin (Huguet et 

al., 2009). Similar trend was observed when SRFA was incubated i.e. 11.7 % increase in FI, 5.42 

% decrease in SR and 25.18% decrease in HIX.  

Increased rate of Fe3+ reduction  

 The control samples 1) Goethite and acetate, 2) Goethite and SRFA/ODFA, 3) Goethite, 

acetate and SRFA/ODFA without the bacterial cells, showed no Fe3+ reduction. In first case, it 

indicated that labile carbon was not able to reduce Goethite by itself, which is consistent with many 

other studies (McArthur et al., 2004; Sengupta et al., 2008; Datta et al., 2011). Secondly, SRFA 

seemed to be incapable of reducing Goethite in absence of bacteria. In other words, abiotic electron 

transfer seemed to be possible only when the HS were reduced by bacteria prior to come in contact 

with Fe3+ in solution or in mineral form. The third experiment suggested that in the presence of 

labile carbon and HS that are not microbially reduced, but in absence of bacteria, the biotic Fe3+ 

reduction was not possible which was in agreement with many other studies (Bethke et al., 2008, 

2011). At the same time the inability of abiotic Fe3+ reduction by HS that were not microbially 

reduced, was underlined.  
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G. metallireducens, is also known to be capable of extracellular electron transfer to solid phase 

minerals in order to conduct metabolic activities (Lovley et al., 1996, 1998; Nevin and Lovley, 

2000; Bethke et al., 2008, 2011; Lee et al., 2013; Pi et al., 2015; Mladenov et al., 2015). Our 

experiments with G. metallireducens grown in the presence of the solid phase electron acceptor, 

Goethite, and in the presence and absence of SRFA further showed that addition of fulvic acid did 

increase microbial reduction of Fe3+ to Fe2+. The rate of microbial growth was also observed to be 

faster in presence of SRFA (Figure 29). Similar results were observed when ODFA was used 

instead of SRFA.  

 Nevertheless, microbial growth in experiments with acetate but without SRFA, followed a 

typical lag-growth phase curve and bacterial cells using the labile carbon electron donor directly 

reduced Fe3+. In experiments with only SRFA, but with no other source of carbon, much lower 

Fe3+ reduction was observed (Figure 26). This result indicates that bacteria do not use SRFA as a 

primary electron donor. This is consistent with the findings of Harvey et al. (2002) and others 

showing that labile carbon is needed to set off the cascade of Fe-reductive dissolution. 

Interestingly, when bacterial cells were grown with acetate as well as HS, the Fe3+ reduction, once 

again followed the lag-growth phase curve, but also with increased rate. The presence of SRFA 

seemed to enhance the ability of bacterial cells to reduce Fe3+, possibly via mechanism of abiotic 

electron transfer explained earlier section.   

Environmental Implications 

 The role of sedimentary organic matter and HS in mobilizing Fe and As in reducing 

aquifers throughout the Bengal Basin has been discussed in many studies. However, the exact 

mechanism that HS interact with the microorganisms and the sources of iron required attention. 

Electron shuttling abilities of HS have been reported in laboratory studies and also linked with the 
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subsurface geochemistry. The process of abiotic electron transfers in this mechanism, however, 

have been addressed rarely in the literature, particularly for this specific geological setting.  

 In this study, we experimentally evaluated the ability of fulvic acid isolated from the 

groundwater in reducing Holocene aquifers of Bangladesh with varying dissolved As (2 – 363 

μg/L) and Fe (0.5 – 11 mg/L) concentrations. As discussed in this study, the fulvic acid isolated 

from high As sites had higher abilities to reduce Fe3+ abiotically. This finding provides 

experimental evidence supporting a widely postulated electron shuttling mechanism responsible 

for As mobilization in the Bengal Basin. Further, using Goethite, a solid phase mineral, similar to 

sedimentary iron minerals found in Bengal Basin aquifers, we showed the increase in rate of Fe3+ 

reduction in presence of HS.  Our results from the electron shuttling experiment showed that the 

fulvic acids extracted from Bangladesh aquifer were able to transform more Fe3+ to Fe2+ than 

SRFA. Together, it can be expected that BFA may have better capability of transferring the 

electrons to solid phase electron acceptor such as Goethite than SRFA. This finding supports the 

idea that the mechanism of electron shuttling holds true in environmentally relevant scenarios 

where major electron acceptor is iron minerals. 
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 Chapter 8 - Groundwater Modeling  

Introduction 

Nearly 2 billion people worldwide rely on groundwater as the main source of drinking 

water (Van Geen, 2013). Shallow groundwater (<30 m) in south and south-east Asia is affected by 

microbial pathogens due to poor sanitation and excessive use of fertilizer and pesticides. However, 

deep groundwater resources experience less contaminants and require little or no treatment. A 

growing public health concern is focused on chronic exposure to natural and geogenic 

contaminants that are mobilized from sediment to groundwater under certain redox conditions. 

Within Bengal Basin in south Asia arsenic (As) contamination is reported as the greatest natural 

mass poisoning in human history (Bhattacharya et al., 1997; Nickson et al., 1998; Smith et al., 

2000; McArthur et al., 2001; Dowling et al., 2002; Paul, 2004; Ravenscroft et al., 2005, Routh et 

al., 2005; Acharya and Shah, 2007; Datta et al., 2011; Sankar et al., 2014). Arsenic affected areas 

across the world include Vietnam, Cambodia, China, Taiwan, Mongolia, Chile, Mexico, 

Argentina, Germany and USA (Smedley and Kinniburgh, 2002; Mukherjee et al., 2006).  

The regions affected by arsenic contamination are predominantly low-lying, 

topographically flat floodplains of rivers (Winkel et al., 2008). For example, the Bengal basin in 

south Asia is a flood plain of three major rivers Ganges – Meghana – Brahmaputra which provides 

groundwater to over 100 million people in south and south-east Asia. Likewise, the Mahomet 

Bedrock Valley aquifer in central Illinois, USA provides groundwater for over 1 million residents 

of central Illinois (Kelly et al., 2005). These sites have different geography, geology and 

hydrology, however, some of the key processes that mobilize arsenic into groundwater are similar, 

such as the reductive dissolution of iron oxides via oxidation of labile carbon by microorganisms 

(Nickson et al., 1998; Van Geen et al., 2002; Zheng et al., 2005; Berg et al., 2008; Mladenov et 
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al., 2010). The transport of dissolved organic matter through sedimentary organic matter with 

groundwater now is an important factor driving arsenic mobilization. 

In this chapter, groundwater flow models of two arsenic contaminated sites, the alluvial 

aquifer in West Bengal, India and Mahomet Bedrock Valley (MBV) aquifer in USA are studied. 

A groundwater modeling approach is used to simulate the key processes in arsenic mobilization in 

two aquifer systems geographically distinct from each other but comparable in hydrologic and 

geologic settings. Movement of organic matter and its reactivity which mobilizes arsenic is 

modeled using reactive transport modeling. 

Hydrogeology (West Bengal Aquifer)  

The Bengal basin was formed as a result of India-Asia collision as the flexural subsidence 

of the Indian lithosphere created Ganges Plain foreland basin in front of the Himalayan mountain 

ranges during late Quaternary period (Singh, 2004; Sinha et al., 2005). This basin was named as 

the GBM delta since it is formed due to sediment deposition by the meandering of three major 

rivers Ganges, Meghana and Brahmaputra (Morgan and McIntyre, 1959; McArthur et al., 2011; 

Mukherjee et al., 2008; Hoque et al., 2011). The basin spans from the northern Himalayan 

mountain ranges to the southern Precambrian, Peninsular Indian craton. The regional study area 

consists of eastern Bengal basin, bounded by River Ganges, River Hooghly and Bay of Bengal, as 

shown in Figure 31.   
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The basin has been chrono-stratigraphically classified to hold two major types of 

sedimentary units older Pleistocene and younger Holocene unit (Morgan and McIntyre, 1959; 

Mukherjee et al., 2008; Datta et al., 2011; McArthur et al., 2008 and 2011). McArthur (2008) 

reported that the current paleo-inter-fluvial areas (highlands) in the basin were exposed and a thin 

layer of paleosol was deposited during the last glacial maximum (~20 ka before present) when sea 

level was substantially lower. The low-stand of sea level caused deep erosion in paleo-channels 

(current low-lying areas) in the basin by paleo-rivers followed by weathering due to heavy rainfall 

Figure 26 Regional model domain and boundary conditions. 
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during the warmer climate regime. Afterwards, a widespread paleosol of impermeable clay 

developed that has been found widely today across the basin (McArthur et al., 2008; Hozque et 

al., 2011). Rajmahal hills to West and north-west boundaries of the basin are basalt lava traps of 

lower Jurassic age and are the upper part of Gondwana system. The Shillong plateau (Garo or 

Khasi or Jaintia hills) is composed of Archean quartzite, slates and schists with massive granitic 

intrusions with interbedded basaltic traps, overlain by Eocene sandstones and limestones beds 

which mark the northeastern boundary of the Bengal Basin. Tripura hills and Chittagong marks 

the northeastern and southeastern boundary of the basin, while the western boundary is marked by 

Chottonagpur plateau composed of granites, amphibolite, carbonates and quartzities of 

Precambrian age (Morgan and McIntyre, 1959). River Ganges from northwest and River 

Brahmaputra from northeast brings sediments from Himalayas, River Meghana brings sediments 

from Shillong Plateau (Morgan and McIntyre, 1959). The Regional stratigraphy and commonly 

found sediment types are shown in Figure 32.  

The hydrological controls in the Bengal basin have been discussed in Mukherjee et al., 

(2007). The Bengal basin groundwater system is influenced by rainfall due to the southeast 

monsoon wind, with October/November to May/June considered to be the dry seasons while 

June/July to September/October are wet seasons. CGWB (1994) reported the annual rainfall ranges 

from 1200 mm to 2000 mm and in the delta region, precipitation exceeds annual potential 

evapotranspiration (Allison, 1998). Frequent floods occur in the lowlands of the basin due to heavy 

rainfall during the monsoon period and the snow melt from Himalayas. 

Given the flat topography, the northern part of the Bengal basin has a hydraulic gradient of 

1 m/km while the southern part near the delta region has lower hydraulic gradient of 0.01 m/km 

(Mukherjee et al., 2007). Alluvial aquifers in this area have been found to be highly productive in 
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terms of available pumping rates with water table mostly within 15 m below ground level. 

Although seasonal variations occur based on irrigation pumping, the average yearly water table 

remains consistent, suggesting that there is sufficient recharge replenishing the groundwater 

systems (BGS/DPHE, 2001).  

The estimated transmissivity (T) values vary from 3300 to 7000 m2/day in northern district 

of Murshidabad, 5000 to 8800 m2/day in North 24-Paraganas and 500 to 3000 m2/day in South 

24-Paraganas, the hydraulic conductivity (K) have been reported to vary from 10 to 100 m/day 

(BGS/DPHE, 2001, Figure 33) and the porosity of alluvial aquifers have been reported to be 0.2 

(Harvey, 2002). Natural groundwater flux to the Bay of Bengal from Bengal basin was estimated 

to be 2E11 m3/year which was 19% of the total surface water flux (Basu et al., 2001) and 15% of 

the Ganges-Brahmaputra river flux (Dowling et al., 2003). The river Bhagirathi – Hooghly is 

considered to be a losing stream along most of its length and recharges the shallow aquifers (Ghosh 

and Mukherjee, 2002).  

 

Figure 27 Regional stratigraphic model based on borehole data from Mukherjee et al., 2007 
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Flow Model (West Bengal Aquifer) 

The regional model area is bounded in the north, west and east by the river Ganges, 

Hooghly and Ichamati Rivers respectively and to the south by the Bay of Bengal. The study area 

is 335 km in length and 110 km in width and a 3-D rectangular grid of cell size 1.5 Km (West – 

East), 4 Km (North-South) and 30 m in depth was used to map hydrologic boundaries and 

stratigraphy. The rivers were defined as specified head boundaries, with the heads at nodes defined 

using SRTM-90m DEM. The Bay of Bengal has a constant specified head of 0 m. The initial heads 

in all the cells were set to be equal to the surface elevations, defined by the DEM. A uniform 

recharge of 1.8 mm/year was applied to the top layer of model area as estimated by Mukherjee et 

al. (2007) from seasonal rainfall, evapotranspiration and irrigation return flow. Groundwater 

abstraction of 0.06 mm/year was defined using evenly distributed wells across the study area 

Figure 28 Hydraulic conductivities in regional model 



114 

 

pumping at 20 m depth based upon estimated pumping discharges. All hydrological and geological 

units were georeferenced by projecting to UTM Zone 45 coordinate system with WGS84 as the 

datum and the regional model was run as a steady state model. Heads were computed (Figure 34) 

by Newton-Raphson formulation for USGS MODFLOW-2005 with upstream weighting (UPW) 

flow package for improved solution in unconfined groundwater flow conditions (Niswonger et al., 

2011).   

 

 

 

 

 

 

 

 

 

A local scale model was constructed using the regional model in two steps. First, a grid 

frame of 10 Km (West-East) and 16 Km (North-South) was mapped on regional model with the 

study sites in Nadia district in the center of the grid frame. The model boundaries were set as 

specified head boundaries and the heads at four corner nodes were defined by the heads computed 

from the regional model. A telescopic grid approach was used to obtain higher resolution in an 

Figure 29 Hydraulic heads (in m above mean sea level) computed in the regional model 
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intermediate model and the new grid was designed with cell size of 103 m x 169 m. The starting 

heads and the surface elevations were defined by interpolating (IDW) the layer data from regional 

model. The local stratigraphy was defined by interpolating (Figure 35) from 3-D regional 

stratigraphy model and heads were computed using a steady state MODFLOW model (Figure 35). 

The local model was further refined for a smaller grid frame of 4.9 Km (West-East) and 2.2 Km 

(North-South) with a grid cell size of 50 m x 22 m x 30 m. Once again, head specified boundary 

conditions were defined from the heads computed in intermediate scale model. The heads 

computed (Figure 36) in this local model were used for transport analyses. 

 

 

 

 

 

 

 

 

 

 

 

Figure 30 Location of the grid used for local model 1 (left), hydraulic conductivity of intermediate 

model (top right), hydraulic heads (in m above mean sea level) computed for intermediate model 

(bottom right) 
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Figure 31 Location of the grid used for local model (left), hydraulic conductivity 

of local model (top right), hydraulic heads (in m above mean sea level) computed 

for local model (bottom right) 
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Transport Model (West Bengal Aquifer) 

Acetotrophic iron reduction was modeled in the local model domain using a modified 

Monod rate law (Roden, 2006; Jin et al., 2013) with Fe (III) as electron acceptor. The fate and 

transport of an electron donor in a multidimensional saturated porous media was modeled using,  

𝑑[𝐷]

𝑑𝑡
= −

µ𝑚

𝑅𝐷
∗ ([𝑋] +

𝜌[𝑋′]

𝜙
) ∗ (

[𝐷]

𝐾𝐷 + [𝐷]
) ∗ (

[𝐴]

𝐾𝐴 + [𝐴]
) 

Where, [D] and [A] is the concentrations of electron donor and acceptor respectively in mgL-1, µm 

is the rate of substrate utilization in day-1, RD is retardation factor for electron donor, [X] and [X’] 

are concentrations of aqueous phase and solid phase bacteria in mgL-1 and mgkg-1 respectively, 

KD and KA are half-saturation coefficients for electron donor and acceptor respectively in mgL-1. 

It was assumed that the degradation of electron donor occurs only in the aqueous phase.  

The fate and transport of an electron acceptor Fe3+ in the aquifer was modeled using,    

𝑑[𝐴]

𝑑𝑡
= −

𝑌𝐴/𝐷 ∗ µ𝑚

𝑅𝐴
∗ ([𝑋] +

𝜌[𝑋′]

𝜙
) ∗ (

[𝐷]

𝐾𝐷 + [𝐷]
) ∗ (

[𝐴]

𝐾𝐴 + [𝐴]
) 

Where, YA/D is the stoichiometric yield coefficient for electron acceptor and donor, RA is the 

retardation factor for electron acceptor. Then the fate and transport of bacteria was modeled using, 

𝑑[𝑋]

𝑑𝑡
=

𝐾𝑑𝑒𝑡 ∗ 𝜌 ∗ [𝑋′]

𝜙
− 𝐾𝑎𝑡𝑡[𝑋] − 𝐾𝑒[𝑋] − 𝑌𝑋/𝐷 ∗ µ𝑚 ∗ ([𝑋] +

𝜌[𝑋′]

𝜙
) ∗ (

[𝐷]

𝐾𝐷 + [𝐷]
) ∗ (

[𝐴]

𝐾𝐴 + [𝐴]
) 

where, Kdet and Katt are bacterial attachment and detachment coefficients in day-1, YX/D is the stoichiometric 

yield coefficient for the biomass and electron donor. The growth of solid-phase bacteria was modeled using,  

𝑑[𝑋′]

𝑑𝑡
=

𝐾𝑎𝑡𝑡 ∗ 𝜙 ∗ [𝑋]

𝜌
− 𝐾𝑑𝑒𝑡[𝑋′] +

𝑌𝑋

𝐷
∗ µ𝑚 ∗ [𝑋′] ∗ (

[𝐷]

𝐾𝐷 + [𝐷]
) ∗ (

[𝐴]

𝐾𝐴 + [𝐴]
) − 𝐾𝑒 ∗ [𝑋′] 

Where Ke is the endogenous cell death or decay coefficient in day-1. The stoichiometric equation for 

Acetotrophic iron reduction was described by the equation below.  
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 CH3COO- + 8FeOOH(S) + 15H+  2HCO3
- + 8Fe2+ + 12H2O     Log K = 82.854 

The rate law for iron reducing bacteria was described (Roden, 2006; Jin et al., 2013) by equation 

below, with FT as the thermodynamic potential factor.  

𝑟 = 𝑘 ∗ [𝑋] ∗
𝑚𝐷

𝑚𝐷 + 𝑘𝐷
∗

[𝑋]
𝑚𝐴

(
[𝑋]
𝑚𝐴

) + 𝑘𝐴
∗ 𝐹𝑇 

Transport was modeled using MT3DMS-RT3D (Figure 38). Three mobile species 

represent electron donor, electron acceptor and aqueous phase bacteria and one immobile phase 

represents bacteria attached to sediments were used and the stress period was set to 30 years with 

increments 1 year. Advection was modeled using standard finite difference method. Dispersion 

was modeled using longitudinal dispersivity values of 6, 10, 40 and 60 m for Clay, Sandy Clay, 

Sand and Gravels respectively with ratio of transverse to longitudinal dispersivity as 0.3 and the 

ratio of vertical to longitudinal dispersivity as 0.1 and porosity is 0.3. Sorption was accounted 

using a linear isotherm with reaction parameters µmax = 3.16 day-1, KD = 0.05 mgL-1, KA = 14 mgL-

1, YX/D = 0.1525, YA/D = 4.75, Kdecay = 0.0009 day-1, Katt = 70 day-1 and Kdet = 1 day-1. The initial 

concentrations of electron donor, electron acceptor, aqueous phase bacteria and solid phase 

bacteria were assigned as 0.02 mgL-1, 20 mgL-1, 2.0e-9 mgL-1 and 2.0e-9 mgL-1 respectively.  

The particles were tracked backwards in time from the locations of sampling tube-wells 

within the study area to 10, 20 and 30 years (Figure 37) using a post-processor MODPATH. The 

constant concentrations of electron donor (100 mgL-1 in high arsenic site and 5 mgL-1 in low 

arsenic site) were assigned to the end points of the particles tracked to 30 years. This was done to 

ascertain whether DOM source could exist with this concentration at these locations and reproduce 
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what was measured in the field. This shows that the source of carbon must be closer than the 30-

year travel zone.  

The concentrations of electron donor (organic carbon) and dissolved Fe2+ which was the 

product of biogeochemical reaction were predicted by using a RT3D forward model (Figure 38). 

The concentrations of Fe2+ predicted by the model were compared with the measured Fe2+ 

concentrations at the end of 30 years.  It can be seen from Figure 39 that the concentrations of Fe2+ 

at the end of 10 years were spatially varying within the study sites, but at the end of 30 years, all 

the sampling sites showed maximum Fe2+ concentration due to diffusion.  

 

 

 

 

 

 

 

 
Figure 32 Particles path line tracked backward in time from the beginning of time (top 

left), from 10 years (top right), 20 years (bottom left) and 30 years (bottom right), 

Bengal basin aquifer. 
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Figure 33 Transport of electron donor (left, top-bottom 10, 20 and 30 years), generation and 

transport of Fe2+ (right, top – bottom, 10, 20 and 30 years). Graph at the bottom shows the 

concentrations of Fe2+ at high arsenic site (filled circle) and at low arsenic site (filled box), open 

symbols indicate the observed values of Fe2+ in the field at respective study sites. 
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To evaluate the impacts of biogeochemical reaction if continued for another 30 years, the 

particles from the tube-well locations were tracked forward in time for 10, 20 and 30 years. The 

locations of the tube-wells were assigned a constant concentration of electron donor (100 mgL-1 

in high arsenic site and 5 mgL-1 in low arsenic site) and Fe2+ concentrations were modeled forward 

in time for 10, 20 and 30 years (Figure 40). This illustrated that the persistent levels of Fe2+ that 

continue to exist in the study region, although in much dispersed pattern.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34 Particles path line tracked forward in time to the end of time (top left), to 10 years (top 

right), 20 years (bottom left) and 30 years (bottom right), Bengal basin aquifer. 
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Hydrogeology (Mahomet Bedrock Valley Aquifer) 

The Mahomet bedrock valley (Figure 39) follows an east-west trend and is located in east 

central Illinois and western Indiana. The sand member (Mahomet Sand Member) is composed of 

glacial outwash sand and gravel within the Mahomet valley lowland as by tills deposited during 

Pleistocene continental glaciation. This bedrock valley ranges from 13 -18 km in horizontal width 

and is incised in bedrock and buried beneath 100 m of Pleistocene glacial drift (Kempton et al., 

1991). Clean sand and gravel (average 30 m thick and maximum 60 m) forms the main channel of 

Mahomet Bedrock Valley aquifer (Figure 41) with silty beds occur throughout. The 

Pennsylvanian, Mississippian, Devonian and Silurian rocks define the bedrock geology of this area 

(Panno et al., 1994), and are the western and eastern boundaries are formed by the Illinois and 

Indiana rivers. The groundwater flow in the aquifer is generally from east to west and the aquifer 

Figure 35 Transport of electron donor (left, top-bottom 10, 20 and 30 years in future), generation 

and transport of Fe2+ (right, top – bottom, 10, 20 and 30 years in future. 
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discharges into the Mackinaw River (north-west), Sangamon River (south-west, south-east) and 

Illinois River (west).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36 Location of Mahomet Bedrock Valley aquifer and section view (source: 

ISGS). 

Figure 37 Stratigraphy of the proposed study area (Van Geen, 2013 IDRA proposal) near 

Bloomington, IL. The study area is in Tazewell and McLean counties and spans 30 km 

east-west and 10 km north-south.  
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Transmissivities for the sand member range from 7x10-4 to 8x10-2 m2/s and were 

determined by pumping tests. The median hydraulic conductivity (Figure 42) was found to be 120 

m/day and the vertical hydraulic conductivities range from 0.864 mm/day to 17.28 mm/day 

(Kempton et al., 1991). The hydraulic gradient is 19 cm/km (Panno et al., 1994), and vertical 

leakage of precipitation and snowmelt occurs through the overlying glacial deposits to recharge 

the aquifer. The estimated average annual recharge rate for the sand member in Mahomet aquifer 

is 250 m3/day/km2 (Visocky and Schicht, 1969). Analyses of dissolved organic matter quality was 

conducted for groundwater samples from proposed study area (Van Geen et al., 2013) and the 

details are provided in the Appendix.  

 

 

 

 

 

 

 

 

 

 

Figure 38 Hydraulic conductivities of the model domain 

defined by the study area in MBV aquifer. 
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Flow Model (Mahomet Aquifer) 

The model domain in Figure 43 spans about 30 km east-west and 10 km north-south. A 3-

D rectangular grid of cell size 318 m (east-west) and 135 m (north-south) and 10 m in depth was 

used to map hydrologic boundaries and stratigraphy. Heads boundaries were specified based on 

the heads computed in earlier study (Van Geen et al., 2013) and groundwater heads in the local 

model  

 

 

Figure 40 Groundwater heads (in ft above mean sea level) computed in MBV aquifer local 

model 

Figure 39  Particles path line tracked backward in time from the beginning of time (top left), 

from 10 years (top right), 20 years (bottom left) and 30 years (bottom right), MBV aquifer.  
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were computed (Figure 44) by running a steady-state MODFLOW model and were used for 

reactive transport analyses. This local model was constructed using the same telescoping mesh 

procedure described earlier for the Bengal Basin model.  

The source of electron donor was located by tracking the particles from proposed drilling 

sites backwards in time for 10 years, 20 years and 30 years using MODPATH (Figure 45). 

Acetotrophic iron reduction reactive transport model described for Bengal basin aquifer study was 

also applied to MBV aquifer proposed study area (Figure 46). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41 Transport of electron donor (top left) and increase in electron donor 

concentration at proposed drilling site 1 (top right), generation and transport of Fe2+ 

(bottom left) and increase in the concentration at proposed drilling site 1 (bottom right). 
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Conclusions 

Groundwater models were constructed of two aquifers to study arsenic transport, with the 

results consistent with previous studies. Groundwater heads in the regional model of West Bengal 

aquifer ranged between 23.68 m on north and 0 m on south boundaries, while the heads in the local 

model 2 range between 3.7 m on north-western and 1.9 m on south-eastern boundaries. Major 

rivers Ganga and Hooghly recharge the aquifer and the groundwater in the study area (local model 

2) is mainly recharged by the river Hooghly. The particles tracking post-processing at the local 

model 2 indicated that the groundwater traveled about 270 m in 10 years which translates to the 

groundwater velocity of 7.4 cm/day. The flow was mainly observed within the layers rather than 

across the layers. These results are in agreement with the flow model given by Mukherjee et al., 

2007.  In contrast, the groundwater heads in MBV aquifer local model ranged between 590 ft on 

south-eastern and 520 ft on north-west boundary. A particle was observed to travel 2.23 – 5.23 – 

5.23 km in 30 years which translates to the groundwater velocity of 20.36 – 48.4 cm/day. This 

observation is in agreement with earlier studies (Holm et al., 2004; Kelly et al., 2005; Van Geen 

et al., 2013) which described the groundwater flowing into Mackinaw bedrock valley of the MBV 

aquifer.  

Transport models were implemented using MT3DMS-RT3D, and the coefficients for 

arsenic reactive processes were used from the studies in chapters 5-7. These results were used to 

quantify the possible proximity of DOM sources to boreholes that reproduce their measured 

arsenic or iron concentrations. Reactive transport model in Bengal basin domain suggested that 

the source of electron donor may be within 500 m of the tube-wells sampled in the direction of the 

flow. In the contrast, due to higher groundwater velocity, in the MBV aquifer, the source of carbon 

may be within 5 km along the direction of the flow. These observations were made by simulating 



128 

 

the reactions over 30-year period, however, the concentrations of sedimentary organic carbon 

which serve as electron donor for iron reducing bacteria has been shown to be deposited during 

geologic time. In Bengal basin, presence of clay patches that are rich in organic matter are well-

known. Flow of groundwater through these patches moves the organic carbon and it is then 

involved in mobilizing iron and arsenic. The reactive transport modeling provided an insight on 

how closely the source of electron donor needs to be so that diffusion does not overrule the 

transport process. Hence, this model helps understanding the patchy nature of organic carbon and 

its consequences on reductive dissolution of iron minerals and subsequent arsenic mobilization. 
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 Chapter 9 - Pre and Post-Monsoon Quality of Dissolved Organic 

Matter in High Arsenic Sites (Nadia District) and Low Arsenic Sites 

(Hooghly District), West Bengal 

Introduction 

Arsenic (As) contaminated groundwater (>10 ugL-1, WHO guideline) in the alluvial 

aquifers of Ganges-Meghana-Brahmaputra basin in south Asia has been responsible for severe 

health threats to over 100 million people. Microbiological and geochemical processes are known 

to mobilize naturally occurring sediment bound As in the aquifer. Briefly, reductive dissolution of 

oxidized iron (Fe) minerals by iron reducing bacteria under reducing conditions has been attributed 

to release of dissolved Fe and As in the groundwater. The microorganisms utilize labile carbon 

primarily from older sedimentary depositions and also transported recently from surficial sources 

as an electron donor and abundant oxyhydroxides of iron serve as the primary electron acceptor. 

Sedimentary organic matter also contains significant amounts of humic substances that have 

undergone microbial processing. Microorganisms cannot utilize humic substances as a primary 

electron donor for the metabolic activities, however, humic substances accelerate the metabolism 

by serving as an electron shuttle between the bacteria and the electron acceptor (Lovley et al., 

1996, 1998, 1999; Scott et al., 1998; Nevin and Lovley, 2000; Klapper et al., 2002; Kappler et al., 

2004; Jiang et al., 2008; Wolf et al., 2009; Mladenov et al., 2010, 2015). Additionally, humic 

substances form aqueous complexes with dissolved Fe and As, which maintains their 

concentrations in the solution. In general, the presence, transport and reactivity of labile and humic 

organic matter are important factors in mobilizing As in the particular hydro-geologic setting in 

Bengal basin aquifer. 
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In West Bengal (India), one of the As-affected regions, shallow groundwater (<40 m deep) 

is the main source of drinking water. Typically, shallow aquifers of Holocene age (gray color 

sediments) have been found to be high in dissolved As concentrations while deeper and older 

aquifers of Pleistocene age (orange sediments) are low in dissolved As (Fendorf et al., 2010). The 

aquifers are recharged primarily by the monsoonal precipitation ranging between 1295-3945 mm 

during June-September. The water table fluctuates considerably from dry months (2.2 – 5.5 m) to 

wet months (0.1 – 6.4 m) below sea level (Majumder et al., 2016). Earlier studies showed that 

during monsoon, the organic carbon can be transported to the shallow aquifers when the surface 

waterbodies are hydraulically connected to the aquifer (Kocar et al., 2008; Polizzotto et al., 2008; 

Lawson et al., 2013). A recent study (Majumder et al., 2016) examined the influence of monsoonal 

recharge on hydrochemistry and showed a significant increase in As concentration during the post-

monsoon season in Nadia district, West Bengal. This study also indicated the possibility of inflow 

of organic carbon to the aquifer during the monsoonal recharge. Thus the significantly high 

monsoonal recharge in this region may have important implications in transporting organic carbon 

in the aquifer as well as altering the chemical characteristics of dissolved organic matter (DOM) 

and hence in the arsenic mobility. However, little is known about the alterations in the chemical 

characteristics of DOM that may take place during monsoonal recharge processes in shallow 

aquifer.  

In the current study, the emphasis is on characterizing the chemical quality of DOM in 

the groundwater during pre and post monsoon season. Shallow (50 to 150 ft) groundwater samples 

from two sites in Nadia district and deep (200 to 460 ft) groundwater samples from two sites in 

Hooghly district were collected during pre and post monsoon. Samples were analyzed for several 

chemical parameters and detailed spectroscopic analyses to characterize DOM.  
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Materials and Methods 

Study Site 

 

Groundwater samples were collected from existing drinking water tube wells at 

Chakudanga (23°4'57.42"N, 88°38'9.96"E) and Shahispur (23° 4'18.47"N, 88°36'34.96"E) located 

in Nadia district and at Bele (23° 3'40.55"N, 88°21'7.81"E) and Radhanagar (23° 3'18.22"N, 

88°20'41.10"E) located in Hooghly district as shown in Figure 47. River Hooghly flowing north-

south marks the boundary between Nadia and Hooghly district. Chakudanga, Shahispur sites are 

located ~12 km east of the river while Bele and Radhanagar sites are located ~12 km west of the 

river. Chakudanga and Shahispur sites overly on shallow alluvial aquifer of Holocene age with 

generally high dissolved Fe and As concentrations, while deeper older Pleistocene age aquifer 

occurs beneath other two sites (Mukherjee et al., 2007; Harald et al., 2013) with significantly lower 

dissolved Fe and As concentrations (Biwas et al., 2011; Bhowmick et al., 2013; Majumder et al., 

Figure 42 Map of study area (left) showing district boundaries and locations of sampling sites, location of 

sampling sites in the West Bengal state (right). (1) Chakudanga, (2) Shahispur, (3) Bele and (4) 

Radhanagar.    
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2016). All four study sites are within 25 km distance and receive the monsoonal recharge at similar 

rates. The detailed locations of sampled tube wells is shown in Figure 48.  

 

 

 

 

 

 

 

 

 

 

 

 

Sample Collection and Storage 

Groundwater samples were collected from each location during 4th-11th June 2015 (pre-

monsoon) and 20th July – 13th August 2015 (post monsoon). The monsoon rains began around 15th 

June 2015 in the study area. Surface water samples (n = 10) were also collected only in July 2015 

(post monsoon) as most surface water sources were dried during summer. Groundwater samples 

were also collected from four piezometers installed at Chakudanga and Shahispur. Geographic 

coordinates of all the tube-wells were recorded using a handheld GPS device. 

  Tube-wells were pumped for at least 45 minutes to remove accumulated water before 

collecting the samples. Three types of samples, 1) filtered acidified with 70% hydrochloric acid, 

Figure 43 Locations of tube-wells sampled at four study sites (yellow circles) 
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2) filtered acidified with 70% nitric acid and 3) filtered unacidified were collected in 60 mL and 

125 mL HDPE bottles pre-rinsed with sample water. Filtration was done in the field by using a 

handheld vacuum pump device and 200 µL of stock acid was added immediately with pre-rinsed 

(300 mL of sample) GFF filters. All the bottles were appropriately labeled and stored at 40C in 

dark until analyzed. Groundwater from the piezometers was pumped using an electric pump for at 

least 1 hour before collecting the samples. Surface water samples were collected directly from the 

water body, at the center wherever possible.  

Chemical Analyses 

Dissolved oxygen was measured using a probe in the flowing water during the pumping 

while the pH was measured in stagnant water sample collected in a clean and rinsed container. 

Filtered sample (0.7 µm GFF) was used to measure alkalinity using a field titration kit (Chemetrics 

K9810 and K9815). Arsenic was measured using a color strips analysis kit (HACH 2800000 and 

HACH 2822800) and iron using (Chemetrics K6210 and K6210D) immediately after sample 

collection. Samples were transported to San Diego State University and Kansas State University 

for further analyses.  

Filtered unacidified samples (1.5 mL) were tested for eight inorganic (chloride, bromide, 

fluoride, nitrate, nitrite, phosphate, sulfate and arsenate) and five organics (acetate, citrate, formate, 

lactate and oxalate) anions using Dionex Ion Chromatography System. Non-purgeable organic 

carbon (NPOC) and total nitrogen (TN) was measured using a Shimadzu Total Organic Carbon 

Analyzer (detailed protocol in Appendix) on samples acidified with hydrochloric acid. Total 

arsenic was measured using ICP-MS on samples acidified with nitric acid.  
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Spectroscopic Analyses of DOM 

Absorbance and fluorescence data were acquired for filtered unacidified samples using 

Jobin Yvon Aqualog Fluorometer. Approximately 4 mL of sample was placed in a clean quartz 

cuvette of 0.01 m path length. Incident wavelengths ranged from 240 nm to 450 nm with increment 

of 3nm, and emission spectra were obtained from 212 nm to 619 nm with 3.28 nm increment. The 

integration time used was 1s. Ultra-pure water (18.3 MΩ cm Milli-Q) was used as a blank and for 

Raman normalization. Excitation-emission matrices (EEMs) were corrected for the inner-filter 

effect, Raman and Rayleigh (1st and 2nd order) scattering. Applications of absorbance and 

fluorescence spectroscopy are explained in detail in Chapter 4, and the protocol for applying 

corrections to the data is provided in the Appendix.   

A parallel factor analyses (PARAFAC) model was built using total of 78 EEMs obtained 

from pre and post monsoon samples from 39 tube-wells. The DOM Fluor toolbox (Stedmon and 

Bro, 2008) was used for building and validating the model. All the EEMs were normalized by 

dividing the EEM by the maximum intensity of that EEM. The detailed procedure of developing 

and validating the model is explained in Chapter 4. In brief, a three-component model was 

validated by split half analysis and random initialization technique. For all the samples, the 

difference between actual and modeled EEM intensities did not exceed 10% of the intensity in the 

original EEM (Cawley et al., 2012), which was used as the criteria for acceptable model fit 

(Stedmon and Bro, 2008). From the PARAFAC components, humic to protein like ratio 

(Humic:Protein) was developed as described earlier in Chapters 4 & 5. As only three components 

were identified in this model (unlike 4 components in Murshidabad PARAFAC model in Chapter 

5), the ratio of terrestrial to microbial DOM (terr: microb) was not developed. 
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Bulk Proteins 

Filtered unacidified water sample (10 mL) was placed into 50 mL polypropylene Falcon 

conical centrifuge tube was instantaneously frozen using slurry of 99.5 % ethyl alcohol (Sigma 

459844) and dry ice for about 15-20 minutes. The frozen samples were dried using a freeze drying 

unit at -1500C for 24 hours. After the sample was completely sublimed, 1 mL of 18.3 MOhm-cm 

ultrapure water was added to the centrifuge tube and the solution was centrifuged using a 1.5 mL 

micro-centrifuge tube at 10000xG for 5 minutes. Supernatant of the centrifuged solution was used 

for the bulk protein analysis by a modified Lowry method (Hartree, 1972) using modified Lowry 

protein assay kit (Thermo Scientific 23240). The detailed information on the chemical reactions 

and procedure is explained in Chapter 4. In brief, the bulk proteins of the pre-concentrated water 

sample were reacted with reagents to form a blue colored aqueous complex and absorbance was 

measured at 750 nm. The standard curve was prepared using a common protein bovine serum 

albumin.  

Results  

Spatial variation in chemical and DOM characteristics  

The average total As concentrations (Table 12) were greater for shallow groundwater 

samples (118.8 µgL-1 at Chakudanga and 201.46 µgL-1 at Shahispur) than deeper groundwater 

samples (0.71 µgL-1 at Bele and 4.34 µgL-1 at Radhanagar). However, two tube-wells at 

Radhanagar with depth of 360 ft and 340 ft had exceptionally higher total As concentrations as 

132.02 µgL-1 and 715.22 µgL-1. Dissolved Fe2+ concentrations measured using field test kits were 

found to be in the range of 25 – 30 mg. mL-1 and 60 – 135 mg. mL-1 for Chakudanga and Shahispur 

samples respectively while lower concentrations were found at Bele and Radhanagar sites as 0.1 

– 0.6 mg. mL-1 and 0.2 – 45 mg.mL-1. Exceptionally higher Fe2+ concentrations in two tube-well 
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samples at Radhanagar (300 mg. mL-1 each) were consistent with higher total As concentrations 

at these two tube-wells. Similarly, higher DOC and TN concentrations were found in shallow 

aquifer samples (1.28 mg. mL-1 of DOC and 1.89 mg. mL-1 of DON at Chakudanga; 1.24 mg. mL-

1 of DOC and 2.12 mg. mL-1 of DON at Shahispur) as compared to that in deeper aquifer samples 

(0.64 mg.mL-1 of DOC and 0.4 mg.mL-1 of DON at Bele; 0.78 mg.mL-1 of DOC and 0.68 mg.mL-

1 of DON at Radhanagar). Similarly, the DOM characteristics showed distinction between shallow 

and deeper aquifer samples (Table 13), for example HIX and Humic:Protein values were higher in 

Chakudanga and Shahispur as compared to those in Bele and Radhanagar samples. Again 

exceptionally higher HIX and Humic:Protein values were observed for the two tube-wells at 

Radhanagar corresponding to higher total As and Fe2+ concentrations. For deeper aquifer samples, 

values of β:α were higher than for shallower samples. This spatial variation observed for all 

chemical parameters and DOM characteristics remained same in samples collected during pre- as 

well as post-monsoon seasons. 

Pre- and post-monsoon variation in chemical and DOM characteristics 

Pre- and post-monsoon average total As (Table 12) at Chakudanga was 118.8 µgL-1 and 

122.3 µgL-1 respectively. Similarly, Shahispur had average total As concentrations in the same 

range (i.e. 201.46 µgL-1 (pre-monsoon) and 187.7 µgL-1). By contrast, Bele had much lower 

(P<0.05) total As concentrations 0.71 µgL-1 and 0.94 µgL-1 for pre and post-monsoon conditions, 

respectively. Radhanagar also had lower (P<0.05) total As concentrations at 4.34 µgL-1 (pre-

monsoon) and 4.23 µgL-1 (post-monsoon) than Chakudanga and Shahispur sites As concentrations, 

except the two wells that had exceptionally higher concentrations of 132.02 µgL-1 and 715.22 µgL-

1(pre-monsoon) and 107.12 µgL-1 and 686.16 µgL-1 (post-monsoon). Lower DOC and DON 

concentrations (P<0.05) were observed in Bele and Radhanagar both pre and post-monsoon. Slight 
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increase in the chlorides concentration at Chakudanga and decrease at Shahispur sites was 

observed between pre- and post-monsoon conditions (P<0.05), however no such decrease was 

observed for Bele and Radhanagar samples.  

DOM chemical characteristics are listed in Table 13 for pre and post-monsoon conditions. 

Groundwater samples at all the sites had low absorbance at 254 nm. No significant difference was 

observed within the samples or pre- and post-monsoon conditions. Spectral slope ratio (SR) was 

also consistent for all the samples except for one sample from Bele that had SR of 68 and was 

considered as an outlier. Specific ultra violet absorbance (SUVA) values were found to be 3.85 

and 4.28 L.mg-1.m-1 for Chakudanga and Shahispur (pre-monsoon) which decreased to 2.1 and 

2.29 L.mg-1.m-1 post-monsoon. Fluorescence index (FI) for Chakudanga and Shahispur was 

found to be 1.63 and 1.53 (pre-monsoon) respectively while average FI at Bele and Radhanagar 

was 1.5 and 1.49 (pre-monsoon) respectively. In post-monsoon condition, FI at Chakudanga and 

Shahispur did not change significantly, but at Bele and Radhanagar significant increase (P<0.05) 

in FI was observed (FI = 1.99 and 1.85 respectively). Pre-monsoon freshness index (β:α) was 

observed to be 0.75 and 0.73 for Chakudanga and Shahispur respectively, while it was significantly 

higher (P<0.05) at Bele and Radhanagar (0.99 and 0.94 respectively). This pattern of β:α continued 

in the post-monsoon conditions. Much higher humification index (HIX) values were observed for 

Chakudanga and Shahispur (6.33 and 6) in pre-monsoon conditions as compared to Bele and 

Radhanagar (1.32 and 1.21), again this pattern was observed to be repeating in post-monsoon 

conditions. Humic:Protein ratio values obtained from the PARAFAC components (Figure 49) 

were significantly higher (P<0.05) for samples from Chakudanga and Shahispur (5.64 and 5.28) 

as compared to that in Bele and Radhanagar (1.29 and 1.01). This pattern of Humic: Protein ratio 

repeated in post-monsoon conditions as well. Bulk protein content at all four sites was observed 
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to be similar in pre and post monsoon conditions, except at Bele, slightly lower bulk protein content 

(0.74 mg. mL-1) was observed during post-monsoon condition.  
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Table 12 Pre and Post-monsoon hydrochemistry 

Pre-monsoon Hydrochemistry 

Site Depth (ft) 
Total As  

(µgL-1) 

2DOC  

(mgL-1) 

3DON 

(mgL-1) 

Chlorides  

(mgL-1) 

4Fe 2+  

(mgL-1) 

Chakudanga 
68.50  15.28 

(50-105) 

118.86  38.57 

(52.74 – 187.84) 

1.28  0.29 

(0.9 – 1.77) 

1.89  0.42 

(1.17 – 2.38) 

9.99  12.03 

(1.94 – 42.45) 

29.5  1.581 

(25 - 30 ) 

Shahispur 
84.20  31.95 

(50 - 150) 

201.46  76.55 

(49.53 – 315.01) 

1.24  0.22 

(0.98 – 1.76) 

2.12  0.54 

(1.06 – 2.86) 

13.66  10.46 

(4.12 – 35.83) 

94.5  26.5 

(60 - 135) 

Bele 
264  58.99 

(200 - 320) 

0.71  0.4 

(0.44 – 1.41) 

0.64  0.12 

(0.50 – 0.81) 

0.40  0.04 

(0.34 – 0.44) 

16.47  5.10 

(9.43 – 22.03) 

0.26  0.195 

(0.1 – 0.6) 

Radhanagar 
333  30.55 

(300 - 360) 

4.34  5.43* 

(1.07 – 10.62) 

0.78  0.17 

(0.61 – 0.97) 

0.68  0.3 

(0.38 - 1) 

14.67  0.37 

(14.28 – 15.03) 

15.2  25.81 

(0.2 - 45) 

Post-monsoon Hydrochemistry  

Chakudanga 
68.50  15.28 

(50-105) 

122.3  39.23 

(49.84 – 185.1) 

1.39   0.29 

(0.86 – 1.72) 

1.86   0.39 

(1.2 – 2.26) 

10.37   11.34 

(1.71 – 40.11) 

29 2.4 

(25 - 30) 

Shahispur 
84.20  31.95 

(50 - 150) 

187.7   72.76 

(42.61 – 299.7) 

0.94   0.29 

(0.57 – 1.64) 

2.1   0.54 

(0.97 – 2.94) 

11.89   7.65 

(3.56 – 27.41) 

26  2.1 

(25 – 30) 

Bele 
264  58.99 

(200 - 320) 

0.94   0.40 

(0.55 – 1.48) 

0.36   0.02 

(0.33 – 0.4) 

0.45   0.07 

(0.33 – 0.55) 

16.16   5.05 

(9.27 – 21.9) 

1.5  0 

(1.5 – 1.5) 

Radhanagar 
333  30.55 

(300 - 360) 

4.23   4.66 

(1.49 – 9.62) 

0.41   0.07 

(0.35 – 0.50) 

0.84   .027 

(0.53 – 1.06) 

14.58   0.41 

(14.19 – 15.01) 

1.5  0 

(1.5 – 1.5) 
1All numbers are expressed as average value  standard deviation, minimum – maximum range in parenthesis.  
2Dissolved (non-purgeable) organic carbon 
3Dissolved organic nitrogen 
3Fe2+ measured in the field using test kits. 

*Two wells at Radhanagar had exceptionally high (132.02 and 715.22 µgL-1) pre-monsoon and (107.12 µgL-1 and 686.16 µgL-1) post-monsoon total As 

concentrations.   

Chakudanga, Shahispur (Holocene aquifer); Bele, Radhanagar (Pleistocene aquifer) 
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Table 13 Pre and post-monsoon characteristics of DOM  

Pre-monsoon DOM characteristics 

Site 
2Abs254 

(A.U.) 
3SR 

SUVA 

(L.mg-1.m-1) 
4FI 4 β:α 4HIX 5Humic:protein 

Bulk Protein 

(mg.mL-1) 

Chakudanga 
0.048  0.007 

(0.03 – 0.06) 

1.4  0.25 

(1 – 1.9) 

3.85  0.6 

(3.05 – 4.98) 

1.63  0.03 

(1.58 – 1.69) 

0.75  0.02 

(0.71 – 0.78) 

6.332.42 

(3.07 – 9.75) 

5.64  2.93 

(1.99 – 10.01) 

1.12  0.58 

(0.40 – 2.23) 

Shahispur 
0.05  0.01 

(0.03 – 0.06) 

1.47  0.27 

(1.13 – 1.94) 

4.28  0.88 

(2.75 – 6.15) 

1.53  0.07 

(1.42 – 1.64) 

0.73  0.03 

(0.68 – 0.79) 

6  2.56 

(2.78 – 9.6) 

5.28  3.36 

(1.74 – 11.03) 

1.30  0.18 

(0.94 – 1.48) 

Bele 
0.02  0.003 

(0.01 – 0.02)  

3.01  3.2 

(0.90 – 8.58) 

2.93  0.88 

(1.96  4.20) 

1.5  0.28 

(1.23 – 1.97) 

0.99  0.09 

(0.88 – 1) 

1.32  0.69 

(0.84 – 2.46) 

1.29  0.86 

(0.71  2.77) 

1.17  0.40 

(0.77 – 1.76) 

Radhanagar 
0.04  0.01 

(0.02 – 0.05) 

1.84  0.73 

(1.24 – 2.67) 

4.97  0.96 

(4.01 – 5.95) 

1.49  0 .13 

(1.39 – 1.64) 

0.94  0.08 

(0.87 – 1) 

1.21  0.49 

(0.73 – 1.72) 

1.01  0.56 

(0.51 – 1.63) 

1.25  0.37 

(0.82 – 1.47) 

Post-monsoon DOM characteristics 

Chakudanga 
0.03  0.009 

(0.02 – 0.05) 

1.32  0.23 

(0.9 – 1.61) 

2.1  0.44 

(1.32 – 2.99) 

1.64  0.06 

(1.5 – 1.73) 

0.76  0.03 

(0.72 – 0.83) 

6.67  2.21 

(3.21 – 9.11) 

6.47  2.85 

(2.37 – 9.75) 

1.16  0.39 

(0.59 – 1.49) 

Shahispur 
0.04  0.01 

(0.03 – 0.06) 

1.52  0.56 

(0.96 – 2.77) 

2.29  0.49 

(1.66 – 3.36) 

1.6  0.06 

(1.51 – 1.68) 

0.71  0.03 

(0.66 – 0.77) 

6.72  1.61  

(3.33 – 8.7) 

5.91  2.11 

(2.11 – 8.91) 

1.36  0.22 

(1.03 – 1.8) 

Bele 
0.016  0.007 

(0.006 – 0.025) 

14.63  30.04 

(0.08 – 68.37) 

3.68  1.63 

(1.44 – 5.37) 

1.99  0.06 

(1.93 – 1.99) 

0.98  0.08 

(0.94 - 1) 

0.82  0.14 

(0.69 – 1.06) 

0.66  0.1 

(0.56 – 0.80) 

0.74  0.09 

(0.66 – 0.86) 

Radhanagar 
0.02  0.01 

(0.01 – 0.04) 

1.51  0.43 

(1.01 – 1.77) 

3.24  1.47 

(1.57 – 4.34) 

1.85  0.11 

(1.74 – 1.96) 

0.97  0.05 

(0.91 - 1) 

1.53  0.63 

(1.09 – 2.26) 

1.25  0.71 

(0.82 – 2.08) 

1.3  0.14 

(1.15 – 1.43) 
1All numbers are expressed as average value  standard deviation, minimum – maximum range in parenthesis.  
2Absorbance at 254 nm. 
3Spectral Slope Ratio (S275_295 / S350_400) 
4Fluorescence Index (FI), Freshness Index (β:α), Humification Index (HIX) 
5Ratio of humic like to protein like component obtained by PARAFAC model = (C1+C2) / (C3), Figure 49 
Chakudanga, Shahispur (Holocene aquifer); Bele, Radhanagar (Pleistocene aquifer)
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Figure 44 EEM spectra (left) and emission-excitation curve (right) showing loadings of three 

PARAFAC components identified in the model 
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Difference in pre- and post-monsoon chemical and DOM quality with respect to the depth 

The pre- and post-monsoon chloride concentrations varied (decreased and/or increased) at 

only shallower depth (within 100 ft) while the concentrations at greater depths remained 

unchanged (Figure 50). Similarly, total As concentrations varied (decreased and/or increased) after 

the monsoon within 200 ft depth and for the samples at greater depths, the concentrations remained 

unchanged. However, two tube-wells with exceptionally high total As at Radhanagar showed a 

positive increase after the monsoon (i.e. total As concentrations at these tube-wells decreased after 

the monsoon). The DOC concentrations at shallow depth (within 150 ft) varied (decreased and/or 

increased) however, the concentrations at greater depth particularly decreased after the monsoon. 

Contrastingly, DON concentrations were mostly unchanged or increased after the monsoon in 

shallow as well as deep groundwater samples. The field measured Fe2+ concentrations showed a 

decline after the monsoon at shallow depth while remained unchanged at greater depths.  

Humic:Protein ratio varied (decreased and/or increased) at shallow depths and remained 

unchanged at deeper samples, except one deep (460 ft) groundwater sample from Shahispur 

(typically high As, shallow Holocene aquifer domain) showed a positive difference i.e. the 

Humic:Protein ratio decreased in this sample (Figure 51). The differences in HIX values followed 

the same trend as Humic:Protein ratio. Interestingly, FI values at shallow depths did not change 

after the monsoon, but FI in samples at greater depths indicated a negative difference, i.e. the FI 

values at deep (below 200 ft) groundwater samples increased after the monsoon. A positive 

difference (decrease in value after the monsoon) at shallow depths and negative difference 

(increase in value after the monsoon) was observed for SUVA. Bulk protein content at the shallow 
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depths were found to have decreased after the monsoon while at greater depths it remained 

unchanged.   
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Figure 45 Scatterplots showing the difference between Pre and Post-monsoon values for hydrochemical 

parameters. X-axis indicate the difference [(Pre-monsoon) – (Post-monsoon)] in respective units and Y-

axis indicate the depth in ft. Legend indicate, Chakudanga (CD), Shahispur (SP), Radhanagar (RN), Bele 

(BL), Chakudanga Piezometers (CD-P) and Shahispur-Piezometers (SP-P) 
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Among the DOM characteristics, FI values in deeper samples were found to increase 

during post-monsoon condition while for the shallower aquifer samples, FI values did not change 

significantly (Figure 51). SR values in shallower as well as deeper samples did not change 

significantly except one sample from Radhanagar at 300 ft depth, where the SR value decreased. 

SUVA values at shallower depths were found to have decreased for most of the samples while in 

deeper samples, four samples showed the increase in SUVA values. The HIX varied at shallower 

depths and remained unchanged in deeper samples except for one deep tube-well from Shahispur 

where the HIX decreased. Humic to protein ratio shows the very similar trend to HIX values. Bulk 

protein values in deeper samples remained unchanged, while there was variation in bulk protein 

content of shallower samples.  

Conclusions 

Variation in chlorides concentration in the samples collected from shallow aquifers and no 

change in the concentrations in the samples collected from deeper aquifers indicate that the shallow 

aquifer may be experiencing vertical recharge during monsoon. Chloride being a conservative 

anion which does not react, can be considered as a tracer in this setting. In comparison, other 

chemical species such as arsenic are influenced by other environmental factors such as redox 

potential. Increased FI values at greater depths in post-monsoon season may be indicative of 

increased microbial humic substances. Humic to protein ratio and HIX values varied at shallower 

depths suggesting mixing with freshwater and input from recent organic matter. These values 

remained unchanged at greater depths which suggests that extent of mixing was limited. These 

observations are in agreement with earlier study Majumder et al., 2016 that suggested the 

occurrence of vertical recharge in shallow aquifers associated with release of additional arsenic in 

the groundwater.  
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 Chapter 10 - Conclusions 

Hypothesis # 1: Higher arsenic concentrations in Holocene aquifers and lower 

concentrations in Pleistocene aquifers are linked with the contrasting quality of DOM in the 

aquifers.  

Dissolved organic matter in groundwater in Holocene and Pleistocene aquifers in West 

Bengal, India was characterized. A PARAFAC model based on fluorescence data identified four 

unique fluorescent components of DOM in the groundwater. Organic matter in groundwater in 

Holocene aquifer was found to be microbially-processed and humic-like, while that in Pleistocene 

aquifer was more protein-like in character. Dominance of humic-like DOM in groundwaters in 

Holocene aquifers may be attributed to arsenic mobilization. Absence of humic-like DOM in 

groundwater in Pleistocene aquifer reflects the lack of microbial processing of DOM and may be 

linked with the lower arsenic concentrations.  

Hypothesis 2 Humic substances act as intermediate electron shuttles and the rate of 

microbial iron/arsenic reduction is accelerated by the presence of humic substances. 

Fulvic acids extracted from high arsenic groundwater in Bangladesh were used to test their 

ability to shuttle the electron between microorganism and the electron acceptor. The results 

indicated that the Geobacter metallireducens, iron reducing bacteria were capable of reducing the 

Bangladesh fulvic acids. The reduced fulvic acids further reduced the ferric citrate to Fe2+. This 

finding provides an experimental evidence to a widely postulated electron shuttling mechanism 

responsible for As mobilization in the Bengal basin aquifers. Experiment with solid phase electron 

acceptor (Goethite) showed the significant increase in the rate of microbial iron reduction upon 

addition of humic substances which supports the idea that the mechanism of electron shuttling 
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holds true in environmentally relevant scenarios where major electron acceptor is oxidized iron 

minerals.  

Hypothesis 3 Arsenic and iron forms aqueous complexes with dissolved organic matter. 

Complexation of arsenic directly with DOM molecules (binary) or via Fe-bridging 

(ternary) has been considered as another significant mechanism controlling arsenic mobility. 

However, the role of non-aromatic DOM moieties in arsenic mobility has rarely been reported. 

Fluorescence titrations with dissolved iron and dissolved organic matter showed the quenching of 

fluorescence indicating formation of binary aqueous complex between iron and DOM. Our results 

from 1H NMR analyses of As – DOM binding suggest that the non-fluorescent and non-aromatic 

moieties of DOM molecules such as methyl, methylene, methine and carbonyl groups, which cover 

a substantial fraction of the DOM molecular structure, actually play an active role in As – DOM 

binary complex formation. These new findings assert the importance and role of DOM in arsenic 

mobility. 

Hypothesis 4 Groundwater flow and biogeochemical transport results in spatially 

discontinuous arsenic concentrations. 

Groundwater models were developed for Bengal basin aquifer, India and Mahomet 

bedrock valley aquifer, USA to understand the variability of dissolved arsenic. Biogeochemical 

reactions involved in arsenic mobilization were modeled using a multicomponent reactive 

transport model using MT3DMS-RT3D code. Backward tracking of particles from the field 

sampling sites provided the proximity where the source of electron donor (organic carbon) would 

need to be in order to produce observed concentrations of dissolved iron and arsenic. A forward 

reactive transport model was developed to predict the spread of arsenic contamination in the future.   
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Hypothesis 5 Monsoonal recharge influences the quality of dissolved organic matter in 

shallow alluvial aquifer and subsequently the arsenic mobility.  

Groundwater samples were collected and analyzed from shallow and deep aquifers in West 

Bengal, India during dry and wet seasons. Dissolved organic matter in the groundwater was 

examined in detail using absorbance and fluorescence spectroscopy along with hydro-chemical 

parameters. Results suggested that the monsoonal recharge influence the chemical quality of 

groundwater only at shallow depths, while the quality of DOM was observed to vary at greater 

depths as well. Variation in humification index and humic to protein ratio in shallow aquifers 

indicated the mixing and possibly increase in the rate of arsenic mobility. 
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Appendices 

Appendix A - Total organic carbon / Total nitrogen analysis standard 

operating procedure. 
 

TOC-L CPH/CPN (Shimadzu) Total Organic Carbon Analyzer 

Before getting started 

 Turn on compressed air 300kPa for gas going to the instrument and 1500 psi for pressure 

inside the cylinder (if <500s pi pressure, replace gas cylinder).  

Machine Start Up 

 Turn on the instrument. Allow it to warm up at least 1 hour. 

 Check the Maintenance Sheet inside the TOC binder for daily checks!  

 Make sure to check the list beneath each TOC sample log sheet. 

 Open TOC-L Sample Editor software. Click Monitor on bottom left of screen. When all 

setting has stabilized, there will be an “OK” next to each setting and a green Ready will 

be indicated: 

o Furnace =  6800C  OK 

o Humidifier = 1.00C  OK 

o Position, fluctuation, noise  all OK 

o SSM TC temp, SSM IC temp  all OK 

To run samples with Auto sampler, using existing calibration curve 

1. Press “New” button to open new Sample Worksheet  

2. Left click on row 1 then right click and choose “insert-sample”  
3. Choose “Edit parameters manually” and click next 
4. Choose your analysis type, manual dilution =1, No. of determinations=1, click “Next” 

 Be aware that when doing NPOC and TN simultaneously, you will only be 

allowed to select one calibration curve for comparison, otherwise you will be able 

to use three for comparison 

5. Click button with three dots and choose appropriate calibration curve then click “Next” 

6. Injection parameters should be the same as the calibration curve that was created 

otherwise see the following:  

 NPOC: units = mg/l, injection volume= 200um, no. of injections = 3 / 4, SD max 

= 0.1, CV Max = 2%, No. of washes = 2, Auto dilution = 1, Sparge gas flow = 

80ml, sparge time = 1:30 min (3 min if necessary), acid addition = 1.5%, check 

the box next to Multiple Injections 

 TN: units = mg/l, injection volume= 200um, no. of injections = 3 / 4, SD max = 

0.1, CV Max = 2%, No. of washes = 2, Auto dilution = 1, acid addition = 1.5%, 

check the box next to Multiple Injections 

7. Use default setting for peak time parameters (4:50 min max) then click next 

8. Click “none” for pharmaceutical water testing then click finish.  
9. To add more than one sample using the same analysis just copy and paste the one you 

just made. Names of each sample can be added by clicking under “sample name” and 

typing the name. 

10. Click on the “view vial settings” icon in the upper right. Assign vial numbers to samples 
with a blank coming from “off line” or vial “0” then click “OK” 
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11. Click the “Connect” icon at the top middle of the screen. An initialization window should 
pop up. 

12. Once initialization is complete and the machine is ready, a green “Ready” icon will 
appear in the upper right. Press “Start” and choose to shut the instrument down. 

To make a new calibration curve 

1. Click on the second tab (for calibration curve) of the window in the top left of the screen 

2. Click “New” 
3. Click “Next” 
4. Checkmark the box next to “Use dilution from standard solution” and click “Next” 

5. Choose the type of analysis, checkmark the boxes next to “Zero shift” and “Multiple 

injections.” Type in a file name using the following format: Analysis type (NPOC…) 

_Concentration range… (Ex. NPOC_0.1-1mg/L). Then click “Next.” 

6. Choose units, No. of injections (usually 2/3 or 3/4), SD Max = 0.1, CV Max = 2%, acid 

addition for TC, NPOC should be at least 1.5%, select sparge time (minimum 1:30min), 

then click “Next” 

7. Click “add”, enter in standard solution concentration and calibration point concentration 
(eg. 10 mg/l and 5 mg/l), auto dilution = 1, click “OK”, add as many as necessary and 

make sure injection volume in upper right corner is enough for type of analysis (eg. low 

concentrations will need higher volume) then click “Next” and “Finish” 

8. Press “New” button in upper left corner to open new Sample Worksheet  

9. Left click on row 1 then right click and choose “insert-calibration curve.” Choose the 
calibration curve you just created. 

10. Follow steps 10-12 above to run calibration curve. 

Filling the auto-sampler 

 Fill vial 0 with FRESH!!! milliQ. 

 Load the tray with standards – samples –standards. I suggest: 

o Vial #1   = milliQ 

o Vial #2   =  low C water 

o Vial #3  = 0.10 standard 

o Vial #4   = 0.25 standard 

o Vial #5  =  0.50 standard 

o Vial #6  =  1.0 standard 

o Vial #7  =  2.0 standard 

o Vial #8  = 5.0 standard 

o Next one vial of milliQ 

o Next all your samples 

o Next one vial of milliQ 

o Next all your standards again. 

 To avoid CO2 entering samples and causing higher DOC concentrations to be measured, 

fill vials to near the top every time. For 40 mL vials, use 35 mL of sample. 

 For low DOC measurements with the high sensitivity catalyst, do not run samples higher 

than 5 mg/L. TOC analyzer in E-420 is more sensitive at low concentrations so this may 

be a better option.  

 If you expect some higher DOC samples, place a vial of milliQ water after them. This 

avoids contamination of the next sample. 

 



172 

 

Machine Shut Down 

 DO NOT turn off the instrument using the on/off button!!! The instrument needs to cool 

down (from 6800C) with fans inside. Otherwise the instrument will be destroyed. 

 If your analysis is done and you have not previously told the machine to shut down, click 

“Shutdown” button in upper right of screen and select “shut down instrument” 

 If you need to stop the auto sampler in the middle of a run, follow the instructions on P 

221 of the manual to end the analyses and perform instrument shut down. DO NOT press 

the on/off button. 

Notes:  

 Always run standards at start and end of sample measurement. 

 A set of standards remains fairly stable for at least 1.5 weeks. After that make new 

standards. A 1000 mg/L KHP stock solution remains stable for at least one month, so you 

do not have to weigh out the dry KHP every time you make standards.  

 Always write down or record the results as soon as possible. The heat sensitive paper can 

be easily damaged and deteriorates when exposed to sunlight or water or heat. 

 Even an excellent calibration curve will definitely change over time due to aging of the 

catalyzer and other components. Use the results of your two standard runs to make a 

NEW calibration curve for that day (expected standard concentrations vs. measured 

standard concentrations). Use the equation of this regression line to correct your DOC 

results. 

 TOC vials should be cleaned (3x with DI water) and combusted before use (5000C for 2 

hrs.; cover with aluminum foil during combustion).
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Appendix B - Analysis of Fe2+ by Ferrozine method 
 

Ferrozine (the disodium salt of 3-(2-pyridyl)-5,6-bis (4-phenylsulfonic acid)-1,2,4-triazine) 

reacts with ferrous iron to form a stable magenta complex that is soluble in water. The visible 

absorption spectrum of the ferrous-Ferrozine complex has a single sharp peak with maximum 

absorbance at 562 nm. Beer-Lambert law is obeyed to about 4 mg/L Fe. The complex will form 

in solution between pH 4 and 9. References – Stookey (1970) and Gibbs (1976) 

Reagents 

Ferrozine solution – add per liter 1 g of Ferrozine and 11 g of HEPES (or 12 g of HEPES 

disodium salt). Adjust the pH to 7.0 and store at 4°C. Note – the original Ferrozine method used 

an ammonium acetate buffer instead of HEPES. 

Ferrous iron standards – add 0.70213 g of ferrous ammonium sulfate hexahydrate 

(Fe(NH4)2(SO4)2·6H2O; FW 392.14) to 100 mL of DI. This equates to about 1000 mg/L ferrous 

iron. Make dilutions from this solution to obtain standards ranging in concentration from as low 

as 0.1 mg/L and as high as 10 mg/L, depending on the Fe content you expect to find in your 

samples. All standards, including the 1000 mg/L starting solution, need to be made fresh the day 

of the analysis. You can adjust the procedure to accommodate a different range of iron 

concentrations. 

Procedure 

 Add 5 mL of Ferrozine reagent to a 10 mL test tube. 

 Add 2 mL of sample. Mix and observe color. The solution will become pale violet or 

purple in color if ferrous iron is present. A deep blue/purple indicates that too much 

ferrous iron is present. If this is the case, dilute the sample (alternatively, you can just use 

less sample and keep track of volumes). 

 Measure absorbance at 562 nm. Be sure to include a blank consisting of 5 mL of 

Ferrozine and 2 mL of DI water. Record the absorbance. 

 Calculate sample concentration from a standard line.  

Phenanthroline Method 

Ferrous iron is chelated by three molecules of 1,10-phenanthroline forming an orange-red 

complex. The colored solution obeys Beer’s law with maximum absorbance at 510 nm. 

Reference – Eaton et al (1995). 

Reagents 

Store reagents in glass stoppered bottles. HCl and ammonium acetate solutions are stable 

indefinitely if tightly stoppered. The Phenanthroline solution is stable for several months. 

HCl – concentrated 

Ammonium acetate buffer solution – dissolve 25 g NH4C2H3O2 in 15 mL water. Add 70 mL 

concentrated (glacial) acetic acid. 

Phenanthroline solution (10X Standard Methods concentration) – dissolve 5 g 1,10-

phenanthroline monohydrate (C12H8N2  ּ H2O) in 500 mL water by stirring and heating to 80°. Do 

not boil. Discard the solution if it darkens. Heating is unnecessary if 3 mL of HCl is added. 2 mL 

of this solution is sufficient for no more than 0.05 mg Fe (i.e, 2 mL for up to 10 mg/L iron in 

samples using 5 mL sample sizes). 

Iron standards – slowly add 20 mL of concentrated H2SO4 to 50 mL of water and dissolve 1.404 

g of ferrous ammonium sulfate (Fe(NH4)2(SO4)2,6H2O). Add 0.1 N potassium permanganate 

(KMnO4) dropwise until a faint pink color persists. Dilute to 1000 mL with water. 1 mL contains 
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200 µg Fe (200 mg/L). Prepare standards daily for use from this stock. Make three 10-fold 

dilutions. 

Procedure – Sample Prep 

 Acidify 5 mL of sample (or standard) with 0.1 mL of concentrated HCl (2%) at time of 

collection. This will slow down oxidation of ferrous iron to ferric iron and prevent 

adsorption to the walls of the container. 

 Add 2 to 4 mL of Phenanthroline solution (2 mL can handle up to 10 mg/L Fe(II) in 5 mL 

samples). 

 Add 1 mL NH4C2H3O2 solution with vigorous stirring.  

 Measure color intensity at 510 nm within 5 to 10 minutes. Do not expose to sunlight. 

Color development is rapid in the presence of excess Phenanthroline. 

Additional Notes 

Phenanthroline solution as suggested by Standard Methods: 

Dissolve 100 mg 1,10-phenanthroline monohydrate (C12H8N2  ּ H2O) in 100 mL water by stirring 

and heating to 80°. Do not boil. Discard the solution if it darkens. Heating is unnecessary if 2 

drops of HCL are added. One mL of this solution is sufficient for no more than 100 µg Fe. 

 

Alternative iron standards: 

Degas DI water in 125 mL serum bottles: 1 containing 100 mL and 1 with 98 mL, and 2 with 90 

mL. After the bottles have degassed for at least 30 minutes, add 0.226974 g FeCl2 to the 100 mL 

bottle. This should correspond to about 1000 mg/L ferrous iron. Stopper all of the bottles loosely 

and let them degas for another 30 minutes. Stopper them tightly and crimp an aluminum seal on 

the bottle. Make a 50-fold dilution, and two 10-fold dilutions. 

References 

 Eaton, A.D., Clesceri, L.S., and Greenberg, A.E., 1995, Standard Methods for the 

Examination of Water and Wastewater: Washington, DC, American Public Health 

Association, American Water Works Association, and Water Environmental Federation. 

 Gibbs, C.R., 1976, Characterization and application of ferrozine iron reagent as a ferrous 

iron indicator: Analytical Chemistry, v. 48, p. 1197-1201. 

 Stookey, L.L., 1970, Ferrozine - a new spectrophotometric reagent for iron: Analytical 

Chemistry, v. 42, p. 779-781.
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Appendix C - Protocol for EEMs acquisition with Aqualog 
Sample Preparation 

 Samples should be filtered using a pre-rinsed filter 

 Allow samples to warm to room temperature 

 To acidify or not acidify? 

o If you have dilute samples (meaning they have low DOC concentration or low 

absorbance), then it is best to NOT acidify because acidification can change the 

conformation of the DOM molecules, resulting in lower fluorescence intensity. 

o If you have samples that contain metals, such as iron or copper, consider lowering the pH 

to 2-3. This will dissociate the DOM-metal complexes and minimize the metal quenching 

effects. 

Startup 

 Turn on the instrument 1st and then turn on the computer 2nd. 

 Allow the lamp to warm up approximately 45 minutes before running a sample 

 Rinse a clean quartz cuvette with ultra-pure water ~20 times. 

 Clean the sides of the 3-Q-10 sealed water sample with kim-wipes. 

 Clean the two Quinine sulfate cells (blank and sample) with kim-wipes. 

 Initial software steps 

o Make a folder on the desktop of in the C: drive under your name in which to save 

your sample results for the day – we recommend saving your samples into a sub-

folder named with the date YYMMDD (e.g. “120504” for May 4, 2012) 

o Open the Aqualog logbook.xls on the desktop and enter your name and date. 

o Open the Aqualog software. 

Cuvette check (for contamination) 

 Click on the “H2O” button “Aqualog main experiment menu”. 

 Click on “Spectra”. 

 Click on “Emission 2D”. 

 You may be asked to name a new project. Use this format: PYYMMDD. 

 Load the experiment file “cuvette_check.xml” (located in C:\PublicDocuments\Jobin 

Yvon\Data\). 

 Check that the settings are 

o Integration time = 0.25 sec 

o Increment = 2.33 nm 

o Gain = high 

o Excitation = 240 nm 

o “Sample only” box is checked. 

 “Run” the sample and look for any peaks between emission 300 and 400 nm that are not 

noise. If there is an obvious peak, clean the cuvette again and re-run this check. 

 To see the peak values, double click on the figure. Then click the “Data Reader” icon (square 

with cross hairs inside) to select the peak. 

 Record the highest peak between emission 300 and 400 nm in the Aqualog logbook.xls.  

 

Water Raman scan 

 Click on the “H2O” button “Aqualog main experiment menu”. 
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 Click on “Spectra”. 

 Click on “Emission 2D”. 

 Load the experiment file “water raman.xml” (located in the “Startup” folder). 

 Check that the settings are 

o Integration time = 0.25 sec 

o Increment = 4.65 nm 

o Gain = high 

o Excitation = 350 nm 

o “Sample only” box is checked. 

 “Run” the sample and record the raman peak at ~397 nm (Raman peak X and Y) in the 

Aqualog logbook.xls. 

 Calculate the area under the raman peak. 

o Double-click on the graph. 

o Click the up and down arrow (“Data Selector” arrow) which allows you to narrow 

the range of the emission wavelength so that only the raman peak is in view. 

o Click “Analysis”  “Baseline” 

o Goal: “integrate peaks” should be selected, Next 

o “Baseline mode, Constant” should be “custom” and set Y = 0. Next, Next. 

o Click on “find”, Next 

o Select “Fix width for all peaks” as the integration window width and set “Left half 

width” to “25”. Right half width should automatically set to “25”. Finish. 

o Go to the “Integration Result1” tab to find the area. The area is in the 2nd column 

entitled “Integral result of Sc/Rc, Area”. Paste this value into the Aqualog 

logbook.xls. 

o Also record this area in your lab notebook every day. 

***If you change your integration time when you run your sample, then re-run the Water Raman 

scan with the new integration time. *** 

Quinine sulfate scan 

 Click on the box with “Q.U” in it. 

 Do not change any settings. 

 Check that the settings are 

o Integration time = 0.1 sec 

o Increment = 0.41 nm 

o Gain = med 

o Excitation = 347.5 nm 

o “Sample and blank” box is checked. 

 Record the emission at 450 nm (observed) in the Aqualog logbook.xls and in your lab 

notebook. 

3D EEM acquisition 

 Click on the “H2O” button “Aqualog main experiment menu”. 

 Click on “3D”. 

 Click on EEM 3D CCD + absorbance. 

 Load the experiment file “3DeemNEW.xml” from the Startup folder. 

 Check that the settings are: 

o Integration time = 0.25 sec  
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o Increment = 3 nm and 3.28 nm 

o Gain = high 

o “Sample and blank” circle is selected. 

 First run ultra-pure water as a sample to check for any contamination on the cuvette or in the 

ultrapure water system 

1. Enter a name for the sample (eg. “MQ”) in the Data Identifier box. 

2. Enter a name for the blank (with this format: BYYMMDD) in the “Collect blank” box. 

3. Click run.  

4. You will be asked to insert the blank and then the sample. 

5. Your blank-subtracted EEM spectra will show up as an uncorrected waterfall plot. 

6. Make sure you are at the waterfall plot screen. Click the following in this order: 

a. the “Inner filter correct” button (which is a small square at the upper left corner of 

the button) 

b. the “Rayleigh masking” button – select both first and second order and set the 

wavelength to 12. 

c. The “Normalize 3D” button – 

i.  enter the Raman area you recorded earlier into the “Divide by a specified 

value” box. 

ii. Or normalize to the quinine sulfate emission value you recorded earlier. 

7. Edit the contour plot to make it easier to view. 

8. Double-click the “Processed contour: IFE_RM_NRM” plot. 

9. Set range from 0 (zero, no negative values) to the maximum intensity. 

10. Change the first layer to the color white. 

11. Select contours at all major levels. 

 Perform steps 1-11 on the next samples EXCEPT now you can use the “blank from file” (no 

need to run the blank each time). 

 You can select “Collect”  “Previous experimental setup” for the next EEM acquisition 

(don’t have to click the H2O button, etc. every time). 

 Write each sample’s name in your lab notebook (full description) along with the short 

filename you used to name the 3dEEM. 

***If you change your integration time when you run your sample, then run a new blank (enter a 

name with this format: BYYMMDDb) using the new integration time. *** 

 

 

 

 

Shut down 

 Save the project. 

 Download and correct the data according to the Corrections Protocol. 

 Shut down the software. 

 Shut down the computer. 

 ***Shut down the instrument*** 

 Clean all cuvettes. 

 Clean or put away all beakers, pens, notebooks, etc. 
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Cuvette cleaning 

You can put a dirty cuvette into water with hydrogen peroxide (a 10:1 solution) for a few hours 

to clean it. Best if you can put it in direct sunlight as well. 
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Appendix D - Protocol for correcting EEMs and calculating indices 

using MATLAB with Aqualog 
 

STEP 1: Exporting raw data from the instrument 

1. You are already in Aqualog program. If not, double click on Aqualog icon on desktop.  

2. Click on “File” and select “HJY Export” 
3. In HJY_Export dialog box, click on the button just to the right of “Export Graph(s)” 

field.  

4. In Graph Browser dialog box, select on the desired project folder icon (not individual 

files) and click on button with two right arrows. Click “OK”. 

5. Again HJY_Export dialog box will pop up with selected graphs in “Export Graph(s)” 
field. Make sure the “File Format” is “ASCII”. Click “OK”. 

6. “File Location for batch exporting” window will open. Create a new folder with name 
“Raw_Data” and provide this folder address to export the data.  

7. A warning “File Exists!” will appear for each sample. Always click “YES” to replace the 
existing file.  

8. Save and close the Aqualog program. 

 

STEP 2: Reviewing raw data flies 

1. Open the folder where raw data is exported.  

2. Make sure the folder contains: 

a. Seven (7) raw files for each sample  

b. Only one (1) Raman File 

c. Cuvette Check Files (may be 1 or more) 

d. A QS Unit file 

3. Close the folder.    

 

STEP 3: Correcting and calculating indices 

1. Open “MATLAB R2014a” program by double clicking on the shortcut created on 

desktop home screen.  

2. Browse for folder with name “AqualogCode” folder using “Browse for Folder” button to 
the left of address bar.  

3. Right click on “AqualogCode” folder and then select “Add to Path >> Selected Folders 
and Subfolders”.  

4. Repeat step 2 & 3 for “Raw_Data” folder. 
5. In the Command Window, type command “ProcessData” followed by the address of 

“Raw_Data” folder copied from the address bar in the format given below, and hit Enter: 

>> ProcessData (‘C:\Users\harshad\Desktop\ Raw_Data\’) 

 

6. You will be asked to answer following interactive questions: 

a. Is dilution Factor same for all samples? Enter  

i. Enter 1 for YES 

                         0 for NO 

b. For all samples, is Integration Time exactly SAME as Integration time used for 

Raman?  
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i. Enter 1 for YES  

           0 for NO 

c. Do all samples have exactly SAME integration time?  

i. Enter 1 for YES  

           0 for NO 

d. Method for absorbance data extrapolation?  

e. Enter 0 for Linear  

            1 for Nonlinear (recommended) 

7. The command window will show the message “Process Completed” when it is done. 
Then type command “close all” and hit Enter.  

 
STEP 4: Review the results 

1. Review the results in respective folders as given below: 

a. Absorbance Graphs in “*.png” format 

>>Raw_Data >> Abs Spectra Graphs >> Graphs 

b. Intensity of absorbance @ 254 nm 

>> Raw_Data >> Abs Spectra Graphs >> Results >> Results.txt 

NOTE: Open the “*.txt” from MS Excel 

c. Calculated Raman Area 

>> Raw_Data >> raman >> “*.csv” 

d. 3D EEM contour plots in “*.png” format 

>> Raw_Data >> Results >> EEM Graphs 

e. Graph of maximum emission @ 370 nm in “*.png” format 

>> Raw_Data >> Results >> MaxEm 

f. Table of calculated indices 

>> Raw_Data >> Results >> Results.txt 

NOTE: Open the “*.txt” from MS Excel 

g. Files ready for PARAFAC analysis 

>> Raw_Data >> Results >> Data4Parafac 

2. To close the MATLAB, type the command “quit” and hit Enter.  

 

STEP 5: PARAFAC 

1. Create a new folder say “Parafacfiles” to store files ready for parafac obtained from 3 

“>> Raw_Data >> Results >> Data4Parafac” 

Note: This is important when you have raw files in different folders. You will run 

corrections code to individual folder. For PARAFAC, we want all files ready for 

PARAFAC in single folder. 

2. In the Command Window, type command “dataprep4pf” followed by the address of 

“Parafacfiles” folder copied from the address bar in the format given below, and hit 

Enter: 

>> dataprep4pf (‘C:\Users\harshad\Desktop\Raw Data\Parafacfiles\’) 

3. You will see some objective questions on the screen as below: 

a. Do you want to normalize the EEMs?  

i. Enter 1 for YES (recommended)  

ii. Enter 0 for NO 
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4. A new folder named “PF” will be created in “Current Folder” window in main MATLAB 

window. Right click on this folder and add this folder to path with folders and subfolders 

option. Open this folder by double clicking on it. After you open this folder, you will see 

three files as: 

a. em.csv 

b. ex.csv 

c. fl.csv 

5. In the Command Window, type command “loadpfdata” followed by the address of “PF” 

folder copied from the address bar in the format given below, and hit Enter: 

>> loadpfdata (‘C:\Users\harshad\Desktop\Raw Data\Parafacfiles\PF\’) 

6. Now, you will see another file created “pf.mat”. This is the dataset we’ll be using for 
PARAFAC analysis. 

7. Follow the steps given in Stedmon and Bro, 2008 tutorial for PARAFAC analysis. 
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Appendix E - Raw Data for Murshidabad groundwater DOM characteristics 
 

Table A 1 Raw data for Murshidabad groundwater DOM characteristics. All numbers are in Raman Units. 

 PARAFAC Fluorescence Absorbance 

Sample Name C1 C2 C3 C4 FI FrI HIX Peak A Peak B Peak T Peak C Peak M abs254 S275_295 S350_400 SR 

High Arsenic TW                 

TW 101 BM F (01).csv 1.82 1.43 0.39 0.20 1.74 0.75 9.40 1.89 0.22 0.28 1.00 1.16 0.07 -0.02 -0.01 1.15 

TW 102 BM F (01).csv 1.24 1.00 0.25 0.26 1.78 0.78 7.57 1.35 0.16 0.21 0.68 0.82 0.05 -0.02 -0.01 1.66 

TW 103 BM F (01).csv 1.04 0.81 0.27 0.00 1.71 0.75 7.97 1.03 0.12 0.16 0.58 0.66 0.04 -0.02 -0.01 1.12 

TW 104 BM F (01).csv 2.37 1.72 0.29 0.83 1.74 0.73 10.45 2.65 0.22 0.32 1.23 1.52 0.07 -0.02 -0.02 0.91 

TW 105 BM F (01).csv 0.56 0.48 0.19 0.00 1.71 0.79 5.67 0.60 0.11 0.12 0.32 0.38 0.03 -0.01 -0.01 1.46 

TW 106 BM F (01).csv 1.83 1.40 0.29 0.71 1.82 0.76 9.14 2.10 0.23 0.32 1.00 1.19 0.06 -0.02 -0.02 0.96 

TW 107 BM F (01).csv 1.05 0.84 0.24 0.18 1.81 0.77 7.00 1.10 0.14 0.19 0.58 0.70 0.04 -0.02 -0.02 1.17 

TW 139 BM F (01).csv 0.68 0.57 0.26 0.12 1.78 0.80 3.65 0.74 0.27 0.18 0.36 0.49 0.04 -0.02 -0.01 1.75 

TW100F (01).csv 1.00 0.78 0.25 0.17 1.83 0.77 5.69 1.05 0.15 0.18 0.54 0.65 0.04 -0.02 -0.02 1.11 

TW139BM (01).csv 0.47 0.39 0.16 0.11 1.77 0.81 4.21 0.52 0.19 0.13 0.26 0.33 0.06 -0.01 0.00 2.34 

TW139BM2 (01).csv 0.23 0.19 0.05 0.07 1.74 0.79 4.38 0.27 0.06 0.06 0.13 0.16 0.06 -0.01 -0.01 2.06 

TW139BM3 (01).csv 2.26 1.76 0.53 1.00 1.77 0.78 4.16 2.53 0.53 0.63 1.24 1.60 0.05 -0.01 -0.01 2.18 

TW 119 HK F (01).csv 1.04 0.76 0.23 0.01 1.71 0.73 9.49 1.02 0.12 0.16 0.53 0.62 0.06 -0.01 0.00 2.09 

TW 121 HK F (01).csv 0.97 0.68 0.27 0.00 1.70 0.70 6.42 0.92 0.22 0.17 0.52 0.61 0.05 -0.01 -0.01 1.04 

TW 122 HK F (01).csv 0.55 0.37 0.26 0.01 1.68 0.83 3.99 0.55 0.14 0.20 0.26 0.33 0.05 -0.01 -0.01 2.15 

TW 124 HK F (01).csv 1.00 0.69 0.28 0.07 1.66 0.72 6.40 0.99 0.15 0.19 0.50 0.59 0.05 -0.01 -0.01 1.43 

TW 127HK F (01).csv 0.72 0.51 0.37 0.05 1.71 0.88 3.48 0.75 0.29 0.32 0.36 0.45 0.04 -0.02 -0.02 1.12 

TW 128 HK F (01).csv 0.37 0.25 0.10 0.03 1.66 0.73 7.41 0.38 0.06 0.07 0.19 0.23 0.02 -0.01 -0.01 1.18 

TW 129 HB (01).csv 0.87 0.61 0.19 0.03 1.68 0.73 9.11 0.88 0.09 0.12 0.43 0.51 0.05 -0.01 -0.01 1.66 

TW 137 HK F (01).csv 1.22 0.90 0.27 0.01 1.66 0.73 8.44 1.22 0.12 0.16 0.62 0.74 0.05 -0.01 -0.01 1.45 

TW 137HK2 (01).csv 0.98 0.71 0.23 0.04 1.66 0.78 8.40 0.98 0.11 0.15 0.50 0.60 0.04 -0.02 -0.02 0.82 

TW118HKF (01).csv 17.13 8.14 1.84 9.90 1.59 0.96 8.81 18.81 1.36 2.62 6.03 8.58 0.08 -0.01 -0.02 0.83 

TW120HK F (01).csv 1.31 0.85 0.29 0.43 1.70 0.73 5.98 1.40 0.20 0.28 0.65 0.78 0.05 -0.02 -0.02 1.09 

TW123HKF (01).csv 1.28 0.79 0.20 0.32 1.76 0.72 9.09 1.32 0.13 0.18 0.61 0.72 0.04 -0.02 -0.03 0.76 

TW125HKF (01).csv 1.57 1.10 0.32 0.39 1.77 0.75 8.11 1.61 0.18 0.28 0.85 0.95 0.07 -0.02 -0.02 1.13 

TW126HKF (01).csv 9.64 5.44 2.59 2.45 1.68 0.71 4.81 9.68 1.54 2.17 4.51 5.22 0.03 -0.02 -0.03 0.69 

TW138HK F (01).csv 1.14 0.93 0.30 0.27 1.78 0.78 6.56 1.23 0.19 0.26 0.65 0.76 0.06 -0.02 -0.02 0.99 

High Arsenic IW                 

IW 101 F (01).csv 1.16 0.88 0.28 0.35 1.82 0.79 6.21 1.27 0.20 0.26 0.63 0.73 0.04 -0.02 -0.01 1.29 

IW 102 BM F (01).csv 0.52 0.42 0.30 0.05 1.81 0.85 3.94 0.59 0.17 0.26 0.30 0.36 0.03 -0.02 -0.01 1.96 

IW 103 HK F (01).csv 1.39 0.94 0.23 0.45 1.74 0.75 7.38 1.52 0.17 0.22 0.67 0.84 0.04 -0.02 -0.02 0.99 

IW 104 HB F (01).csv 1.26 0.83 0.26 0.37 1.64 0.77 6.57 1.35 0.15 0.26 0.60 0.76 0.04 -0.02 -0.03 0.79 

IW105HB F (01).csv 1.14 0.64 0.21 0.31 1.75 0.68 7.42 1.21 0.13 0.20 0.53 0.61 0.03 -0.02 -0.02 1.14 
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High Arsenic PW                 

PW 103 BM F (01).csv 3.71 2.73 1.88 1.13 1.64 0.81 4.58 4.00 1.31 1.63 1.90 2.51 0.30 -0.02 -0.01 1.35 

PW 103 BM F 2 (01).csv 2.94 2.14 1.45 0.81 1.65 0.81 4.53 3.14 1.01 1.24 1.50 1.98 0.28 -0.02 -0.01 1.21 

PW102 F (01).csv 6.22 4.37 2.18 1.63 1.70 0.77 6.09 6.40 1.40 2.00 3.27 4.01 0.38 -0.01 -0.02 0.84 

PW104 (01).csv 2.15 1.58 0.68 0.96 1.58 0.83 6.01 2.41 0.55 0.68 1.04 1.50 0.25 -0.02 -0.01 1.27 

PW104 F (01).csv 3.18 2.31 1.06 1.33 1.55 0.83 5.69 3.54 0.76 1.00 1.54 2.19 0.24 -0.02 -0.02 1.18 

PW104B (01).csv 2.12 1.54 0.67 0.90 1.59 0.83 6.08 2.40 0.51 0.65 1.02 1.45 0.25 -0.02 -0.01 1.32 

PW108F (01).csv 1.00 0.79 0.57 0.38 1.62 0.90 3.38 1.13 0.37 0.47 0.51 0.72 0.08 -0.02 -0.01 1.73 

PW109F (01).csv 3.43 2.20 1.00 1.20 1.55 0.77 6.31 3.66 0.70 1.00 1.59 2.13 0.22 -0.02 -0.01 1.30 

PW 110 (01).csv 11.48 5.30 3.21 9.51 1.59 1.12 5.55 13.57 2.67 3.63 4.12 6.06 0.17 -0.02 -0.01 1.30 

PW110 F (01).csv 1.84 1.31 0.61 0.69 1.60 0.82 5.29 2.02 0.42 0.54 0.89 1.23 0.15 -0.02 -0.02 1.02 

PW110B (01).csv 1.23 0.87 0.38 0.53 1.58 0.84 5.82 1.37 0.27 0.37 0.59 0.83 0.16 -0.02 -0.01 1.28 

Low Arsenic TW                 

TW114NBKF (01).csv 1.59 1.56 0.91 0.44 1.81 0.81 2.19 1.90 0.54 0.57 0.96 1.27 0.02 -0.01 -0.01 2.54 

TW 111 NB F (01).csv 0.65 0.39 0.17 0.03 1.54 0.66 7.25 0.63 0.11 0.12 0.32 0.35 0.05 -0.01 -0.01 1.66 

TW 131 KHN F (01).csv 0.44 0.40 0.24 0.36 1.63 0.97 4.06 0.65 0.12 0.20 0.24 0.36 0.03 -0.01 -0.01 1.22 

TW 132 KHN F (01).csv 0.72 0.82 0.61 0.87 1.81 1.09 3.02 1.24 0.44 0.53 0.48 0.74 0.05 -0.01 -0.01 1.84 

TW130KHNF (01).csv 0.24 0.25 0.20 0.29 1.60 1.08 2.54 0.39 0.12 0.14 0.14 0.25 0.02 -0.02 -0.01 2.32 

TW133KHN F (01).csv 6.96 5.90 4.83 10.12 1.68 1.00 3.04 11.28 3.03 4.74 3.95 5.75 0.04 -0.01 -0.01 1.84 

TW134KHNF (01).csv 10.08 8.15 6.67 20.02 1.79 1.10 3.29 18.41 4.61 7.25 6.00 8.52 0.05 -0.02 -0.01 1.59 

TW135KHN F (01).csv 0.99 0.98 0.70 1.75 1.76 1.07 3.47 1.89 0.46 0.71 0.63 0.93 0.03 -0.02 -0.02 1.10 

TW136KHNF (01).csv 6.53 6.14 4.32 11.19 1.75 1.06 3.20 11.39 2.78 4.03 3.99 6.07 0.04 -0.01 -0.01 1.70 

 

Low Arsenic IW 
                

IW 106 KHN F (01).csv 0.76 0.82 0.53 1.20 1.74 1.07 3.30 1.39 0.33 0.51 0.49 0.75 0.04 -0.02 -0.01 1.67 

IW 108 KHN F (01).csv 0.17 0.19 0.18 0.09 1.88 1.09 1.67 0.25 0.12 0.13 0.10 0.19 0.02 -0.02 -0.01 2.30 

IW107KHN F (01).csv 0.55 0.55 0.41 0.73 1.62 1.03 3.07 0.98 0.28 0.34 0.34 0.51 0.03 -0.02 -0.01 1.59 

Low Arsenic PW                 

PW 106 NB F 2 (01).csv 0.89 0.66 0.42 0.00 1.66 0.81 4.06 0.91 0.25 0.33 0.47 0.55 0.11 -0.02 -0.01 1.36 

PW 106 NB F (01).csv 1.12 0.85 0.52 0.00 1.67 0.79 4.13 1.14 0.29 0.38 0.60 0.70 0.11 -0.01 -0.01 1.42 

PW107F (01).csv 6.07 4.07 1.55 2.14 1.60 0.72 7.15 6.49 1.08 1.62 2.98 3.83 0.35 -0.02 -0.01 1.32 

PW111F (01).csv 4.72 3.16 1.14 1.88 1.60 0.75 7.51 5.12 0.73 1.14 2.23 3.00 0.26 -0.02 -0.01 1.18 

PW112F (01).csv 5.85 4.05 1.10 2.30 1.62 0.74 9.06 6.41 0.63 1.15 2.73 3.77 0.28 -0.02 -0.01 1.08 
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Appendix F - Raw data for complexation experiment 
 

Table A 2 Fe-DOM Complexation. All numbers are in Raman Units.  

Sample Name abs254 S1 S2 SR FI FrI HIX A B T C M 

SRFA12.5x0 (01) 0.313021 -0.011074 -0.014523 0.762458 1.272846 0.39614 26.10065 1.934195 0.040263 0.117277 0.979045 1.098955 

SRFA12.5x0.1 (01) 0.293744 -0.010958 -0.014393 0.761359 1.263212 0.391162 24.063224 1.765517 0.050466 0.136185 0.899969 1.019426 
SRFA12.5x1 (01) 0.289066 -0.010724 -0.013648 0.785711 1.256575 0.408712 21.258486 1.548537 0.055019 0.099854 0.793009 0.892511 

SRFA12.5x10 (01) 0.404356 -0.009319 -0.013337 0.698746 1.353825 0.488008 11.434706 1.029929 0.014449 0.09973 0.531624 0.590821 

SRFA12.5x20 (01) 0.516211 -0.007868 -0.01302 0.604283 1.453788 0.585558 7.276913 0.571402 0.014041 0.08383 0.303776 0.328067 

SRFA12.5x5 (01) 0.355204 -0.010195 -0.01371 0.743615 1.285238 0.442376 14.471603 1.432879 0.006974 0.146794 0.70924 0.809268 

SRFA6.25x0 (01) 0.186882 -0.010151 -0.012735 0.797102 1.247793 0.403704 24.572681 0.984353 0.032599 0.058348 0.490052 0.552964 

SRFA6.25x0.1 (01) 0.181384 -0.010089 -0.012684 0.795386 1.27187 0.399273 21.899522 0.939332 0.028457 0.055854 0.463063 0.518239 
SRFA6.25x1 (01) 0.183006 -0.009815 -0.012415 0.790551 1.299421 0.396835 20.585842 0.802509 0.039011 0.055787 0.394501 0.455274 

SRFA6.25x10 (01) 0.309601 -0.007944 -0.012683 0.626334 1.358229 0.542689 7.250312 0.38444 0.01171 0.060891 0.190304 0.198496 

SRFA6.25x20 (01) 0.417494 -0.00644 -0.012318 0.522836 1.431583 0.624039 4.258683 0.250547 0.017566 0.048776 0.127436 0.133329 
SRFA6.25x5 (01) 0.247364 -0.008932 -0.012548 0.711767 1.397676 0.458962 20.207077 0.653167 0.00432 0.067938 0.321828 0.374179 

SRFA12.5 (01) 0.258337 -0.013053 -0.019125 0.682498 1.270678 0.388967 5.023407 2.164612 1.26281 0.355449 1.062662 1.267864 

SRFA6.25 (01) 0.133882 -0.012351 -0.016188 0.763004 1.289206 0.39484 4.985919 1.1145 0.674627 0.185039 0.533704 0.630971 
SRFA6.25Fe0.1 (01) 0.122201 -0.012941 -0.0197 0.656869 1.292714 0.416786 4.616818 1.060783 0.733694 0.199033 0.509471 0.603823 

SRFA6.25Fe1 (01) 0.122556 -0.012219 -0.0144 0.848555 1.364459 0.400054 3.910253 0.892649 0.777649 0.207526 0.43555 0.516889 

SRFA6.25Fe10 (01) 0.232149 -0.008845 -0.014283 0.619273 1.434537 0.511122 3.961495 0.70147 0.503715 0.198883 0.347776 0.36844 
SRFA6.25Fe20 (01) 0.520491 -0.006741 -0.012516 0.538642 1.546458 0.651262 1.335107 0.602892 1.28454 0.31748 0.289387 0.348085 

SRFA6.25Fe5 (01) 0.183201 -0.010272 -0.015479 0.663608 1.305986 0.390198 5.456069 0.889953 0.5584 0.136214 0.441294 0.525124 

SRFAFe0.1 (01) 0.239049 -0.013029 -0.01881 0.692666 1.272277 0.416135 5.640339 2.03166 1.087073 0.331291 0.973021 1.184517 

SRFAFe1 (01) 0.221217 -0.012696 -0.018695 0.679109 1.281676 0.386558 8.726356 1.728978 0.610493 0.204463 0.845692 0.974564 

SRFAFe10 (01) 0.325284 -0.010185 -0.015518 0.656332 1.367187 0.441127 8.322419 1.440072 0.519889 0.16394 0.706084 0.762776 
SRFAFe20 (01) 0.411614 -0.008516 -0.01434 0.593874 1.467943 0.528913 6.773085 1.118586 0.368535 0.165639 0.565306 0.598673 

SRFAFe5 (01) 0.290408 -0.011284 -0.016529 0.682645 1.310882 0.40921 8.602898 1.719947 0.422531 0.210546 0.845162 0.97945 

SRFA12.5 (01) 0.258047 -0.013111 -0.019326 0.678436 1.277103 0.406828 4.540606 2.851835 1.600352 0.473564 1.380925 1.640761 
SRFA6.25 (01) 0.13034 -0.012853 -0.018582 0.6917 1.233506 0.405148 5.380362 1.436234 0.844764 0.248672 0.69142 0.83786 

SRFA6.25Fe0.1 (01) 0.121752 -0.013207 -0.02007 0.658079 1.289306 0.385125 4.44701 1.342411 0.8923 0.237856 0.639166 0.752201 

SRFA6.25Fe1 (01) 0.12212 -0.012238 -0.017032 0.718537 1.31336 0.399509 3.619618 1.18069 0.935072 0.269768 0.571512 0.685218 
SRFA6.25Fe10 (01) 0.235177 -0.008617 -0.013651 0.631211 1.42157 0.52275 3.883504 0.907465 0.610037 0.181421 0.450139 0.473176 

SRFA6.25Fe20 (01) 0.518694 -0.006745 -0.012546 0.537646 1.491724 0.56929 1.20924 0.708736 1.608035 0.45399 0.360934 0.414704 

SRFA6.25Fe5 (01) 0.182746 -0.01032 -0.01568 0.65821 1.339825 0.397331 5.04365 1.137113 0.674915 0.184212 0.561602 0.686285 
SRFAFe0.1 (01) 0.23858 -0.013064 -0.01889 0.691583 1.26024 0.411642 5.888765 2.615945 1.289765 0.453302 1.239637 1.50879 

SRFAFe1 (01) 0.222175 -0.012663 -0.018399 0.68825 1.27429 0.387699 8.07825 2.249184 0.739947 0.256976 1.087231 1.266172 

SRFAFe10 (01) 0.324668 -0.01021 -0.015675 0.651356 1.379501 0.457101 6.872782 1.780427 0.603913 0.263952 0.895275 0.966623 

SRFAFe20 (01) 0.410638 -0.008509 -0.014387 0.591437 1.413064 0.500015 5.940092 1.421549 0.371164 0.207542 0.726949 0.768167 

SRFAFe5 (01) 0.290818 -0.011246 -0.016369 0.687007 1.351642 0.404435 9.452961 2.162574 0.489958 0.292512 1.078915 1.235592 
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As – DOM Complexation 

Table A 3 As-DOM Complexation. All numbers are in Raman Units. 

Sample Name SRFA (mg/L) As (ug/L) abs254 S1 S2 SR FI FrI HIX A B T C M 

P12.5x0ppb (01) 12.5 0 0.264 -0.013 -0.017 0.743 1.262 0.395 21.163 2.368 0.055 0.148 1.190 1.350 

P12.5x1000ppb (01) 12.5 1000 0.266 -0.012 -0.017 0.716 1.300 0.428 15.195 2.100 0.053 0.185 1.110 1.163 

P12.5x100ppb (01) 12.5 100 0.264 -0.013 -0.017 0.738 1.236 0.403 20.664 2.290 0.052 0.159 1.164 1.293 

P12.5x10ppb (01) 12.5 10 0.262 -0.013 -0.018 0.726 1.232 0.398 16.888 2.209 0.039 0.154 1.142 1.284 

P12.5x500ppb (01) 12.5 500 0.259 -0.013 -0.018 0.717 1.281 0.416 16.280 2.160 0.057 0.182 1.104 1.188 

P12.5x50ppb (01) 12.5 50 0.266 -0.013 -0.017 0.739 1.217 0.410 17.819 2.329 0.064 0.189 1.181 1.316 

P6.25x0ppb (01) 6.25 0 0.143 -0.012 -0.014 0.856 1.243 0.402 19.357 1.203 0.015 0.063 0.586 0.645 

P6.25x0ppb (02) 6.25 0 0.138 -0.012 -0.016 0.778 1.285 0.395 19.799 1.197 0.033 0.069 0.595 0.666 

P6.25x1000ppb (01) 6.25 1000 0.146 -0.012 -0.015 0.778 1.309 0.431 13.805 1.178 0.006 0.091 0.605 0.633 

P6.25x100ppb (01) 6.25 100 0.141 -0.012 -0.016 0.778 1.280 0.400 13.857 1.208 0.039 0.081 0.596 0.672 

P6.25x100ppb (02) 6.25 100 0.140 -0.012 -0.016 0.783 1.242 0.405 15.303 1.182 0.015 0.063 0.589 0.662 

P6.25x10ppb (01) 6.25 10 0.139 -0.013 -0.016 0.796 1.233 0.421 19.491 1.097 0.019 0.082 0.567 0.634 

P6.25x10ppb (02) 6.25 10 0.138 -0.013 -0.016 0.786 1.241 0.424 17.848 1.106 0.023 0.062 0.573 0.637 

P6.25x500ppb (01) 6.25 500 0.139 -0.012 -0.015 0.755 1.399 0.477 12.626 1.197 0.019 0.107 0.613 0.667 

P6.25x500ppb (02) 6.25 500 0.140 -0.012 -0.015 0.763 1.291 0.467 12.244 1.214 0.038 0.117 0.610 0.655 

P6.25x50ppb (01) 6.25 50 0.138 -0.013 -0.016 0.776 1.240 0.416 21.636 1.134 0.012 0.114 0.576 0.655 
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Table A 4 Fe – As – DOM Complexation. All numbers are in Raman Units. 

Sample Name SRFA (mg/L) Fe (mg/L) As (ug/L) abs254 S1 S2 SR FI FrI HIX A B T C M 

P6.25 10 0 (01) 6.25 10 0 0.234614 -0.008829 -0.013852 0.637366 1.397253 0.43167 4.132365 0.813304 0.410313 0.267626 0.411105 0.480563 

P6.25 10 10 (01) 6.25 10 10 0.242123 -0.009004 -0.014067 0.640113 1.396359 0.431985 4.659197 0.81542 0.425097 0.256388 0.4329 0.476215 

P6.25 10 100 (01) 6.25 10 100 0.232412 -0.008503 -0.014751 0.57644 1.410062 0.414955 5.294467 0.794056 0.398569 0.204588 0.40335 0.464342 

P6.25 10 1000 (01) 6.25 10 1000 0.231625 -0.008167 -0.013978 0.584279 1.388557 0.457231 6.464676 0.773337 0.220649 0.175105 0.387647 0.456587 

P6.25 10 50 (01) 6.25 10 50 0.238044 -0.008771 -0.013977 0.627524 1.354532 0.428557 5.33666 0.791366 0.313295 0.196712 0.396124 0.464523 

P6.25 10 500 (01) 6.25 10 500 0.233638 -0.008441 -0.013951 0.60501 1.393688 0.426895 4.325106 0.80448 0.451039 0.192768 0.401067 0.487252 

P6.25 20 0 (01) 6.25 20 0 0.224058 -0.00523 -0.009404 0.556192 1.648455 0.637941 10.356329 0.642044 0.171524 0.140712 0.354542 0.255296 

P6.25 20 10 (01) 6.25 20 10 0.361299 -0.006889 -0.012557 0.54863 1.522602 0.479529 4.245955 0.667856 0.186167 0.222759 0.319147 0.394338 

P6.25 20 100 (01) 6.25 20 100 0.371802 -0.006835 -0.012468 0.54821 1.454766 0.4714 3.900022 0.642221 0.32919 0.255059 0.316437 0.382995 

P6.25 20 1000 (01) 6.25 20 1000 0.354691 -0.0063 -0.012278 0.513139 1.482699 0.474402 3.822519 0.738918 0.212494 0.226056 0.35551 0.403988 

P6.25 20 50 (01) 6.25 20 50 0.372384 -0.006832 -0.012478 0.547501 1.427698 0.482648 3.998543 0.613744 0.277531 0.257431 0.314714 0.392478 

P6.25 20 500 (01) 6.25 20 500 0.371884 -0.006529 -0.012172 0.536405 1.428559 0.501776 3.278329 0.704783 0.601409 0.275971 0.353808 0.416477 
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Appendix G - Analyses of DOM quality for groundwater samples from 

Mahomet aquifer. 
 

The role of dissolved organic matter (DOM) in the biogeochemical interactions resulting 

into iron (Fe) and arsenic (As) mobilization in reducing aquifers of West Bengal (India) has been 

documented recently. Heavy monsoonal recharge in this region is also an important hydrological 

control that influences the groundwater flow, redox conditions and the groundwater quality. Few 

studies have reported the effect of monsoonal recharge on levels of As, Fe and HCO3
-, however 

its effect on the characteristics of DOM has not been studied yet. In this study, pre (PRM) and 

post-monsoon (PSTM) spectroscopic properties of DOM in the groundwater samples from shallow 

(50 – 150 ft) holocene aquifer (Nadia) and deep (200 – 360 ft) pleistocene aquifer (Hooghly) were 

examined using absorbance and 3-dimensional fluorescence spectroscopy followed by a three 

components parallel factor (PARAFAC) model. Total As, anions, dissolved organic carbon and 

nitrogen (DOC/DON) and bulk proteins were measured in the laboratory. Total As in shallow 

PRM and PSTM samples ranged from 50 to 315 μg/L and 42 to 300 μg/L respectively, while that 

in deep PRM and PSTM samples from 0.44 to 10.62 μg/L and 0.55 to 9.62 μg/L. At shallow depths, 

chlorides concentrations were found to have mixing effect from monsoonal recharge while at 

greater depths this effect did not exist. All other chemical and DOM properties showed variations 

(either increased or decreased) at shallow as well as greater depths after monsoonal recharge. In 

the shallow samples, decrease in total As was linked with decrease in DOC, slight increase in 

fluorescence index (FI), slight decrease in freshness index (β:α), decrease in specific ultraviolet 

absorbance (SUVA254) and decrease in bulk proteins. In deep samples, increase in total As was 

linked with decrease in DOC, increase in FI, slight increase in β:α, decrease in SUVA254 and 

decrease in bulk proteins. The chlorides (Cl-) concentrations varied at shallow depth but remained 

unchanged at greater depths after the monsoonal recharge. Although the drastic increase in As was 

not observed in this study, the results indicate that the quality of DOM changes significantly after 

the monsoon. Changes in DOM quality at shallow depth may be linked directly to mixing due to 

recharge while the changes at greater depths may be linked to monsoonal recharge but via complex 

flow and biogeochemical transport reactions rather than simple mixing. 
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Table A 5 DOM Parameters for Mahomet Aquifer Samples. Numbers are expressed as average 

value  standard deviation, minimum – maximum range in parenthesis.  

Parameter As < 50 ppb As > 50 ppb 

SR 
1.07  0.11 

(0.94 – 1.26) 

1.05   0.16 

(0.95 – 1.70) 

FI 
1.78   0.03 

(1.73 – 1.82) 

1.76  0.02 

(1.72 – 1.80) 

FrI 
0.75   0.02 

(0.72 – 0.78) 

0.73   0.02 

(0.68 – 0.76) 

HIX 
10.84   2.37 

(6.97 – 13.91) 

12.87   1.40 

(10.72 – 15.70) 

Peak A 
4.46   1.78 

(2.36 – 6.73) 

4.70   1.32 

(2.01 – 6.87) 

Peak B 
0.53   0.39  

(0.19 – 1.30) 

0.35   0.15 

(0.07 – 0.68) 

Peak T 
0.94   0.61 

(0.37 – 2.11) 

0.68  0.24 

(0.22 – 1.17) 

Peak C 
2.34   0.93 

(1.24 – 3.56) 

2.46   0.71 

(1.01 – 3.69) 

Peak M 
2.64   1.07 

(1.34 – 4.05) 

2.72   0.78 

(1.13 – 4.05) 

H/B 
7.25   0.82 

(5.65 – 8.32) 

8.01   0.32 

(7.53 – 8.60) 

NPOC (mg/l) 
4.7   2.16 

(2.7 – 7.9) 

4.4   1.79 

(1.98 – 8.86) 

 

Table A 6 Statistical analyses of DOM parameters for Mahomet Aquifer samples.  

Parameter As<50 – As>50 

SR 0.42 

FI 0.10 

FrI 0.02 

HIX 0.02 

Peak A 0.42 

Peak B 0.28 

  

Peak T 0.40 

Peak C 0.44 

Peak M 0.46 

H/B 0.00 

*Values in shaded cells: P<0.05 indicate statistically different parameter 
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Table A 7 Comparison of DOM parameters in Mahomet Bedock Valley and Bengal Basin 

Aquifers. Numbers are expressed as average value  standard deviation, minimum – maximum 

range in parenthesis. All peak intensitys are in R.U. 

 

Parameter 
Mahomet Aquifer 

(IL) 

Bengal Basin 

(Murshidabad, India) 

SR 
1.06   0.14 

(0.94 – 1.70) 

1.33  0.47 

(0.69 – 2.34) 

FI 
1.77   0.02 

(1.72 – 1.82) 

1.73  0.06 

(1.59 – 1.83) 

FrI 
0.74 0.02 

(0.68 – 0.78) 

0.77  0.06 

(0.68 – 0.96) 

HIX 
12.22  1.97 

(6.97 – 15.70) 

6.79   1.98 

(3.48 – 10.45) 

Peak A 
4.63   1.45 

(2.01 – 6.87) 

1.99   3.46  

(0.27 – 18.81) 

Peak B 
0.40   0.26 

(0.07 – 1.30) 

0.25   0.32 

(0.06 – 1.54) 

Peak T 
0.76   0.40 

(0.22 – 2.11) 

0.35   0.55 

(0.06 – 2.62) 

Peak C 
2.42   0.77 

(1.01 – 3.69) 

0.87   1.20 

(0.13 – 6.03) 

Peak M 
2.69   0.86 

(1.13 – 4.05) 

1.08   1.62 

(0.16 – 8.58) 

H/B 
7.76   0.63 

(5.65 – 8.60) 

8.53   3.42 

(3.31 – 19.10) 

NPOC (mg/l) 
4.51  1.88 

(1.97 – 8.86) 

2.94  1.97 

(1.25 – 6.76) 

 

Table A 8 Statistical analyses of DOM parameters in MBV and Bengal Basin aquifers 

P 
Mahomet - 

Bengal 

SR 0.010 

FI 0.006 

FrI 0.009 

HIX <0.001 

Peak A <0.001 

Peak B <0.001 

Peak T <0.001 

Peak C <0.001 

Peak M <0.001 

H/B 0.201 

*Values in shaded cells: P<0.05 indicate statistically different parameter 
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Figure A 1 Three component PARAFAC model for Mahomet Bedrock Valley Aquifer 

Groundwater samples. 
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Table A 9 DOM characteristics data: Mahomet Bedrock Valley Aquifer samples. C1, C2 and C3 are in Raman Units. 

Name 
Bulk Protein 

(mg/L) 
NPOC 
(mg/L) 

TN 
(mg/L) 

abs254 S1 S2 SR FI FrI HIX C1 C2 C3 

IL09 1.07 3.36 1.62 0.11 -0.02 -0.02 0.92 1.76 0.75 11.57 3.42 2.01 0.91 
IL17 0.77 4.15 4.47 0.13 -0.02 -0.02 0.89 1.75 0.72 13.59 5.19 2.86 0.95 
IL25 0.47 1.97 0.87 0.07 -0.01 -0.01 1.58 1.78 0.75 15.48 2.18 1.24 0.34 
IL15 0.77 3.94 4.30 0.15 -0.02 -0.02 0.94 1.74 0.72 13.63 5.39 2.95 1.04 
IL26 0.96 5.20 4.09 0.18 -0.02 -0.02 0.95 1.76 0.74 12.61 6.61 3.59 1.43 

IL14 1.03 8.86 8.59 0.33 -0.01 -0.02 0.79 1.78 0.74 13.59 13.08 6.67 2.50 
IL20 0.50 2.45 1.01 0.09 -0.02 -0.02 0.94 1.75 0.73 17.03 2.84 1.58 0.43 
IL19 0.38 2.49 0.99 0.09 -0.02 -0.02 0.81 1.78 0.73 17.22 2.87 1.57 0.41 
IL27 0.79 4.54 4.03 0.15 -0.02 -0.02 0.90 1.76 0.72 11.87 5.53 3.09 1.28 
IL13 0.85 5.00 8.29 0.16 -0.02 -0.02 0.89 1.72 0.69 12.75 5.82 3.19 1.20 
IL12 0.97 3.85 1.81 0.12 -0.02 -0.02 0.92 1.79 0.76 10.64 4.94 2.84 1.29 
IL29 0.89 5.64 3.02 0.18 -0.02 -0.02 0.88 1.78 0.75 10.56 7.02 3.98 1.92 
IL22 0.64 5.59 1.71 0.12 -0.02 -0.02 0.81 1.77 0.75 15.09 3.76 2.11 0.68 

IL18 1.61 6.43 6.82 0.21 -0.02 -0.02 0.79 1.80 0.78 13.07 7.66 4.12 1.55 
IL28 0.69 3.03 1.93 0.10 -0.02 -0.02 0.86 1.76 0.73 13.64 3.12 1.84 0.67 
IL10 0.47 3.27 1.48 0.08 -0.01 -0.01 1.00 1.73 0.72 12.98 2.36 1.34 0.56 
IL31 1.30 6.66 4.52 0.18 -0.02 -0.02 0.89 1.80 0.77 9.46 6.19 3.59 1.96 
IL30 0.68 7.89 4.32 0.28 -0.01 -0.01 1.05 1.79 0.79 6.64 7.94 4.50 4.14 
IL21 0.39 2.67 0.90 0.09 -0.02 -0.02 0.77 1.78 0.75 14.47 2.73 1.56 0.57 
IL24 0.56 3.24 1.88 0.10 -0.02 -0.02 0.84 1.76 0.75 10.75 3.43 2.05 0.95 
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Table A 10 Raw chemical data provided by Holm R.  

Name Al27 ug/L Si29 ug/L P31 ug/L S34 ug/L Ca43 ug/L Fe57 ug/L Ba137 ug/L Na23 ug/L Mg25 mg/L K39 ug/L Mn55 mg/L As75 ug/L Sr88 ug/L 

IL09 4.94 12949.67 43.30 45.00 44328.00 3998.69 59.28 27372.82 32.78 1536.55 0.01 176.50 468.59 

IL17 6.34 13632.68 20.51 62.21 61174.18 1955.08 90.01 23151.43 38.87 2044.29 0.03 172.75 592.47 

IL25 17.19 11843.37 33.24 52422.60 91434.56 3772.93 154.04 17724.30 85.05 1332.81 0.01 143.99 718.43 

IL15 4.90 15952.43 323.33 71.17 57078.77 5599.05 151.91 18600.85 32.33 1979.19 0.03 120.51 559.31 

IL26 12.80 12401.21 280.16 98.91 54975.39 4540.74 98.50 28619.47 37.37 2129.04 0.05 112.14 529.49 

IL14 4.38 17819.20 237.12 150.82 70679.35 4400.30 241.59 34680.22 40.22 3101.68 0.03 110.61 471.23 

IL20 27.90 12778.63 49.50 37.25 53104.79 1762.95 47.36 17941.31 32.75 1174.25 0.03 96.24 691.97 

IL19 5.31 12417.77 47.54 30.23 51085.16 1695.12 46.52 17743.49 31.79 1159.95 0.02 95.25 670.29 

IL27 6.29 14559.18 156.58 56.09 56399.82 2940.71 183.86 25334.49 35.20 2304.42 0.04 87.69 407.52 

IL13 6.46 21797.76 204.88 82.89 ######## 8083.32 221.18 18757.12 46.90 2940.02 0.08 80.98 594.71 

IL12 7.75 16818.92 58.54 65.75 54735.77 2292.71 113.97 27508.14 39.20 2216.02 0.01 77.19 341.71 

IL29 7.31 12424.51 69.41 76.20 50549.91 1666.47 131.50 37314.85 37.19 2304.02 0.04 64.17 438.32 

IL22 65.93 13913.18 70.63 42.00 50023.23 1623.32 127.18 27072.66 35.88 1747.13 0.04 54.38 369.16 

IL18 7.45 15999.07 361.73 98.12 61129.81 2512.28 227.67 71882.22 31.80 1947.95 0.09 28.27 424.02 

IL28 8.57 14691.88 134.56 40.99 53785.33 2657.62 144.73 22043.69 31.87 1696.03 0.04 24.08 331.88 

IL10 7.85 13860.78 280.89 29.49 59901.49 4180.10 131.83 14554.93 32.84 1601.87 0.02 21.85 388.52 

IL31 6.39 14957.69 254.27 10906.46 71276.11 4068.18 286.65 67947.46 40.43 2193.51 0.13 11.94 522.06 

IL30 5.40 14665.70 255.29 10783.70 70463.37 3985.52 288.55 65809.34 37.77 2073.70 0.13 10.84 517.18 

IL21 6.93 18289.68 246.87 31.38 61975.90 4083.78 159.76 23940.73 33.38 1807.44 0.02 9.55 263.62 

IL24 32.44 14404.89 60.11 43.02 50814.57 2191.53 105.46 31962.40 33.43 2116.60 0.02 6.15 475.03 
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Table A 11 Anions (in ppm) data for Mahomet Bedrock Valley Aquifer samples 

Name Acetate Arsenate Bromide Chloride Citrate Fluoride Formate Lactate Nitrate Nitrite Oxalate Phosphate Sulfate 

IL09 0.79 0.00 0.00 0.47 0.00 0.38 0.16 0.00 0.20 4.57 0.00 0.11 0.17 

IL17 1.54 0.00 0.00 0.41 0.00 0.35 0.13 5.56 0.08 0.53 0.00 0.13 0.20 

IL25 2.32 0.20 0.00 6.95 0.00 0.14 0.65 0.00 4.75 0.39 0.00 0.25 0.00 

IL15 2.07 0.00 0.00 0.51 0.00 0.41 0.13 0.00 18.74 0.00 0.00 0.12 0.21 

IL26 0.00 0.00 0.00 0.57 0.00 0.37 0.20 0.00 0.99 11.59 0.00 0.05 0.20 
IL14 0.00 0.00 0.00 0.49 0.00 0.48 0.09 0.00 0.10 0.56 0.00 0.16 0.18 

IL20 2.14 0.00 0.00 0.31 0.00 0.52 0.11 0.00 0.07 0.00 0.00 0.09 0.12 

IL19 2.79 0.00 0.00 0.31 0.00 0.53 0.78 0.00 0.00 0.00 0.00 0.09 0.12 

IL27 3.07 0.00 0.00 0.50 0.00 0.41 1.84 0.00 0.19 0.52 0.00 0.10 0.18 

IL13 1.86 0.08 0.00 0.34 0.00 0.19 0.47 5.00 0.21 0.58 0.00 0.07 0.18 

IL12 1.50 0.00 0.00 0.53 0.00 0.32 0.09 0.00 0.08 0.53 0.00 0.15 0.20 
IL29 2.64 0.05 0.00 0.52 0.66 0.39 0.54 0.00 0.08 0.53 0.00 0.12 0.15 

IL22 2.29 0.00 0.00 1.01 0.00 0.32 0.16 0.00 0.62 0.00 0.00 0.15 0.28 

IL18 1.71 0.00 0.00 32.19 0.00 0.35 0.36 0.00 0.10 0.33 0.00 0.10 0.14 

IL28 2.57 0.00 0.00 0.68 0.00 0.32 0.58 0.00 0.89 5.83 0.00 0.15 0.17 

IL10 1.29 0.01 0.00 0.85 0.00 0.29 0.29 0.00 0.00 0.00 0.00 0.15 0.19 

IL31 2.46 0.35 0.00 32.90 0.00 0.41 0.47 0.00 0.14 0.33 0.00 0.32 0.00 
IL30 2.89 0.00 0.00 33.51 0.00 0.41 0.49 0.00 0.13 0.34 0.00 0.23 0.00 

IL21 0.00 0.00 0.00 2.51 0.00 0.29 0.11 0.00 0.10 3.07 0.00 0.02 0.13 

IL24 2.75 0.00 0.00 5.59 0.00 0.36 0.63 0.00 0.16 0.27 0.00 0.20 0.12 
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Appendix H - Maps showing distribution of geochemical parameters at 

Nadia / Hooghly district study sites 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

  

 
Figure A 2 Pre- and Post-Monsoon Arsenate Concentrations at Chakudanga 
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Figure A 3 Pre- and Post-Monsoon Arsenate Concentrations at Shahispur 
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Figure A 4 Pre- and Post-Monsoon Arsenate Concentration at Bele 
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Figure A 5 Pre- and Post-Monsoon Arsenate Concentrations at Radhanagar 
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Figure A 6 Pre- and Post-Monsoon Sulfate Concentrations at Chakudanga 
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Figure A 7 Pre- and Post-Monsoon Sulfate Concentrations at Shahispur 
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Figure A 8 Pre- and Post-Monsoon Sulfate Concentrations at Bele 



201 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A 9 Pre- and Post-Monsoon Sulfate Concentrations at Radhanagar 
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Figure A 10 Pre- and Post-Monsoon Chloride Concentrations at Chakudanga 
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Figure A 11 Pre- and Post-Monsoon Chloride Concentrations at Shahispur 
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Figure A 12 Pre- and Post-Monsoon Chloride Concentrations at Bele 
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Figure A 13 Pre- and Post-Monsoon Chloride Concentrations at Radhanagar 
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Figure A 14 Pre- and Post-Monsoon Nitrate Concentrations at Chakudanga 
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Figure A 15 Pre- and Post-Monsoon Nitrate Concentrations at Shahispur 
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Figure A 16 Pre- and Post-Monsoon Nitrate Concentrations at Bele 
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Figure A 17 Pre- and Post-Monsoon Nitrate Concentrations at Radhanagar 
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Figure A 18 Pre- and Post-Monsoon Acetate Concentrations at Chakudanga 
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Figure A 19 Pre- and Post-Monsoon Acetate Concentrations at Shahispur 
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Figure A 20 Pre- and Post-Monsoon Acetate Concentrations at Bele 
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Figure A 21 Pre- and Post-Monsoon Acetate Concentrations at Radhanagar 
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Figure A 22 Pre- and Post-Monsoon Humification Index (HIX) at Chakudanga 
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Figure A 23 Pre- and Post-Monsoon Humification Index (HIX) at Shahispur 
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Figure A 24 Pre- and Post-Monsoon Humification Index (HIX) at Bele 



217 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure A 25 Pre- and Post-Monsoon Humification Index (HIX) at Radhanagar 
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Figure A 26 Pre- and Post-Monsoon Peak C Intensity at Chakudanga 
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Figure A 27 Pre- and Post-Monsoon Peak C Intensity at Shahispur 
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Figure A 28 Pre- and Post-Monsoon Peak C Intensity at Bele 
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Figure A 29 Pre- and Post-Monsoon Peak C Intensity at Radhanagar 
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Figure A 30 Pre- and Post-Monsoon Peak T Intensity at Chakudanga 
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Figure A 31 Pre- and Post-Monsoon Peak T Intensity at Shahispur 
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Figure A 32 Pre- and Post-Monsoon Peak T Intensity at Bele 
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Figure A 33 Pre- and Post-Monsoon Peak T Intensity at Radhanagar 
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Appendix I - MATLAB code for correcting raw 3D-EEM data from 

Horiba Aqualog, computing fluorescence indices and preparing 

PARAFAC compatible files. 

 

ProcessData.m 
%Harshad Kulkarni / August 2016/ 

%This function is a main function that contains values for different 

%variables, calls other functions to perform designated tasks.  

function ProcessData(InputFolder) 

%%%%%%%%%%%%%% Make Changes here if necessary %%%%%%%%%%%%%%% 

eminc = 2; %increment of emission wavelengths (nm) 

exinc = 5; %increment of excitation wavelengths (nm) 

em = 300:eminc:596; % emission wavelengths range 

ex = 239:exinc:450; % excitation wavelengths range 

%%%%%%%%%%%%%%Do not change anything here onwards%%%%%%%%%%%%%%% 

 

RamanEnd = 450;  

RamanBegin = 370; 

RamanInc = 0.5; 

%corrfact = 0.959242; 

corrfact = 1; 

emlen = length(em); 

exlen = length(ex); 

dfq = input('Is dilution Factor same for all samples? Enter \n 1 for YES \n 0 for NO \n ='); 

if (dfq == 1)  

    df_same = input('Enter Dilution Factor = '); 

    df_default = df_same; 

else 

    df_default = 1; 

end 

intq1 = input('For all samples,is Integration Time exactly SAME as Integration time used for raman? Enter \n 1 for 

YES \n 0 for NO \n = '); 

intq2 = input('Do all samples have exactly SAME integration time? Enter \n 1 for YES \n 0 for NO \n = '); 

if(intq1 == 0) 

    if(intq2 == 1) 

        int_time_raman = input('Enter Integration Time used for Raman = '); 

        intr = int_time_raman ; 

       int_time_sample = input('Enter Integration Time used for Samples = '); 

        ints = int_time_sample; 

    else 

       intr = 1; 

       ints = 1; 

    end 

else 

       intr = 1; 

       ints = 1; 

end 

absq = input('Method for absorbance data extrapolation? Enter \n 0 for Linear \n 1 for Nonlinear (reccommonded) \n 

= '); 

if (absq == 0) 

    disp('You selected linear extrapolation'); 

elseif (absq == 1) 
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    disp('You selected non-linear extrapolation'); 

end 

 

disp('Sorting Raw Data Files'); 

%Calling function "SortData", sorting all .dat files into respective folders 

SortData(InputFolder);  

MainDirList = dir(InputFolder); 

disp('Calculating Raman Area'); 

ramanfolderpath = ''; 

for a = 1:length(MainDirList) 

    filename = MainDirList(a).name; 

    if (strcmp(filename,'raman')==1) 

        ramanfolderpath = [InputFolder filename '\']; 

        % Calling function "raman", calculating Raman Area. 

        raman(ramanfolderpath,corrfact,RamanEnd,RamanBegin,RamanInc);  

        else  

    end 

end 

close all; 

 

disp('Processing Absorption Data'); 

absfolderpath =  ['']; 

for b = 1:length(MainDirList) 

    filename = MainDirList(b).name; 

    if(strcmp(filename,'Abs Spectra Graphs')==1) 

        absfolderpath = [InputFolder filename '\']; 

        % Calling function "ABS", processing absorption data, creating file to be used for inner filter correction. 

        ABS(absfolderpath,eminc,exinc,em,ex,emlen,exlen,dfq,df_default,absq)  

    else 

    end 

end 

 

disp('Processing Blank Data'); 

blankfolderpath = ['']; 

for c = 1:length(MainDirList) 

    

    filename = MainDirList(c).name; 

    if(strcmp(filename,'Waterfall Plot Blank')==1) 

        blankfolderpath = [InputFolder filename '\']; 

        % Calling function "blank", processing blank data. 

        blank(blankfolderpath,ramanfolderpath,absfolderpath,em,ex,ints,intr,intq1,intq2) 

    else 

    end 

end 

 

disp('Processing Sample Data'); 

samplefolderpath = ['']; 

for d = 1:length(MainDirList) 

    filename = MainDirList(d).name; 

    if(strcmp(filename,'Waterfall Plot Sample')==1) 

        samplefolderpath = [InputFolder filename '\']; 

        % Calling function "sample", processing sample data, corrections, saves final EEMs. 

        

sample(InputFolder,samplefolderpath,blankfolderpath,ramanfolderpath,absfolderpath,ex,em,exinc,eminc,exlen,df_d

efault,dfq,ints,intr,intq1,intq2) 
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    else 

    end 

            

end 

disp('Process Completed'); 

end 

 

 

SortData.m 
% Harshad Kulkarni / November 2015 / SDSU Mladenov Research Lab. 

% This function sorts the .dat files according to the different types to be 

% used later for calculations. 

function val = SortData( FolderPath ) 

DirList = dir([FolderPath '*.dat']); 

AllPatterns = {['raman'],['Abs Spectra Graphs'], ['Waterfall Plot Blank'],['Waterfall Plot 

Sample'],['cuvette'],['Emission Spectrum Graph'],['Sample - Blank Waterfall Plot'],['Sample - Blank Contour 

Plot'],['Processed Contour_ IFE_RM_NRM'],['Processed Graph_ IFE_RM_NRM'],['Processed Contour_ 

NRM'],['Processed Graph_ NRM'],['Processed Contour_ IFE'],['Processed Graph_ IFE']}; 

for i = 1:length(DirList) 

    filename = DirList(i,1).name; 

    Pat_Num = GetPattern( filename, AllPatterns ); 

    DestFolderPath = [FolderPath AllPatterns{1,Pat_Num}]; 

    %This creates a folder if it doesn't already exist. 

    mkdir(DestFolderPath);  

    warning('OFF'); 

    Inputfile = [FolderPath filename]; 

    movefile( Inputfile , DestFolderPath );        

end 

addpath(genpath(FolderPath)); 

end 

 

function Pat_Num = GetPattern( filename , AllPatterns ) 

 

for PatternNum = 1: length( AllPatterns ) 

    value = strfind(filename,AllPatterns{1,PatternNum} ); 

    if( value ~= 0 ) 

        Pat_Num = PatternNum; 

    end 

end 

end 

 

raman.m 
%Harshad Kulkarni / November 2015 / SDSU Mladenov Research Lab. 

% This function calculates Raman Area from raw data. 

function raman(ramanfolderpath,corrfact,RamanEnd,RamanBegin,RamanInc) 

RamanDirList = dir([ramanfolderpath '*.dat']); 

for j = 1:length(RamanDirList) 

    [PathStr FileName Ext] = fileparts(RamanDirList(j).name); 

    R = importdata(RamanDirList(j).name); 

    R = R.data; 

    plot(R(:,1),R(:,14)); 

    t = R(:,1); 

    p = R(:,14); 

    x = RamanBegin:RamanInc:RamanEnd; 



229 

 

    y = interp1(t,p,x,'spline'); 

    x = x'; 

    y = y'; 

    Rnew = [x,y]; 

    Rfind = find(Rnew == RamanBegin); 

    Rfindend = find(Rnew == RamanEnd); 

    Rlen = length(Rnew); 

    Raman = Rnew(Rfind:Rfindend,2); 

    %RamanC = Raman.*RC; 

    RamanC = Raman*corrfact; 

    y = RamanC; 

    x = Rnew(Rfind:Rfindend,1); 

    xlen = length(x) - 1; 

    summation = 0;  

    iteration=1; 

 

for k=1:xlen  

    y0 = y(k);  

    y1 = y(k + 1);  

    dx = x(k+1) - x(k);  

    summation = summation + dx * (y0 + y1)/2; 

    iteration = iteration+1; 

end 

BaseRect = (y(1)+y(xlen))/2*(x(xlen)-x(1)); 

RamanArea = summation - BaseRect; 

RAOutputfile = [ramanfolderpath '\' FileName '.csv']; 

%disp('Creating Raman Area File'); 

csvwrite(RAOutputfile,RamanArea); 

end 

end 

 

blank.m 
%Harshad Kulkarni / November 2015 / SDSU Mladenov Research Lab. 

%This function imports, inner filter corrects and raman normalizes the raw 

%blank data. 

%This function uses inner filter correction file created in "ABS.m", raman area 

%calculated in "raman.m" 

function blank(blankfolderpath,ramanfolderpath,absfolderpath,em,ex,ints,intr,intq1,intq2) 

BlankDirList = dir([blankfolderpath '*dat']); 

for j = 1:length(BlankDirList) 

    [PathStr BlankFileName Ext] = fileparts(BlankDirList(j).name);    

    for k = 1:length(BlankFileName) 

        if (BlankFileName(k)==')') 

            N = k; 

        else 

        end 

    end 

    % Importing raw blank data 

    Blankonlyname = BlankFileName(1:N); 

    blankfilepath = [blankfolderpath BlankDirList(j).name]; 

    B = importdata(blankfilepath); 

    [r,c] = size(B.data); 

    FormatData = zeros(r,(c+1)); 

    FormatData(2:end,1) = str2double(B.rowheaders(2:end)); 

    FormatData(:,2:end) = B.data; 
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    B = FormatData; 

    [r,c] = size(B); 

    FormatData = zeros(size(B)); 

    FormatData(:,1) = B(:,1); 

    count = 0; 

    for l = 2:c 

    FormatData(:,l) = B(:,c-count); 

    count = count+1; 

    end 

    B = FormatData; 

    [r,c] = size(B);  

    rows = B(:,1); 

    columns = B(1,:); 

    B1 = B(2:r,:); 

    [r,c] = size(B1); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 

% Finding out "-ve" values and equaling to zeros.    

  %for zr = 1:r  

   %   for zc = 1:c 

           

    %    if(B1(zr,zc)<0) 

     %       B1(zr,zc)=0; 

      %  else 

       % end 

         

      %end 

  %end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 

    % Interpolating raw blank data to bring it in same range of excitation 

    % and emission wavelengths as given in the "ProcessData.m" 

    t = B1(:,1); 

    p = B1(:,2:c); 

    x =em'; 

    y = interp1(t,p,x,'spline'); 

    B1 = {x,[y]}; 

    B1 = cell2mat(B1); 

    B1 = {columns',[B1]'}; 

    B1 = cell2mat(B1); 

    [r,c] = size(B1); 

    B1 = B1(2:r,:); 

     

    t = B1(:,1); 

    p = B1(:,2:c); 

    x = ex'; 

    y = interp1(t,p,x,'spline'); 

    B1 = {x,[y]}; 

    B1 = cell2mat(B1); 

    B1 = B1'; 

    emnew = {0 em}; 

    emnew = cell2mat(emnew); 

    B1 = {emnew', [B1]}; 

    B1 = cell2mat(B1); 

    B = B1; 
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    [r,c] = size(B);   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 

% Finding out "-ve" values and equaling to zeros. 

  for m = 1:r  

      for n = 1:c 

           

        if(B(m,n)<0) 

            B(m,n)=0; 

        else 

        end 

         

      end 

  end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 

B = B(2:r,2:c);  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 

%Applying inner filter correction to blank data. 

Absdirlist = dir([absfolderpath '*.csv']); 

IFCfile = zeros(r,c); 

% Finding IFC file with matching name 

for o = 1:length(Absdirlist) 

       [PathStr IFCfilename Ext] = fileparts(Absdirlist(o).name); 

     for p = 1:length(IFCfilename) 

        if (IFCfilename(p)==')') 

            N = p; 

        else 

        end 

    end  

       IFCfilename = IFCfilename(1:N);  

             

    if (strcmp(IFCfilename, Blankonlyname)==1) 

        %disp(IFCfilename); 

        %disp(IFCfilename); 

        openIFCfilename = [IFCfilename '.csv']; 

        IFCfile = importdata(openIFCfilename);   

    else 

    end 

end 

        [r,c] = size(IFCfile); 

        IFCfile = IFCfile(2:r,2:c); 

        %Applying inner filter effect correction to blank file. 

        Bci = B.*10.^(0.5*IFCfile); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%   

ramanareafilename =  dir([ramanfolderpath '*.csv']);  

%Importing raman area calculated in "raman.m" 

RamanArea = importdata(ramanareafilename.name);   

disp('Current Sample is = '); 

disp(Blankonlyname); 

if (intq1 == 0) 

    if(intq2 == 1) 

        %int_time_raman = input('Enter Integration Time used for Raman = '); 
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        %intr = int_time_raman ; 

        %int_time_blank = input('Enter Integration Time used for Blank = '); 

        %intb = int_time_blank; 

       RamanArea = RamanArea*(ints/intr); 

    else 

        int_time_raman = input('Enter Integration Time used for Raman = '); 

        intr = int_time_raman ; 

        int_time_sample_individual = input('Enter Integration Time used for this Blank = '); 

        ints1 = int_time_sample_individual; 

        RamanArea = RamanArea*(ints1/intr); 

    end 

else 

    RamanArea = RamanArea;         

end 

% Dividing blank file by raman area 

Brc = Bci/RamanArea; 

    Brc = {em',[Brc]}; 

    Brc = cell2mat(Brc); 

    Brc = {[0 ex]',[Brc]'}; 

    Brc = cell2mat(Brc); 

    Brc = Brc'; 

    BLOutputfilepath = [blankfolderpath  Blankonlyname '.csv']; 

    csvwrite(BLOutputfilepath,Brc); 

end 

end 

 

ABS.m 
%Harshad Kulkarni / November 2015 / SDSU Mladenov Research Lab. 

%This function creates inner filter correction file using raw absorbance 

%data. 

%This function also calls another function "suva" which calculates spectral 

%properties for each sample and save it.  

 

function ABS(absfolderpath,eminc,exinc,em,ex,emlen,exlen,dfq,df_default,absq) 

mkdir(absfolderpath,'Results'); 

ResultsPath = [absfolderpath 'Results' '\']; 

resultsfile = [ResultsPath 'Results.txt']; 

fid = fopen(resultsfile,'at'); 

fprintf(fid,'%s\t','"Sample Name"'); 

fprintf(fid,'%s\t','"abs254"'); 

fprintf(fid,'%s\t', '"S275_295"'); 

fprintf(fid,'%s\t', '"S350_400"'); 

fprintf(fid,'%s\n', '"Spectral Slope Ratio"'); 

AbsDirList = dir([absfolderpath '*.dat']); 

mkdir(absfolderpath, 'Graphs'); 

FigureFolder = [absfolderpath 'Graphs' '\']; 

for j = 1:length(AbsDirList) 

    [PathStr, AbsFileName, Ext] = fileparts(AbsDirList(j).name); 

for k = 1:length(AbsFileName) 

        if (AbsFileName(k)==')') 

            N = k; 

        else 

        end 

end 

    % Importing raw data into MATLAB. 
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    Absonlyname = AbsFileName(1:N); 

    disp('Current Sample is = '); 

    disp(Absonlyname); 

     if(dfq == 0) 

        dilution_factor = input('Enter Dilution Factor = '); 

        df = dilution_factor; 

    else 

        df = df_default; 

     end 

    filepath = [absfolderpath AbsDirList(j).name]; 

    abs = importdata(filepath); 

    abs = [abs.data(:,1),abs.data(:,10)]; 

    abs = abs'; 

    [r,c] = size(abs); 

    FormatData = zeros(size(abs)); 

    count = 0; 

    for l = 1:c 

    FormatData(:,l) = abs(:,c-count); 

    count = count+1; 

    end 

    abs = FormatData';  

   [rz,cz] = size(abs); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 

% Finding out "-ve" values and equaling to zeros.    

  for m = 1:rz  

      for n = 1:cz 

           

        if(abs(m,n)<0) 

            abs(m,n)=NaN; 

        else 

        end 

         

      end 

  end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%    

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% 

% Our instrument has 240:450 absorbance data for all previous samples, we 

% need data upto 596 nm, so extrapolating the absorbance data linearly. 

 

x = abs(:,1); 

y = abs(:,2); 

% if linear extrapolation is chosen during interactive questions. 

if (absq == 0) 

    disp(absq) 

xev = ex(1):1:em(end); 

ypred = interp1(x,y,xev,'linear','extrap'); 

xev = xev'; 

ypred = ypred'; 

abs = [xev,ypred]; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% 

%intelegent extrapolation using shape learning modeling (slm) technique. 

elseif (absq == 1) 

    disp(absq) 

[~,~,~,xev,ypred] = slmengine(x,y,'knots',[ex(1):50:em(end)],... 

   'decreasing','on','concaveup','on','rightminvalue',0,'plot','on'); 

    xev = xev'; 

    ypred = ypred'; 

     

    xevnew = ex(1):1:em(end); 

    yprednew = interp1(xev,ypred,xevnew,'spline'); 

    xevnew = xevnew'; 

    yprednew = yprednew'; 

    abs = [xevnew,df*yprednew]; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% 

% Calling function "suva" to calculate and save abs254, S275_295, S350_400 and SR for each sample.  

suva(Absonlyname,resultsfile,abs);  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% 

% Plotting a graph of wavelength (X-axis) vs. absorabance (Y-axis) of 

% actual data and modeled data using shape learning technique.  

h = figure(j); 

plot(xev,df*ypred,'r'); 

hold on 

plot(x,y,'o'); 

%axis([200 600 0 0.01]) 

handle = gca; 

set(handle,'fontsize',14); 

ylabel('Absorbance'); 

xlabel('Wavelength'); 

title(Absonlyname); 

FilePath = [FigureFolder AbsFileName]; 

saveas(h,FilePath,'png'); 

close(h); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% 

 

waves = abs(:,1); 

wave254 = find(waves == 254); 

abs254 = abs(wave254,2); 

 

exabsstart = find(waves == ex(1)); 

exabsend = find(waves == ex(exlen)); 

 

emabsstart = find(waves == em(1)); 

emabsend = find(waves == em(emlen)); 

 

uvlength = 1; 

absint = abs(:,2)/uvlength; 

 

ex_abs=absint(exabsstart:exinc:exabsend,:); 

em_abs=absint(emabsstart:eminc:emabsend,:); 
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for p=1:length(em_abs) 

    for q=1:length(ex_abs) 

        % IFC is the file which is used for inner filter correction.  

        IFC(p,q)=ex_abs(q)+em_abs(p); 

    end 

end 

IFC = IFC(1:p,1:q); 

IFC = IFC/df; 

IFC = {em',[IFC]}; 

IFC = cell2mat(IFC); 

IFC = IFC'; 

IFC = {[0 ex]',[IFC]}; 

IFC = cell2mat(IFC); 

IFC = IFC'; 

UVOutputfilename = Absonlyname; 

UVOutputfilepath = [absfolderpath  UVOutputfilename '.csv']; 

csvwrite(UVOutputfilepath,IFC); 

end 

 

suva.m 
 

%Harshad Kulkarni / November 2015 / SDSU Mladenov Research Lab. 

% This function calculates spectral properties (%(Helms et al., 2008) for each sample and save it.  

function suva(Absonlyname,resultsfile,abs) 

    x = abs(:,1); 

    y = abs(:,2); 

    %Calculating absorbance coefficient 

    abscoeff= y*2.303/0.01; 

    %Calculating natural log of absorbance coefficient 

    lnabscoeff = log(abscoeff); 

    wave254 = find(x == 254); 

    abs254 = abs(wave254,2); 

     

    wave275 = find(x == 275); 

    wave295 = find(x == 295); 

        

    %Calculating slope between 275 nm and 295 nm 

    line275_295 = x(wave275:wave295,1); 

    Y275_295 = lnabscoeff(wave275:wave295,1); 

    meanline275_295 = mean(line275_295); 

    meanY275_295 = mean(Y275_295); 

    num1 = (meanline275_295 - line275_295).*(meanY275_295 - Y275_295); 

    den1 = (meanline275_295 - line275_295).^2; 

    slope275_295 = (sum(num1))/(sum(den1)); 

     

    wave350 = find(x == 350); 

    wave400 = find(x == 400); 

     

    %Calculating slope between 350 nm and 400 nm 

    line350_400 = x(wave350:wave400,1); 

    Y350_400 = lnabscoeff(wave350:wave400,1); 

    meanline350_400 = mean(line350_400); 

    meanY350_400 = mean(Y350_400); 

    num1 = (meanline350_400 - line350_400).*(meanY350_400 - Y350_400); 
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    den1 = (meanline350_400 - line350_400).^2; 

    slope350_400 = (sum(num1))/(sum(den1)); 

     

    %Calculating ratio of S275_295 and S350_400     

    SR = slope275_295 / slope350_400;  

    fid = fopen(resultsfile,'at'); 

    fprintf(fid,'%s\t',Absonlyname); 

    fprintf(fid,'%f\t',abs254); 

    fprintf(fid,'%f\t', slope275_295); 

    fprintf(fid,'%f\t', slope350_400); 

    fprintf(fid,'%f\n', SR); 

end    

 

 

 

% This is alternative code for the same purpose, however please use the above 

% code. 

% function suva(suvainput,df,suvaonlyname,Absonlyname,resultsfile) 

% %DirList = dir([suvainput '*.dat']); 

% %mkdir(suvainput,'Results'); 

% %ResultsPath = [suvainput 'Results' '\']; 

% %resultsfile = [ResultsPath 'Results.txt']; 

% %fid = fopen(resultsfile,'at'); 

% %fprintf(fid,'%s\t','"Sample Name"'); 

% %fprintf(fid,'%s\t','"abs254"'); 

% %fprintf(fid,'%s\t', '"S275_295"'); 

% %fprintf(fid,'%s\t', '"S350_400"'); 

% %fprintf(fid,'%s\n', '"Spectral Slope Ratio"'); 

% %for i = 1:length(DirList) 

%  %   [PathStr FileName Ext] = fileparts(DirList(i).name); 

%   %  for n = 1:length(FileName) 

%   %      if (FileName(n)=='-') 

%   %          N = n-1; 

%   %      else 

%   %      end 

%   %  end  

%   %  onlyname = FileName(1:N); 

%     filepath = [suvainput suvaonlyname]; 

%     abs = importdata(filepath); 

%     abs = [abs.data(:,1),abs.data(:,10)]; 

%     abs = abs'; 

%     [r,c] = size(abs); 

%     FormatData = zeros(size(abs)); 

%     count = 0; 

%     for j = 1:c 

%     FormatData(:,j) = abs(:,c-count); 

%     count = count+1; 

%     end 

%     abs = FormatData';  

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 

% % The absorbance data associated with 3D EEM sample, is not compatible. 

% % Hence interpolating it with increment of 1nm. 

%     t = abs(:,1); 
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%     p = abs(:,2); 

%     x = 240:1:600; 

%     y = interp1(t,p,x,'linear','extrap'); 

%     x = x'; 

%     y = y'; 

%     abs = [x,y]; 

%     abs = [abs(:,1),df*abs(:,2)]; 

%     abscoeff= abs(:,2)*2.303/0.01; 

%     lnabscoeff = log(abscoeff); 

%     %plot(x,y); 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%  

%     waves = abs(:,1); 

%     wave254 = find(waves == 254); 

%     abs254 = abs(wave254, 2); 

%      

%     wave275 = find(waves == 275); 

%     wave295 = find(waves == 295); 

%         

%     line275_295 = x(wave275:wave295,1); 

%     Y275_295 = lnabscoeff(wave275:wave295,1); 

%     meanline275_295 = mean(line275_295); 

%     meanY275_295 = mean(Y275_295); 

%     num1 = (meanline275_295 - line275_295).*(meanY275_295 - Y275_295); 

%     den1 = (meanline275_295 - line275_295).^2; 

%     slope275_295 = (sum(num1))/(sum(den1)); 

%      

%     wave350 = find(waves == 350); 

%     wave400 = find(waves == 400); 

%      

%     line350_400 = x(wave350:wave400,1); 

%     Y350_400 = lnabscoeff(wave350:wave400,1); 

%     meanline350_400 = mean(line350_400); 

%     meanY350_400 = mean(Y350_400); 

%     num1 = (meanline350_400 - line350_400).*(meanY350_400 - Y350_400); 

%     den1 = (meanline350_400 - line350_400).^2; 

%     slope350_400 = (sum(num1))/(sum(den1)); 

%      

%     SR = slope275_295 / slope350_400; %(Helms et al., 2008) 

%         

%     fid = fopen(resultsfile,'at'); 

%     fprintf(fid,'%s\t',Absonlyname); 

%     fprintf(fid,'%f\t',abs254); 

%     fprintf(fid,'%f\t', slope275_295); 

%     fprintf(fid,'%f\t', slope350_400); 

%     fprintf(fid,'%f\n', SR); 

% end    

 

sample.m 
%Harshad Kulkarni / November 2015 / SDSU Mladenov Research Lab. 

%This function imports, inner filter corrects, raman normalizes, blank 

%subtracts and Rayleigh masks the raw sample data. 

%This function calculates all fluorescence indices and peak intensities. 

%This function refers to "raman.m", "ABS.m" and "blank.m" for raman area, 
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%inner filter correction file and processed blank file respectively.  

function 

sample(InputFolder,samplefolderpath,blankfolderpath,ramanfolderpath,absfolderpath,ex,em,exinc,eminc,exlen,df_d

efault,dfq,ints,intr,intq1,intq2) 

SampleDirList = dir([samplefolderpath '*dat']); 

mkdir(InputFolder,'Results'); 

ResultsPath = [InputFolder 'Results' '\']; 

resultsfile = [ResultsPath 'Results.txt']; 

fid = fopen(resultsfile,'at'); 

fprintf(fid,'%s\t','"Sample Name"','"Fluroscence Index"','"Freshness Index"','"Humification 

Index"','"Peak_A(ex260,maxem(380:460))"','"Peak_B(ex275,em310)"','"Peak_T(ex275,em340)"','"Peak_C(ex350,m

axem(420:480))"','"Peak_M(ex312,maxem(380:420))"','"CDOM(ex325,em470)"','"Tryptophan(ex285,em350)"'); 

fprintf(fid,'%s\n','"MaxEM@370nm"'); 

 

mkdir(ResultsPath, 'Data4Parafac'); 

ParafacDataPath = [ResultsPath 'Data4Parafac' '\']; 

 

mkdir(ResultsPath, 'EEM Graphs'); 

mkdir(ResultsPath, 'Indices'); 

mkdir(ResultsPath, 'Peaks'); 

mkdir(ResultsPath, 'C3'); 

FigureFolder = [ResultsPath 'EEM Graphs' '\']; 

FigureFolder2 = [ResultsPath 'Indices' '\']; 

FigureFolder3 = [ResultsPath 'Peaks' '\']; 

FigureFolder4 = [ResultsPath 'C3' '\']; 

for j = 1:length(SampleDirList) 

    [PathStr, SampleFileName, Ext] = fileparts(SampleDirList(j).name);         

    for k = 1:length(SampleFileName) 

        if (SampleFileName(k)==')') 

            N = k; 

        else 

        end 

    end  

    % Importing raw sample data 

    Sampleonlyname = SampleFileName(1:N);   

    fprintf(fid,'%s\t',Sampleonlyname); 

    filepath = [samplefolderpath SampleDirList(j).name]; 

    A = importdata(filepath); 

    [r,c] = size(A.data); 

    FormatData = zeros(r,(c+1)); 

    FormatData(2:end,1) = str2double(A.rowheaders(2:end)); 

    FormatData(:,2:end) = A.data; 

    A = FormatData; 

    [r,c] = size(A); 

    FormatData = zeros(size(A)); 

    FormatData(:,1) = A(:,1); 

    count = 0; 

    for l = 2:c 

    FormatData(:,l) = A(:,c-count); 

    count = count+1; 

    end 

    A = FormatData; 

    [r,c] = size(A); 

    rows = A(:,1); 

    columns = A(1,:);  
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    A1 = A(2:r,:);% picture taken 1 

    [r,c] = size(A1); 

     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 

% Finding out "-ve" values and equaling to zeros.    

  %for zr = 1:r  

   %   for zc = 1:c 

           

    %    if(A1(zr,zc)<0) 

          %  A1(zr,zc)=0; 

     %   else 

      %  end 

         

      %end 

  %end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 

    % Interpolating raw sample data to bring it in same range of excitation 

    % and emission wavelengths as given in the "ProcessData.m" 

    t = A1(:,1); 

    p = A1(:,2:c); 

    x =em'; 

    y = interp1(t,p,x,'spline'); 

    A1 = {x,[y]}; 

    A1 = cell2mat(A1); 

    A1 = {columns',[A1]'}; 

    A1 = cell2mat(A1); 

     

    [r,c] = size(A1); 

    A1 = A1(2:r,:); 

     

    t = A1(:,1); 

    p = A1(:,2:c); 

    x = ex'; 

    y = interp1(t,p,x,'spline'); 

    A1 = {x,[y]}; 

    A1 = cell2mat(A1); 

    A1 = A1'; 

    emnew = {0 em}; 

    emnew = cell2mat(emnew); 

    A1 = {emnew', [A1]}; 

    A1 = cell2mat(A1); 

    A = A1; % picture taken 2 

    [rA,cA] = size(A);   

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 

% Finding out "-ve" values and equaling to zeros.     

  for m = 1:rA  

      for n = 1:cA 

           

       if(A(m,n)<0) 

            A(m,n)=0; 

        else 
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        end 

         

      end 

  end % picture taken 3 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 

    ROWS = A(1,2:cA); 

    COLUMNS = A(2:rA,1); 

    A = A(2:rA,2:cA); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 

%Applying inner filter correction to sample data. 

    Absdirlist = dir([absfolderpath '*.csv']); 

    IFCfile = zeros(rA,cA); 

% Finding IFC file with matching name 

for o = 1:length(Absdirlist) 

     [PathStr, IFCfilename, Ext] = fileparts(Absdirlist(o).name); 

    for p = 1:length(IFCfilename) 

        if (IFCfilename(p)==')') 

            N = p; 

        else 

        end 

    end 

    IFCfilename = IFCfilename(1:N); 

    if (strncmp(IFCfilename, Sampleonlyname,N)==1) 

      openIFCfile = [IFCfilename '.csv']; 

      IFCfilepath = [absfolderpath openIFCfile]; 

      IFCfile = importdata(IFCfilepath); 

    else 

    end 

end 

   [r,c] = size(IFCfile); 

%Applying inner filter effect correction to sample file. 

   IFCfile = IFCfile(2:r,2:c); 

   Aci = A.*10.^(0.5*IFCfile); % picture taken 4 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 

   ramanareafilename =  dir([ramanfolderpath '*.csv']); 

%Importing raman area calculated in "raman.m" 

   RamanArea = importdata(ramanareafilename.name); 

   disp('Current Sample is = '); 

   disp(Sampleonlyname); 

if (intq1 == 0) 

    if(intq2 == 1) 

        %int_time_raman = input('Enter Integration Time used for Raman = '); 

        %intr = int_time_raman ; 

        %int_time_sample = input('Enter Integration Time used for Samples = '); 

        %ints = int_time_sample;  

        RamanArea = RamanArea*(ints/intr); 

    else 

        disp('Current Sample is = '); 

        disp(Sampleonlyname); 

        int_time_raman = input('Enter Integration Time used for Raman = '); 

        intr = int_time_raman ; 

        int_time_sample_individual = input('Enter Integration Time used for this sample = '); 
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        ints1 = int_time_sample_individual; 

        RamanArea = RamanArea*(ints1/intr); 

    end 

else 

    RamanArea = RamanArea;         

end 

    disp(RamanArea); 

    % Dividing sample file by raman area 

    Acir = Aci/RamanArea; % Picture taken 5  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 

% Finding processed blank file with matching name from "blank.m" 

    bldirlist =  dir([blankfolderpath '*.csv']); 

    for q = 1:length(bldirlist) 

       [PathStr, blankfilename, Ext] = fileparts(bldirlist(q).name); 

       for r = 1:length(blankfilename) 

           if(blankfilename(r)==')') 

               N =r; 

           else 

           end 

       end 

       blankfilename = blankfilename(1:N); 

       if(strncmp(blankfilename,Sampleonlyname,N)==1) 

           openblankfile = [blankfilename '.csv']; 

           blankfilepath = [blankfolderpath openblankfile]; 

%Importing processed blank data from "blank.m" 

          Blank = importdata(blankfilepath); 

       else 

       end 

    end 

    [r,c] = size(Blank); 

    Blank = Blank(2:r,2:c);% picture taken 6 

% Subtracting blank from the sample.  

    Asub = Acir - Blank; % Picture taken 7 

    if(dfq == 0) 

        dilution_factor = input('Enter Dilution Factor = '); 

        df = dilution_factor; 

    else 

        df = df_default; 

    end 

% Correction for dilution factor         

    Adil = Asub*df;  

    Adil2 =Adil; 

    [rAdil2,cAdil2]=size(Adil2); 

%%%%%%%%%%%%%%%%%% 

% Finding out "-ve" values and equaling to zeros.     

  for m = 1:rAdil2  

      for n = 1:cAdil2 

           

       if(Adil2(m,n)<0) 

            Adil2(m,n)=0; 

        else 

        end 

         

      end 
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  end % picture taken 3 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%    

    % We do not use this part, but DO NOT DELETE.  

    %ParafacDatafilepath = [ParafacDataPath Sampleonlyname '.csv']; 

    %csvwrite(ParafacDatafilepath,Adil2); 

    %Picture taken 8 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 

% Applying 1st and 2nd order Rayleigh masking to inner filter corrected, 

% raman normalized and blank subtracted data. 

    Slitwidth = 6; 

    Acut = Adil; 

    Acut = {ROWS',[Acut]'}; 

    Acut = cell2mat(Acut); 

    Acut = Acut'; 

    emnew = {0,em}; 

    emnew = cell2mat(emnew); 

    Acut = {emnew',Acut}; 

    Acut = cell2mat(Acut); 

    %[r,c] = size(Acut); 

    %t = Acut(:,1); 

    %p = Acut(:,2:c); 

    %x = exsample'; 

    %y = interp1(t,p,x,'spline'); 

    %Acut = y;    

    %Acut = {exsample',[Acut]}; 

    %Acut = cell2mat(Acut); 

    %Acut = Acut'; 

    %emsamplenew = {0,em}; 

    %emsamplenew = cell2mat(emsamplenew); 

    %Acut = {emsamplenew',[Acut]}; 

    %Acut = cell2mat(Acut);    

    [r,c] = size(Acut); 

    Acut1 = Acut(2:r,2:c); 

    Asize = size(Acut1); 

    ylen = Asize(1); 

    xlen = Asize(2); 

    x = ex; 

    y = em; 

     xend = x(xlen); 

    yend = y(ylen); 

    [xi, yi] = meshgrid(x(1):1:xend,y(1):1:yend); 

    %warning('OFF'); 

    zi = interp2(x, y, Adil, xi, yi, 'spline'); 

    exnew = xi(1,:); 

    emnew1 = yi(:,1); 

    exnewlen = length(exnew);  

     

for s=1:exnewlen 

    M = find(emnew1<(exnew(s)+Slitwidth*4)); 

    zi(M,s)=NaN; 

end 

for t=1:exnewlen 

    N = find(emnew1>(exnew(t)*2-Slitwidth*4)); 
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    zi(N,t)=NaN; 

end 

%picture taken 9 

Acut1 = zi; 

%[rAcut1,cAcut1]=size(Acut1); 

%%%%%%%%%%%%%%%%%% 

% Finding out "-ve" values and equaling to zeros.     

  %for m = 1:rAcut1 

   %   for n = 1:cAcut1 

           

    %   if(Acut1(m,n)<0) 

        %    Acut1(m,n)=0; 

     %   else 

      %  end 

         

      %end 

  %end  

%%%%%%%%%%%%%%%    

%Adil = Acut1; 

%%%%%%%%%%%%%%%%%% 

% Printing Emission-Excitation contour map and saving it to a file 

h = figure(j); 

%subplot(1,2,1); 

contourf(exnew,emnew1,Acut1,30); 

handle = gca; 

set(handle,'fontsize', 28); 

colormap(gray); 

cmp = colormap; 

cmp = flipud(cmp); 

colormap(cmp); 

% Comment the line 298 if you'd like to set the Y axis to a fixed intensity 

% number, uncomment the lines 299 and 300, enter desired intensity number 

% in line 299. 

caxis([0, max(max(Acut1))]);  

%caxis([0, 1]); 

%caxis('manual'); 

H = colorbar('vert'); 

set(H,'fontsize',24); 

ylabel('Em. (nm)','fontsize',28); 

xlabel('Ex. (nm)','fontsize',28); 

title(Sampleonlyname); 

FilePath = [FigureFolder Sampleonlyname]; 

saveas(h,FilePath,'png'); 

close(h); 

%%%%%%%%%%%%%%%%%%  

% Plotting emission intensities used to calculate FI, FrI and HIX in single 

% graph.  

h = figure(j); 

% Plotting emission for FI 

ex370 = find(exnew == 370); 

plot(emnew1,Acut1(:,ex370),'black') 

line370 = Acut1(:,ex370); 

xmaxEm370=emnew1(Acut1(:,ex370) == max(Acut1(:,ex370))); 

ymaxEm370=max(line370); 

text(xmaxEm370,ymaxEm370,['370 (FI)'],... 
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 'VerticalAlignment','bottom',... 

 'HorizontalAlignment','center',... 

 'FontSize',8); 

hold on 

 

% Plotting emission for FrI 

ex310 = find(exnew == 310); 

plot(emnew1,Acut1(:,ex310),'blue') 

line310 = Acut1(:,ex310); 

xmaxEm310=emnew1(Acut1(:,ex310) == max(Acut1(:,ex310))); 

ymaxEm310=max(line310); 

text(xmaxEm310,ymaxEm310,['310 (FrI)'],... 

 'VerticalAlignment','bottom',... 

 'HorizontalAlignment','center',... 

 'FontSize',8); 

hold on 

 

% Plotting emission for HIX 

ex254 = find(exnew == 254); 

plot(emnew1,Acut1(:,ex254),'red') 

line254 = Acut1(:,ex254); 

xmaxEm254=emnew1(Acut1(:,ex254) == max(Acut1(:,ex254))); 

ymaxEm254=max(line254); 

text(xmaxEm254,ymaxEm254,['254 (HIX)'],... 

 'VerticalAlignment','bottom',... 

 'HorizontalAlignment','center',... 

 'FontSize',8); 

xlabel('Emission Wavelength, nm'); 

ylabel('Emission Intensity'); 

title(Sampleonlyname); 

FilePath2 = [FigureFolder2 Sampleonlyname]; 

saveas(h,FilePath2,'png'); 

close(h); 

 

%%%%%%%%%%%%%%%%%% 

% Calculating and saving values of FI (Cory and McKnight,2005) 

em470 = find(emnew1 == 470); 

em520 = find(emnew1 == 520); 

FI = Acut1(em470,ex370)./Acut1(em520,ex370); 

if (FI>0) 

fprintf(fid,'%f\t',FI);  

else  

    fprintf(fid,'%f\t',0); 

end 

 

% Calculating and saving values of FrI (Parlanti et al., 2000)  

em380 = find(emnew1 == 380); 

em420 = find(emnew1 == 420); 

em435 = find(emnew1 == 435); 

FrI = Acut1(em380,ex310)/max(Acut1(em420:em435,ex310)); 

if (FrI>0) 

fprintf(fid,'%f\t',FrI);  

else  

    fprintf(fid,'%f\t',0); 

end 
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% Calculating and saving values of HIX (Zsolnay et al., 1999)  

em435 = find(emnew1(:,1) == 435); 

em480 = find(emnew1(:,1) == 480); 

RedHum = line254(em435:em480,1); 

for ir = 1:length(RedHum) 

    if(RedHum(ir)<0) 

       RedHum(ir)=0; 

    else 

     end 

end 

em300 = find(emnew1(:,1) == 300); 

em345 = find(emnew1(:,1) == 345); 

BlueHum = line254(em300:em345,1); 

for ib = 1:length(BlueHum) 

    if(BlueHum(ib)<0) 

        BlueHum(ib)=0; 

    else 

     end 

end 

RedA = trapz(RedHum); 

BlueA = trapz(BlueHum); 

% Formulation by Zsolnay et al., 1999  

HIX = RedA/BlueA;  

% Formulation by Ohno, 2002 

%HIX = RedA/(RedA+BlueA); %Ohno 

if (HIX>0) 

fprintf(fid,'%f\t',HIX);  

else  

    fprintf(fid,'%f\t',0); 

end 

%%%%%%%%%%%%%%%%%% 

% Plotting emission intensities used to calculate Peaks A, B, T, C, and M 

% in single graph.  

 

h = figure(j); 

 

% Plotting emission for Peak A 

ex260 = find(exnew == 260); 

plot(emnew1,Acut1(:,ex260),'black') 

line260 = Acut1(:,ex260); 

xmaxEm260=emnew1(Acut1(:,ex260) == max(Acut1(:,ex260))); 

ymaxEm260=max(line260); 

text(xmaxEm260,ymaxEm260,['260 (A)'],... 

 'VerticalAlignment','bottom',... 

 'HorizontalAlignment','center',... 

 'FontSize',8); 

hold on 

 

% Plotting emission for Peaks B and T 

ex275 = find(exnew == 275); 

plot(emnew1,Acut1(:,ex275),'blue') 

line275 = Acut1(:,ex275); 

xmaxEm275=emnew1(Acut1(:,ex275) == max(Acut1(:,ex275))); 

ymaxEm275=max(line275); 



246 

 

text(xmaxEm275,ymaxEm275,['275 (B&T)'],... 

 'VerticalAlignment','bottom',... 

 'HorizontalAlignment','center',... 

 'FontSize',8); 

hold on 

 

% Plotting emission for Peak C 

ex350 = find(exnew == 350); 

plot(emnew1,Acut1(:,ex350),'red') 

line350 = Acut1(:,ex350); 

xmaxEm350=emnew1(Acut1(:,ex350) == max(Acut1(:,ex350))); 

ymaxEm350=max(line350); 

text(xmaxEm350,ymaxEm350,['350 (C)'],... 

 'VerticalAlignment','bottom',... 

 'HorizontalAlignment','center',... 

 'FontSize',8); 

hold on 

 

% Plotting emission for Peak M 

ex312 = find(exnew == 312); 

plot(emnew1,Acut1(:,ex312),'black') 

line312 = Acut1(:,ex312); 

xmaxEm312=emnew1(Acut1(:,ex312) == max(Acut1(:,ex312))); 

ymaxEm312=max(line312); 

text(xmaxEm312,ymaxEm312,['312 (M)'],... 

 'VerticalAlignment','bottom',... 

 'HorizontalAlignment','center',... 

 'FontSize',8); 

hold on 

%ex315 = find(exnew == 315); 

%plot(emnew1,Acut1(:,ex315),'black') 

%line315 = Acut1(:,ex315); 

%xmaxEm315=emnew1(Acut1(:,ex315) == max(Acut1(:,ex315))); 

%ymaxEm315=max(line315); 

%text(xmaxEm315,ymaxEm315,['315 (X)'],... 

% 'VerticalAlignment','bottom',... 

% 'HorizontalAlignment','center',... 

% 'FontSize',8); 

%hold on 

%ex355 = find(exnew == 355); 

%plot(emnew1,Acut1(:,ex355),'black') 

%line355 = Acut1(:,ex355); 

%xmaxEm355=emnew1(Acut1(:,ex355) == max(Acut1(:,ex355))); 

%ymaxEm355=max(line355); 

%text(xmaxEm355,ymaxEm355,['355 (Cz)'],... 

% 'VerticalAlignment','bottom',... 

% 'HorizontalAlignment','center',... 

% 'FontSize',8); 

%hold on 

%ex250 = find(exnew == 250); 

%plot(emnew1,Acut1(:,ex250),'black') 

%line250 = Acut1(:,ex250); 

%xmaxEm250=emnew1(Acut1(:,ex250) == max(Acut1(:,ex250))); 

%ymaxEm250=max(line250); 

%text(xmaxEm250,ymaxEm250,['250 (Az)'],... 
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% 'VerticalAlignment','bottom',... 

% 'HorizontalAlignment','center',... 

% 'FontSize',8); 

xlabel('Emission Wavelength, nm'); 

ylabel('Emission Intensity'); 

title(Sampleonlyname); 

FilePath3 = [FigureFolder3 Sampleonlyname]; 

saveas(h,FilePath3,'png'); 

close(h); 

%%%%%%%%%%%%%%%%%% 

% Plotting emission intensities used to calculate Peaks CDOM and Tryp 

% similar to those measured by C3 Submersible fluorometer 

h = figure(j); 

 

% Plotting emission for Peak CDOM 

ex325 = find(exnew == 325); 

plot(emnew1,Acut1(:,ex325),'black') 

line325 = Acut1(:,ex325); 

xmaxEm325=emnew1(Acut1(:,ex325) == max(Acut1(:,ex325))); 

ymaxEm325=max(line325); 

text(xmaxEm325,ymaxEm325,['325 (CDOM)'],... 

 'VerticalAlignment','bottom',... 

 'HorizontalAlignment','center',... 

 'FontSize',8); 

hold on 

 

% Plotting emission for Peak Tryp 

ex285 = find(exnew == 285); 

plot(emnew1,Acut1(:,ex285),'black') 

line285 = Acut1(:,ex285); 

xmaxEm285=emnew1(Acut1(:,ex285) == max(Acut1(:,ex285))); 

ymaxEm285=max(line285); 

text(xmaxEm285,ymaxEm285,['285 (Tryp)'],... 

 'VerticalAlignment','bottom',... 

 'HorizontalAlignment','center',... 

 'FontSize',8); 

hold on 

xlabel('Emission Wavelength, nm'); 

ylabel('Emission Intensity'); 

title(Sampleonlyname); 

FilePath4 = [FigureFolder4 Sampleonlyname]; 

saveas(h,FilePath4,'png'); 

close(h); 

 

%%%%%%%%%%%%%%%%%% 

% Calculating and saving values of Peak A (Coble, 1996) 

em380 = find(emnew1 == 380); 

em460 = find(emnew1 == 460); 

Peak_A = max(Acut1(em380:em460,ex260)); 

if (Peak_A>0) 

fprintf(fid,'%f\t',Peak_A);  

else  

    fprintf(fid,'%f\t',0); 

end 
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% Calculating and saving values of Peak B (Coble, 1996) 

em310 = find(emnew1 == 310); 

Peak_B = Acut1(em310,ex275); 

if (Peak_B>0) 

fprintf(fid,'%f\t',Peak_B);  

else  

    fprintf(fid,'%f\t',0); 

end 

 

% Calculating and saving values of Peak T (Coble, 1996) 

em340 = find(emnew1 == 340); 

Peak_T = Acut1(em340,ex275); 

if (Peak_T>0) 

fprintf(fid,'%f\t',Peak_T);  

else  

    fprintf(fid,'%f\t',0); 

end 

 

% Calculating and saving values of Peak C (Coble, 1996) 

em420 = find(emnew1 == 420); 

em480 = find(emnew1 == 480); 

Peak_C = max(Acut1(em420:em480,ex350)); 

if (Peak_C>0) 

fprintf(fid,'%f\t',Peak_C);  

else  

    fprintf(fid,'%f\t',0); 

end 

 

% Calculating and saving values of Peak M (Coble, 1996) 

em380 = find(emnew1 == 380); 

em420 = find(emnew1 == 420); 

Peak_M = max(Acut1(em380:em420,ex312)); 

if (Peak_M>0) 

fprintf(fid,'%f\t',Peak_M);  

else  

    fprintf(fid,'%f\t',0); 

end 

 

% Calculating and saving values of Peak CDOM 

em470 = find(emnew1 == 470); 

CDOM = Acut1(em470,ex325); 

if (CDOM>0) 

fprintf(fid,'%f\t',CDOM);  

else  

    fprintf(fid,'%f\t',0); 

end 

 

% Calculating and saving values of Peak Tryp 

em350 = find(emnew1 == 350); 

Tryp = Acut1(em350,ex285); 

if (Tryp>0) 

fprintf(fid,'%f\t',Tryp);  

else  

    fprintf(fid,'%f\t',0); 

end 
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fprintf(fid,'%f\n',xmaxEm370);  

%ex315=find(exnew==315); 

%em396=find(emnew1==396); 

%Peak_X = Acut1(em396,ex315); 

%if (Peak_X>0) 

%fprintf(fid,'%f\t',Peak_X);  

%else  

%    fprintf(fid,'%f\t',0); 

%end 

 

 

%ex355=find(exnew==355); 

%em473=find(emnew1==473); 

%Peak_Cz = Acut1(em473,ex355); 

%if (Peak_Cz>0) 

%fprintf(fid,'%f\t',Peak_Cz);  

%else  

%    fprintf(fid,'%f\t',0); 

%end  

 

%ex250=find(exnew==250); 

%em477=find(emnew1==477); 

%Peak_Az = Acut1(em477,ex250); 

%if (Peak_Az>0) 

%fprintf(fid,'%f\n',Peak_Az);  

%else  

%    fprintf(fid,'%f\n',0); 

%end 

  

%%%%%%%%%%%%%%%%%% 

% Add list of excitation wavelengths and emission wavelengths in 1st row 

% and 1st column of the matrix.  

A = Acut1; 

A = {emnew1, A}; 

A = cell2mat(A); 

A =  A'; 

exnew = {0,exnew}; 

exnew = cell2mat(exnew); 

A = {exnew',A}; 

A = cell2mat(A); 

A = A'; 

%%%%%%%%%%%%%%%%%% 

% Resetting the data format as required for PARAFAC model files.  

    Ap = A'; 

    t = Ap(2:end,1); 

    p = Ap(2:end,2:end); 

    x =ex(1):exinc:ex(end); 

    x = x'; 

    y = interp1(t,p,x,'spline'); 

    Ap = {x,[y]}; 

    Ap = cell2mat(Ap); 

    Ap = Ap'; 

    emnew1 = emnew1'; 

    emnew1 = [0 emnew1]; 



250 

 

    emnew1 = emnew1'; 

    Ap = [emnew1,Ap]; 

     

    t = Ap(2:end,1); 

    p = Ap(2:end,2:end); 

   x = em(1):eminc:em(end); 

   x=x'; 

   y = interp1(t,p,x,'spline'); 

   Ap = {x,[y]}; 

   Ap = cell2mat(Ap); 

   Ap = Ap'; 

   Apex = ex(1):exinc:ex(end); 

   Apex = [0 Apex]; 

   Ap = [Apex',Ap]; 

   Ap = Ap'; 

 

   Slitwidth = 6; 

   Apcut = Ap(2:end,2:end); 

   Apsize = size(Apcut); 

   ylen = Apsize(1); 

   xlen = Apsize(2); 

   x = ex(1):exinc:ex(end); 

   y = em(1):eminc:em(end); 

   xend = x(xlen); 

   yend = y(ylen); 

   [xi, yi] = meshgrid(x(1):exinc:xend,y(1):eminc:yend); 

   %warning('OFF'); 

   zi = interp2(x, y, Apcut, xi, yi, 'spline'); 

   exnew = xi(1,:); 

   emnew2 = yi(:,1); 

   exnewlen = length(exnew);  

     

for s=1:exnewlen 

    M = find(emnew2<(exnew(s)+Slitwidth*4)); 

    zi(M,s)=NaN; 

end 

for t=1:exnewlen 

    N = find(emnew2>(exnew(t)*2-Slitwidth*4)); 

    zi(N,t)=NaN; 

end 

%picture taken 9 

Apcut1 = zi;          

     

% Saving a file to be used in PARAFAC model.  

ParafacDatafilepath = [ParafacDataPath Sampleonlyname '.csv']; 

csvwrite(ParafacDatafilepath,Apcut1); 

SampleOutputfilepath = [samplefolderpath  Sampleonlyname '.csv']; 

csvwrite(SampleOutputfilepath,A);   

end 

disp('Total Number of Samples = '); 

disp(j); 

end 

 

dataprep4pf.m 
% Harshad Kulkarni / November 2015 / SDSU Mladenov Research Lab. 
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% This function extracts data from all PARAFAC files created in "sample.m" 

% and saves it in single .csv file. 

function dataprep4pf(FolderPath) 

%%%%%%%%%%%%%% Make Changes here if necessary %%%%%%%%%%%%%%% 

eminc = 2; %increment of emission wavelengths (nm) 

exinc = 5; %increment of excitation wavelengths (nm) 

em = 300:eminc:596; % emission wavelengths range 

ex = 240:exinc:450; % excitation wavelengths range 

%%%%%%%%%%%%%%Do not change anything here onwards%%%%%%%%%%%%%%% 

DirList = dir([FolderPath '*.csv']); 

mkdir(FolderPath, 'PF'); 

PFpath = [FolderPath 'PF' '\']; 

MaxInt = [PFpath 'MaxInt.txt']; 

fid = fopen(MaxInt,'at'); 

fprintf(fid,'%s\t','"Sample Name"'); 

fprintf(fid,'%s\n','"MaxInt"'); 

PFfilepath = [PFpath 'fl' '.csv']; 

csvwrite(PFfilepath,zeros(149,43)); 

Exfilepath = [PFpath 'ex' '.csv']; 

csvwrite(Exfilepath,zeros(43,1)); 

Emfilepath = [PFpath 'em' '.csv']; 

csvwrite(Emfilepath,zeros(149,1)); 

normoption = input('Do you want to normalize the EEMs? Enter \n 1 for YES \n 0 for NO \n = '); 

switch(normoption==1) 

% Divides the EEM by the maximum intensity in that EEM to normalize each 

% EEM to 1.  

    case 1  

        for i = 1:length(DirList) 

  % [PathStr, FileName, Ext] = fileparts(DirList(i).name);  

   fl1 = csvread(DirList(i).name); 

   fprintf(fid,'%s\t',DirList(i).name);  

   %sq = [fl1].^2; 

   %Sum = sum(sq); 

   %S = sum(Sum); 

   %fl = fl1/S; 

    

   mint = max(fl1); 

   maxint = max(mint); 

   fprintf(fid,'%f\n',maxint);  

   fl = fl1/maxint;    

   dlmwrite(PFfilepath, fl,'-append'); 

        end 

 

    case 0 

        for i = 1:length(DirList) 

  % [PathStr, FileName, Ext] = fileparts(DirList(i).name);  

   fl = csvread(DirList(i).name); 

   dlmwrite(PFfilepath, fl,'-append'); 

        end 

end 

 fl = csvread(PFfilepath); 

 fl = fl(150:end,:); 

 dlmwrite(PFfilepath,fl,'roffset',1); 

 dlmwrite(Exfilepath,ex','roffset',1); 

 dlmwrite(Emfilepath,em','roffset',1); 
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end 

 

loadpfdata.m 
% Harshad Kulkarni / November 2015 / SDSU Mladenov Research Lab. 

% This function compiles extracted data into a data structure  

function loadpfdata(~) 

%cd InputFolder; 

clear; 

clc; 

% Reads excitation wavelengths 

OriginalData.Ex = csvread('Ex.csv',1);  

% Reads excitation wavelengths 

OriginalData.Em = csvread('Em.csv',1);  

% Reads fluorescence data 

OriginalData.X= csvread('fl.csv',1); 

 

%identifys the number of Excitation wavelengths 

OriginalData.nEx=(size(OriginalData.Ex,1));  

%identifys the number of Emission wavelengths 

OriginalData.nEm=(size(OriginalData.Em,1));  

%identifys the number of samples 

OriginalData.nSample=(size(OriginalData.X,1)); OriginalData.nSample=OriginalData.nSample/OriginalData.nEm;  

 

% Convert data into the data structure 

OriginalData.X=(reshape(OriginalData.X',OriginalData.nEx,OriginalData.nEm,OriginalData.nSample)); 

OriginalData.X=permute(OriginalData.X,[3 2 1]); 

 

%plots EEMs of the data with a 0.2s pause between plots. 

%for i=(1:OriginalData.nSample), pause(0.2), 

%contourf(OriginalData.Ex,OriginalData.Em,(reshape(OriginalData.X((i),:),OriginalData.nEm,OriginalData.nEx))), 

colorbar 

%title((i)) 

%xlabel('Ex. (nm)') 

%ylabel('Em. (nm)') 

%end 

%deletes unwanted items from workspace 

clear i; 

%saves workspace 

save pf.mat; 

end    

     

     

     


