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INTRODUCTION

The problem of computing the coefficient of Inbreeding,

even in the most complicated pedigrees, is simply computing the

amount of heterozygosis probably lost because of inbreeding;

inbreeding being defined as the mating together of individuals

that are related by ancestry. As a result of inbreeding the

zygotic proportions within a population are altered in such a

way as to increase the amount of homozygosls, thus decreasing

the amount of heterozygosis. Hence, for various degrees of in-

breeding the zygotic proportions become for dominants (AA)

,

heterozygotes (Aa) and recessives (aa), respectively p^ + Fpq
,

2pq(l-F) and q'^ + Fpq , where p and q are gene frequencies of

A and a

.

The symbol F in the above proportions refers to the coef-

ficient of Inbreeding. Wright (1922) defines F as the correla-

tion coefficient between uniting gametes; whereas, Malecot (I9I4.8)

defines F as the probability that the two genes at any locus in

an individual are Identical by descent. These definitions are

equivalent, the difference being in the approach to the problem

of computing the coefficient of Inbreeding,

The concept of the coefficient of inbreeding had its be-

ginning in the early 1920' s with the work of Sewall V/right.

His procedures consisted primarily of tracing lines of descent

on a pedigree chart by the use of path coefficients. In 1925

V;right and H, C. McPhee combined efforts to condense Wright's

original procedure.



During the late 19ll.0's and the early 1950's other methods

for estimating the coefficient of inbreeding were developed.

These methods attempted to simplify S. Wright's original method

of path coefficients. A Frenchman, Gustave Malecot, approached

the problem of coefficients of inbreeding by making use of prob-

abilities. Other procedures formulated at this time made use

of the work of Li (1953,1955), Horvitz (1953), Emik (19!;9),

Terrill (19l;9), Cruden (1914-9), Plum (1951|), Hazel (1950) and

Lush (1950). While examining information on this topic, one

becomes increasingly aware that there was a trend of heightened

interest concerning the importance of estimating the coefficient

of Inbreeding during this time period of late 19l;0's and early

1950' s; that there has been a decline of interest on this topic

in the past decade.

With this background information in mind, one may begin to

discuss the coefficient of inbreeding of an individual.

PROCEDURE INVOLVING PATH COEFFICIENTS

In order to examine path coefficients some elementary con-

cepts of statistics need to be reviewed. This review is neces-

sary because path coefficients involve statistical concepts.

The statistics included in this review are the correlation co-

efficient, the sum of variables, multiplying independent vari-

ables and partial correlation (Wright, 1921,193^; Li, 1955;

Kempthorne, 1957) .

The correlation coefficient assumes a linear relation



between two variables, say A and B; I.e., a given change in A

will always involve a certain constant change in the correspond-

ing average value of B. Let A and B be the mean values of A

and B respectively, then the correlation coefficient between A

and B is defined as

Z (A-A) (B-3) (Jab

\/Z"i:(A-A)2 J:(B-B)2J7
'A ^B

In connection with the idea of regression, when the vari-

ances of A and B are equal the following is obtained

6a3 ^ <fAB ^ .

^

^AB = —72-' = ^AB = —72- "^
^BA ^2)

^A Ob

Also, by definition r^^ = 1 , and if A and B are independ-

ent, r.g = . These concepts may be extended to N pairs of

values of A and B.

Let X = A+B , then the variance of the summed variable is

<^X= <^|+B = ^l + ^ij^^^A'^B ^B (3)

When A and B are independent, or uncorrelated, r.g = and (3)

reduces to



This may be extended to any number of factors.

Let X = AB and assume r^g = , then the variance of

the product Is

^X = ^^
^A " ^^^^B ^ 7 ^ ^^-^^^ ^^-^^^

^^^

Generally speaking the last term in (5) is much smaller than

either of the first two terms, and (5) becomes approximately

g2=52^2,l2^2 (6)

Suppose there are three correlated variables: A, B, and

C. The partial correlated coefficient between A and B when C

is kept constant is

^AB - ^AC^BC
, ,

^AB.C = ("7)

y^Td-L) (i-ic)-7

This may also be extended to any number of variables.

In addition to the degree of relationship furnished by the

coefficients of correlation, some knowledge of the nature of

the relationship between the variables must be taken into ac-

count. It is not necessary to know what constitutes "cause" and

"effect" (Wright, 1921, 1923a, 193U; Tukey, 195^^; Li, 1955); one

needs only to be aware that there are many cases in which cer-

tain factors are direct causes of variation in others or that

other pairs are related as effects of a common cause. In a



system of related variables, "causes" and "effects" are con-

nected by arrows as in the following diagram,

A (cause)

(effect) X^
I

r.g (due to various
causes)

B (cause)

The arrows connecting causes and effect in the above dia-

gram are referred to as "paths"

.

Let £^ be the total standard deviation of X and C

denote the standard deviation of X due to the influence of

A, while all other causes (except A) remain constant. The path

coefficient, p^^j^ ,
(Wright, 1921, 1923a, 193i|; Tukey, 1951;; Li,

1955; Kempthorne, 1957) is defined as the ratio of the standard

deviation of X due to A to the total standard deviation.

- ^X.A .p.
Px.A - -7 ^^^

X

The path coefficient, p , is an absolute number without

any physical unit. In this respect it is similar to correlation

coefficient. However, the path coefficient has a direction

(from A to B); in this respect being similar to regression co-

efficients. Thus, one may state that path coefficients are

standardized linear regression coefficients

.

Another property of path coefficients is the determination

of X by cause A. The coefficient of determination, J , is

defined as the square of the path coefficient.



A process preliminary to calculating the total correlation

between two variables is tracing connecting paths (Wright, 1922,

1923b; Li, 1955); because this correlation is the sum of all

paths connecting these two variables in a causal scheme. There

are certain rules that must be followed in tracing these con-

necting paths.

1, No "first-forward-then-backward" motion in

tracing any connecting paths.

2, The correct way of tracing a connecting path

is a "first-backward-then-forward" motion.

3, For chains of variables one may continue to

trace backward (no change in direction) for

as many steps as are available, then forward

for as many steps as are available, without

any change in direction.

It is necessary to add that these rules apply only in cases

of independent causes, not in cases where the causes are depend-

ent .

The coefficient of inbreeding (Wright, 1922, 1923b, 193U;

Li, 1955; Kempthorne, 1957) is obtained by a summation of path

coefficients for every line of descent by which the parents are

connected, each line tracing back from the sire to a common an-

cestor and hence forward to the dam, and passing through no in-

dividual more than once. The same common ancestor may, of

course, be involved in more than one line.

The path coefficient for the path, sire (X) to offspring



(0), is given by the formula

(1+fx)

where f^ and f are the coefficients of inbreeding for sire and
A

offspring respectively.

In the case of the grand sire (G) and offspring (0), the

path coefficient is

Pn n = P.^ o P
1 / (l+i'G)

O.G ^O.S ^S.G i^ si (i+f )

(10)

and for any ancestor (A) one has for the coefficient pertaining

to a given line of descent

1 n / (1+^a)
p = (1)^ / L_ , (11)

where n is the number of generations between individuals (0)

and the ancestor (A) in this line.

The following path diagram will aid in understanding (9),

(10) and (11)

.
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0.

-H

•K,

•B

The correlation between two individuals (r^^) is obtained

by a summation of the coefficients for all connecting paths.

Thus.

^XY " ^Px.A ^Y.A

= ^(1)-^-
1 + f,

y (l+fy.) (l+fy)
(12)

where m and n are the number of generations in the paths from

A to X and from A to Y, respectively.

The correlation between uniting gametes, the coefficient

of inbreeding, is

f = f r^ N/d+fx^l^V (13)

where r^y is the correlation between sire and dam and f„ and



fy. are coefficients of inbreeding of sire and dam. Substituting

the value of rw results inXY

1 ,m+n+l
f^ »^^(±)"-"--^ (l+fA)J7 . (114.)

AN APPROXIMATING PROCEDURE

The preceedlng material formulated by Sewall Wright has

presented not only the most widely cited procedure for calculat-

ing the coefficient of inbreeding, but also was one of the first

procedures created.

Later attempts to formulate methods for calculating this

coefficient condensed the. number of time-consuming computations.

One of these later methods (Wright and McPhee, 1925) made

a definite attempt for condensation. To understand this approx-

imating method for calculating the coefficient of inbreeding

one must refer back to (ll}.). In (li^.), (I)"'"^^'^-'- (l+f^) refers

to the contribution of a particular tie between the pedigrees

of sire and dam.

This approximate procedure rests on the tabulation of ran-

dom samples of the pedigrees of sire and dam. The reliability

of the results can be tested by the ordinary theory of sampling.

It is necessary that the sample lines be chosen wholly at ran-

dom.

The simplest possible sample which can show a connection

between sire and dam is obtained by tracing back two ancestral
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lines, one on the sire's side and one on the dam's side. Ran-

dom sequences of S's and D's are then written in columns below

each parent, extending sufficiently to include the foundation

stock. The line of ancestry is then traced back in the pedigree,

the sire being looked up where S occurs in the column and the

dam for each D in the column. Although a second sample will

probably not show the same sequence of sires and dams, a single

sample is of practically no value as an indicator of the inbreed-

ing of the individual. However, the average obtained from a

large number of such samples should not differ appreciably from

the true value.

The following explanation will be concerned with the two-

column samples which show an ancestral connection, since those

which do not show ancestral connection have a coefficient of

zero, as far as the sample indicates. In the former cases a

contribution of (l)^"''"''"'^ ^^"''^A^
^^ indicated if the common an-

cestor A is m generations back of the sire and n back of the

dam. The sire has 2 ancestors in the m generation and the

dam 2^ possible pairs going back as far as the common ancestor.

If the single pair of lines is a fair sample of the total, its

contribution must be multiplied by Z^ ^ to obtain an estimate

of the inbreeding of the whole pedigree. On carrying out this

multiplication, m and n disappear and the coefficient takes the

simple form |-(l+f.). Thus, in calculating the inbreeding indi-

cated by a two-column pedigree, it is not necessary to count the

generations to the closest common ancestor; it is merely
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necessary to note whether there is a tie between the pedigree

sire and dam, and what animal is responsible for it.

It should be noted that increased accuracy in the approx-

imating procedure may be obtained by combining the approximating

procedure with the previously explained complete procedure using

path coefficients.

PROBABILITY APPROACH

The probability approach (Malecot, 19i4-8; Kempthorne, 1957)

is unique in its computation of the coefficient of inbreeding.

Malecot uses the term "coefficient de parente" which is equiv-

alent to Wright's term, coefficient of inbreeding. Malecot 's

procedure involves the relationship between two individuals;

henceforth, let "coefficient de parente" be referred to as the

"coefficient of parentage".

Each individual I has two parents, four grandparents,

. . . ,
2^ ancestors of the order n. One gene of I has the

probability of ^ of originating from the father, ^ from the

mother, ^ from each of the grandparents, . . . , a o^ originat-

ing from a given ancestor of the order n along a determined

chain of ascendance. (An ancestor of I can be connected to him

by several chains of ascendance.)

Let the coefficient of parentage f^^ of two individuals,

T and L, be the probability that two genes at a locus taken,

one on I and the other on L, are identical, that is to say they

descend from the same locus. The complimentary probability
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(1-f ,) represents the probability that these two genes are a
XL

result of ancestors with no relationship, in other words, are

stochastically independent (because then the knowledge of the

gene which occupies one gives no information on the gene which

occupies the other; these two genes can be identical or differ-

ent but their probabilities are independent)

.

Call the coefficient of consanguity f^^ of an individual M

the probability that its two genes at a locus are identical by

descent. As one originates from its father and the other from

its mother, fj^ is the coefficient of parentage between the two

parents.

The coefficient of parentage fj--^ of two individuals I and

L is greater than zero only if I and L have one or several com-

mon ancestors A^ , Ap, etc. Assume at first that there is only

one ancestor A of the order m of I and of the order n of L by

chains of \inique ascendance whose combination constitutes a

chain of relationship connecting I and L.

The probability that one gene of I and one homologous gene

of L originate from A is (1)"^"^"; but in this eventuality they

have a probability of |- of originating from the same locus A,

and a probability of |- of originating from different loci in

which case they are only identical with the probability f.

,

m+n •'"^'^A
Hence, f-j.^ " (^) • Iri particular the coefficient of

parentage of one individual with a common ancestor of the order

of m corresponds to n = 0; the coefficient of parentage of one
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individual with himself corresponds to m = n «= 0.

One may now deal with the general case where I and L are

connected by any number of chains of relationship, each chain

being the union of two chains of ascendance coming from I and

L to a common ancestor A. and having no common point other than

k^; two chains of relationship are regarded as distinct even If

they have a common part, provided that they differ by at least

one link. As the transmission of identical genes along a deter-

mined chain of relationship excludes their transmission along

all others, the principle of total probabilities gives:

f = j-(2.)"^i+"i ^^""^A^^
(15)

The sum being extended to all distinct chains of relationship

connecting I and L, the i is comprised of mj^+nj^ links and

coming to the common ancestor A^ with coefficient of consanguity

Thus, one finds that the final formula reached by Malecot

using the probability approach is equivalent to Wright's orig-

inal formula (li;).

USE OF MODELS BASED ON A PANMICTIC POPULATION

Proportion of Heterozygotes

In order to understand the next seven methods of calcula-

tion of the coefficient of inbreeding, it is necessary to review

some relevant definitions.
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In a large panmictlc (random mated) population In which

the frequency of the allele A^ Is q.^ ,
the proportions of the

various genotypes in an equilibrium condition are given by the

coefficients of the A's in the expression

/"Z^iAlJ^^ = Zq?AiAl + 2 Z: qiq/iAj (l)

i i i<J

where q^ = 1(1 = 1,2,. . . ,k) , This population will be re-

ferred to as Model I,

As compared to Model I, there will be relatively more homo-

zygous individuals in the population when the gametes are not

uniting entirely at random, but are correlated. When the pop-

ulation is not mating at random, the genotypic frequencies will

be:

(l-F)Z"IIqiAiJ7^ + fZI qiA3^Aj_

i 1

H Z~(l-F)q2 ^ Fq 7 a A. + 2(l-P)2I qiq^A.A, (II)

This population will be referred to as Model II. When F (coef-

ficient of inbreeding) = 0, Model II becomes Model I.

One of the simplest methods (Li and Horvitz, 1953; Li,

1955) of estimating F is based upon the total proportion of

heterozygotes in a sample. Let this proportion be H. Assign

the terms Hq and Hp to denote the total proportions of
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heterozygotes in Models I and II, respectively,

Thus

,

.

" 1 - 2:^?.;

and Hp = 2(1-P) 21 ^i^j

Therefore,

Hp = (1-F) Ho

or F =
Hq - Hp

Ho

regardless of the number of alleles involved. Substitution of

the observed H (= 2 ZI a^j/N , from Table 2) for Hp and calcula-

tion of the value of Hq taking q^^ = nj;_/N , one may estimate F.

Hence, using f to denote the sample estimate of F, one has

H N T" a^^
f = 1 - 4- = 1 - r" ^

, U<i) . (16)

Product-Moment Correlation

The fact that the product-moment correlation coefficient

(Li and Horvitz, 1953) between the gametes of the following

table is F, may be varified by assigning any arbitrary numerical

values to alleles A-,, Ap, . . . , Aj^.
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Table I. Gametic Correlation of Model II

^1 A2 • • » Ak

Al (l-F)qf + Fq3_ (1-F)q3_q2 • • • (l-F)q;L^^ ^1

A2 (1-F)q2qi (1-F)q| + Fq^ • • • (1-F)q2qi, ^^2

• •• • • • • •
• •

Ak (l-F)q^q;L (1-F)q^q2 • • • (1-F)q2 + Fq^ ^k

^1 ^2
• • •

^k
1

The order of the arrangement of the alleles is immaterial.

This is, however, not the case with actual sample numbers. For

instance, when k = 3, there are three different ways of arrang-

ing the sample data and thus three different correlation values

could be obtained. It is convenient to assign the values 1, 0,

-1 to A-, , Ap, A-, respectively, in which case the correlation

coefficient (estimate of F) is given by

f =
N(aTn - 2&-,'i + a,,) - (nT - n,)'^11 ^13 ^ "33

N(n3_ + n^) - {n-^ - n^)'

(17)

Two other similar expressions may be derived by interchanging

the subscripts 2 and 3, and 1 and 2, If the sample data are

consistent with Model II, the values of the three correlations

should not differ to any great extent. Although, each of them
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Is a consistent estimate of F, It Is desirable to devise some

methods of estimation which are Independent of the order of ar-

rangement of the sample numbers and yield a unique estimate.

The preceding method and the following five methods satisfy

these conditions.

Determinant of the Gametic Correlation Matrix

If one arranges the zygotic proportions of Model II In the

form of a gametic correlation as in Table 1, the determinant of

the matrix formed by the elements is a function of F (Li and

Horvitz, 1953; Kempthorne, 1957). One must then remove the fac-

tors in q common to all the elements of each row, add each of

the columns to the first, all of whose elements are equal to

\inlty, and subtract the first row from each of the remaining

rows. The result is:

(1-P)qi+F

(l-F)qi

•

(l-F)q-L

(1-F)q2

(1-F)q2+F

•

(l-F)qo • • •

(l-F)q^

(l-F)qk

•

(1-F)qj^+F

qi' • • %

1

1

(1-F)q2

(1-F)q2+F

(1-F)q2 • • •

(l-F)qj^

(l-F)qi,

(1-F)qj^+F
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= q . .

1 (1-F)q2 (1-F)q3

F

F

» • fl (l-F)qk

= qi-
• •

qj.
nk-1 (18)

Table 2. Observed Numbers of Individuals

Al A2 • • • Ak

Al ^11 ^12
s • •

^Ik ^1

A2 ^21 ^22
• • •

^2k "2

• • • « •

Ak ^kl ^k2
« • •

^kk \

'^l ^2 • • •

^k N

Therefore, the determinant of the observed numbers in Table 2

divided by the product of its marginal totals will yield an

estimate of the (k-1) power of F; thus,
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,k-l

^11 • • • ^Ik

^kl

It a Zip

'kk

Ht X no X • • . X n,

(19)

Chi-Square

Using the proportions of Model I as the "expected" and

those of Model II as "observed" numbers, the difference between

the zygotic proportions of (I) and (II), as caused by the exist-

ence of F, may be measured by the value of Chi-square (Li and

Horvitz, 1953; Li, 1955).

X
Nq^

r2NFqiqj_7^

i<J 2Nq^qj

NF' (^ (l-2q. + qj) + 2^i_q
i<J

i^j}

^^"^(k -2 + 1)

= NF2(k - 1) (20)

Let
q^L

= Hj^/N and calculate the zygotic proportions (I) on the

assumption of panmixia, the value of Chi-square obtained on com-

paring them with the observed will give one an estimate of F;

viz..
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, -Y k(k+l) k(k-l)
f2 = _A

, with k = d.f . (21)

N(k-l) 2 2

One may obtain a sampling distribution of f by a transfor-

mation of that of Chl-square. The advantage of using this method

Is that the test of significance of f is equivalent to testing

the significance of % .

Proportions of Alleles in Homozygous Condition

The method of estimating the coefficient of inbreeding that

involves the least amount of arithmetic labor follows (Li and

Horvltz, 1953). Let z^^ = (1-F)q| + Fq^ denote the proportion

of Aj[_A^ in Model II whose frequency of allele A^ is qj^. Hence,

the proportion of Aj^'s in the population is ^±±/li • "^^^ s^™

of such proportions over all alleles is:

^11 ^22 ^kk
, , „/, TV+ + . . . = 1 + F(k-l)

qi q2 \

In Model I (F=0), the sum of such proportions is unity. From

this consideration the sample estimate of F is obviously

c-1 L i nj_ J
(22)

Maximum Likelihood

In this method (Li and Horvltz, 1953) let the number of
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alleles be two, i.e., k =2. Let the observed numbers of A-j^A-^l »

A^Ag , ApAp in the sample be a, 2b, c, respectively, where

a + 2b + c = N, To avoid subscripts let p be the frequency of

the allele A]_ and q be that of A^, where p + q = 1. Then the

likelihood function is

/(1-P)p2 + Fp_7^ ^2(1-P)pq_7^^
al(2b)'.c'.

/"(1-F)q2 + FqJ7°

and the logarithm of the likelihood function is, ignoring con-

stant terms,

log L = a X log/~(l-P)p2+ Pp_7 + 2b X log/"2(l-P)pqJ^

+ c X log/"(l-P)q^ + PqJ^

Setting dlog L/dp = and dlog L/ 5P = 0, these two equa-

tions upon simplification become

a(2p+e) 2b(l-2p) c(2q-0)
+ =

p(p+ e ) pq q(q+0 )

aq cp
- 2b + = (23)

p+0 q+e

where = P/(l-P) . On eliminating their middle terms by mul-

tiplying the second equation of (23) by (l-2p)/pq and then add-

ing the two equations together, we obtain upon simplification
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the relation aq/(p+e) = cp/(q+0). Hence, (23) may be written

in the much more simplified form of two linear equations:

±2_ . b ; -^£- = b . W
p+ e q+

The simultaneous solution of these equations gives

p
a+b ac-b

P = = . (25)
N Nb

the expression for 9 here being equivalent to those for f in

previous sections.

For k > 3, it seems best to accept the observed gene fre-

quencies (qj_ = nj^/N) and estimate the value of F under this set

of conditions in order to give F the biological meaninij attached

to it. Hence, with given values of q^, one has only to solve

the equation 31og L/ dF = 0, i.e.,

aii(l-qi)
= 2 2_ a^j (26)

i qi + i<J

where 6 = F/(l-F) and 2 ^ a^^i is the total number of heter-

ozygotes in the sample. Note that when k = 2, (26) reduces to

the second equation of (23). To solve (26) for , an initial

trial value may be obtained from one of the previous methods of

this section, and a more accurate solution for may be ob-

tained by iteration.
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Reducing the Number of Alleles

Instead of solving (26) as a whole, one may break it into

component parts and Just solve the following equation (Li and

Horvitz, 1953):

-^ — = Z ai.(i:^j) = ni-a^i . (27)

^i + J

That is, one may set the fraction on the left side equal to half

the number of heterozygotes containing the allele Aj^. This

equation is analogous to (21;) for the case of two alleles.

Solving (27) for , we have, still taking n^ = Nqj_,

g ^ _ilij:J^i^ __
Hi - Nqf

^^gj

^i - ^ii ^^i - ^ii

or,

aii - Nqf Na^i - nf

Nq^d-qj^) nj_(N-n^)

It should be noted that this approximation method is equivalent

to pooling all the non-Aj_ alleles together as one allele, thus

reducing the original k x k gametic correlation table into a

2x2 table involving only k^ and "X^ as shown in Table 3 (the

symbol T^ denotes non-Aj^ alleles) . Applying the method of esti-

mating F for k = 2, we obtain the solution (28), which is the

maximum likelihood estimate as far as the data in Table 3 are
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concerned. Note that this pooling method is quite different

from the first method of estimation in this section. There are

k ways of doing this kind of reduction. In practice, however,

one may choose the allele with the highest frequency to be A^

and pooling the remaining k-1 alleles together. Similarly, one

may reduce the k alleles to any number smaller than k. This

procedure, though an approximate method, is perhaps advisable

when some of the alleles have very low frequencies.

Table 3. Reduced 2x2 Gametic Correlation Table

Ai ^1 Total

Al ^ii
n^ - ^ii "i

^1 ^i - ^ii
N-2n. + a^j^ N - n^

Total "i N - n^ N

SYSTEMATIC PROCEDURES

Sire-Ancestor Procedure

In some systems of mating it is not always possible to have

a regular system of inbreeding. However, some measure of in-

breeding is essential, because the degree of inbreeding could

vary widely. This method (Emik and Terrill, 19l;9) is an attempt

to condense Sewall Wright's original formula for F (li|).

The relationship of the parents (X and Y) , for the purpose
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of calculating the Inbreeding coefficient of the offspring,

would be

which Is the genetic covarlance, but will be called the numera-

tor relationship since It Is the numerator of the true relation-

ship .

R « ^^ ^ ^-=^ (12)

jil + fy.) (1 + fy)

The numerator relationship for any pair of parents Is twice the

value of the Inbreeding coefficient of the offspring.

From (li;) and (29) the numerator relationship of parent

(X) to offspring (0) becomes:

«xo = ^0 ^ T^^ "• V .

^^°^

and the numerator relationship of an animal (0) to Itself Is

l+fg.

To avoid tracing out each line of descent on each pedigree

as necessary in (lt|.), one may use methods of combining the nu-

merator relationships. One method involves the determination

of the numerator relationship of a sire to each of his ancestors

through which he may be related to any dam. These numerator

relationships would be arranged in a table with the appropriate
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derivatives in columns designating the number of generations

that the common ancestor may be removed from the dam. Deriva-

tives are then added for each ancestor in the dam's pedigree;

the result being divided by two to give the inbreeding coeffi-

cient of the offspring.

Advantages of this procedure include a) the ability to cal-

culate the inbreeding coefficient of offspring resulting from

crossing related inbred lines; and b) the ability to determine

the degree of inbreeding in a herd or flock at certain intervals

of time where it is not practical to calculate coefficients con-

tinuously. The sire-ancestor procedure is very useful when the

number of females is large and the number of males small. It

is also used for breeding plans that attempt to avoid inbreeding

to determine if that requirement has been met.

Numerator Relationship Coefficient Charts

The preparation of numerator relationship charts for all

the animals in an inbred line is necessary for this procedure

(Emik and Terrill, 19i|9) . These charts are an attempt to sim-

plify the calculation of inbreeding coefficients.

The charts may be initiated by calculating the numerator

relationships of the foundation animals to each other by ordi-

nary pedigree analysis. The sire-ancestor procedure Just de-

scribed is useful for this purpose. Then numerator relation-

ships may be computed by use of the formula:
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To reduce the number of numerator relationships to be calculated

to a minimum one may obtain only the relationship of each gen-

eration group with the preceding and succeeding generation

groups. (It is impossible to follow this plan exactly if the

generations are irregular,)

One must be aware that precautions are necessary in devel-

oping the charts. The numerator relationships which are used

to obtain the relationship of one animal to another should al-

ways be the younger animal to the older animal. This is essen-

tial if the two animals are in direct lines of descent. All

work should be independently checked. Errors in recording the

numbers of the sire and dam or in calculating or recording the

inbreeding as relationship coefficients may be carried on in-

definitely as they are not apt to be detected in later work.

When Inbred lines are first started, the calculation of

inbreeding coefficients by pedigree inspection or by the sire-

ancestor method may be more rapid than the development of numer-

ator relationship charts. However, after five to ten generations

of Inbreeding this will not be true.

^Afhen relatively small numbers of females are Involved with-

in a line and when inbreeding is to be continued for many gen-

erations, the numerator relationship charts method proves par-

ticularly useful. These charts are also more efficient when an

inbreeding coefficient is needed for each offspring from the

line

,
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Procedure for Closed Population

The computation of Inbreeding coefficients for isolates of

limited size is often a laborious procedure. A method is avail-

able which permits the accumulation of data, so that the inbreed-

ing coefficients for any generation may be directly determined

from those obtained for preceding ones (Cruden, 1914-9). Thus

eliminating the preparation and examination of long pedigree

charts. (A second advantage is to be found in the speed of com-

putation since the data obtained for any one generation furnish

the basis of calculation for each succeeding generation.)

The method requires the computation of inbreeding coeffi-

cients of all possible matings and some hypothetical matings

for a single (hereafter referred to as the base) generation

early in the history of the line. The coefficients for later

generations are then constructed as simple functions of the co-

efficients of the base generation.

This method yields the same result without requiring that

any paths be traced. It is based on the fact that the inbreed-

ing coefficients of the offspring of two parents is equal to

the average inbreeding coefficients of offspring, perhaps hypo-

thetical, from any one of the following examples of matings:

1. Paternal parent mated with each of the two

maternal grandparents;

2. Maternal parent mated with each of the two

paternal grandparents;
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3. Each of the two maternal grandparents with

each of the paternal grandparents;

I4.. Each of the two maternal grandparents with

each of the four paternal grandparents.

Fig. 1. Sample Pedigree.

For example, from Fig. 1, if we designate the coefficient

of Inbreeding which would have been obtained for the progeny of

any two animals 1 and 2 by T-^^f ^Q ^^ equal to any of the fol-

lowing expressions:

^xv * ^XW

fYT + fYU

^TV "*" ^TW '' ^UV * ^UW
(32)

It may be noted in the formulation presented that the
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actual sexes of the hypothetical parents need not be taken into

account In using the coefficient f3,2. In fact, self-fertiliza-

tion, represented by f-^-^, may be assumed without prejudice to

the technique.

It must be emphasized that a coefficient which represented,

hypothetlcally, a self-fertilization cannot be expressed as an

average of other coefficients.

Covariance Charts

Wright's original formula (ll;) shows that the coefficient

of Inbreeding of an Individual is simply i of the genie covar-

iance between the individual's sire and dam.

In many cases Inbreeding coefficients may be computed quite

rapidly from covariance charts Involving only: 1) the mates to

the females in the direct female line of ancestry, often re-

ferred to as the bottom of the pedigree; and 2) the females that

have female descendants represented In the population and at the

same time are ancestors of one of the mates (Plum, 195^•) . The

number of these females is often very small.

The Inbreeding of the individual in Fig. 2 is (cov BqAq)/2,

but according to the procedure preceding this one

cov BqAq = (cov BqB^)/2 + (cov BqA-,_)/2

and proceeding with this expansion, we arrive at the general

formula which is
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D-

B-

C
E

F

f^2
V.D2

C

^ A
-B.

p3
^A

Pig. 2. The Pedigree of Individual
Represented in the Conventional
Form.

cov BqAq = (gov BqB^)/2 + (cov BqB2)A + • • •

+ (cov BqB^)/2" + (cov BoAn)/2" (33)

where Bq, Bt^, . . . , B^ are the mates to the females in the

direct female line at the bottom of the pedigree (Ag, A]_, . .

Formula (33) indicates that only the direct female line

together with their mates needs to be traced in order to compute

the inbreeding coefficient of individual 0. Since all calcula-

tions of Inbreeding coefficients are relative to some base date,

the direct female line needs only to be traced back to this base

date after which the term (cov BqAj^)/2^ may be dropped from the

formula in most cases.

There is one limitation: whenever one of the A-animals is

also an ancestor of one of the B-anlmals, the computation cannot
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be carried back of the particular A-animal In question. For

example, If A3 Is a common ancestor to both A2 and B^ the com-

putation cannot be carried back to A^. The genlc covarlance

between Bq and A^ must be computed and the complete formula for

the genlc covarlance between Aq and B^ will be:

cov BqAq = (cov BqB^)/2 + (cov B^B^)/!]-

+ (cov BqB^)/8 + (cov 3qA^)/6 i3k)

In most cases the last term of this formula may be computed by

going back of the Individual which Is not a common ancestor (B^)

because cov B A^ = (cov A-C^)/2 + (cov A„D^)/2 and this formula

may be further expanded according to the principle of formula

(33).

When applying this procedure, the first step is to tabulate

the direct female ancestry together with their mates for each

animal whose Inbreeding coefficient is to be computed. Once

this is done the actual covarlance chart will be limited to the

males appearing in these female ("family") pedigrees. If indi-

viduals which are (female) ancestors of some of the males appear

in any of the "families", these "foundation" females should also

be included in the covarlance chart. When a covarlance chart

has been computed, the inbreeding of any individual may be com-

puted by means of formula (33) or (3^).

The covarlances between the males and the foundation fe-

males may be computed by the use of punched cards, in accordance
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with the following procedure. If however, the males are bred

within the population under study, it may be simpler to start

with the foundation males and females and work forward accord-

ing to the principle outlined by the previous procedure using

either formula (33) or {3k)'

From Punched Cards

The calculation of the coefficient of inbreeding may be

reduced from a complex operation to a routine procedure with

the use of punched cards (Hazel and Lush, 1950) . Although it

becomes primarily mechanical and clerical in operation, the

numerical results of this procedure are identical with those

of Wright's original formula (II4.). The steps of this procedure

will not be discussed in this report; for further information

one may refer to the source cited.
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This report discusses the procedures involved in calculat-

ing the estimates of F (coefficient or inbreeding) of an indi-

vidual. The earliest procedures were as follows:

A. Wright's original formula using path coefficients,

and

B, approximating procedure involving random sampling.

Malecot approached the problem of calculating the coeffi-

cient of inbreeding by considering probabilities.

When models based on a panmictic population are reviewed,

one may arrive at these procedures;

A. method involving proportions of heterozygotes;

B. product-moment correlation method using a table of

gametic correlations:

C. use of the determinant of the matrix of the previous

table of gametic correlations:

D. method involving a value of Chi- square;

E. method considering the proportions of alleles

in homozygous condition;

F. maximum likelihood method of estimation; and

G. method involving reduction of the number of alleles.

The final set of procedures considered in this report may

be classified as systematic. These include:

A. sire-ancestor method for irregular systems of

inbreeding;

B. preparation of numerator relationship charts;

C. procedure for a closed population of limited size;



D. application of covarlance charts; and

E. procedure using punched cards.

This report outlines the individual steps in each procedure

that are necessary to arrive at an estimate of the coefficient

of inbreeding. In some instances, procedures are compared as

to their effectiveness under given circumstances; and, advan-

tages and disadvantages are stated.


