# Identifying Gaps in Rabies Post-Exposure Prophylaxis in Hunan Province, China

Marie Keith MPH Candidate Kansas State University April 18, 2018

## The Global Burden of Canine Rabies

#### Hamspon et al. 2015

Est. 59,000 deaths annually \*Under-reporting\*

> 3.7 million DALYs/ year

8.6 Billion USD/ year PEP costs: 20% Income lost while seeking PEP: 15%



# Global Epidemiology

Presence of dog-transmitted human rabies based on most recent data points from different sources, 2010-2014





# Rabies in China

- 2<sup>nd</sup> highest burden globally
  - 1950 2010: avg 2,037 cases/year
  - 2007: 3,300 cases
- Risk Factors
  - Male
  - Rural
  - Farmer
  - < 15 or > 50
  - Dog bite
  - Southern provinces
- 12 15 million doses PEP/year



# **Rabies Prevention & Biologics**

# #1: Eradicate canine rabies

#### #2: Appropriate risk-based PrEP and PEP

#### Anti-Rabies Vaccines (ARVs)

Nerve Tissue Vaccines: available since 1885
Cell Culture Vaccines: available since 1970s

#### Rabies Immunoglobulin (RIG)

- Human RIG
- Equine RIG misconceptions about safety

> 29 million peoplereceive PEP annually inrabies endemic regions

When used appropriately, rabies PEP is extremely safe & effective

# WHO Exposure Categories and Treatments

| Categories of contact with suspect | Activity/Wound Description                         | Post-exposure prophylaxis measures                        |  |  |
|------------------------------------|----------------------------------------------------|-----------------------------------------------------------|--|--|
| rabid animal                       | Activity/ wound Description                        |                                                           |  |  |
| Category I                         | Touching or feeding animals, licks on intact skin  | None                                                      |  |  |
| Category II                        | Nibbling of uncovered skin, minor scratches or     | Immediate vaccination and local treatment of the          |  |  |
|                                    | abrasions without bleeding                         | wound (ARVs)                                              |  |  |
|                                    |                                                    |                                                           |  |  |
|                                    |                                                    | Immunocompromised persons <sup>§</sup> with a Category II |  |  |
|                                    |                                                    | exposure should also receive rabies                       |  |  |
|                                    |                                                    | immunoglobulin. (ARVs + RIG)                              |  |  |
| Category III                       | Single or multiple transdermal bites or scratches, | Immediate vaccination and administration of               |  |  |
|                                    | licks on broken skin; contamination of mucous      | rabies immunoglobulin; local treatment of the             |  |  |
|                                    | membranes with saliva from licks, contact with     | wound (ARVs + RIG)                                        |  |  |
|                                    | bats.                                              |                                                           |  |  |

<sup>§</sup>Immunocompromised persons include any patient with an illness such as HIV, TB or cancer or other illnesses known to suppress the immune system. Also included are patients that have been on an immunosuppressive medication for any reason prior to a rabies exposure.

Source Data: http://www.who.int/mediacentre/factsheets/fs099/en/; http://www.who.int/rabies/PEP\_prophylaxis\_guidelines\_June10.pdf

# WHO-Approved PEP Vaccine Regimens

| Intramuscular Route (0.5 – 1.0 ml at each site, depending on vaccine)      |                                                                                |  |  |  |  |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|
| 5-dose ("Essen") Regimen                                                   | 1 dose each on days:                                                           |  |  |  |  |
|                                                                            | 0, 3, 7, 14, 28                                                                |  |  |  |  |
| 4-dose ("Zagreb") Regimen                                                  | 1 dose at each of 2 sites on day 0;                                            |  |  |  |  |
| (also referred to as "2-1-1")                                              | 1 dose each on days: 7, 21                                                     |  |  |  |  |
| Modified 4-dose Regimen <sup>‡</sup> + RIG*                                | 1 dose each on days: 0, 3, 7, 14                                               |  |  |  |  |
|                                                                            | *RIG <u>must</u> also be administered                                          |  |  |  |  |
|                                                                            | <sup>‡</sup> May not be used on sick or immunocompromised persons <sup>§</sup> |  |  |  |  |
|                                                                            |                                                                                |  |  |  |  |
| Intradermal Route (0.1 ml at each of 2 sites)                              |                                                                                |  |  |  |  |
| Updated Thai Red Cross Regimen                                             | 1 dose at each of 2 sites on days:                                             |  |  |  |  |
|                                                                            | 0, 3, 7, 28                                                                    |  |  |  |  |
| PEP for patients who have already received Pre-Exposure Prophylaxis (PrEP) |                                                                                |  |  |  |  |
| Intramuscular                                                              | 1 dose each on days:                                                           |  |  |  |  |
|                                                                            | 0, 3                                                                           |  |  |  |  |
| Intradermal                                                                | 1 dose at each of 4 sites on day 0                                             |  |  |  |  |

Minimum 3 visits to PEP clinic

Significant volume reduction with ID compared to IM

# China Centers for Disease Control & Prevention

- Formed in 2002 (SARS)
- Goals:
  - (1) disease prevention and control
  - (2) scientific research
  - (3) workforce development
- ~ 2,100 staff



# China CDC & Rabies: 0 by 2025



# PEP Failures in China

- 12 15% rabies cases did visit a PEP clinic
- What went wrong?
  - Compliance?
  - Inappropriate delivery of PEP?



#### Assess this via a Pilot Study

Image Source: http://www.who.int/neglected\_diseases/news/Rabies\_WHO\_has\_published\_new\_recommendations\_for\_immunization/en/

## Study Goals & Questions:

Develop tools to assess preparedness of rabies PEP clinics, staff training, PEP delivery

- Resources at rabies PEP clinics?
- Demographics of persons seeking PEP?
- Are exposures accurately classified by healthcare workers?
- Is the appropriate treatment protocol selected?

Identify Gaps in PEP knowledge and practices

Pilot Study: Shuangfeng County, Hunan Province (May – August, 2016)

- High incidence of rabies
- Pop. 850,000
- 5,000 courses of PEP (588/100,000 persons) annually



# Pilot Design: Two Survey Assessment



May - June:

Personnel, Facilities and Hours, Biologics, Equipment, Information Management

16 clinic sites66 healthcare workers

#### Survey 2: PEP Delivery

July 20 – August 4:

Patients presenting for bite/scratch wounds followed from admission to discharge by 3<sup>rd</sup> party CDC staff members

> 7 clinics 196 Patients

I arrived at China CDC to start my Field Experience **Analysis** August 2016 – April 2018

### Qualitative and Descriptive approach

# Survey 1: Clinic Capabilities Rabies Biologics and Adverse Event Preparedness

| Rabies Biologics                               | Equipment & Emergency<br>Preparedness    |
|------------------------------------------------|------------------------------------------|
| <ul> <li>Regimen: Essen (5-dose IM)</li> </ul> | <ul> <li>Refrigerators: 16/16</li> </ul> |

- ARVs Cost: 290 375 RMB (\$46 \$59) per person
- RIG Supply: Only 1/16 clinics had RIG in stock (HRIG)
- RIG cost: 250 RMB/vial (\$40)

- Epinephrine: 15/16
- Dexamethasone: 13/16





#### Patients Presenting for Bite/Scratch Wounds July 20 and August 4, 2016



### Survey 2: PEP Delivery Demographics of Patients Presenting for Bite/Scratch Wounds



Males Females

Wound Source: Species, Ownership, Animal's Vaccination Status

|                                        | Number | % of Total | % of Domestic animals |
|----------------------------------------|--------|------------|-----------------------|
| Dogs                                   | 140    | 71.4       |                       |
| Owned by patient's family              | 67     | 34.2       |                       |
| Owned by someone else                  | 27     | 13.8       |                       |
| Unknown                                | 15     | 7.7        |                       |
| Not inquired                           | 31     | 15.8       |                       |
| Cats                                   | 38     | 19.4       |                       |
| Owned by patient's family              | 26     | 13.3       |                       |
| Owned by someone else                  | 2      | 1.0        |                       |
| Unknown                                | 2      | 1.0        |                       |
| Not inquired                           | 8      | 4.1        |                       |
| Domestic animals (owned dogs and cats) | 122    | 62.2       |                       |
| Vaccinated                             | 1      |            | 0.8                   |
| Unvaccinated                           | 2      |            | 1.6                   |
| Not inquired                           | 119    |            | 97.5                  |
| Rats                                   | 16     | 8.2        |                       |
| Human                                  | 1      | 0.5        |                       |
| Unknown                                | 1      | 0.5        |                       |

Does it matter if the animal is vaccinated?

#### Exposure Method and WHO Categorization

| WHO Exposure Category | Exposure Method                             | Number of<br>Patients | %    | Number<br>of<br>Patients | %    |
|-----------------------|---------------------------------------------|-----------------------|------|--------------------------|------|
|                       | Touching/feeding animals                    | 0                     | 0    |                          |      |
| I                     | Lick on intact skin                         | 4                     | 2    | 5                        | 2.5  |
|                       | "Other"                                     | 1                     | 0.5  |                          |      |
|                       | Nibbling at exposed skin 35 17.9            |                       |      |                          |      |
| II                    | Minor scratch or abrasion without bleeding  | 68                    | 34.7 | 103                      | 52.6 |
| III                   | Penetrating skin bite(s) or<br>scratch(es)  | 87                    | 44.4 |                          |      |
|                       | Lick on area of broken skin 1 0.5           |                       | 0.5  | 88                       | 44.9 |
|                       | Open wound or mucous membrane contamination | 0                     | 0    |                          |      |

#### Exposure Categorization: WHO compared to HCW

| WHO<br>Category | #<br>Patients | Exposure Category applied by<br>HCW | # Patients | % of Category | % of Total |
|-----------------|---------------|-------------------------------------|------------|---------------|------------|
|                 |               | I                                   | 2          | 40            | 1          |
| I               | 5             | II                                  | 3          | 60            | 1.5        |
|                 |               | III                                 | 0          | 0             | 0          |
| II 103          |               | l                                   | 9          | 8.7           | 5          |
|                 | 103           | II                                  | 94         | 91.3          | 48         |
|                 |               | III                                 | 0          | 0             | 0          |
|                 |               | I                                   | 3          | 3.4           | 1.5        |
| III             | 88            | II                                  | 34         | 38.6          | 17         |
|                 |               | III                                 | 51         | 58            | 26         |

25% of Patients mis-categorized

23.5% of Patients under-categorized

# Survey 2: PEP Delivery Relevant Medical History-Taking

| HCW asked about: |                                                                    |  |  |  |
|------------------|--------------------------------------------------------------------|--|--|--|
| 58%              | patient's rabies vaccination status                                |  |  |  |
| 9.2%             | possible immunocompromised status due to disease (HIV, TB, cancer) |  |  |  |
| 0%               | use of immunosuppressive drugs                                     |  |  |  |
| 13%              | history of drug/vaccine allergies                                  |  |  |  |

#### Wound Care Summary

|                                           | # of patients whose wound<br>(%) | was washed | Appropriately washed<br>(%) |
|-------------------------------------------|----------------------------------|------------|-----------------------------|
| WHO Category II and III                   | by HCW:                          | 1 (0.5)    | 0 (0)                       |
| (191 patients)                            | by patient/accompanying person:  | 151 (79)   | 95 (49.7)                   |
|                                           | at another facility:             | 4 (2)      | ?                           |
|                                           | at home:                         | 26 (13.5)  | 4 (2.1)                     |
|                                           | Not washed:                      | 9 (5)      | N/A                         |
|                                           |                                  |            | Total: 99/191 = 51.8%       |
| HCW Category II and III<br>(182 patients) | by HCW:                          | 1 (0.5)    | 0 (0)                       |
|                                           | by patient/accompanying person:  | 140 (77)   | 85 (47)                     |
|                                           | at another facility:             | 4 (2)      | ?                           |
|                                           | at home:                         | 27 (15)    | 6 (3)                       |
|                                           | Not washed:                      | 10 (5.5)   | N/A                         |
|                                           |                                  |            | Total: 91/182 = 50%         |

#### ARVs Initiated: Improper Patient Selection

| Exposure Type    | # Total Patients | # Patients receiving ARV (%) |                                                     |
|------------------|------------------|------------------------------|-----------------------------------------------------|
| WHO Category I   | 5                | 5 (100)                      | 2.5% of Patients<br>incorrectly received ARVs       |
| WHO Category II  | 103              | 103 (100)                    |                                                     |
| WHO Category III | 88               | 87 (99)                      |                                                     |
| HCW Category I   | 14               | 14 (100)                     | HCWs incorrectly                                    |
| HCW Category II  | 131              | 131 (100)                    | selected 7% of patients<br>to receive ARVs based on |
| HCW Category III | 51               | 50 (98)                      | their own evaluation of<br>the exposure             |
| Total Patients   | 196              | 195 (99)                     |                                                     |

2/195 (1%) vaccines administered were past the expiration date.

### Survey 2: PEP Delivery Patients Receiving RIG by Exposure Category (WHO and HCW)



\*1 of these patients had previously been vaccinated for rabies and did not require RIG.

#### Why was RIG not administered?

|                                           | Proportion of<br>Patients who did<br>Not Receive RIG<br>(%) | HCW did not<br>recommend<br>RIG<br>(%) | Patient did not<br>consider RIG to<br>be necessary<br>(%) | RIG not<br>available at the<br>clinic (%) | RIG was cost<br>prohibitive<br>(%) | Patient was<br>referred<br>elsewhere<br>(%) |
|-------------------------------------------|-------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------|-------------------------------------------|------------------------------------|---------------------------------------------|
| Category I (HCW)                          | 14/14 (100)                                                 | 2 (14.3)                               | 10 (71.4)                                                 | 2 (14.3)                                  | -                                  | -                                           |
| Category II<br>Immunocompetent (HCW)      | 126/126 (100)                                               | 104 (81)                               | 10 (8)                                                    | 11 (8)                                    | 1 (1)                              | -                                           |
| Category II<br>Immunocompromised<br>(HCW) | 5/5 (100)                                                   | 2 (40)                                 | -                                                         | 2 (40)                                    | 1 (20)                             | -                                           |
| Category III (HCW)                        | 13/51 (25)                                                  | 7 (54)*                                | 5 (38)                                                    | -                                         | -                                  | 1 (8)                                       |

\*1 was previously vaccinated

30% of cases in which RIG was not administered, a non-valid reason was cited by the HCW



HCWs do not understand the rationale behind RIG administration

Patients Receiving Adequate HRIG Dose

- HRIG: Body Weight-dependent dose (20 IU/kg)
- 63%: Body weight of patient measured (24/38)
  - **54%:** Correct volume administered according to weight (13/24)
  - 46%: Patient under-dosed in cases where body weight was measured (11/24)

14.6% of patients who should have received RIG according to WHO guidelines received a sufficient dose of RIG.

## **Project Limitations**

- Observational Study  $\rightarrow$  systematic bias
  - Study site selection
  - Information bias: selective recall of patients
  - Selection bias: patients had to voluntarily agree to be followed
  - Quality of observer information
- Pilot Study
- Sample size
- Impacts of flooding on PEP-seeking behaviors?
- Length

## Gaps Identified

Clinic equipment and preparedness

Recognizing exposure levels

**Taking Relevant Medical History** 

Selecting risk-based treatment plans

Administering PEP treatments

Communicating risks to patients

# Rabies Control: The Bigger Picture



## Acknowledgments

- Dr. George Gao and Dr. Li Yu, China CDC
- Dr. Sally Davis, Dr. Natalia Cernicchiaro and Dr. MM Chengappa, MPH Committee
- Dr. Shi, US-China Center for Animal Health
- KSU CVM International Programs Office
- KSU Master of Public Health Program



## Partial Reference List

- WHO | Epidemiology and Burden of Disease <u>http://www.who.int/rabies/epidemiology/en/</u>. Accessed 3/21/2018, 2018.
- CDC | Rabies Prevention <u>https://www.cdc.gov/rabies/prevention/index.html</u>. Accessed 3/21/2018, 2018.
- Hampson K, Coudeville L, Lembo T, et al. Estimating the global burden of endemic canine rabies. *PLoS Negl Trop Dis*. 2015;9(4):e0003709. doi: 10.1371/journal.pntd.0003709 [doi].
- Singh R, Singh KP, Cherian S, et al. Rabies epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: A comprehensive review. *Vet Q*. 2017; 37(1):212-251. doi: 10.1080/01652176.2017.1343516 [doi].
- Dietzschold B, Li J, Faber M, Schnell M. Concepts in the pathogenesis of rabies. Future virology. 2008; 3(5):481-490. doi:10.2217/17460794.3.5.481.
- Song M, Tang Q, Rayner S, et al. Human rabies surveillance and control in china, 2005-2012. BMC Infect Dis. 2014; 14:212-2334-14-212. doi: 10.1186/1471-2334-14-212 [doi].
- Zhang J, Jin Z, Sun GQ, Zhou T, Ruan S. Analysis of rabies in china: Transmission dynamics and control. PLoS One. 2011; 6(7):e20891. doi: 10.1371/journal.pone.0020891 [doi].
- Ren J, Gong Z, Chen E, et al. Human rabies in Zhejiang province, china. Int J Infect Dis. 2015; 38:77-82. doi: 10.1016/j.ijid.2015.07.013 [doi].
- Qi L, Su K, Shen T et al. Epidemiological characteristics and post-exposure prophylaxis of human rabies in Chongqing, China, 2007-2016. BMC Infectious Diseases. 2018; 18(6): 10.1186/s12879-017-2830-x [doi].
- Zhou H, Vong S, Liu K et al. Human Rabies in China, 1960-2014: A Descriptive Epidemiological Study. PLoS Negl Trop Dis. 2016; 10(8): e0004874.doi:10.1371/journal.pntd.0004874 [doi].
- Yin W, Dong J, Tu C, et al. Challenges and needs for China to eliminate rabies. Infectious Diseases of Poverty. 2013; 2:23. doi:10.1186/2049-9957-2-23.
- Mindekem R, Lechenne MS, Naissengar KS et al. Cost description and comparative cost efficiency of post-exposure prophylaxis and canine mass vaccination against rabies in N'Djamena, Chad. *Front. Vet. Sci.* 2017; 4(38): doi.10.3389fvets.2018.00038. [doi].
- Lavan RP, King AIM, Sutton DJ, Tunceli K. Rationale and support for a One Health program for canine vaccination as the most cost-effective means of controlling zoonotic rabies in endemic settings. *Vaccine*. 2017; 35: 1668-1674.
- Si H, Guo ZM, Hao YT et al. Rabies trend in China (1990 2007) and post-exposure prophylaxis in Guangdong province. *BMC Infectious Diseases*. 2008; 8(113): 10.1186/1471-2234-8-113. [doi].
- Chinese Center for Disease Control and Prevention <a href="http://www.chinacdc.cn/en/aboutus/orc/">http://www.chinacdc.cn/en/aboutus/orc/</a>. Accessed 3/21/2018, 2018. WHO | rabies <a href="http://www.who.int/mediacentre/factsheets/fs099/en/">http://www.chinacdc.cn/en/aboutus/orc/</a>. Accessed 3/21/2018, 2018. WHO | rabies <a href="http://www.who.int/mediacentre/factsheets/fs099/en/">http://www.chinacdc.cn/en/aboutus/orc/</a>. Accessed 3/21/2018, 2018. WHO | rabies <a href="http://www.who.int/mediacentre/factsheets/fs099/en/">http://www.who.int/mediacentre/factsheets/fs099/en/</a>. Accessed 3/21/2018, 2018.
- Zhou H, Li Y, Chen RF, et al. Technical guideline for human rabies prevention and control (2016). Chinese Center for Disease Control. Zhonghua Liu Xing Bing Xue Za Zhi. 2016; 37(2): 139-63. Doi: 10.3760/cma.j.issn.0254-6450.2016.02.001.
- Kularatne SAM, Ralapanawa DMPUK, Weerakoon K, Bokalamulla UK, Abagaspitiya N. Pattern of animal bites and post-exposure prophylaxis in rabies: A five year study in a tertiary care unit in Sri Lanka. *BMC Infectious Diseases*. 2016; 16:62. DOI 10.1186/s12879-016-1394-5.
- Poorolajal J, Babaee I, Yoosefi R, Farnoosh F. Animal bite and deficiencies in rabies post-exposure prophylaxis in Tehran, Iran. Arch Iran Med. 2015; 18(12):822-826. doi: 0151812/AIM.006 [doi].
- Tricou V, Bouscaillou J, Kamba Mebourou E, Koyanongo FD, Nakoune E, Kazanji M. Surveillance of canine rabies in the Central African Republic: Impact on human health and molecular epidemiology. *PLoS Negl Trop Dis.* 2016; 10(2):e0004433. doi: 10.1371/journal.pntd.0004433 [doi].
- Bariya BR, Patel SV, Shringarpure KS. Comparison of Compliance of Animal Bite Patients to Two Different Routes of Post-Exposure Prophylaxis against Rabies. *Healthline Journal*. 2015; 1:30-35.







Thank You!











