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INTRODUCTION

Most polynomial equations encountered in a high school mathemat~-
ics class are solved by exact methods such as factoring, completing the
square, or applying an algebraic formula, Methods which are other than
exact, called numerical methods, can be far more useful but are seldom
brought to the attention of the student in standard algebra courses.
These numerical methods enable one to calculate the roots of a polynomi-
al equation by a method of successive approxinationa.- For any given
equation, & sequence of computational steps is constructed. If these
steps are carried out with sufficient accuracy, they lead to as close an
approximation to the solution as is desired. Thus, the original problem
is transformed into a problem consisting only of simple arithmetic steps.

The problem of finding the zeros of a given polynomial equation

arises frequently in mathematics, physics, and many branches of engineer-
ing. Rarely do these problems possess simple, analytical solutions.
For higher degree polynomials, no general algebraic formulas are avail-
able for expressing the roots in terms of radicals. It is therefore of
great importance that numerical methods for the solution of such equa-
tions be made available to the high school student.

A variety of numerical root-finding techniques are available--
some have been known for thousands of years. However, prior to the ad-
vent of computers, such solutions were considered relatively inaccessible
because of the extensive numerical calculations that were required. The
capability for high speed calculations by the computer has changed the

picture considerably. The use of procedures involving extensive numeri-




cal calculations is now both possible and practical, thus suggesting
many different approaches to problems than would otherwise be considered.
"Mathematicians have rediscovered processes that are particularly suited
to a computer's capabilities. They have also devised new and unusual
kinds of mathematics in certain cases."!

The computer can be an effective aid in the learning and enrich-
ment of mathematics. Through the use of the computer, the student may
become actively engaged in the exploration, problem-sclving, and formal
organizing aspects of mathematics. A statistical study developed by
Kieran reveals that students studying quadratic functions with the aid
of a computer scored significantly higher on a unit test than did stu-
dents studying the same material using a traditional approach.z

The computer approach to solving polynomial equations provides
the student with much more than a generalizable algorithm for approxi-
mating these solutions. As the numerical procedure is illustrated alge-
braically and geometrically, the teacher has an opportunity to introduce
several important concepts such as sequences, convergence, limits, con-
tinuity, and the close unity of algebra and geometry. Once the student
has mastered the numerical method, he can use the computer to obtain the
desired solution of a polynomial equation. Then instead of spending all
his study time doing tedious and meaningless hand calculations, he is
able to use his result and move ahead to examine other types of eduations

and their solutions.

1Ladis D. Kovach, Computer-oriented Mathematics (San Francisco:
Holdan-Day, Inc., 1964), p. 3.

zrhnnas E. Kieran, "Quadratic Equations--Computer Style,"
Mathematics Teacher, LXII (April, 1969), 309.




Although the problem of finding the roots of an equation on a
computer i8 by no means trivial, it is a problem solvable in the major-
ity of cases by straightforward application of simple procedures. The
purpose of this paper is to examine and compare the available methods
for finding the roote of polynomial equations and decide which methods
would be most suitable for use in a computer-oriented high school mathe-

matics class,




ISOLATING THE ROOTS

All methods for sclving polynomial equations make use of some
unknown quantity x to represent the actual value of the foot. Since
a computer cannﬁt work with unknown quantities, a guess must be made
and a numerical value assigned to x. Then, by using the proper compu-
tational scheme, the number can be systematically corrected so that it
approaches nearer the true value of the root. This initial guess should
be as close to the actual root as possible. Thus, some method of find-
ing a rough approximation to the root must be employed.

This procedure of estimating the answer to a problem should not
be reatricted to problems which are solved on computers, but should
instead be constantly applied to all mathematics. Kovach suggests that
the guessed solution i{s part of good mathematics. "It produces a frame
of mind which can more easily cope with the most difficult problems . .
and also provides an excellent check on the reasonableness of the solu-
tion when it is finally obtained. Finally, a good first guess will save
time and effort and lead one to solutions of problems that are particu-
larly difficule."

Frequently, an approximation to the largest root of a polynomial
equation may be obtained by taking the two highest order terms and golv-
ing them for the unknown.? Consider the equation

x3 -9x2 +5¢ -6 =0,

xovach, op. cit., p. 26.

YFPorman s. Acton, Numerical Methods That Work (New York: Harper
& Row, Publishers, 1970), p. 185.




Ignoring the last terms, the equation

x3 - 9x2 =0
can be solved to obtain an approximation of x = 9. The actual value
of the root to four significant places is 8.4945. Thus, the estimate
is a reasonable one.

The theory behind this method of approximation is that for large
x, the two highest-order terms will usually dominate. Therefore, if the
largest root is smaller than 1, the theory does not hold true. The
best estimates will be obtained when the actual value of the root is very
large.

A similar procedure is available for estimating the smallest root
of a given polynomial equation.5 I1f the actual root is near zero, the
high powers of x will be very small. Thus, the solution to the linear
equation obtained by ignoring the higher powers will be a good approxi-
mation of the root. Note that this estimate can be easily found by tak-
ing the negative of the ratio of the constant and first-order coefficient.

Forsyth suggests a slightly more complicated procedure for esti-
mating the smallest root.6 Consider the equatiop

x3 +2x% +10x - 20 = 0.
Neglecting the two highest-order terms, the resulting linear equation
10x - 20 =0
can be solved, obtaining a value of 2 for x. Then, neglecting only

the x3 term and substituting 2 for one of the x's in the xz term

SBruce W. Arden, An Introduction to Digital Computing (Reading,
Massachusetts: Addison-Wesley Publishing Company, Inc., 1963), p. l44.

6C. H. Forsyth, "A Simple and Effective Method of Solving a
Polynomial," School Science and Mathematics, XV (December, 1915), 802-804




gives the linear equation
l4x - 20 = 0

which has a solution of x = 10/7. Finally, subatitﬁting 10/7 for
two of the x's 1in x3 and one of the x's 1in xz results in the
linear equation

100/49 x + 20/7 x + 10x - 20 = 0.
This equation has a solution of 98/73 which is approximately 1.34.
The actual value of the root to the nearest hundredth is 1.37, so the
estimate is a good one. This general procedure can be expanded to
estimate the smallest root of a polynomial of any degree.

The previously mentioned procedures for estimating a root of a
given polynomial apply only for special cases when the desired root is
very small or very large. For obtaining a rough approximation to any
or all of the roots of a given polynomial equation, the best device
proves to be a graph of the given equation. Many clues to the solutien
of the equation may be obtained from such a graph, and its value cannot
be overemphasized. Once the equation is plotted, the student need only
estimate the abscissas of the points where the graph crosses the x-axis.
The calculus student can also calculate the derivative of the function
and investigate all maxima and minima points for possible roots.

Plotting a polynomial can be done very easily on the computer.
The machine need only be programmed to evaluate the polynomial at |
regularly spaced values of x. 1If the value of the polynomial changes
sign between any two points, then by the intermediate value theorem
there exists at least one real root between the two points. What is
desired is an interval that contains exactly one root. There ars pro-

cedures due to Sturm which will give the exact number of roots between




any two points, thus making it easier to isolate the roots. However,
Sturm's process is too complicated to be understood by the average high
school student. The most practical method of isolating a root of a
polynomial is by running a stepping search on the computer. The flow-
chart in Figure 1 illustrates the use of such a stepping search, given
that there is at least one real root between the two points a and b,

It should be noted that the choice of n 1s a matter of judgment
on the part of the programmer. If n 18 too large, them h will be
very small, and much time will be wasted examining intervals in which
there are no zeros. On the other hand, if n is too small, then h
will be very large, and some zeros might be missed. When a change of
sign in the polynomial value is indicated, the coordinates of these two
points are printed and the next interval is examined., These two points
could later be used as starting values a and b for a new stepping
search.

It can easily be seen that the stepping search requires the fre-
quent evaluation of a polynomial for given values of x. Such an evalu-
ation will be necessary in the use of any numerical method for finding
the roots of a polynomial. Therefore, a subroutine should be developed
by the student to accomplish this purpose.

One effective method for evaluating a polynomial on the computer
is to rewrite the polynomial as a series of products involving x. For
example, the equation

4 3

£(x) = Sx® + 4x3 - N + Ix - 2

could be rewritten as
f(x) = ( ( (5x +4)x - 3)x + 7)x - 2.

The flowchart in Figure 2 shows how a polynomial of degree n with
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alculate |
f(a), < :]<_-—,
f(a+h)

a=3a+h

| f(a) = f{a+h’

a =a+ 2h
f(a)=£f(a+2h)
n = n+l

Figure 1. A stepping search.
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Figure 2.
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Evaluating a polynomial.
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coefficients a;, . . . , a 41 can be evaluated for any given value
of x.

The above procedure can be used to evaluate a polynomial of any
degree, and the method is easily understandable by the student. How-
ever, a more efficient method which accomplishes the same purpose does
exist. This method uses the process of synthetic division to evaluate
the given polynomial, and it can easily be extended to evaluate the
derivative of the polynomial alao.7 Let

£(x) = 3x3 - 5x% -2x + 1.
Then synthetic division can be used as follows to determine the value of

£(2):

Thus, the quotient polynomial is

q(x) = 3x2 + x,
and f(2) 1is equal to the remainder which is 1. To find the deriva-
tive of the original polynomial at the point x = 2, another synthetic

division can be performed using the quotient polynomial:

213 1 o0
6 14
3 7 14

The derivative is equal to the remainder which is 14.

This general procedure can be applied to any polynomial

P(x) = ;lxn + ... tagx tagy

7S. D. Conte, Elementary Numerical Analysis (New York: NcGraw-
Hill Book Company, 1965), p. 50.




11
to evaluate P(z) and P'(z) for any real number z. Dividing P(x)

by (x - z) results in the quotient polynomial

n-1
Qx) =b,x" "+ ... +b _x+b

with a remainder of b
n+

1° Therefore, the original polynomial can be

written as follows:

P(x) = Q(x)*(x - z) + bn+

1
= X'Q(X) = z'Q(x) + bn+1
n-1 n-l
- x(blx + se e + bn-lx + bn) = z(blx + s e + bn-lx + bn) + bn+1

n n-1
blx + (bZ - zbl)x + ... + (bn - zbn_l)x + (bn+1 - zbn).
Equating the above equation to the equation
n
P(x) = a;x + ... + a x + a

results in the following recursion formulas:

by = a, + zbk_1 y E=2, 200 5 A¥EL,
Then P(z) 1is equal to bn+1.
Applying the same procedure to the quotient peolynomial results in these
recursion forﬁulas for the derivative:

¢, = b1
e = bk + th-l , k=2, ... , n.
Then P'(z) = Q(z) = c,+ The use of this procedure to evaluate a given
polynomial and its derivative for any value of x 1is explained by the
flowchart in Figure 3.

Once a reasonable effort has been made to isolate all the roots,

the student is ready to apply an iterative technique to determine the

roots to as many decimal places as the limit of the computer will allow,




k=%k +1

y= a[rl-:l. 4 zbl‘l

YP = ¢,

Figure 3. Evaluating a polynomial.
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ROOT-FINDING METHODS

One of the simplest numerical methods for approximating a root
of a polynomial is called the bisection method.B The requirementg for
use of this process are a polynomial f(x) with real coefficients and
two rational numbersr a and b such that f(a) 1s negative and £(b)
is positive. The numbers a and b can easily be found by applying
a gtepping search. Since every polynomial function is continuous, then
there exists at least one point ¢ between a and b such that £(c)
is a zero of the function.

The bisection procedure coneiste of halving the interval from
a to b, choosing the half whose endpoints again bracket the zero, and
repeating the process. First, the midpoint m = (a+b)/2 must be
calculated. Then a subroutine can be called to evaluate f(m). If the
value of f(m) is O, then m 1is a root and the process is completed.
Otherwise, f(m) 1s either negative or positive. If the value is
negative, then the root is between m and b. If the value is positive,
then the root is between a and m. Either way, the root is bracketed
within an interval half as large as the original. This process may be
continued until the root is known to the desired accuracy.

As an exsmple, consider the graph of the equation

£(x) = x2 - 2
between the two points (-1,-1) and (2,2). The following data
resulted from only four applications of the bisection technique. The
fourth bisection provided an estimate of 23/16, or approximately 1.44,

for the root. The actual value of the root to three significant places

8Richard W. Hamming, Introduction to Applied Numerical_aualyaig
(New York: McGraw-Hill Book Company, Inc., 1971), pp. 35-40.
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is 1l.414.
a = =1 a = 1/2 a = 5/4 a = 5/4
b = 2 b = 2 b = 2 b = 13/8
m = 1/2 m, = 5/4 my = 13/8 my, = 23/16
£(m)) <0 £(m,) < 0 £(m,) > 0 £(m,) >0

By using the process of bisection on the computer, an approximation
can easily be calculated to any desired degree of accuracy, and with a
minimum amount of effort. A flowchart of this process is illustrated
in Figure 4. Notice that the process is terminated when the functional
value of the midpoint differs from zero by some predetermined amount e.
Thua, the bisection procedure is continued until the root is approximated
to the desired degree of accuracy.

The biggest advantage of the bisection method lies in its
simplicity and its assurance of convergence. Operation on the computer
makes it seem fairly rapid, since each repetition reduces the maximum
error by a factor of two. However, this method is extremely slow
compared to other methods. In fact, it would be wise to incorporate

a counter into the program that would terminate execution if the
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y = £(x)

Figure 4,

The bisection method.

-~
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desired degree of accuracy was not reached after a specified number
of iterations.
The following output regsulted from a computer program designed
to find a zero of the equation
3
f(x) =x" - 2x -5
to the fifth significant decimal place, starting with the interval

from a =1 to b = 3:

m f(m)
1 2.000000 -1.000000
2 2.500000 5.625000
3 2.250000 1.890625
4 2,125000 0.345703
5 2.062500 ' -0.351318
6 2.093750 -0.008941
7 2.109375 0.166835
8 2.101562 0.078562
9 2.097656 0.034714
10 2.095703 0.012862
11 2.094727 0.001954
12 2.094238 -0.003495
13 2.094482 -0.000770
14 2.094604 0.000591
15 2.094543 -0.000089
16 2.094574 0.000250
17 2.094559 0.000080
18 2,094551 -0.000004

Pogsibly the oldest method of finding a root of a polynomial
equation is the method of falge position. Thisg method was known to
the Bgyptians between 1850 and 1650 B, C.” Again, an interval from
a to b 1ig sought in which f£f(x) changes sign. As a first approxi-
mation to the root, consider the point C where the chord AB, formed
by the line between points (a,f(a)) and (b,f(b)), crosses the x-axis.
Assuming that the graph of f(x) between A and B 1s nearly a

straight line, this point C represents the false position of the

9
Kovach, op. cit., p. 38.
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root, as shown in the following graph:

A(a,f(a))

N~ C(c,0)
T B(b, £(b))

!
Since AB 1is a straight line, then AC and CB must have the same

slope. Hence,
f(a) - O . f(a) - £f(b)

a-c a->b

Solving this equation for c¢ results in the formula

f(a)(b - a)

c =a + f(a) - £(b) .

Again, c¢ replaces a or b, whichever function value f(a) of £(b)
has the same sign as f(c). This process may be continued to bbtnin
closer and closer approximations to the actual root.

The method of false position is based on the observation that
in trying to decrease the interval in which there is a change in the
sign of the function, if one end value is large and the other is small,
the zero is probably cloger to the small value than it is to the large.
Like the bisection method, the method of false position converges for
any polynomial function independent of the starting values. However,
it gives the best results when used to improve the accuracy of a root
once it is known approximately, since successive approximations get
closer and closer together and the graph becomes more nearly a straight

line. The required computations are slightly more complicated than for
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the bisection method, but convergence is usually achieved faster. For
example, the bisection method required 18 iterations to determine
2.09455 as an approximation to a root of f(x) = x3 - 2x - 5. Use
of the false position method results in this approximation after only
15 iterations,

Convergence by the method of false position is still slower than
by most methods. One cause of this slow convergeﬁce is that ag soon
as an interval is reached on which the function is convex or concave,
thereafter one of the endpoints of this interval is always retained.
Rabinowitz suggests several modifications of the method of false position
to remedy this situation and thus speed up c0nvergence.lo Whenever
an interval is reached where the functional values of the last two
approximations, c; and c .., have the same sign, then some method
must be used to determine a new bracket on the root which does not
include the oldest approximation, Ci 1 One possible solution is to
apply the bisection method to €51 and iy t° determine a new
endpoint., Figure 5 depicts a flowchart which incorporates this
modification into the method of false position.

The following output compares the results of applying the
method of false position, both with and withoﬁt the modification
described above, to the function |

f(x) = xz -x-1,
Initial starting values of 1 and 2 are used, and the process is

terminated when the value of the function is less than or equal to a

value of e = ,00002.

IDPhilip Rabinowitz, Numerical Methods for Nonlinear Algebraic
Equations (New York: Gordon and Breach, Science Publishers, Ltd., 1970),

p. 26.




i =1+

%y " %3

19

Figure 5. A modification of the method of false position,
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Without Modification x ¥
1 1.500000 -0.250000
2 1.600000 -0,040000
3 1.615384 -0.005917
4 1.617647 -0.000865
5 1.617977 -0.000126
6 1,618025 -0.000018
7 1,618032 -0,000002

With Modification x b 4
1 1,500000 -0.250000
2 1.600000 =0.040000
3 1,616666 -0.003055
4 1.618071 0.000083
5 1.618034 =0.000000

Another very simple and efficient method of solving a polynomial
equation is by the method of linear iteration. This method is based
on the fact that any equation f(x) = 0 may be written in the form
g(x) = h(x), where a root of the original equation is the intersection
of the two equations y = g(x) and y = h(x). Obvibusly, there are a
number of ways to choose g(x) and h(x). Only certain choices will
lead to an iterative process that will converge. It can be shown that

h'(xJ in the neighborhood of the intersection
11

whenever Ig'(x) <
point, then convergence is assured.
After determining the derivatives of g(x) and h(x), take the
inverse of whichever function has the greatest slope in the neighborhood
of the point of intersection. For example, if h(x) has the greatest
slope near the root, then the inverse function x = H(y) should be

used., After obtaining =x. as a rough approximation to the root, using

1
one of the methods of estimation previously discussed, calculate yl'

by evaluating the function g(x) at the point x Then, find Xy by

1.

11
Kaiser S. Kunz, Numerical Analysis (New York: McGraw-Hill
Book Company, 1957), p. 7.
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evnluating H(y) at y;- Repeat as follows to get successive
approximations until a sufficiently close one is obtained:

y, = 8(x))
x, = H(y,)
v, = 8(x,)
H(y,)

Wy ,)
g(x,)

n

n

If g(x) and h(x) have slopes of the same sign, the iterates
X)s see 5 X will approach the actual value of the root along a step-

like path, as 18 illustrated by the graph below:

In this case, the approximations to the root are all either larger or
smaller than the actual root.

If g(x) and h(x) have slopes of opposite signs, the iterates
will approach the actual value of the root along a spiral path, thus
furnishing an upper an lower bound for the root, as is illustrated in

the following graph:
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(ngﬁl) (x1|Y1)
(x3sy3)
(le 72) (XB:YZ)

One major disadvantage of this general iteration procedure is
the difficulty of being able to write f(x) = 0 in the form y = g(x),
y = h(x) and at the same time making certain that the first equation
is readily solvable for x. A slight modification in the general
procedure will help avoid this difficulty. Since any polynomial
equation of the form f£f(x) = 0 can easily be expressed in the form
x = g(x), and since the equation y = x has a constant slope of 1,
then y = g(x) and x =y can be used as the two required equations.

The following iteration formulas result:

xz = S(xl)
Xq = 8(32)
X, ; E(xn_l)

<]

g'(x)

near the point of intersection of the two curves. If the derivative of

Then, the only necessary requirement for convergence is that

the chosen g(x) 1s greater than 1, merely transform the equation
f(x) = 0 into a different form.
Geometrically, g'(x) represents the slope of the tangent to

the curve y = g(x) at any given point x. However, the average high
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school student may not be familiar with the concept of the derivative,
Therefore, since approximations are being dealt with, it would be
possible to substitute the slope of the secant between the two points
(xl,;(xl)) and (xz,;(xz)) in place of the derivative. Than, if
8(x,) - s(x))
Il |

the iteration will ugually succeed. However, the derivative is still

< 1,

a better test.
A flowchart of the method of linear iteration is illustrated in
Figure 6. This procedure was applied to the polynomial
£(x) = x> +2x% + 10x - 20

using the function

20
g(x) = :z + 2x + 10

with an initial approximation of x = 1, The following output resulted:

x f(x)
1 1.538461 3.759670
2 1.295019 -1.523816
3 1.401825 0.703224
4 1.354209 -0.306678
5 1,375298 0.137168
6 1.365930 -0,060670
7 1.370086 - 0.026967
8 1.368241 -0.011961
9 1.369060 0.005309
10 1.368696 -0.002361
11 1.368857 0.001043
12 1.368786 -0.000464
13 1.368818 0.000204
14 1.368803 -0.000092
15 1.368810 0.000037

The linear iteration process could have been applied to the same
polynomial f(x), but using the function

- 20 - 2x% - 10x
8(x) S 2 = ®
b 4




Figure 6.

The macthod of linear iteration.
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However, since g'(l)I = 30, the method would fail to converge in

this case.

The method of linear iteration is very easily adapted to use
on the computer, since the program merely involves the repeated
calculation of the same function. 1Its biggest disadvantage is that
convergence occurs only if certain requirements of the first derivative
are met. Since each repetition uses different numbers and produces
a more accurate result, convergence is fairly rapid when it does occur.
However, it still may be too slow, especially if the slope of g(x)
is near 1 1in the neighborhood of the root.

An acceleration device does exist for speeding up the convergence

12

of the linedr iteration process. This device, called Aitken's A 2

process, uses three consecutive values of an iterate, xk, and

=T

X 42" These values will differ from some better approximation x by

X - X X - X , and x - X142 Since the error is reduced by a

k’ k+l :
constant factor at each iteration, the following ratios are found to be
equal:

xXoX =X-Xn

X -xk+1 X -xk_'_z

Solving for x gives

2

I e el T LA
- ¥

ko X =R TX

1f {xkg is a sequence of iterates generated from some convergent
linear iteration, then a new sequence ix'kg can be generated using

the above formula. This new sequence converges to the desired root

12Com:e, op. ci

rr

., p- 28,




26
faster providing that the derivative is not equal to zero on the

interval,

The flowchart in Figure 7 illustrates the use of Aitken's 1&2

process. Applying the method of linear iteration with acceleration

to the polynomial

£(x) = x3 +2x° +10x - 20 = 0O

produces the following regults:

x £f(x)
1 1.538461 3.759670
2 1,295019 -1.523816
3 1.370813 0.042332
4 1.367918 -0.018767
5 1.369203 ' 0.008333
6 1.368808 -0.000002
7 1.368808 - 0.000002

Note that the use of Aitken's acceleration device reduced the required
number of iterations from 15 to 7 to approximate the root to the
fourth significant decimal place.

Probably the best known of all iterative methods is one deﬁ!loped
by Isaac Hawton.la Newton suggested that since the derivative of a
function tells how fast the function is changing with respect to x,
then it can be used to adjust x. Rather than agssuming a straight line
between two points on the curve, Newton's method makes use of one point
and estimates where the approximating tangent to the curve at that point
crosses the x-axis.

Let x1 be the first approximation to the solution of the
equation f(x) = 0. The tangent to the graph at the point (xl.f(xl))

crosses the x-axis at some point (xz,O). This point X, becomes

13Ralph H. Pennington, Introductory Computer Methods and Numerical
Analysis (London: The Macmillan Company, 1970), pp. 286-91.




27

xi = X
%54778(X14)
1=1+3
N

Figure 7. The method of linear iteration using Aitken's& process.
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the second approximation to the root.

(xl ’ f(xl) )

x}\\—

Since f'(xl) represents the tangent to the graph at the point X5

then by the definition of slope

f'(x ) = .fffll__l_,g .
1 n - X
80
f(xl)

2 1 f'(xl) )

Using the iteration formula
f(xi) ,
fl

(xi)

Xi+1 = X4 -

succegsive approximations can be generated to the desired degree of
accuracy.

If the derivative does not change too rapidly, and if the curve
does not become nearly horizontal near the x-intercept, convergence by
Newton's method will be good. However, if one of the approximations is
near a maxima or minima point, divergence could occur. In such a case,
the derivative could become so small that division by it might result
in a number too large for the computer to represent. A check for the

value of the derivative should be written into any program which uses
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Newton's method. A flowchart for Newton's method is depicted in
Figure 8.
Macon suggests that if, while applying Newton's method, it is
discovered that f'(x) becomes very small, it is practical to depart
from the standard sequence and attempt to obtain two new starting

14

values. To obtain these values, apply Newton's method to the equa-

tion f'(x) = 0. That is, perform the iteration
f'(xi)
X341 T % T ?T;i-)'

using the last available iterate as a starting value. Then compute

‘= x + | "2E(x )
SR
i+l

These two numbers will separate the two close roots which caused f£'(x)
to vanish, and either of them may be used as a starting value for
Newton's iteration with some hope of converging.

Newton's method obviously requires more informatioﬁ and
generally more work per step than any other method. Convergence is
not assured, and a well-chosen initial approximation is a necessity.
However, Newton's method can converge very quickly. Only 8 iterations
are required to obtain the approximation x = 2.09455 for a root of
f{x) = x3 - 2x - 5, as compared with 18 iterations for the bisection
method and 15 iterations for the method of false position, The
convergence of Newton's method 18 quadratic, or of the second order,
as opposed to. the linear, or first order, convergence of the methods

previously discussed. This means that the absolute error at one step

laﬂathaniel Meacon, Numerical Analysis (New York: John Wiley &
Sons, Inc., 1963), p. 34. :
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Figure 8.
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is proportional to the square of the absolute error at the previous
step: that is, an answer correct to 1 decimal place at one step
should be correct to 2 decimal places at the next step, & at the
nexf, and so on.

One argument against using Newton's method for approximating
the roots of a polynomial at the high school level is that it makes
use of the derivative. The average high school student has not studied
derivatives, so the formula for finding the tangent to the curve at any
given point is meaningless to him. The gecant method provides an
alternative to Newton's method by replacing the slope of the tangent
at the poiﬁt (xi,f(xi)) by the slope of the secant line between the

two points (xi,f(xi)) and (x (xi_l)).15 Thus, the expfeslion

1.-1’f

f(xi) - £(
x

X .10

1~ %

is substituted for f'(zi), and the subsequent iteration formula

becomes

(zi - !i-l) f(xi) .

x L "4 -

Algebraic manipulation will show that this is the same fteration
formula that is used in the method of false position. However, the
method of falge position requires that f(x) have opposite signs at
the two points used to generate the next point. The secant method
keeps the two most recently computed points at each iteration, regard-
less of whether or not they bracket the root. A flowchﬁrt for the

secant method is shown in Figure 9.

15Conte, op. cit., p. 40.
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Figure 9.

The secant method.
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The convergence of the secant method Is noticeably faster than
for the bisection method or the method of false position because it
uses more up-to-date information. Also, the secant method is much
more efficient. Its advantage over Newton's method lies in the fact
that it does not require the evaluation of a derivative. Also, it is
more stable than Newton's method, but it is usually somewhat slower
to converge. Convergence of the gecant method is not always guaranteed.
When it does converge, its rate is not quadratic as in Newton's method,
but it is considerably better than linear.

The following output resulted from applying the secant method to
find a root of the polynomial equation

x3 -9x2 +5x-6=0,

using starting values of 8 and 10;

x f(x)
1 8.344827 -9,899662
2 8.451295 -2.934514
3 8.496150 0,110492
4 8.494522 -0,001242
5 8.494539 -0.000065

The bisection method required 18 iterations to arrive at the same
apprﬁximation, the method of false position required 11 iterations,
and Newton's method required only 4 iterations.

Whittaker's method is another procedure that avoids the

16 This process

computation of the derivative in Newton's method.
consists of replacing the derivative by some constant value M. The

resulting formula

f(xn)

16peter Henrici, Elements of Numerical Analysis (New York: Johm
Wiley & Sons, Inc., 1964), p. 87.




34

then defines, for a certain range of values of M, a linearly converging
sequence. If the estimate of M 18 good, convergence may be quite
rapid. This method would save time when doing calculations by hand,

but the secant method would be more accurate and just slightly more
complicated for use on the computer.

Horner's method is a method which was popular when numerical
calculations were done entirely by hand.l7 Consider the polynomial
equation

P(x) = x> + 18x - 30 = 0.
To find the roots of this equation between x =1 and x = 2, get
x equal to (1 + p). An attempt will then be made to approximate
p. Substituting the expression (1 + p) for x in the original
equation results in the equation
pJ +3p2 +21p - 11 = 0.
Since p = x - 1, this equation can be rewritten as
(x-1)3 +3(x-1)2 +21(x - 1) - 11 = 0.
Hence, it can be seen that -11 is the remainder when P(x) is
divided by (x - 1), resulting in the quotient polynomial
Ux) = (x - 1)2 +3(x - 1) +21.
Repeated divisions by (x - 1) give the remainders 21, 3, and 1.
This suggests an easier way than direct substitution for finding the
coefficiente 1, 3, 21, and -11 of the terms in the transformed
equation--that is, through a process of repeated synthetic divisgion.
Divide P(x) by (x - 1) and continue dividing the resulting

quotient polynomials by (x - 1) as follows:

17Leonard Eugene Dickson, New First Course in the Theory of
Equations (New York: John Wiley & Sons, Inc., 1939), pp. 90-93.
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1|1 0 18 =30
1 1 19

1 1 1 19 -11
1 2

1] 1 2 21
1

1] 1 3

1

Taking the remainders in reverse order gives 1, 3, 21, and -11, the
coefficients of the degired equation. Let p be a root of

pd +3pZ + 21p - 11 = 0,
Now if x 1is a root of the original equation, then x =p +1, To

3 and p2 terms

obtain an approximation to the decimal p, ignore the p
of the equation and solve the resulting linear equation
21p - 11 = 0,

obtaining .5 as an approximate value for p. Since the ignored
terms were positive, this approximation will be too large. Therefore,
let p = .4 +h, and repeat the synthetic division process, dividing
the polynomial

p° +3p2 +21p - 11
by (p - .4) to approximate h,

401 3 21 -11
.4 1.36 80944

.4 1 3."‘ 22-36 -2.056

4 1,52
4| 1 3.8] 23.88

4
4|1 | 4.2

Use the resulting equation

h3 + 4.2n% + 23.88h - 2.056 = 0
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to approximate h, obtaining h = .08 + t. Repeat the synthetic

division process, dividing by (h - ,08).

.08 1 4-2 23-88 -2-056
.08 3424 1.937792

08| 1 4.28 24,2224 - .118208
.08 « 3488

08| 1 4,36 |24,5712
.08

W08 1 | 444

1
Use the resulting equation to approximate t = 004 + s, and divide

again,

004 1 4.44 24,5712 ~.118208

004 017776 .098355904
004 1 4.444 24,588976 | -.019852096
. 004 .017792
.004) 1 4,448 24,606768
.004

004 1 | 4,452

This equation can then be used to obtain a final approximation of
0008 for 8. It follows that x =1 + .087+ 004 + ,0008 = 1,4848
is a good approximation to the root. This process could have been
continued to any desired degree of accuracy. It is a very practical
method for finding the root when doing the calculations by hand, since
accurate division is not essential. However, because oflthe work
involved and the slow rate of convergence, Horner's method is not
recommended for use on the computer.

Another interesting root-finding method was developed by
Daniel Bernoulli in the eighteenth century. Bernoulli's method

is very useful when the root of largest magnitude is the only omne
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deaired.ls The theory behind this method is based on the solution

of linear difference equations and will not be proved in this paper.
‘Tha basic procedure consists of arbitrarily choosing a sequence of
numbers Pys oo » prl and replacing each xk in a given polynomial
by the corresponding pk+1. For examplg, consider the polynomial
equation
P(x) = x3 - 3x2 -x + 3,
Arbitrarily choose P, = 0, p2 =1, and Py = 1, Replace each x#

by the corresponding pk+1' forming the new equation

- - + = =
P, 3p3 P, 3p1 0

Substituting the chosen values for Py Py and p3, solve the resulting

2
linear equation obtaining p4 = 4, Ignore P, and repeat the process

si i
using Ps p&’ P3

repeated as many times as desired, resulting in a sequence of numbers

, and PZ' solving for Ps- This procedure may be

P.s PS’ ese pi. Another gequence of numbers can then be formed by
taking the ratio of each number in the original sequence to the one
before it, If these ratios approach a limit, that limit is the largest
root, If the ratios oscillate periodically, then either a pair of
complex roots or two roots equal in absolute value are present, so a
different method must be applied.

The flowchart in Figure 10 illustrates the use of Bernoulli's

method. Applying this process to the original polynomial equation
P(x) = x> - 32 . x+3 =0,

using a value of 15 for M, results in the following output:

18George R, Stibitz and Jules A. Larrivee, Mathematics and
Computers (New York: McGraw-Hill Book Company, Inc., 1957), pp. 77-78.




Read M,

n, Pl, sse
P s 31y »
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j =1
k=3
p=20
= +1
- o
P=ap tp k = ktl
no
= yes no
pnﬂa—a—l’—« i=i+
n+l
yes
i =1

Figure 10. Bernoulli's Method.
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b Pe1/ Py
1 4.0 2.500000
2 10.0 3.100000
3 31.0 2.935483
4 91.0 3.010989
5 274.0 2.992701
6 820.0 3.001219
7 2461.0 2.999187
8 7381.0 3.000135
9 22144..0 2.999909
10 66430.0 3.000015
11 199291.0 2,999989
12 597871.0 3.000001
13 1793614.0 2.999999
14 5380841.0 3.000000
15 16142523.0

Therefore, 3 1s determined to be the magnitude of the largest root
of P(x). The actual roots of the polynomial are -1, 1, and 3.

Bernoulli's method works only when the roots are all réal and
distinct. Multiple roots and complex roots cannot be determined.
Convergehce is slow, and only the root with the largest absclute value
can be found. Por these reasons, the method is far from ideal as a
general purpose program for root-finding on the computer.

All of the methods discussed up to this point enable one to
obtain a more accurate value for a real root whose approximate location
is already known by other means. Only one real root at a time can be
approximated, and it is difficult to know when all the realrroots have
been found. Rarely is it necessary in practical applications to find
all real and complex solutions to a polynomial equation. However, the
student should realize that numerical méthods te do ﬁhia do exist, and
he should be introduced to some of them.

One solution to the problem of finding all the roots of a given
polynomial is to search out the real roots one at a time. Once a real

root has been determined, a new equation with degree reduced by 1 can
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be obtained by dividing the original equation by the known factor. Any
roots of this new equation will be roots of the original equation as
well, The procedure for performing such a division synthetically on
the computer has already been discussed. However, if successive roots
are found by continuously reducing the degree of the polynomial, a
loss of accuracy in the later roots must be expected. This inaccuracy
is caused by errors in the coefficients of the reduced polynomials
due to round-off and incomplete convergence. The accuracy of the
root can be improved by reiterating with the original polynomial.
However, some polynomials, especially those of high degree, are very
unstable in the senge that small changes in the coefficients will lead

to large changes in the roots. Conte uses the polynomial equation

x’ . 28x® + 32257 - 1960x* + 6769x° - 13,132::2 + 13,068x - 5040 = 0
to illustrate this danger.lg The exact roots of this polynomial are
1y 2y A, 4, 5, 6, and 7. Applying Newton's method to approximate each
of these roots results in the approximations in column 1 below. The
numbers in column 2 were obtained using the same method and same

initial conditions, but the coefficient of the xz term was replaced

by -13,133.
1 2
1 .99999999 1.00139750
2 1.99999780 1.96891970
3 3.00001310 3.31839620
4 3.99998170 3.50497150
5 4.99997960 7.05993460
6 6.00006230 5.30904000
7 6.99996480 5.83734000

Note that a change of 1/100 of 1 percent in one of the coefficients

lgconte, op. cit., p. 57.
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has led to a 10 percent change in some of the roots. Therefore,

caution must be exercised when obtaining roots from a reduced polynomial,
especially one of high degree.
An alternative method of finding all the real roots of a

20 Consider the

polynomial makes use of the reciprocal polynomial.
polynomial equation

13 - 4x2 +x+6 =0,
which has the exact roots -1, 2, and 3. Replacing x by 1l/y
results in the polynomial equation

1-4y+y2+6y3=0.
The exact roots of this new polynomial are -1, 1/2, and 1/3--the
reciprocals of the roots of the original polynomial. Therefore, all
the roots of the original polynomial that lie outside the range f 1
now lie inside it for the reciprocal polynomial. Thus, one can search
for all the real roots in the interval from -1 to +1 for the
original polynomial, and then form the reciprocal polynomial and ;earch
for its roots in the same region. Since the reciprocal polynomial will
always have the same coefficients as the original polynomial, but in
reverse ordér, this method is easily incorporated into a computer
program,

Mumerical methods do exist which compute all the real roots

of a polynomial simultanecusly. One of the oldest and simplest
procedures for doing this is due to Graeffe.zl His process is based

on replacing the given polynomial by one whose roots are the squares

zoﬁcton, loc. cit.

2]'Pennington, op. cit., pp. 320-29.
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of those of the original polynomial. Consider the polynomial equation
P(x) = 2x° - 7xZ + 7x - 2 = 0.
Suppose the actual roots of this equation are a, b, and c. Then
by the factor theorem, the equation can be rewritten as
P(x) = 2(x - a){(x - b}(x - c) = O.
Replacing x by -x 1in the original equation results in the new
equation
P(-x) = -2x> - 7x% - 7x - 2 = 0.
The roots of this equation are -a, -b, and =-c; therefore, the equetion
can also be written as
P(-x) = -2(x + a)(x + b)(x +¢) = 0.
Multiplying P(x), P(-x), and (-1) results in the equation
P(x2) = (-1)P(x)P(-x) = 4(x? - a2)(x? - b2)(x? - <2).
The roots of this new polynomial are thersquaros of the roots of the

original polynomial P(x). Now

P(x?) = (-1)B(x)P(-x)

= (-1)(2x3 - 7x% + 7x - 2)(-2x° - 7x% - 7x - 2)
= (-1)(-4x® + 21x* - 21x2 + &)
6 _ 21x% + 21x% - 4.

= 4x

The actual roots of this equation are 1/4, 1, and 4. 1f these can

somehow be determined, then the roots of the original polynomial must
be among +1/2, t1, and ¥ 2.

Given the coefficients of the original polynomial P(x), what

is needed is a general formula for generating the coefficients of the

polynomial P(x2). Let

P(x) = a,x” + ... + +
(x) = ax ax+a

be a polynomial with actual roots X1y eoe X Then




P(x) = al(x - xIJ(x - x2) . -'xn).

From the original pelynomial, determine the new polynomial P(-x)

such that

P(-x) = a,(-1)"x" + -z(-1>“'1x“'1 ‘e taxta

= (-l)nal(x + 11)(2 + xz) coe (x + x-n)'
Let

P(x2) = byx?® + byx?®2 + ... +b x? + b
n n

1 +1
be the polynomial whose roots are the squares of the roots of P(x).
Then

p(x?) = b (x? - )P - x5y . (2 - D)

by(x - x,)(x + x,)(x - x,

b1 (x - xl) ees (x - x;z] [:kx + xl) — - xni]

bllaf (-1)® (x) P(-x)
2n-2

Hx + xz) eee (X - xn)(x + xn)

n-4

+ (Zala - 2a_a, + lg)xz

2 2n 2
apx?f + (2a,a, - aj)x 5 2%

Comparing coefficients of like powers of x results in the following

recursion formulas:

2
- +
2 ‘2 2:1a3

= 2-
h3 a3 Zazab + 2a1a5

o
|

i-1
B, =L Ty -2y gl TR B T e
® n-l 2
bn (-1)" Aap - z"l':-l"nﬂ.)

. If this root-squaring procedure is applied to a polynomial m times,
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2m om om
the result is a polynomial with roots X1 xz G 18 we xn « If the

roots of the original polynomial are real and unequal, then for large
m, the following ratios can be gshown to be approximately true, where
k= 2"
k
b = -
zlbl Xy

ba/bz = =X

~N

= k
bn+1/bn = -xn "

The absolute values of the desired roots may then be found by taking
the ratios of the coefficients as above, and then taking kth roots.
When root-squaring has been applied enough times to make the approxi-
mations good onéa, the coefficients themselves will be approximately
squared at each ltep.zz

Figures 11 and 12 illustrate how Graeffe's root-squaring
method can be arranged for use on the computer. Figure 1l is a flow-
chart of the actual root-squaring process, while the flowchart in
Figure 12 computes the ratios, decides whether to root-square again,
and calculates and prints the absolute values of the roots. Applying
Graeffe's root-squaring method to the polynomial equation

x3 - ﬁxz +11lx - 6 =0

results in the following output:

M B(1) B(2) B(3) B(4)
2 1.0 -14.0 49.0 -36.0
4 1.0 -98.0 1393.0 -1296.0
6 1.0 -6818.0 1686433.0 -1679616.0
8 1.0 -43112260.0 2.821152E12 -2.821110E12
10 1.0 -1.853024E15 7.958661E24 -7.958661E24
12 1.0 -3.433684E30 6.334029E49 -6.334029E49

ROOTS: 3.000000, 2.000000,

221144,

1.000000




i =1+l

see 9 an+1

n even

Sign = -1
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k= n-1

bi = (Sign) *
2
('i - Zbi)

Sign = +

2
bn+1'(Sign) Ay _@

Figure 11.

The root-squaring process.




Figure 12,

Graeffe's Method.
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In cases where the roots of a given polynouiai are all real
and distinct, Graeffe's root-squaring method can be used to find all
the roots directly without any prior information. However, the coef-
ficientu become squares of their previous values only when the roots
are real and simple. When multiple or complex roots are present, the
coefficients will not all display this behavior. Only certain coef-
ficients, termed pivotal coefficients, will become nearly squared at
each application. It can be shown that if b1 and b1+j are two
adjacent pivotal coefficients, then there are exactly j roots having
absolute value p given by

pik = (-1)3 by, /b,

where k = 2-, and m 1s the number of times the root-squaring has
been performed.23

One can see that the coefficients become quite large when apply-
ing Graeffe's root-squaring method. If root-squaring is done very many
times, an exponent overfldw can occur. For this reason, the use of
this method on the computer is limited. This problem can Qometimes be
alleviated by dividing all the roots by some numbér such as 2" at
each stage. However, this procedure could go too far the other way
and cause exponent underflow. Therefore, the most practical use of
Graeffe's method, especially at the high school level, is as a method
of separating close roots. If the roots of a given polynomial are
very close together, there is considerable trouble in finding them to
a high degree of accuracy. However, after applying the root-squaring

process several times, the largest root will grow fastest and will soon

be eagily isolated.

?sPennington, op. cit., p. 331.
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Another disadvantage of Graeffe's method is that only the abso-
lute values of the roots are found. The signs of the roots must some-
how be determined. One method of determining the sign of.a root is to
substitute both Ehe number and its negative in to the origiﬁal equation
and see which satisfies it best. If it is determined that k roots
all have the same absolute value, it is difficult to find how many of
these are real and how many are complex. After substituting in all the
real possibilities, it should be assumed that the remaining roots are
complex. -

Once a reasonable effort has been made to find all the real
roots of a given polynomial and its degree has been reduced as far as
possible, then some method for determining the complex roots of the
polynomial must be applied. Complex roots can be evaluated by many of
the iterative methods already discussed. Consider, for example, apply—
ing Newton's method to the complex polynomial

22 -2 =0,

using Ry i as an initial approximation. Then

lei
¥ -3
zy =1 - = =2/3 +2/31
31 |
3
2y = (-2/3 +2/31) - (-2/3+2/31) -2 . .4/9 + 25/91.
3(-2/3 + 2/31)

Obviously, the arithmetic involved in handling the complex quantities

can soon become rather complicated.

An easier numerical method does exist for finding the complex
roots of a polynomial equation of any degree. This method, suggested
by Bairstow in 1914, searches for quadratic factors of the given poly-

nomial. Since the complex roots occur in conjugate pairs, a + bi and
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a - bi, then any equation with complex roots has at least one quadratic 7
factor.za This quadratic factor is of the form |

(x-a-bx)(x-a+bi)-x2'+px+q.
If p and q can be determined, then the complex roots can easily be
found by applying the quadratic formula.

Consider the polynomial equation

P(x) = x4 - x3 + 13x2 +9x + 25 = 0.
Let p1 =1 and ql = 2 be initial approximations to p and q. Di-
vide the original polynomial by the trial quadratic factor (x2 +x +2),
obtaining the quotient polynomial

Olx) = %° - 2% + 13
with a remainder of =-1. If the trial quadratic term were a factor of
the original polynomial, then the remainder would be zero. Thus, what
is now needed is a method of adjusting the approximations to p and q
so that the remainder becomes zero. |
In general, if Py and q1 are initial approximations to p

and q, then dividing the original polynomial

P(x) = alx“ + azxm-2 + . + a_x + an
by the trial quadratic factor (xz + pix = ql) results in the quotient
polynomial

-2 n-3

n
= +
Q(x) blx + b.x + .0 F bn_zx b

+
with a remainder of :n(x pl) + bn+1. Thus
n-

n
P(x) = a x + a,x + opee F a x + a H
2 n- :
= + ...+ - +b - +b
(x* + plx " ql)(blx bn—Zx bn-l) n(x Pl) n+l
n n-1
= + + + .
b,x + (b2 + Plbl)x HE e (bn+1 plh“ qlbn-l)

24
A. Balfour and A, J. McTernan, The Numerical Solution of
Equations (London: Heinemann Educational Books Ltd., 1967), pp. 52-59.
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Comparing coefficients of like terms results in

a = b

1 1
a,; =by +pb;
33 =b3+pb2+q11
a -

n bn + Plbn'l % qlbn-2

a = b +p

n+l n+l b, *4.b

1n 1 n-1°
Hence the recursion formula
bi-ai -pbi"l-qbi‘z ’ i’l, s ,n+1,

-1
quotient polynomial Q(x) given the coefficients of the original

with b = b0 = ), can be used to determine the coefficients of the

polynomial P(x).
The objective is to obtain approximations of p and q so that
2
(x +px +gq) 1is an exact divisor of P(x). 1In order for this to be

true, the remainder must be equal to zero. That is,

by = &0 T bn-lpl i} bn-qu i
and
bn+1 = an+1 - b p1 - bn_lq1 = Q.
The method of solving this system of two nonlinear equations in two
25
unknowns 1s called the method of successive approximations. The

theory behind the process involves the use of partial derivatives and
becomes rather complicated. However, the basic computational scheme is
simple enough. Merely repeat the division process using the trial
quadratic factor (x2 + pyX : ql) as the divisor, but this time using

Q(x) 1instead of P(x) as the dividend. The result is a new quotient

25
Kaj L, Nielsen, Methods in Numerijcal Analysis (New York: The
" Macmillan Company, 1956), p. 213,




polynomial

n-4 n-5
Qz(x)_= clx + czx * ..+ cn-zx + Cn-3'

with a remainder of ¢ _,(x + p;) tc _;. The c
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are obtained from

the bk just as the bk were obtained from the ak.
Using the values €h-2° Spo1’ b“+1, and bn compute Nl, HZ’
“and D such that
N1 = bncn-l ) bn'l'-lcn-Z
Ny ™ Bp41%p-1 = Pun * bi
- c:-l " a2 * bncn—z'

Then, better approximations for p; and q; can be found by
P, =P + Nlln
9y ™ gy + NZID
when p and q are determined with sufficient accuracy, the
plex roots of the quadratic factor can easily be found by the
formula,

The flowchart in Figure 13 shows how easily Bairstow's
can be arranged for use on the computer. Applying Bairstow's
to the polynomial equation

P(x) = xa - 2x + 4x2 - 4x + 4
results in the following approximations for p and q, using

tial approximations p; = -1 and q; = Ls

N bW

B

-1.000000
-2.000000
-1.750000
-2.058516
-2.002377
-2 .000004
-2.,000000

g

1.000000
3.000000
1.750000
2.042340
2.000615
1.999997
2.000000

taking

tWo com-

quadratic

method

process

the ini-

Therefore, the actual values of p and q are -2 and 2. Solving




Figure 13.

P> q
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Bairatow's Method.

b, = bO =0 =
c_l-co-ol( q-q+-?l',
)L T
- - 1
k=1 p=p+ -
v
D=¢ =c_C + b2
b, = a - pbk_l— qby _, n-1 “n"n-2 n
N b c b ¢ +b2
- % 2 n+l n-1 nn n
Fi PCra1 ~9%k-2
Nl = bﬂcn-l - bu+1°n-2
no k = k+l
- - - \I Write
bI'I‘i']- an+1 pbn qbn"l
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the quadratic equation

x2 - 2x +2 =0
gives x = (1 +1i) and x = (1 -i) as the two complex roots of the
equation. Dividing P(x) by (x2 - 2x +2) gives the seconq quadratic
equation of (xz + 2). Solving this equation by the quadratic formula
results in the two complex roots, x = JE_i and x = -J;-i. These
are also roots of the original equation.

Bairstow's method is a powerful and efficient method for finding
complex zeros of polynomials. It provides a simple algorithm for com-
puting a8 pair of complex roots of a polynomial having real coefficients
by operating only with the real numbers, and it converges quadratically.
However a good initial approximation to p and q is essential, and
it is often difficult to select these initial values properly to
assure convergence. In the absence of any other information, one can
use as a trial quadratic factor the one suggested by the three terms
of lowest degree in the given polynomial. That is, take

Bppx * 8pX *agy =0

g T og, =Rl

obtaining p; = an/an as initial approximations
for p and q.

One final root-finding method that should be mentioned is the
Lehmer-Schur nethod.26 This procedure is a relativeiy new one devel-
oped in 1961, It provides a criterion which may be used tc determine
whether any zero of a polynomial lies within the unit circle and uses
this as the basis for a method to determine all the roots. Speed of

convergence is in no way affected by the multiplicity or closeness of

6
Anthony Ralston, A First Course in Numerical Analysis (New
York: McGraw-Hill Book Company, 1965), pp. 355-59.




54
the roots. Although the application of the Lehmer-Schur procedure is
too complex to be used in a general high school situation, an advanced

student may wish to study this process further.
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CONCLUSION

For any given equation it is obvious that several different
iterative formulas are available for determining its roots. Some of
these methods, such as the bisection method or the method of false
position, converge very slowly but their convergence is assured.

Others are more complicated, such as Newton's method, but their con-
vergence, when it occurs, is very rapid. The type of root-finding
method to be tried in a given situation depends first of all on the
way the resulting computer program is to be used. For programs which
will receive relatively little usage, a slower method with assured
convergence would be better than a faster method which might diverge.
However, for programs which are to be used repeatedly, a process which
converges more rapidly would be desired.

Most root-finding formulas depend on the root being simple. 1If
multiple zeros do exist, the bisection method and the method of false
position will locate a zero of odd-order in a given interval, although
convergence will be slowed down considerably. To find even-order zeros,
one must examine the zeros of the first derivative. Multiple roots may
also be found with Newton's method if the multiplicity of the root is
known beforehnnd.27 The following modification of Newton's iterative
formula will find a root of multiplicity r, and will cenverge quadrat-
ically:

f(xg)

x L 3 x - r.
i+l : 1
f'(xi)

27 1b1d., p. 343.
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However, the multiplicity of a desired root 18 usually unknown.

Another factor which must be considered when choosing a root-
finding method 18 how much is known about the given polynomial. If
a priori information about the location of the roots is poor, it is
advisable to use a method which is not dependent upon the initial
approximations, Such methods as the bisection method, method of false
position, Bernoulli's method, and Graeffe's method have.guaranteed con-
vergence regardless of the starting values. They can be used to ap-
proximate the root locations so that one of the more rapidly-converging
methods may be applied to determine the root to the desired degree of
accuracy.

In general, the root-finding methods which are best suited for
use on the computer in a high school situation are the secant method
and the method of linear iteration using Aitken's acceleration device,
The convergence of these methods is somewhat faster than linear. Also,
the theory behind them is simple enough for the average student to
underatand. Of course, for students who have studied derivatives,
Newton's method ie even better than either of these. The bisection
method and method of false position, because of their slow convergence,
should be used only when one of the other methods fails. Bernoulli's
method and Graeffe's can be used in special cases such as finding the
root with the largest magnitude or separating close roots. If complex
roots are desired, Bairstow's method would be the easiest one to apply.

Figure 14 contains a flowchart which illuatrates a general
procedure that can be followed for finding all the feal and complex
roots of a given polynomial. If no initial information is available

about the location of the roots, one must first apply a stepping search
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in an attempt to isolate all the real roots. One of these initial
values or intervals can then be chosen as a starting point in applying
some rapidly-converging method such as the secant method or the linear
iteration method with acceleration. A counter shoﬁld be incorporated
fnto the program so that 1if convergence does not occur after a certain
nﬁmber of iterations, the program will switch to an always-convergent
method such as the bisection method or the method of false position.

Once an approximation to a root has been determined, the degree
of the polynomial can be reduced by dividing out the factor involving
the obtained root. Then, a new initial value can be chosen and the
process can be repeated. After a reasonable effort has been made to
apprpximate all the real roots, Bairstow's procedure can be applied

repeatedly to determine all the complex roots.
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C SUBROUTINE FOR EVALUATING A FUNCTION AND ITS DERIVATIVE.

SUBROUTINE F(N, A, Y, YP, X)
DIMENSION A(10)
M=N-1

B = A(1)

C = A(1)

DO 2 K=1, M
B=A(K+1) +2*B
C=B+2Z*C(C
Y=A(N+1)+2*B
YP = C

RETURN

END
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BISECTION METHOD
DIMENSION A(10)
READ (2, 10) N, (A(I), I =1, N), X1, X2
10 rdmu'r (12, 12F5.1)
D0 2 I=1, 20
2 X =(X1+X2) /2.
CALL P(N, A, Y, YP, X)
WRITE (5, 20) X, Y
20 FORMAT (2 (P9.6, 3X) )
IF (ABS (X2 - X) - .00001 ) 3, 3, 4
4 IF (Y) 5, 3, 6.
5X1 =X
GO TO 2
6 X2 - X
2 CONTINUE
WRITE (5, 30)
30 FORMAT ('FAILED TO CONVERGE IN 20 ITERATIONS')
CALL EXIT

3 END
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C METHOD OF FALSE POSITION

10

20

30

DIMENSION A(10)

READ (2, 10) N, (A(I), I =1, N), X1, X2
FORMAT (I2, 12F5.1)

D06 I=1, 20

CALL F(N, A, Y1, YP1, X1)

CALL F(N, A, Y2, YP2, X2)

X3 = X1 + (Y1 * (X2 - X1) ) / (Y1 - Y2)
CALL F(N, A, Y3, YP3, X3)

FORMAT (' ', 12, 2X, 6(F9.6, 2X) )

IF (ABS (Y3) - .00001 ) 2, 2, 3

IF (Y3) 4,5, 5

X2 = X3

GO TO 6

X1 - X3

6 CONTINUE

WRITE (5, 30)

PORMAT ('FAILED TO CONVERGE IN 20 ITERATIONS')
CALL EXIT

END
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C A MODIFICATION OF THE METHOD OF FALSE POSITION

10

DIMENSION A(10), X(20), Y(20)
READ (2, 10), N, ( A(I), I = 1, N), X1, X2
FORMAT (10F5.1)

X(1) = X1

X(2) = X2

DO 6 I=1,20

CALL F(N, A, Y1, YP1l, X1)

CALL F(N, A, Y2, YP2, X2)

(1) = Y1

Y(2) = Y2

‘X3 = X1 + (Yl * (X2 - X1) ) / (Y1 - YZ)

20

30

CALL F(N, A, Y3, YP3, X3)

X(I +2) = x3

Y(I +2) = Y3

WRITE (5, 20) 1, X1, Y1, X2, Y2, X3, Y3
FORMAT ( ' ', I2, 2X, 6(F9.6, 2X) )
IF (ABS (Y3) - .00001) 2, 2, 3
IF ( Y(I+2)*Y(I+1))4,2,5
X1 = X(I +2)

GO TO 6

XL = ( X(I) +X(1+2)) /2.

X2 = X(1I +2)

CONTINUE

WRITE (5, 30)

FORMAT ( 'FAILED TO CONVERGE IN 20 ITERATIONS' )

CALL EXIT

END

67




C THE METHOD OF LINEAR ITERATION

10

15

20

30

40

F(X) = X %% 3 +2, * X #% 2 + 10, * X - 20.
G(X) = 20. / (X% 2 +2, * X +10,)

GP(X) = (~40.) * (X +1.) / (X %% 2 + 2. * X + 10.) ** 2
READ (2, 10) XO

FORMAT (F5.1)

X = X0

IF (ABS (GB(X) - 1.) 1, &, &

WRITE (5, 15) X, ¥

FORMAT ( ' ', 2(F9.6), 2X) )

D0 3 I=1,20

X1 = G(X)

Y1l = P(X1)

WRITE (5, 20) I, X1, Yl

FORMAT ( ' ', 12, 2X, 2(F9.6, 2X) )

IF (ABS (X1 - X) - .00001) 5, 3, 3

X = X1

WRITE (5, 30)

FORMAT ('FAILED TO CONVERGE IN 20 ITERATIONS')
G0 TO 5

WRITE (5, 40)

FORMAT ('CONVERGENCE NOT ASSURED')

5 CALL EXIT

END
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C THE METHOD OF LINEAR ITERATION USING AITKEN'S DELTA**2 PROCESS.

F(X) = X% 3 +2, x X % 2 + 10, * X - 20.
G(X) =20. / (X% 2 +2, * X + 10.)
GP(X) = (~40.) * (X +1.) / (X #*% 2 +2, * X + 10.) ** 2
READ (2, 10) XO

10 FORMAT (F5.1)
X = X0
IF (ABS (GP(X) - 1.) 1, &, &

1 WRITE (5, 15) X, ¥

15 FORMAT ( ' ', 2(F9.6, 2X) )
po 11 I =1, 20, 3
X1 = G(X)
Y1 - F(X1)
WRITE (5, 20) I, X1, Yl

20 FORMAT ( ' ', 12, 2X, 2(F9.6, 2X) )

IF (ABS (X1 - X) - ,00001) 12, 13, 13

13 X2 - G(X1)
Y2 = F(X2)
I1 -1I+1

WRITE (5, 20) 1I1, X2, Y2
IF (ABS (X2 - X1) - .00001) 12, 14, 14
14 X = X - ( (X1 - X) w2 ) / (X2 -2, * XL + X)
Y = F(X)
12 - 11 +1
WRITE (5, 20) 12, X, Y
1F ‘(ABS (x - x2) - .,00001) 12, 11, 11

11 CONTINUE




WRITE (5, 70)

70 FORMAT ('FAILED 'I'O'CONVEIGE IN 20 ITERATIONS')
GO TO 12 |

4 WRITE (5, 40)

40 FORMAT ('CONVERGENCE NOT ASSURED')

12 CALL EXIT

END
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C NEWION'S METHOD

10

11

20

30

40

DIMENSION A(10)

READ (2, 10) N, ( A(I), I=1,N), X
FORMAT (I2, 12F5.1)

CALL F(N, A, Y, YP, X)

WRITE (5, 20) X, Y

FORMAT ( ' ', 2(F9.6) )

DO 6 I =1, 20

X1 =X -Y/YP

CALL F(N, A, Y, YP, X1)

WRITE (5, 30) I, X1, Y

FORMAT ( ' ', 12, 2X, 2(F9.6, 2X) )

IF (ABS (X1 - X) - .00001) 3, 3, &4

IF (ABS (YP) - .01) 5,5, 6

X = X1

WRITE (5, 40)

FORMAT ('FAILED TO CONVERGE IN 20 ITERATIONS')
GO TO 3

WRITE (5, 50)

FORMAT ('DERIVATIVE IS TOO SMALL')

CALL EXIT

END




C BERNOULLI'S METHOD

DIMENSION P(30), A(30), R(30)

READ (2, 5) N
5 FORMAT (12)

M=N+1

READ (2, 20) ( P(I), I -1, N), ( A(I), I -1, M)
10 FORMAT (16F5.2) |
11D0 2 J=1, 15

K=1J

Pl =0

DO 3 L=1, N

Pl = A(L) * P(K) + Pl
3K=K+1

I=J+N

P(I) = (-PL) / (A(M) )

WRITE (5, 20) P(I)
20 FORMAT (F16.8)
2 CONTINUE

DO 4 J =1, 20

K=J+N

R(J) = P(K + 1) / P(K)
4 WRITE (5, 20) R(J)

CALL EXIT

END
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C THE SECANT METHOD

10

11

20

30

DIMENSION A(10)

READ (2, 10) N, ( A(I), I =1, N), X1, X2
FORMAT (10F5.1)

DO 6 1I-1, 20

CALL F(N, A, Y1, YP1, X1)

CALL F(N, A, Y2, YPZ2, X2)

X3 = X1 + (Y1 * (X2 - X1) ) / (YL - Y2)
CALL F(N, A, Y3, YP3, X3)

WRITE (5, 20) 1, X1, Y1, X2, Y2, X3, Y3
FORMAT ( ' ', 12, 2X, 6(F9.6, 2X) )

IF (ABS (Y3) - .00001) 2, 2, 5

X1l = X2

X2 = X3

CONTINUE

WRITE (5, 30)

FORMAT ('FAILED TO CONVERGE IN 20 ITERATIONS')
CALL EXIT

END




C A ROOT-SQUARING SUBROUTINE

SUBROUTINE ROOTS (A, B, N)
DIMENSION A(20), B(20)
B(1) = A(l) ** 2
D061I=2,N
B(I) = 0
K-1-1
KK =N -1
IF (K - KK) 4, 4, 3

3 K= KK

. 4D05J=1,K

L=K+1-~-1J

IL=1+1L
LI =1 -1L

53 B(I) = A(IL) * A(LI) - B(I)
SIGN = 2 * (1 -2 * (1/2) ) -1

6 B(I) = SIGN * (A(I) *#* 2 - 2, % B(I) )

SIGN =1 +2 * (2 * (N/2) - N)
B(N + 1) = SIGN * A(N + 1) #* 2
RETURN

END
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GRAEFFE'S ROOT=-SQUARING METHOD

DIMENSION A(20), B(20), C(20)
READ (2, 10) N
10 FORMAT (12)
M=N+1
READ (2, 20) (A(I), I - 1, M)
20 FORMAT (10F5.1)
K=2
DO 4 J=1,6
2 CALL ROOTS (A, B, N)
DO 3 I-1,M
3 E(I) = A(I) *#* 2 / (B(I) -1)
WRITE (5, 30) K
30 PORMAT (I4)
WRITE (5, 35) (B(I), I =1, M), (ER(I), I =1, M)
35 FORMAT (E16.7)
SD0 6 I=1, M
6 A(I) = B(I)
4 K=2*K
7K =K
PWR = 1. / PK
DO 8 I=1,N
X - B(I+1) / B(I)
WRITE (5, 40) X
40 FORMAT (F18.6)
CALL EXIT

END
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C BAIRSTOW'S METHOD

REAL N1, N2
DIMENSION A(20), B(20), C(20)
READ (2, 5) N
5 FORMAT (12)
M=N+3
11 READ (2, 10) P, Q, ( A(I), I =3, M)
10 FORMAT (16F5.2)
D0 7 I=1,10
WRITE (5, 20) P, Q
B(1) = 0O
B(2) = 0
c(1) =0
c(2) =0
DO 2 K=3, M
B(K) = A(K) - P * P(K-1) - Q * B(K-2)
2 C(K) = B(K) - P * C(K-1) - Q * C(K - 2)
IF (ABS (B(M - 1)) + ABS (B(M) + P * B(M - 1)) - .00001) 4, 4, 3
3Nl =B(M-1) *C(M-2) - B(M) * C(M - 3)
N2 = B(M) * C(M - 2) - B(M - 1) * C(M - 1) + B(M - 1) #* 2
D=C(M=2) %2 -C(M-1)*C(M~-3)+B(M-1) *C(M - 3)
P=P+N1/D |
7Q=Q+N2/D
4 WRITE (5, 20) P, Q
20 FORMAT ( ' ', 2(F9.6, 2X) )
21 CALL EXIT

END
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The problem of finding the zeros of a given polynomial equation
arises frequently in mathematice, physics, and many branches of engi-
neering. Rarely do these problems possess simple, analytical solutionms.
It is therefore of great importance that numerical methods for the solu-
tion of such equations be made available to the high school student.

A variety of numerical root-finding techniques have long been
available, but their use was limited because of the extensive numerical
calculations that they required. However, with the advent of the com-
puter, the use of these procedures is now both possible and practical.
Although the problem of finding the roots of a polynomial on the comput-
er is by no means trivial, it is a problem solvable in the majority of
cases by straightforward application of simple procedures. The purpose
of this paper was to examine and compare the available methods for find-
ing the roots of polynomial equations and decide which methods would be
most suitable for use in a computer-oriented high school mathematics
class,

This study explored various methods of solving polynomial equa-
tions and attempted to present them at a ievel that the average high
school student could understand. The application of each procedure was
demonstrated with a simple example using a polynomial of low degree.
Flowcharts were developed for those processes that are most easily
adapted t6 computer use, and the actual output from a computer run of a
given problem was presented. Advantages and disadvantages of each meth-
od were also discussed.

Many factors enter into a decision concerning which root-finding
method to use in a given situation. One must consider how the program

will be used, what information is available about the location of the




roots, the possible existence of multiple and complex roots, and many
other factors before choosing a particular method. However; it was con-
cluded that the methods which are generally best suited for use in a
high school situation are the secant method and the method of linear
iteration using Aitken's acceleration device. Either of these root-
finding methods can be used in most cases to determine the real roots
of a given polynomial. If either of them fails to converge, then one
of the always-convergent methods such as the bisection method or the
method of false position can be used. When complex roots are desired,
the real roots can first be found and the degree of the polynomial can
be reduced. Then Bairstow's mathod can be repeatedly applied until all

the complex roots have been determined.




