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Abstract 

Driver workload increases on horizontal curves due to more complicated navigation 

compared to navigation on straight roadway sections. Although only a small portion of roadways 

are horizontal curve sections, approximately 25% of all fatal highway crashes occur at horizontal 

curve sections. According to the Fatality Analysis Reporting System (FARS) database, fatalities 

associated with horizontal curves were more than 25% during last years from 2008 to 2014, 

reinforcing that investigation of horizontal curve crashes and corresponding safety improvements 

are crucial study topics within the field of transportation safety. Improved safety of horizontal 

curve sections of rural transportation networks can contribute to reduced crash severities and 

frequencies. Statistical methods can be utilized to develop crash prediction models in order to 

estimate crashes at horizontal curves and identify contributing factors to crash occurrences, 

thereby correlating to the primary objectives of this research project. 

Primary data analysis for 221 randomly selected horizontal curves on undivided two-lane 

highways with Poisson regression method revealed that annual average daily traffic (AADT), 

heavy vehicle percentage, degree of curvature, and difference between posted and advisory 

speeds affect crash occurrence at horizontal curves. The data, however, were relatively 

overdispersed, so the negative binomial (NB) regression method was utilized. Results indicated 

that AADT, heavy vehicle percentage, degree of curvature, and long tangent length significantly 

affect crash occurrence at horizontal curve sections. A new dataset consisted of geometric and 

traffic data of 5,334 horizontal curves on the entire state transportation network including 

undivided and divided highways provided by Kansas Department of Transportation (KDOT) 

Traffic Safety Section as well as crash data from the Kansas Crash and Analysis Reporting 

System (KCARS) database were used to analyze the single vehicle (SV) crashes. An R software 

package was used to write a code and combine required information from aforementioned 

databases and create the dataset for 5,334 horizontal curves on the entire state transportation 

network. Eighty percent of crashes including 4,267 horizontal curves were randomly selected for 

data analysis and remaining 20% horizontal curves (1,067 curves) were used for data validation. 

Since the results of the Poisson regression model showed overdispersion of crash data and many 

horizontal curves had zero crashes during the study period from 2010 to 2014, NB, zero-inflated 

Poisson (ZIP), and zero-inflated negative binomial (ZINB) methods were used for data analysis. 



 

 

Total number of crashes and severe crashes were analyzed with the selected methods. Results of 

data analysis revealed that AADT, heavy vehicle percentage, curve length, degree of curvature, 

posted speed, difference between posted and advisory speed, and international roughness index 

influenced single vehicle crashes at 4,267 randomly selected horizontal curves for data analysis. 

Also, AADT, degree of curvature, heavy vehicle percentage, posted speed, being a divided 

roadway, difference between posted and advisory speeds, and shoulder width significantly 

influenced severe crash occurrence at selected horizontal curves. The goodness-of-fit criteria 

showed that the ZINB model more accurately predicted crash numbers for all crash groups at the 

selected horizontal curve sections. A total of 1,067 horizontal curves were used for data 

validation, and the observed and predicted crashes were compared for all crash groups and data 

analysis methods. Results of data validation showed that ZINB models for total crashes and 

severe crashes more accurately predicted crashes at horizontal curves.  

This study also investigated the effect of speed limit change on horizontal curve crashes 

on K-5 highway in Leavenworth County, Kansas. A statistical t-test proved that crash data from 

years 2006 to 2012 showed only significant reduction in equivalent property damage only 

(EPDO) crash rate for adverse weather condition at 5% significance level due to speed limit 

reduction in June 2009. However, the changes in vehicles speeds after speed limit change and 

other information such as changes in surface pavement condition were not available.  

According to the results of data analysis for 221 selected horizontal curves on undivided 

two-lane highways, tangent section length significantly influenced total number of crashes. 

Therefore, providing more information about upcoming changes in horizontal alignment of the 

roadway via doubling up warning sings, using bigger sings, using materials with higher 

retroreflectivity, or flashing beacons were recommended for horizontal curves with long tangent 

section lengths and high number of crashes. Also, presence of rumble strips and wider shoulders 

significantly and negatively influenced severe SV crashes at horizontal curve sections; therefore, 

implementing rumble strips and widening shoulders for horizontal curves with high number of 

severe SV crashes were recommended.  
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Abstract 

Driver workload increases on horizontal curves due to more complicated navigation 

compared to navigation on straight roadway sections. Although only a small portion of roadways 

are horizontal curve sections, approximately 25% of all fatal highway crashes occur at horizontal 

curve sections. According to the Fatality Analysis Reporting System (FARS) database, fatalities 

associated with horizontal curves were more than 25% during last years from 2008 to 2014, 

reinforcing that investigation of horizontal curve crashes and corresponding safety improvements 

are crucial study topics within the field of transportation safety. Improved safety of horizontal 

curve sections of rural transportation networks can contribute to reduced crash severities and 

frequencies. Statistical methods can be utilized to develop crash prediction models in order to 

estimate crashes at horizontal curves and identify contributing factors to crash occurrences, 

thereby correlating to the primary objectives of this research project. 

Primary data analysis for 221 randomly selected horizontal curves on undivided two-lane 

two-way highways with Poisson regression method revealed that annual average daily traffic 

(AADT), heavy vehicle percentage, degree of curvature, and difference between posted and 

advisory speeds affect crash occurrence at horizontal curves. The data, however, were relatively 

overdispersed, so the negative binomial (NB) regression method was utilized. Results indicated 

that AADT, heavy vehicle percentage, degree of curvature, and long tangent length significantly 

affect crash occurrence at horizontal curve sections. A new dataset consisted of geometric and 

traffic data of 5,334 horizontal curves on the entire state transportation network including 

undivided and divided highways provided by Kansas Department of Transportation (KDOT) 

Traffic Safety Section as well as crash data from the Kansas Crash and Analysis Reporting 

System (KCARS) database were used to analyze the single vehicle (SV) crashes. An R software 

package was used to write a code and combine required information from aforementioned 

databases and create the dataset for 5,334 horizontal curves on the entire state transportation 

network. Eighty percent of crashes including 4,267 horizontal curves were randomly selected for 

data analysis and remaining 20% horizontal curves (1,067 curves) were used for data validation. 

Since the results of the Poisson regression model showed overdispersion of crash data and many 

horizontal curves had zero crashes during the study period from 2010 to 2014, NB, zero-inflated 

Poisson (ZIP), and zero-inflated negative binomial (ZINB) methods were used for data analysis. 



 

 

Total number of crashes and severe crashes were analyzed with the selected methods. Results of 

data analysis revealed that AADT, heavy vehicle percentage, curve length, degree of curvature, 

posted speed, difference between posted and advisory speed, and international roughness index 

influenced single vehicle crashes at 4,267 randomly selected horizontal curves for data analysis. 

Also, AADT, degree of curvature, heavy vehicle percentage, posted speed, being a divided 

roadway, difference between posted and advisory speeds, and shoulder width significantly 

influenced severe crash occurrence at selected horizontal curves. The goodness-of-fit criteria 

showed that the ZINB model more accurately predicted crash numbers for all crash groups at the 

selected horizontal curve sections. A total of 1,067 horizontal curves were used for data 

validation, and the observed and predicted crashes were compared for all crash groups and data 

analysis methods. Results of data validation showed that ZINB models for total crashes and 

severe crashes more accurately predicted crashes at horizontal curves.  

This study also investigated the effect of speed limit change on horizontal curve crashes 

on K-5 highway in Leavenworth County, Kansas. A statistical t-test proved that crash data from 

years 2006 to 2012 showed only significant reduction in equivalent property damage only 

(EPDO) crash rate for adverse weather condition at 5% significance level due to speed limit 

reduction in June 2009. However, the changes in vehicles speeds after speed limit change and 

other information such as changes in surface pavement condition were not available.  

According to the results of data analysis for 221 selected horizontal curves on undivided 

two-lane highways, tangent section length significantly influenced total number of crashes. 

Therefore, providing more information about upcoming changes in horizontal alignment of the 

roadway via doubling up warning sings, using bigger sings, using materials with higher 

retroreflectivity, or flashing beacons were recommended for horizontal curves with long tangent 

section lengths and high number of crashes. Also, presence of rumble strips and wider shoulders 

significantly and negatively influenced severe SV crashes at horizontal curve sections; therefore, 

implementing rumble strips and widening shoulders for horizontal curves with high number of 

severe SV crashes were recommended.  
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Chapter 1.  Introduction 

This chapter emphasizes the importance of safety at horizontal curve sections, including a 

discussion of curve-related crash history and statistics in the United States and in Kansas. This 

chapter also defines the problem statement and dissertation objectives. 

1.1. Importance of Horizontal Curves 

Horizontal curves on roadways are located at points of horizontal alignment alterations or 

changes in road direction. Horizontal curves affect vehicle movement by producing centrifugal 

force and causing altered driving conditions. According to the second edition of the National 

Cooperative Highway Research Program (NCHRP) 600 report, design aspects of a curve, such as 

lane width, degree of curvature, radius of curve, design superelevation, and design consistency, 

impact driver workload [1]. Appropriate horizontal curve design lessens driver workload related 

to curve geometry. Spirals and appropriate superelevation changes are suggested treatments for 

horizontal curves in order to inform and prepare drivers for changes in roadway horizontal 

alignment. Driver visibility changes on curved segments of a road, causing most drivers to focus 

on tangent points; on road segments including smooth curves, however, drivers focus on the 

horizon [1]. 

According to the second edition of NCHRP 600, curve navigation within a safe speed is 

the most influential factor affecting crash rates on curves [1]. Although drivers select their 

driving speed based on expectations of a curve (affected by design consistency) and road signage 

(including advisory speed), driver expectations typically outweigh the effects of road signage. A 

combination of horizontal curve and sag vertical curve, in which the curve radius or apparent 

radius as viewed from the driver’s perspective is greater than the actual curve radius, negatively 

influences driver selection of safe driving speed to negotiate a curve. In addition, observed 
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speeds may exceed the advisory speed due to poor judgment of drivers. This adverse result is 

also expected for a combination of a horizontal curve and a crest vertical curve because the 

apparent radius is less than the actual radius and the curve appears to be sharper than it really is, 

causing drivers to often beneficially reduce their driving speed [1]. 

 A two-level process model describes steering control as “an open-loop anticipatory 

component (far view)” and “a closed-loop compensatory component (near view)” [1]. Drivers 

use “far view” to predict curvature and steering angle and “near view” to correct a deviation 

from the desired path. However, all path-decision behaviors, such as curve-cutting, are not 

completely explained by this model. Although steering action should be dependent upon direct 

visual feedback, drivers often rely on their estimation of vehicle characteristics and their 

previous experience navigating curves [2]. A driver chooses curve entry speed based on personal 

perception of curvature influenced by geometric alignment and delineation features of the curve 

segment. Drivers often enter a curve at an improper speed due to curvature misperception, and in 

order to correct driving mistakes, drivers often take compensatory control (“near view”) actions, 

especially in sharp curves [2,3]. Consequently, instead of following the ideal radius or the radius 

at the center of the lane, drivers often follow a trajectory with a larger radius. 

Based on Fatality Analysis Reporting System (FARS) data from 2002, 38,309 fatal 

crashes caused 42,815 deaths on US highways, and nearly 25% of fatal crashes occurred on 

curve segments. More than 75% of those crashes were single vehicle, run-off-road (ROR), and 

approximately 10% of them were head-on crashes [1]. In recent years, the number of fatal 

crashes on US highways has decreased, but the percentage of curve-related fatalities has 

remained constant. In 2008, horizontal curve-related fatal crashes accounted for 28% of all 

nationwide fatal crashes; approximately 74% of those crashes were road departure crashes [4]. 
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Figure ‎1.1 Percentage of the US fatal crashes occurred at horizontal curves 

(2008-2014) 

Recent data from the FARS database verifies a similar trend for fatal crashes and fatalities on 

horizontal curves in 2014, indicating that 25% of fatal crashes occurred on horizontal curves of 

which approximately 72% were ROR crashes [5]. Figures 1.1 and 1.2 show the percentage of 

horizontal curve fatal crashes of the US fatal crashes and percentage of ROR crashes of the 

horizontal curve fatal crashes, respectively for last seven years from 2008 to 2014. An 

appropriate design that includes curve segment consistency with other roadway segments 

(especially close segments before and after the curve), proper curve radius, a suitable spiral, 

superelevation, and lane width on the curve can improve curve safety. Other treatments can 

increase curve segment safety, but adequate treatment selection must be conducted according to 

expert judgment and/or empirical data [1]. Countermeasures for improved curve safety are 

classified as low cost, intermediate cost, and high-cost treatments [6].  
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Figure ‎1.2 Percentage of ROR crashes from horizontal curve fatal crashes (2008-

2014) 

 

 

 

 

 

 

 

 

 

Seven years of crash data from the Kansas Department of Transportation (KDOT) 

showed a similar trend in increasing fatalities associated with horizontal curves: Approximately 

29% of Property Damage Only (PDO) crashes, 24% of injury crashes, 19% of fatal crashes, and 

27% of total crashes occurred at horizontal curves from 2008 to 2014. Figure ‎1.3–Figure ‎1.6 

show the fatal, PDO, injury, and total number of crashes for horizontal curve sections, 

respectively.        
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Figure ‎1.3 Curve-related PDO crashes in Kansas (2008-2014) 
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Figure ‎1.4 Curve-related injury crashes in Kansas (2008-2014) 
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Figure ‎1.6 Curve-related crashes in Kansas (2008-2014) 
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Figure ‎1.5 Curve-related fatal crashes in Kansas (2008-2014) 
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Table ‎1.1 shows the number of PDO, injury, fatal, and total crashes for the roadway 

network and curve sections in Kansas from the years 2008 to 2014, as well as the percentages of 

crashes at horizontal curve sections.  

Table ‎1.1 PDO, injury, fatal, and total number of crashes for the entire Kansas roadway 

network and curve sections from 2008 to 2014 

  

Year 2008 2009 2010 2011 2012 2013 2014 

Number of PDO Crashes 

Entire 

Network 

6,797 6,953 7,030 6,800 6,415 6,592 6,519 

Curve 

Sections 

1,999 1,972 1,968 2,010 1,786 1,895 1,921 

Percentage 29.4% 28.4% 28.0% 29.6% 27.8% 28.7% 29.5% 

 Number of Injury Crashes 

Entire 

Network 

4,288 4,311 4,355 4,207 4,235 4,086 3,929 

Curve 

Sections 

1,047 1,021 1,017 1,003 1,032 958 922 

Percentage 24.4% 23.7% 23.4% 23.8% 24.4% 23.4% 23.5% 

Number of Fatal Crashes 

Entire 

Network 

333 327 345 325 342 310 316 

Curve 

Sections 

64 52 67 70 54 62 67 

Percentage 19.2% 15.9% 19.4% 21.5% 15.8% 20.0% 21.2% 

Total Number of Crashes 

Entire 

Network 

11,418 11,591 11,730 11,332 10,992 10,988 10,764 

Curve 

Sections 

3,110 3,045 3,052 3,083 2,872 2,915 2,910 

Percentage 27.2% 26.3% 26.0% 27.2% 26.1% 26.5% 27.0% 

Year 2008 2009 2010 2011 2012 2013 2014 

Number of PDO Crashes 

Entire 

Network 

6,797 6,953 7,030 6,800 6,415 6,592 6,519 

Curve 

Sections 

1,999 1,972 1,968 2,010 1,786 1,895 1,921 

Percentage 29.4% 28.4% 28.0% 29.6% 27.8% 28.7% 29.5% 

 Number of Injury Crashes 

Entire 

Network 

4,288 4,311 4,355 4,207 4,235 4,086 3,929 

Curve 

Sections 

1,047 1,021 1,017 1,003 1,032 958 922 

Percentage 24.4% 23.7% 23.4% 23.8% 24.4% 23.4% 23.5% 

Number of Fatal Crashes 

Entire 

Network 

333 327 345 325 342 310 316 

Curve 

Sections 

64 52 67 70 54 62 67 

Percentage 19.2% 15.9% 19.4% 21.5% 15.8% 20.0% 21.2% 

Total Number of Crashes 

Entire 

Network 

11,418 11,591 11,730 11,332 10,992 10,988 10,764 

Curve 

Sections 

3,110 3,045 3,052 3,083 2,872 2,915 2,910 

Percentage 27.2% 26.3% 26.0% 27.2% 26.1% 26.5% 27.0% 



8 

 

1.2. Problem Statement 

According to the FARS database, the number of fatalities associated with horizontal 

curves was more than 25% during last years from 2008 to 2014, with a majority of ROR 

horizontal curve-related crashes. Therefore, most adequate, cost-effective countermeasures must 

be implemented in order to decrease the number of vehicle crashes at horizontal curves. KDOT 

crash data from 2008 to 2014 showed that the proportion of fatal crashes at horizontal curve 

sections fluctuated between 16% and 21%, with an average of 19%, and ROR crashes constituted 

63%–78% of fatal crashes, with an average of 71%. The proportion of curve-related fatal crashes 

was less than the national average but considerable, demonstrating maximum values of 20% and 

21% for 2013 and 2014, respectively. This increasing trend reaffirms the importance of efficient 

safety improvements on horizontal curve sections by identifying factors that increase or decrease 

crash frequencies. Therefore, this research study utilized traffic and geometric data, such as 

annual average daily traffic (AADT), posted speed, advisory speed, heavy vehicle traffic, curve 

length, curve radius, pavement surface width, and shoulder type and width, as well as statistical 

methods and tools to devise recommended countermeasures for identified factors that affect 

crash occurrence at horizontal curves.  

1.3. Objectives 

The main objective of this dissertation is to identify geometric and traffic factors that 

affect crashes at horizontal curve sections. Two datasets were used for this objective: a dataset of 

221 randomly selected horizontal curves on undivided two-lane two-way highways from 

approximately 750 horizontal curves from identified curves from KDOT horizontal curve crash 

database from 2004–2012 and KDOT curve inventory of curves with zero crashes from 2004-

2012, and a new KDOT horizontal curve inventory that became available in 2015 and includes 

approximately 5,300 horizontal curves. Geometric data such as curve length, curve radius, 
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tangent section length, pavement surface width, and paved and unpaved shoulder type and width 

were obtained from KDOT databases or measured. Also traffic data including traffic volume and 

heavy vehicle percentage were provided in KDOT databases or obtained directly from KDOT 

traffic maps. Suitable countermeasures are also identified in order to match geometric and traffic 

factors that positively or negatively affect crash occurrences at horizontal curve sections. 
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Chapter 2. Literature Review 

This chapter reviews studies that have investigated basic and low-cost countermeasures 

recommended by the Federal Highway Administration (FHWA) in the Manual on Traffic 

Control Devices (MUTCD) and supplementary and innovative countermeasures and intermediate 

and high-cost countermeasures, including evaluation of countermeasure effectiveness. This 

chapter also describes previous studies that explored factors that positively or negatively affect 

crash occurrences or severe crash occurrences at horizontal curve sections or other roadway 

segments. 

2.1. Horizontal Curve Countermeasures 

Basic and low-cost treatments are discussed in MUTCD, and In addition to the MUTCD 

basic treatments, other supplementary and innovative countermeasures and also intermediate and 

high cost countermeasures have been introduced in other study sources. Studies have also been 

conducted to evaluate the effectiveness of horizontal curve countermeasures. Various utilized 

countermeasures and results of their evaluation are discussed in the following sections.  

2.1.1. Low-Cost Countermeasures 

 McGee and Hanscom [7] studied the nine basic countermeasures introduced by 

MUTCD including centerline and edge line, horizontal alignment signs, advisory speed plaque, 

one-direction large arrow sign, combination horizontal alignment and advisory speed sign, curve 

speed sign, chevron alignment sign, and delineators. Following sections discuss basic low-cost 

countermeasures briefly. 
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2.1.1.1. Centerline and Edge Line 

A centerline is the minimum treatment for a horizontal curve. Based on the MUTCD, use 

of a centerline for roadways with travel widths less than 16 ft. requires engineering judgment, 

but roadways with lane widths of 20 ft. or more with minimum average daily traffic (ADT) of 

6000 vehicles per day (vpd) require edge lines [8,9]. When a curve does not provide adequate 

sight distance on two-lane roadways, a solid yellow line is necessary for one or both directions; 

edge lines are solid white lines along the right side of the road. The primary purpose of 

centerlines and edge lines is to provide a visual cue for drivers to follow the curve in order to 

impede encroachment into the opposite lane or edge line and prevent probable ROR incidents or 

crashes. NCHRP 600 states that pavement surface markings provide the strongest curvature 

guide [1].  

Pavement markings utilize various materials, including common thermoplastic marking, 

which lasts longer than other materials, thereby increasing its cost-effectiveness [7]. Retro-

reflective pavement materials (RPMs) and retro-reflective raised pavement materials (RRPMs) 

are also applicable for pavement markings depending on roadway conditions, but the FHWA 

prohibits the use of raised pavement markings for edge lines [14]. Studies have suggested that 

the combination of centerlines or edge lines with rumble strips improve curve safety [10,11].  

Although conventional width for a centerline or edge line is 4–6 in., some states use 

widths of 8–12 in. [12]. Edge lines with widths of 8 in. were found to be appropriate alternatives 

for roadways with 12 ft. wide lanes, unpaved shoulders, and ADT of 2000–5000 vpd [13,14]. 

Hallmark et al. summarized the positive benefits, drivers’ feedback, and improvements, 

including increased visibility (especially at night for older drivers), peripheral vision stimulation, 

lane keeping, comfort of drivers, and aesthetics [15]. 
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  Material used for centerline stripes significantly impacts cost, which varies by state. 

Lord et al. determined that average costs for type I, solid white edge lines are $0.30 per linear 

foot for 4-inch markings, $0.66 per linear foot for 6-inch markings, and $0.94 per linear foot for 

8-inch markings [12]. The costs for type II, solid white edge lines for 4-inch, 6-inch, and 8-inch 

markings were estimated to be $0.12, $0.25, and $0.35 per linear foot, respectively [12].  

2.1.1.2. Horizontal Alignment Signs and Advisory Speed Signs 

 A variety of signs presented in MUTCD are used in advance of a curve or a turn to warn 

drivers of an upcoming horizontal curve [9]. For a single curve, a turn sign (W1-1), a curve sign 

(W1-2), a hairpin curve sign (W1-11) for 135-degree change in alignment, or a 270-degree loop 

sign (W1-15) are applicable, as depicted in Figure ‎2.1 Advanced warning signs for horizontal 

curves. Similarly, two signs are used for two sequential curves or turns: reverse turns (W1-3) and 

reverse curves (W1-4). For several sequential curves, the winding road sign (W1-5) is 

appropriate [9]. 

 

 

 

 

 

 Figure ‎2.1 Advanced warning signs for horizontal curves 

Source: [9] 
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 The KDOT Handbook of Traffic Control Practices for Low Volume Rural Roads 

suggests placement of a turn sign when the advisory speed is equal to or less than 30 miles per 

hour (mph) and a curve sign for speeds greater than 30 mph [16]. An advisory speed plaque 

(W1-13) can also be added to curve-related signs. The advisory sign speed should be placed 

below the horizontal alignment sign [1]. McGee and Hanscom emphasized that advisory speed is 

not the legal speed limit but an advised speed to drivers [7]. The NCHRP 600 states that, 

although researchers agree about the use of warning signs in advance of a curve, disagreement 

exists regarding the use of symbols or text messages [1].  

           Placement of a highway curve sign is related to the curve’s advisory speed and posted 

speed or 85
th

 percentile speed of the tangent section of road prior to the curve [9]. McGee and 

Hanscom provided guidelines for warning sign placement in advance of highway curves in 

accordance with approach speed, as shown in Table 2.1. They asserted that all signs must be 

comprised of retro-reflective sheeting for increased night visibility and low-light conditions. The 

lower edge of the sign must be at least 5 ft. above the pavement surface, and the closest edge of 

the sign to the road must be at least 6 ft. from the outer edge of the shoulder [7]. 
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Posted or 85
th

 percentile 

speed (mph) 

Advance placement distance (ft.) for advisory speed of 

the curve (mph) 

10 20 30 40 50 60 70 

20 n/a
1 

- - - - - - 

25 n/a
1
 n/a

1
 - - - - - 

30 n/a
1
 n/a

1
 - - - - - 

35 n/a
1
 n/a

1
 n/a

1
 - - - - 

40 100
2 

100
2
 n/a

1
 - - - - 

45 125 100
2
 100

2
 n/a

1
 - - - 

50 200 175 125 100
2
 - - - 

55 275 225 200 125 n/a
1
 - - 

60 350 325 275 200 100
2
 - - 

65 450 400 350 275 200 100
2
 - 

70 525 500 450 375 275 150 - 

75 625 600 550 475 375 250 100
2
 

1 No suggested distances are provided for these speeds since the placement location depends on site conditions 

and other signage in order to provide adequate advance warning for drivers. 
2 

Minimum advance placement distance is listed as 100 ft. to provide adequate spacing between signs. 

 
 

Amjadi studied the effectiveness of delineation improvements of curve-related signs, 

such as chevrons and one-arrow direction signs, on horizontal curves on two-lane rural roads in 

Connecticut [17]. Results indicated a reduction of 18% in all crashes, a 25% reduction in injury 

and fatal non-intersection crashes, and a 35% reduction in crashes during dark conditions. A few 

studies achieved varying results when relating the effectiveness of horizontal curve signs. 

Studies showed a reduction in crash occurrence due to advance curve warning signs; however, 

crash reduction percentages varied from 10% to 30% reduction in all crashes [12].  

2.1.1.2.1. Larger Signs and Doublingup Signs 

 McGee and Hanscom affirmed that the MUTCD permits an increase in the size of 

horizontal curve signs when the volume, speed, or other conditions of a roadway require 

emphasis on sign readability. Table ‎2.2 lists sign sizes on various roadways [9]. 

Table ‎2.1 Guidelines for advance placement of curve warning signs 

Source: [9] 
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Doubling up sign is another method to help roadway users see warning signs and increase 

horizontal curve safety. A second similar sign is typically placed on the left side of the roadway.   

2.1.1.2.2. High Retro-reflective Intensity and Fluorescent Yellow Sheeting 

The MUTCD lists various types of retro-reflective materials used in roadway sign 

construction [9]. Increasing the retro-reflectivity of signs (measured in cd/lx/m2) has been shown 

to increase sign visibility [1]. For example, high intensity grade (Type III) and micro-prismatic 

sheeting (Type V) increase sign visibility compared to engineering grade (Type I) sheeting. A 

study in 2006 estimated a 2.4% cost increase for upgrading retro-reflective material from Type 

III to Type V [7]. Increased visibility allows timely driver responses to changes in roadway 

alignment, thereby increasing road safety [7]. 

Description Conventional Road Expresswa

y 

Freeway Minimum Oversized 

Shape Sing Series Single 

Lane 

Multi-

Lane 

Diamond 

W1-1, 2, 3, 4, 

5 

                                

W1-1a, W1-

2a 

                                

W1-11, W1-

15 

                                

Rectangular 

W1-6                                 

W1-8                                 

W13-1P                                 

Table ‎2.2 Sizes of warning signs in inches 

Source: [9] 
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2.1.1.3. Combination Horizontal Alignment Signs and Advisory Speed Signs  

Combination horizontal alignment and advisory speed signs, referred to as supplementary 

signs, are used on curves with high numbers of crashes and significant differences between 

posted speeds and advisory speeds of curves. As shown in Figure 2.2, the W1-1a sign is a 

combination of a turn sign and advisory speed sign, and the W1-2a sign is a combination of a 

curve sign and an advisory speed sign [14]. These signs motivate drivers to reduce driving speed 

at the beginning point of a curve. However, W1-1a or W1-2a signs should not be used when the 

distance between the alignment sign and the beginning point of a curve is less than 200 ft. 

Campbell et al. suggested that increased visual demands for drivers on curves cause 

“conspicuous non-verbal information,” such as chevrons, to be more effective than advisory 

speed signs [1].  

 

  

 

 

 

2.1.1.4. Chevrons and One-Direction Arrow Signs  

The W1-6 (one direction arrow) sign and the W1-8 (chevron) sign communicate an 

alteration in horizontal alignment. Both signs are also used with horizontal alignment signs, 

specifically when a sharp curve is present in the road. These signs must be placed on the outside 

of the curve at an approximate right angle with approaching traffic; one W1-6 sign is sufficient 

Figure ‎2.2 Combination curve alignment 

sign and advisory speed sign 

Source: [9] 
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for each direction. If additional delineation is required, chevrons are appropriate alternatives, in 

which case at least two of them should always be in the driver’s sight when navigating the curve 

[12]. Campbell et al. asserted that chevrons are the “strongest guidance cues for long-range 

guidance (anticipatory control)” [1]. Amjadi classified W1-6 and W1-8 signs as curve 

delineation signs [17].  

 

 

 

 

The KDOT Highway Sign Manual recommends chevrons when the difference between 

posted speed and curve advisory speed is 15 mph or more [18]. According to FHWA, chevrons 

must be installed at least 4 ft. above the travel way [9]. McGee and Hanscom recommend that 

chevrons be posted 5 ft. above the surface of the roadway in rural areas, increasing to 7 ft. in 

urban areas [7]. Because MUTCD [8] did not specify spacing for chevrons, McGee and 

Hanscom use two states’ spacing guidelines [7]. The latest edition of MUTCD [9], however, 

determines a guide for chevron spacing, as shown in Table ‎2.3. 

 

 

 

 

 

Figure ‎2.3 Curve delineation signs 

Source: [9] 
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Iowa’s traffic safety analysis manual recommends chevrons for curves with degree of 

curvature greater than or equal to six degrees and PMDs for curves with degree of curvature less 

than six degrees. The manual also recommends occasionally using chevrons for curves with 

degree of curvature less than 6 degrees if sight distance is reduced due to vegetation or a 

combination of horizontal and vertical curves, or whenever crash history indicates delineation 

improvement is needed [19]. McGee and Hanscom found that when the degree of curvature was 

more than seven degrees, chevrons significantly reduced centerline encroachment [7]. 

Amjadi reported a 20% reduction in crashes during dark conditions and a 20% reduction 

in departure crashes during dark conditions because of chevrons installed on horizontal curves in 

Washington state [17]; however, a variety of reduction percentages of crash occurrences were 

reported in other studies [12].   

McGee and Hanscom approximated $500 for the installation of 10 chevrons [7], and 

Amjadi estimated $100 for the installation of each chevron on two-lane rural roads in 

Table ‎2.3 Typical spacing of chevron alignment signs on 

horizontal curves 

Source: [9] 
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Washington state [17]. A recent study reported an average cost of $433 for the installation of one 

chevron in Texas [12]. 

2.1.1.5. Delineators 

 Delineators are retro-reflective devices mounted above the roadway surface, parallel to 

the roadway segment, in order to guide drivers through alignment changes at horizontal curves 

[17]. Although PMDs are not warning signs, they provide guidance information, as shown in 

Figure ‎2.4 [8]. Chevron alignment signs or PMDs are selected based on two criteria. The KDOT 

Highway Sign Manual recommends using delineators when the difference between posted speed 

and advisory speed is 10 mph or less [18]. McGee and Hanscom recommend PMDs for curves 

smaller than or equal to 7 degrees [7]. Hallmark et al. reported that PMDs and chevrons with 

retro-reflectorized posts more effectively help drivers recognize curve sharpness than standard 

PMDs and chevrons [15]. 

 

  

 

 

 

 

 

The FHWA states that delineators must be posted approximately 4 ft. above the road 

surface, and they must be placed 2–8 ft. from the outer edge of the shoulder. The delineator color 

Figure ‎2.4 Post-mounted delineators 

Source: [7]  
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should be identical to the adjacent edge line. The FHWA also determines suitable spacing for 

delineators in accordance with the radius of the curve, as shown in Table ‎2.4 [9]. 

 

 

 

 

 

 

 

 

  

A study of installed PMDs on horizontal curves revealed a 25% reduction in all types of 

crashes at horizontal curves [20]; however, unique reduction percentage is not anticipated for 

crashes on horizontal curves [12]. Other low-cost treatments are available, but they are not 

classified as basic treatments [14]. These low-cost countermeasures are discussed in the 

following sections. 

2.1.1.6. Profile Thermoplastic Markings and Raised Pavement Markings  

 Profile thermoplastic markings and RPMs produce a rumble effect and auditory warning 

to drivers in order to potentially increase safety. Profile thermoplastic markings and RRPMs 

increase visibility as compared to RPMs which have non-retro-reflective features. Although 

Table ‎2.4 Recommended spacing for delineators at horizontal 

curves 

Source: [9] 
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these two marking types typically are not effective for snowy regions since snow plows often 

damage them, design changes may make them compatible with snow plowing. According to 

FHWA, RRPMs are suitable for smooth curves (less than 3.5 degrees) and relatively high traffic 

volume (more than 5000 vpd) since they may create an unrealistic feeling of safety for drivers on 

sharp curves and consequently cause drivers to more quickly negotiate a sharp curve due to 

increased curve visibility [7].  

 Campbell et al. suggested that a combination of RRPMs with centerlines and edge lines 

increases curve safety [1]. For very sharp curves (more than 12 degrees), the report recommends 

the use of RRPM pairs on the outside edges of the centerline, placed 800.5 ft. (244 meters) in 

advance of every curve with spacing intervals of 131.2 ft. (40 meters) for sharp curves and 262.5 

feet (80 meters) for smooth curves [1]. Another study recommends the utilization of snow-

plowable RPMs for curves that cause ROR crashes [19]. 

 

  

 

 

 

 

 

 

Raised profile thermoplastic 

markers  

Inverted profile thermoplastic 

markers  
Figure ‎2.5 Profile thermoplastic markings 

Source: [7] 
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Lord et al. estimated an average cost of $0.93/ft
2
 for profile thermoplastic markings in 

Texas. The study also compared costs of pavement markings for various materials, as shown in 

Table ‎2.5 [12]. 

 

 

 

 

2.1.1.7. Reflective Barrier Delineation 

 Reflective sheeting panels installed on concrete barriers or guardrails improve visibility 

of horizontal curves, particularly at night [7]. Reflectors should be mounted on guardrails 

perpendicular to approaching headlights, as shown in Figure ‎2.7. The color of reflective sheeting 

or mounted reflectors must match the adjacent edge line color. Panels and reflectors typically 

have 18–36-inch spacing [9]. 

 

Standard RPM- for 

centerline 

Snow-plowable 

RPM Figure ‎2.6 Raised pavement markings 

Source: [7] 

Table ‎2.5 Estimated cost of pavement markings in Texas 

Source: [27] 
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McGee and Hanscom estimated that each reflector costs $3 to install and almost $2.33 

per linear foot of 4-inch wide reflective panels [7]. Lord et al. estimated that each reflector costs 

$3.42 and each linear foot of reflective panels with 4-inch, 6-inch, and 8-inch widths costs $0.30, 

$0.66, and $0.94, respectively [12]. 

 As described in McGee and Hanscom, reflective sheeting can be implemented on 

obstructions near the edge of roadways and in the clear zone, but it is potentially hazardous for 

ROR crashes. Six-inch wide reflective tape is typically applied to the object, as illustrated in 

Figure ‎2.8. When the distance between the object and the shoulder is 8 ft. or less, the marker 

should be placed at least 4 ft. above the pavement surface, otherwise the 4-foot height should be 

measured from the ground. Yellow reflective materials are commonly used unless aesthetic 

consideration requires brown materials [9]. 

 

 

 

Figure ‎2.7 Reflective panels and mounted reflectors 

Source: [7] 
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2.1.1.8. Speed Limit Advisory Marking 

 Speed limit markings can be used as a supplemental warning in advance of a curve with a 

common horizontal alignment sign. Use of an arrow sign and “SLOW” text on the pavement has 

the similar effect [7,12]. Campbell et al. suggested that an arrow sign and text should be placed 

230 ft. (70 meters) in advance of the curve in high hazard areas or at sharp curves [1]. However, 

McGee and Hanscom stated that sign placement distance depends on approach speed and curve 

design speed [7]. Several studies [7,12,1] indicated expected speed reduction when this kind of 

treatment is used. Lord et al. reported that speed limit advisory pavement markings cost an 

average of $116 [12]. 

 

 

 

 

Figure ‎2.8 Reflective tape on object close to the road 

Source: [7] 
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 One study recommended placing on-pavement curve signs in locations where advisory 

sign placements are recommended [7]. In a study conducted by Charlton in 2007 in New 

Zealand, on-pavement curve signs were determined to be more effective than chevrons at low 

speeds (28 mph (45 km/hr)) [21]. 

Figure ‎2.9 Speed limit advisory pavement marking 

Source: [7] 

Figure ‎2.10 PennDOT curve advance marking 

Source: [7] 
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2.1.1.9. Optical Speed Bars 

Thermoplastic painted stripes, or transverse stripes, are implemented perpendicular to 

roadway alignment in advance of the curve and on the curve [1], as shown in Figure ‎2.11. The 

primary objective of this treatment is to give drivers the illusion of increased speed by decreasing 

the distance between stripes, thus causing drivers to slow their driving speed. Based on McGee 

and Hanscom, these white stripes are typically 18 in. long and 12 in. wide; their effectiveness is 

attributed to decreasing spaces between the stripes in relation to the curve [7]. However, no clear 

conclusion confirms the effectiveness of this treatment since various studies have indicated 

occasional reduction in speed, no reduction in speed, or a slight increase in speed [1]. Campbell 

et al. suggested that a combination of rumble strips and transverse stripes would be more 

effective [2]. McGee and Hanscom estimated a $2000 cost for the implementation of optical bars 

on two directions of a curve in Virginia in 2006 [7].  

  

 

 

 

  

 

 

Hallmark et al. categorized optical speed bars as “transverse pavement markings,” “on-

pavement chevrons,” and “herringbone.” On-pavement chevrons are shown in Figure ‎2.12. 

Figure ‎2.11 Optical speed bars  

Source: [7] 
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According to their study, on-pavement chevrons are typically applied on freeway ramps, in 

advance of curves, and as entrance treatment to rural communities. Anticipated results of on-

pavement chevron applications include a decrease in mean speed or 85
th

 percentile speed at 

horizontal curves [15].   

 

 

 

 

 

 

2.1.1.10. Rumble Strips 

 Rumble strips, which are grooved or raised elements installed on the pavement surface, 

can be milled, rolled, formed, and raised rumble strips. Bogenreif reported that one-third of Iowa 

safety funding was allocated for the installation of shoulder and edge line rumble strips [10]. 

Rumble strips placed near or on curve sections of roads cause noise and vibration to alert drivers 

of their lateral placement on the curve. Rumble strips on a horizontal curve can be utilized as 

centerline rumble strips (CLRS) to prevent drivers from encroaching into the opposite lane, edge 

line or shoulder rumble strips to warn drivers of ROR crashes, and transverse rumble strips to 

encourage drivers to reduce their driving speed. KDOT practice only allows transverse rumble 

strips in advance of a stop condition.  

Figure ‎2.12 Application of on-pavement chevrons 

Source: [15] 
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2.1.1.11. Centerline Rumble Strips 

 In general, CLRSs are milled rumble strips that are installed at or near the centerline. 

Factors such as operating condition, cross section characteristics, and potential road users affect 

optimum dimensions for milled centerline rumble strips [12]. McGee and Hanscom designated 

common dimensions of CLRSs to be 12–16-inch length (vertical to centerline), 7-inch width, and 

0.5-inch depth (or height), as shown in Figure 2.13 [7]. Russell and Rys recommended milled 

rumble strips with 12–16-inch length (perpendicular to the centerline), 7-inch width (along the 

centerline), 0.5-inch depth, with a 12-inch continuous apart or alternating pairs 12-inches apart 

with the pairs 24-inches apart [22]. In a recent study by Karkle, Rys, and Russell, typical CLRSs 

are milled strips with 16-inch length, 7-inch width, 0.5-inch depth, and 12-inch continuous 

spacing [23,24]. 

 

 

 

 

 

McGee and Hanscom estimated the cost of CLRSs to be approximately $0.40 per linear 

foot [7], and Lord et al. reported CLRSs to cost approximately $8.63 per linear foot in Texas 

[12]. 

Figure ‎2.13 CLRS pattern 

Source: [7] 
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2.1.1.12. Edge Line or Shoulder Rumble Strips/Stripes 

 Shoulder rumble strips (SRSs) require sufficient width of roadway shoulder; an SRS can 

be applied on the edge line (commonly called rumble stripes) or shoulder, depending on shoulder 

width, as shown in Figure ‎2.15. Lord et al. suggested 4–12 in. of offset distance from the edge 

line when an 8-foot clear shoulder width is available after installation [12]. McGee and Hanscom 

recommend a 7.1-inch longitudinal width and 15.8-inch transverse width with a repeating pattern 

of approximately 5.1 inches [7]. Implementation cost has been estimated at $8.63 per linear foot 

in Texas [7]. Hallmark et al. introduced edge line rumble stripes, an innovative combination of 

rumble strips and edge line markings, in order to improve visibility during wet conditions [15]. 

McDonald also recommended rumble stripes or milled-in wet-weather visibility pavement 

markings on curves with an ROR crash history [19]. 

 

 

 

Figure ‎2.14 Example of CLRS 

Source: [68] 
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2.1.1.13. Roadway Rumble Strips 

 Transverse rumble strips, which are grooved or raised stripes across the road pavement, 

remind drivers to reduce speed or increase caution when negotiating a curve section [9]. The 

maximum height or depth should not exceed 0.5 in., and a warning “RUMBLE STRIPS 

AHEAD” sign is recommended in advance of this treatment to warn motorists, bicyclists, and 

motorcyclists [7]. However, maintenance concerns should be considered, especially when raised 

rumble strips are implemented in snowy regions. To prevent motorists from using the opposite 

lane when they encounter transverse rumble strips, a discontinuous pattern design, such as gaps 

in the bars or grooves across the pavement, is recommended.   

 

 

 

 

 

 

Figure ‎2.15 Example of SRS  

Source: [7] 

Figure ‎2.16 Example of roadway rumble 

strip 

Source: [7] 



31 

 

 

2.1.2. Intermediate and High-Cost Treatments 

2.1.2.1. Flashing Beacons 

 Flashing beacons are used as a supplementary treatment when conventional safety 

improvement countermeasures have not remedied a safety problem [7]. A typical circular yellow 

section from a standard traffic signal is used for flashing beacons, thereby attracting driver 

attention to existing signs. Flashing beacons are commonly installed above the signs and at least 

12 in. from the nearest edge of the signs. Lord et al. estimated the cost of a traditional unit to be 

$2300 and a solar-powered unit to be $4900 in Texas [12]. 

 

 

 

 

 

 Similar to flashing beacons, LEDs are used in traffic signs such chevrons, as shown in 

Figure ‎2.18. This treatment advantageously directs driver attention to the sign [6].  

 

 

 

Figure ‎2.17 Use of flashing beacons with a sign 

Source: [28] 
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As shown in Figure ‎2.19, LEDs can also be used in pavement markers to enhance 

delineation, particularly during low visibility conditions, or in RPMs or markers (solar or 

hardwired) on the pavement since they are snowplow-safe and bike-safe [9]. The cost of a 

photocell-powered LED RPM is approximately $50 including material and installation [25]. The 

cost of 20 embedded LED markers connected by wire and installed with 20-foot spacing on a 

curve section is estimated to be $48,000 for a 110 volts of alternative current (VAC) power 

system and $55,000 for a solar-powered source [26]. 

 

 

 

  

 

 

 

 

Figure ‎2.18 Chevron enhanced with LEDs 

Source: [6] 

Figure ‎2.19 Use of in-pavement LED markers 

Source: [69] 
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Figure ‎2.20  Dynamic curve warning system in 

Texas 

Source: [12] 

Figure ‎2.21 DCWS 

Source: [71] 

2.1.2.2. Dynamic Curve Warning System  

The DCWS detects an approaching vehicle, measures its speed, and activates a warning 

variable message and/or beacons whenever the vehicle navigates the curve faster than a safe 

speed. The DCWS consists of loop detectors or radar. Various designs have been suggested for 

this system, but the simplest design includes a constant message sign enhanced with flashing 

beacons on the corner of the sign. When a vehicle with excessive speed approaches the curve, the 

detection system activates the beacons to warn the driver. Because of their high cost, however, 

DCWSs are suggested for curves in which common treatments have not improved curve safety. 

A wide diversity of design options influences DCWS implementation cost. McGee and Hanscom 

reported a $61,000 system installation cost in California [7], while in Texas a system was 

estimated to cost $18,000 [12]. However, Caltrans reported a 44% reduction of total crashes in 

the first year after DCWS installation [7]. 

 

 

  

 

 

 

 

Traffic & Parking Control Company, Inc. (TAPCO) recently introduced a Sequential 

Dynamic Curve Warning System (SDCWS) consisting of chevrons enhanced with LEDs and 
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solar-powered sources with a radar detector and activator or controller. When the radar detector 

senses a speeding vehicle, it triggers the controller, and the controller wirelessly activates LEDs 

on the chevrons to flash sequentially or synchronously at a desired rate. According to TAPCO, a 

wireless, vehicle-activated, 5-sign system with solar-powered 30-inch by 36-inch signs would 

cost $14000. The SDCWS was studied in Colorado, Missouri, Texas, Washington, and 

Wisconsin. Study results have not yet been published. Use of chevrons enhanced with LEDs on a 

horizontal curve section is shown in Figure ‎2.22. 

 

 

2.1.2.3. Paved Shoulders and Widening Shoulders 

 Paved shoulders provide extra space for drivers to escape if another vehicle is 

approaching head-on, thus increasing the safety of roadway curve segments. Removing material 

from the old shoulder, recompacting the shoulder, and replacing it with new appropriate asphalt 

constitutes construction activity. Various aggregates and colors can be used to distinguish the 

shoulder and travel lane for drivers. Widening paved or stabilized shoulders provides additional 

space for drivers and increases curve safety. 

 

Figure ‎2.22 Chevrons enhanced with LEDs 

Source: [70] 
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McGee and Hanscom estimated a $1 /yd
2
 cost for seal-coating a gravel shoulder [7]. Another 

study reported that asphalt costs approximately $3.80 per gallon and aggregates cost $72 per 

cubic yard [27]. 

2.1.2.4. Shoulder Drop-Off Mitigation (Safety Edge) 

 Horizontal curves often contain drop-offs because unstabilized pavement edges erode, 

resulting in a height difference and causing drop-offs [7,12]. McGee and Hanscom recommended 

a 45-degree angle fillet of asphalt on each side of the roadway [7], and Lord et al. recommended 

a formed slope with a 30-degree angle [12]. Fillet or slope-formed shoulders enable drivers who 

leave the travel lane to return their vehicles to the roadway with less hazard or risk. FHWA states 

that the treatment is cost-effective because it requires less than 1% of the asphalt required for a 

new surfacing project [28]. 

 

 

Figure ‎2.23 Inside shoulder widening 

Source: [7] 
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New safety edge guidelines at KDOT, effective since January 18, 2013, recommends 

1.7H: 1V for asphalt and concrete shoulders with 0–3 ft. of width, 1/4H: 1V for asphalt shoulders 

wider than 3 ft., and vertical edges for concrete shoulders wider than 3 ft. 

2.1.2.5. Installation or Improvement of Lighting 

 Installation of new lighting or improvement of old lighting can increase the visibility of a 

curve section of roadway. Lighting is particularly beneficial at nighttime and in adverse weather 

conditions. However, the installation of new lighting is expensive and should be considered only 

if economically justifiable. Lord et al. reported the average cost of lighting to be $2,336 for each 

unit installed lighting in Texas [12]. 

 

 

 

Figure ‎2.24 Safety edges 

Source: [7] 
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2.1.2.6. Skid Resistant Pavement Surface 

 The use of aggregates such as calcined bauxite can increase the friction coefficient of a 

pavement surface. During resurfacing this treatment can be applied on horizontal curves to 

increase curve safety, especially when surfaces are wet. This treatment can be obtained by 

overlaying existing asphalt with appropriate asphalt or applying grooves on the pavement 

surface. Moreover, the pavement surface must be well drained to meet the purpose. In order to 

obtain a proper asphalt overlay, voids should be present on the surface to help drainage and 

improve skid resistance. Voids can be formed using aggregate that lacks particular particle 

gradations. Longitudinal or transversal grooving provides drainage and increases friction [12]. 

Investigating the safety effectiveness of a skid resistive overlay in New York showed a 

50% reduction in wet condition crashes and a 20% reduction in total crashes [7]. Results 

indicated that grooved pavement performed better in wet weather conditions than the other. 

McGee and Hanscom reported a 72% reduction in wet condition crashes on some studied 

Figure ‎2.25 Lighting to improve visibility on a curve 

Source: [12] 
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horizontal curves in California but only a 7% reduction in dry pavement crashes in those curves. 

They also reported the cost of a 2-mile overlay in California to be $200,000 in the year 1996 [7]. 

 

 

 

 

 

 

 

 

2.2. Crash Prediction Models 

Many studies have developed prediction models for various crash types on rural 

highways. Zegeer et al. studied 10,900 curves in the state of Washington in order to determine 

effective features of horizontal curves regarding crash occurrence on two-lane rural highways, 

identify curve geometric improvements related to curve safety, and develop a crash reduction 

factor for horizontal curves. They utilized a linear regression model to analyze geometric and 

traffic data. Their findings showed that sharp curves with narrow width, deficient superelevation, 

and no spiral transitions increased the number of crashes. In similar conditions, the probability of 

crash occurrence increased with increased traffic volume and curve length [29]. Miaou and Lu 

evaluated the effect of geometric characteristics of horizontal curves in Utah in relation to truck 

Figure ‎2.26 Application of skid resistant material on a curve 

Source: [7] 
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crash rates using data from the Highway Safety Information System (HSIS). They developed a 

Poisson regression model to identify factors that affect crash occurrence and estimate how 

improvement of those factors would affect crash rate at horizontal curve sections. They found 

that truck involvement in crashes increased when AADT, horizontal curvature, curve length, 

vertical grade, and length of vertical grade increased and paved inside shoulder width and truck 

percentage in similar AADTs decreased [30]. In an extended study, Dissanayake and 

Amarasingha investigated truck crashes in rural networks in Kansas. They utilized negative 

binomial (NB) regression when the results of Poisson regression method showed overdispersed 

data, and they compared large truck crashes on limited access highways. Their findings revealed 

that horizontal curvature, vertical grade, lane width, and shoulder width affect truck crash 

occurrence on limited access highways [31].  

Poch and Mannering studied crash frequencies at urban and suburban intersections in 

Bellevue, Washington. They developed statistical models for annual total number of crashes, 

rear-end crashes, angle crashes, and approach-turn crashes. Geometric and traffic factors 

considered in the model development included approach volumes, number of approach lanes, 

speed limits, highway grades, signal control characteristics, the presence of horizontal curves, 

and sight distance restrictions. An NB regression method was used, and prediction models were 

developed for four crash groups [32].  

Chang and Chen compared use of the Classification and Regression Tree (CART) 

method and the NB regression method. They developed a prediction model for a national 

freeway in Taiwan, concluding that CART could be used as an alternative for other prediction 

models. According to their study, variables that affect crash occurrence include traffic volume, 
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precipitation in terms of number of days and amount, and roadway alignment in terms of grade 

and degree of curvature [33]. 

Hallmark et al. conducted a before and after study to investigate the effect of dynamic 

curve signs on speed reduction and crash occurrence at horizontal curve sections using a 

Bayesian or generalized linear regression model. Results were published in early 2015 [34,35]. 

Although a wide variety of variables were considered in the model, they used AADT, curve 

length, curve radius, sign type, posted speed, curve advisory speed, and the difference between 

posted speed and advisory speed. They also used a full Bayes model to develop a crash 

modification factor (CMF) using crash frequency as the response variable [35]. 

Schneider et al. investigated the impact of rural two-lane horizontal curves on non-

intersection truck-related crashes. They used an NB regression model with full Bayes method to 

develop a prediction model that considered 15,390 truck crashes from 2002 to 2006. Their study 

showed that traffic volume and horizontal curvature influence truck crash occurrence at 

horizontal curve sections [36]. In another study, Schneider et al. (2010) explored the impact of 

roadway geometry at horizontal curve sections on single-vehicle crash frequency by 

implementing a Bayesian technique to improve the frequency estimation. According to the 

findings of their study, curve length and radius, shoulder width, and annual daily traffic (ADT) 

significantly influenced single-vehicle motorcycle crash frequency at horizontal curve sections 

[37].  

Easa and You studied 3600 miles of rural two-lane highways in the state of Washington. 

The Highway Safety Information System (HSIS) was used to obtain required geometric and 

traffic data, and crash data from 2002 to 2005 were extracted from police departments reports in 

Washington. They selected five groups of combinations of horizontal curves and vertical 
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alignment conditions, including crest vertical curve, sag vertical curve, multiple vertical curve, 

grade with absolute value of less than 5%, and grade with absolute value equal to or greater than 

5%. Poisson, NB, ZIP, and ZINB regression methods were used to develop the most appropriate 

prediction model. Among the five studied groups of roadway sections, the ZIP method was 

found to be ideal for one group and the ZINB model was best for the remaining four groups. 

Variables influencing crash occurrence at the studied sections were AADT, length of curve, 

degree of curvature, roadway width, access density, and grade [38].  

Khan et al. used a comprehensive database of horizontal curves in Wisconsin, provided 

by the Wisconsin Department of Transportation (WisDOT). They studied crashes from 2006 to 

2010, and they utilized quasi Poisson regression and NB regression methods to model crashes at 

horizontal curve sections. In order to consider crash severity, they developed a prediction model 

for all crashes and for severe crashes, including K, A, and B crashes from the KABCO scale 

[39]. Bogenreif explained each term of KABCO that determines a level of crash severity [10]: 

K: Fatal 

A: Incapacitating Injury 

B: Non Incapacitating Injury 

C: Possible Injury 

O: Property Damage Only. 

 

Khan et al. found that approximately similar variables were included in the prediction 

models for all crashes and severe crashes; however, the coefficient of the variables varied for 

each model. Variables that affected crash occurrence at horizontal curve sections consisted of 

curve radius, curve length, AADT, posted speed, average international roughness index (IRI) for 

the pavement surface, shoulder width, and tangent section length [39]. Table ‎2.66 and Table ‎2.77 
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summarize explanatory and dependent variables used in transportation safety studies to develop 

prediction models for curve-related crashes or other types of crashes. 
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Table ‎2.6 Variables used in horizontal curve crashes prediction models 

Source Explanatory Variables Dependent Variables 

Khan et al. 

(2013) 

Curve radius (R), curve length (L), log AADT, posted 

speed, left and right shoulder width and type, average IRI, 

pavement surface age and type, upstream tangent (0–600 ft., 

601–1200 ft., and 1201–2600 ft.), truck percentage, travel 

way width, difference between posted speed and advisory 

speed, presence of curve-related signs 

Number of crashes at 

horizontal curves,  

number of KAB 

crashes 

At horizontal curve 

sections 

 

Hallmark 

et al. 

(2007) 

Number of lanes, lane width, shoulder width and type, 

speed limit, pavement type and condition, presence and 

location of street lighting, grade, horizontal curve radius, 

degree of curvature, superelevation, sight distance, presence 

and characteristics of spirals, density of curves upstream in 

terms of number of curves per mile, length of connection 

tangent section, location and type of signage before and 

within the curve (e.g., location of speed reduction zones, 

chevrons, etc.), speed, volume, any other feature that may 

influence driver expectation and curve approach speed 

Speed change, crash 

frequency 

Schneider 

et al. 

(2009) 

Shoulder width, horizontal curve radius, curve length, 

passenger vehicle ADT, truck ADT, degree of curvature 

Truck crashes 

Schneider 

et al.  

(2010) 

Lane width, overall surface width, posted speed limit, 

additional land use categories (e.g., population density), 

ADT, segment length, curve radius, shoulder width 

Single-vehicle 

motorcycle crashes 

Hallmark 

et al. 

(2015) 

AADT, section length, season, sign type, posted speed 

limit, curve advisory speed, differences between speed limit 

and advisory speed, radius 

Total crashes for both 

directions, total 

crashes for the 

direction of the sign, 

total single vehicle 

crashes, single vehicle 

crashes in the 

direction of the sign 

Zegeer et 

al. (1993) 

ADT, curve length, degree of curvature, total surface width, 

presence of spiral transition, superelevation, roadside 

hazard rate, roadside recovery distance 

Total number of 

crashes 
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Table ‎2.7 Variables used in non-horizontal curve crashes prediction models 

Source Explanatory Variables Dependent 

Variables 

Chang and Chen 

(2005) 

Highway geometric design information including 

number of lanes, horizontal curvature, VG, and 

shoulder width, traffic information including ADT 

of various vehicle types, peak hour factors, traffic 

distribution over lanes, weather information from 

the annual report of climatological data for cities 

and towns along National Freeway 1 (including 

pressure, temperature, humidity, precipitation, wind 

speed, and cloudiness) 

Crash frequency from 

2001 to 2002 

Dissanayake and 

Amarasingha 

(2012) 

Section length, speed limit, median width, 

functional class, AADT, AADT of heavy vehicles, 

right rumble strips, inside rumble strips, right 

shoulder width, inside shoulder width, horizontal 

curve, vertical grade, number of lanes 

Truck crashes from 

2005 to 2010 

Miaou and Lum 

(1992) 

Section length, truck miles or truck exposure, 

dummy intercept, dummy variables from the years 

1986 to 1989, AADT per lane, horizontal curvature 

(HC), length of original horizontal curve (LHC), 

vertical grade, length of vertical grade, deviation of 

paved inside shoulder width, percent trucks, 

interaction between HC and LHC, interaction 

between VG and LVG 

Number of trucks 

involved in accidents 

Hosseinpour et al. 

(2014) 

Posted speed, shoulder width, horizontal curvature, 

terrain type, heavy vehicle traffic, land use, side 

friction factor, presence of median, access points 

Number of head-on 

crashes, crash 

severity 

 

Appendix A provides additional details regarding variables in prediction models in 

previous studies 
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Chapter 3. Methodology and Data 

In order to identify geometric and traffic factors that affect horizontal curve crashes, 

crash data from the years 2004 to 2012 were obtained from KDOT and crashes were verified to 

ensure that they occurred at horizontal curve sections. In addition, data of curves with zero 

number of crashes were obtained from KDOT’s horizontal curve inventory developed by the 

KDOT Traffic Safety Unit. Because the KDOT database did not initially contain sufficient 

required geometric and traffic data, 221 horizontal curves on rural two-lane highways were 

selected. Geometric data were measured, including curve length, curve radius, and tangent 

sections lengths in advance of horizontal curves and paved and unpaved shoulder widths. Traffic 

data such as AADT, heavy vehicle percentage, posted speed, advisory speed, and presence of 

rumble strips were obtained from KDOT traffic maps or images from Google Maps. Recently, 

however, the Geometric and Accident Data (GAD) Unit of the Traffic Safety section of KDOT 

provided updated horizontal curve inventory with complete data variables of horizontal curves in 

Kansas and additional geometric and traffic data that were used in data analysis for this study. 

Data analyses of 221 horizontal curves on undivided rural two-lane highways and 5,334 

horizontal curves on the entire state transportation network in KDOT inventory are represented 

in the following sections of this chapter and in Chapter 5.  

3.1. Horizontal Curves for Preliminary Analysis 

Required geometric and traffic data were measured or obtained from KDOT databases or KDOT 

traffic maps for 221 randomly selected horizontal curves on undivided two-lane two-way 

highways. The collected data variables included AADT from 2004 to 2012, heavy vehicle 

percentage, radius of curve, degree of curvature, curve length, tangent sections length, posted 

speed, advisory speed of the curve, crashes (fatal, injury, and PDO), presence of centerline or 
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edge line rumble strips at curves, paved or unpaved shoulder, width of paved shoulder (≤3ft. and 

˃3ft.), and width of unpaved shoulder (≤3ft., ˃3ft. and ≤7ft., and >7). The 221 randomly selected 

curves undivided two-lane two-way highways were initially identified on Google Maps using 

longitude and latitude of at least one point on the horizontal curve, and then an AutoCAD 2013 

software package was used to measure related horizontal curve characteristics. Figures 3.1 and 

3.2 illustrate the measuring of curve radius, curve length, and curve tangent sections length using 

AutoCAD 2013 on extracted photos from Google Maps. The complete inventory of horizontal 

curves with approximately 5300 curves and related geometric and traffic data were later obtained 

from the KDOT database in April 2015. 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎3.1 Measuring radius and length of curve using Google Maps and 

AutoCAD 
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3.2. Poisson Regression Model 

Crashes occurring at transportation sections and segments have nonnegative integer 

values, thereby requiring utilization of count data models such as Poisson and NB regression 

methods; other methods, such as applying standard least squares regression method for 

continuous data should be avoided [40]. Because crashes are discrete response variables with 

integer values as possible outcomes and random variables, generalized linear models (GLMs) 

can be implemented to analyze crashes. Crashes as Poisson variables take nonnegative integer 

values. Poisson distribution has one mean parameter, µ, that is also a variance of response 

variable [41]. The general form of mean and variance of Poisson distribution is defined 

according to Equation (1).  

 ( )      ( )     ( )  √  
(1) 

 

Figure ‎3.2 Measuring lengths of tangent sections for a curve using Google 

Maps and AutoCAD 
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The mean of Poisson distribution always has a positive value, and the log of the mean is 

commonly modeled. The general form of the Poisson regression model is 

   ( )          (2) 

which can be written as 

   (       ) (3) 

 

where 

µ: the mean of Y 

β0: the constant value 

βi: coefficient for i
th

 independent variable 

Xi: he i
th

 independent variable 

 

The probability distribution or mass function can be expressed as the following equation 

[42]: 

 (   )  
       

  

   
 

(4) 

where y is the actual number of response variables, which represents crash frequency. 

 

3.2.1. Overdispersion 

When the response variance is greater than the mean, overdispersion occurs in the 

Poisson model due to data clustering, unaccounted temporal correlation, or model 

misspecification; however, according to Lord and Miranda-Moreno, overdispersion for crashes 

occurs primarily due to a Bernoulli trial with unequal probability of events, also known as 

Poisson trials [43]. Positive correlation between responses and excess variation between response 

probabilities or counts cause overdispersion, causing standard errors of estimates to be deflated 

or underestimated. In other words, some variables can be identified as significant variables 

although they are not significant variables. In order to control data overdispersion, the value of 
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the Pearson Chi Square (χ
2
) or Pearson statistic divided by the degree of freedom (df) is greater 

than 1.0. A correction is required when the value of the Pearson statistic divided by the df is 

greater than 1.25 and 1.05 for moderately sized and large models, respectively [42]. Although 

overdispersion does not occur for normally distributed data that follow ordinary regression 

models, it should be considered in data analysis with Poisson distribution pattern [41]. 

3.3. Negative Binomial Regression 

The NB regression model contains a nonnegative parameter, called dispersion parameter, 

that enables the model to consider data overdispersion [41]. Equation (5) shows the difference 

between Poisson and NB regression assumptions: 

 ( )       ( )        (5) 

 

The basic structure of the NB regression model is described as 

      (                   ) (6) 

 

where 

yi: response variable for i
th

 observation (e.g., number of crashes for i
th

 section)  

β0: constant 

β1,…, βn: estimated parameters in vector form 

x1,…, xn: explanatory variables for i
th

 observation 

3.3.1. Maximum Likelihood 

The maximum likelihood parameter (L) can be utilized to estimate parameters of the NB 

regression model [37]. The maximum likelihood function can be obtained from Equation (7). 

 



50 

 

 (  )  ∏
 (    )

   ( )
[
 

    
]
 

[
  

    
]
  

   

 
(7) 

 

where 

L(λi): maximum likelihood estimator of λi 

N: total number of observation groups (e.g., number of horizontal curve sections) 

Γ( ): Gamma function 

θ: dispersion parameter 

α: inverse dispersion parameter (1/θ) 

 

3.4. Zero-inflated Model 

Some studies recommend use of ZI models in which many zeros are observed and in this 

case, two states are assumed for the studied transportation segments. Some of the segments are 

safe or virtually safe with zero crashes, known as true-zero, and the rest of the segments are 

unsafe or are crash-prone locations with zero or non-zero crashes [44]. However, the assumption 

that excess zeros are due to virtual safe segments is questionable; the preponderance zeros could 

be the result of inappropriate selection of time period or/and section length [27]. Lord et al. 

recommended avoiding the use if ZI models when the study time period is not long enough; 

however, they did not clarify the appropriate time scale to apply ZI models [27]. Washington et 

al. stated that a zero state for roadway segments or sections can be true when some sections have 

insufficiently small probabilities of crash occurrence, thereby prompting application of ZI 

models that consider a dual-state system (normal-count and zero-count states) [40]. ZI models 

assume that events Y = (y1, y2, … yn) are independent [40]. The ZIP model is defined according to 

Equation (9) [40]. 
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where y is the number of events, such as crashes per study period. The ZINB model also is 

defined as 
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where    (
 

 
) *(

 

 
)    +. 

3.5. Goodness of Fit  

 Various criterion have been recommended to verify goodness of fit for Poisson, NB, and 

ZI models. A majority of studies have utilized Akaike information criterion (AIC) [39,45]. 

According to Khan et al., “The AIC is a measure of the relative goodness of fit of a statistical 

model which loosely describes the tradeoff between the accuracy and complexity of the model” 

[39]. The general form of the AIC equation is 

           ( ) 
(10) 

 

where 

k: the number of parameters in the statistical model 

L: the maximum value of the likelihood function for the estimated model 
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Although no specific threshold exists for the value of AIC, small values are desired for 

studied models: A model with the smallest AIC value is the best model. 

3.6. Data Collection 

3.6.1. Initial Analysis 

 As mentioned, only 221 horizontal curves on undivided two-lane two-way highways 

were initially randomly selected for this study due to lack of horizontal curve geometric and 

traffic data. Table ‎3.1 provides descriptive statistics of geometric and traffic variables related to 

the selected curves data set.  

Table ‎3.1 Geometric and traffic variable descriptions for initial data collection 

Variable Minimum Maximum Mean Standard 

Deviation 

Curve length (ft.) 93 5,621 1,144 970.7 

Curve radius (ft.) 115 18,833 1,967 2,161.6 

AADT (vpd) 205 10,498 2,214 1,679.6 

Heavy vehicle percentage 1 24 10 4.4 

Tangent length (ft.) 25 39,449 2,888 4,962.5 

Posted speed (mph) 35 65 57 7.4 

Difference between posted speed and 

advisory speed 

0 40 7 9.1 

 

3.6.1.1. Crashes at 221 Horizontal Curves  

Four hundred sixty-nine crashes occurred at 221 randomly selected horizontal curves on 

two-lane highways during the years 2004–2012. Out of those crashes, 283, 170, and 14 crashes 

were PDO, injury, and fatal crashes, respectively. Figure ‎3.3 shows total crash frequencies for 

the 221 horizontal curves on undivided two-lane two-way highways during the study period. 
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According to the figure, 120 horizontal curves, approximately 54.3% of the total studied curves, 

experienced 0 or 1 crash during the nine-year study period. Only four curves had more than 1 

crash per year, approximately 1.8% of the studied horizontal curves. Less than 10% of the 

studied horizontal curves, amounting to 20 curves, had more than one crash per every other year. 

 

Figure ‎3.3 Total crash frequencies for 221 horizontal curves on two-lane highways 

 

3.6.2. New KDOT Horizontal Curve Inventory 

 A complete horizontal curve inventory and related existing geometric and traffic data 

and crashes at each horizontal curve section in 2014 were obtained from KDOT. The inventory 

consisted of approximately 5,300 horizontal curves and recorded data that included the 

following: 

1. Curve length (ft.), assuming all curves were circular curves 

2. Curve radius (ft.), assuming all curves were circular 

3. Speed limit (mph) in the new KDOT database for horizontal curves 
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4. Advisory speed (mph),in the new KDOT database for horizontal curves 

5. IRI (in./mi. or m/km) based on the simulated response of a generic motor vehicle to 

roughness in a single wheel path of the road surface 

6. AADT (vpd) in the new KDOT database for horizontal curves 

7. Surface width (ft.) for the roadway surface at horizontal curve sections measured by 

surface width between edge lines 

8. Shoulder width (ft.), paved and unpaved, in the KDOT database 

Horizontal curve data were in different Microsoft Excel files, and the Kansas Crashes and 

Analysis Reporting System (KCARS) database was in Microsoft Access format. Therefore, an R 

software package was used to combine the required data of horizontal curves in one file and 

create a dataset for data analysis. The written codes are provided in Appendix B. Table ‎3.2 

presents descriptive statistics of horizontal curves in KDOT’s curve inventory. 

Table ‎3.2 Geometric and traffic variable descriptions for KDOT horizontal curve inventory 

Variable Minimum Maximum Mean Standard 

Deviation 

Curve Radius (ft.) 43 70,317 5,918 5,984.1 

Curve length (ft.) 31 9,513 1,328 926.0 

AADT (vpd) 79 76,000 14,789 14,379.9 

Heavy vehicle percentage (%) 1.63 72.65 14.97 9.68 

Surface Pavement width (ft.) 16 80 25.5 9.9 

Outside Shoulder Width (ft.) 0 12 8.3 3.5 

Inside Shoulder Width (ft.) 0 12 2.3 3.4 

IRI (in./mile) 23 245 69.2 26.28 

Posted Speed (mph) 20 75 63 10.4 

Advisory Speed (mph) 15 75 62.5 12.2 
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3.6.2.1.  Crashes at Horizontal Curves in KDOT Inventory 

The KCARS database was used to find crashes at horizontal curve sections of KDOT 

inventory; crashes from the beginning of the year 2010 to the end of 2014 were identified for 

each of the 5,334 horizontal curves on the entire state transportation network. Crashes at each 

horizontal curve section were determined using KDOT’s horizontal curve inventory and 

common parameters such as roadway code, start and end mileposts of the horizontal curves, and 

lane class. From January 1, 2010, to December 31, 2014, 13,874 crashes occurred at 5,334 

horizontal curve sections on the entire state transportation network. A majority of those crashes 

were PDO crashes. Figure ‎3.4 shows crashes at horizontal curve sections based on severity. 

 

Figure ‎3.4 Crashes at horizontal curve sections based on severity 

 

This research study considered severe crashes in addition to the total number of crashes. 

Using the five levels of crash severity (KABCO scale), some studies [46,47,48,49] consider fatal 

and incapacitating injuries (K and A levels) to be severe crashes, while the other studies [39,50] 
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consider fatal and injury crashes, whether incapacitating or non-incapacitating, (K, A, and B 

levels) to be severe crashes. Therefore, this research study considered severe crashes with both K 

and A levels and K, A, and B levels since the number of fatal and incapacitating injury crashes 

may be very low on the studied horizontal curve sections. Crashes were considered based on 

crash type. Six crash types were identified for crashes at horizontal curve sections: single-vehicle 

crashes, multi-vehicle crashes, crashes with animals, crashes with pedal-cyclists, crashes with 

pedestrians, and crashes with railway trains. Table ‎3.3 and Figure ‎3.5 show the number of total 

crashes, severe crashes (K,A and K,A,B levels) for the six crash categories at 5,334 horizontal 

curve sections on the entire state transportation network. 

Table ‎3.3 Number of total, KA, and KAB crashes at horizontal curves based on crash type 

Crash Types 
Single-

vehicle 

Multi-

vehicle 

With 

animal 

With 

pedal-

cycle 

With 

pedestrian 

With 

railway 

train 
Total 

 

Severe Crashes (KA) 289 216 14 0 0 0 519 

Severe Crashes (KAB) 1,008 658 77 1 1 0 1,745 

Total Crashes 5,095 4,930 3,813 11 24 1 13,874 
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Figure ‎3.5 Crashes based on crash type and crash severity 

 

3.6.2.2. Selecting Data for Data Analysis and Data Validation 

Data from the KDOT horizontal curve inventory included geometric characteristics of 

5,334 horizontal curve sections on the entire state transportation network. The data were 
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with acceptable accuracy. The first part of the data, consisting of 80% (4,267) of horizontal curve 

sections, was used for data analysis, and the second part, including 1,067 horizontal curve 

sections, was used for data validation. Table ‎3.4 compares statistical characteristics of the 

horizontal curves randomly selected for data analysis and data validation. According to the table, 
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datasets for data analysis and validation reasonably followed statistical characteristics of the 

entire database. 

Table ‎3.4 Comparison of statistical characteristics of randomly selected curves for data 

analysis and data validation 

Statistical 

Characteristics 

Total 

Crashes 

Severe 

Crashes 
AADT*1000 

Heavy 

Vehicle 

(%) 

Curve 

Length 

(ft.) 

Degree of 

Curvature 

A
ll

 o
f 

th
e 

C
u

rv
es

 

Min. 0 0 0.079 1.63 30.54 0.075 

Max. 58 11 76 72.65 9,512.60 122.13 

Ave. 0.95 0.19 14.79 14.97 1,327.68 2.63 

S
el

ec
te

d
 

C
u

rv
es

 f
o
r 

D
a
ta

 A
n

a
ly

si
s Min. 0 0 0.079 1.63 30.54 0.075 

Max. 27 11 76 72.65 9,512.60 122.13 

Ave. 0.96 0.19 14.80 14.87 1,328.64 2.71 

S
el

ec
te

d
 C

u
rv

es
 

fo
r 

D
a
ta

 

V
a
li

d
a
ti

o
n

 

Min. 0 0 0.116 1.95 47.67 0.111 

Max. 58 6 76 64.66 7,377.74 88.13 

Ave. 0.92 0.18 14.71 15.21 1,323.82 2.35 

 

During the study period from 2010 to 2014, 5,090 single-vehicle crashes occurred at 

5,334 Kansas horizontal curves, and among the entire single-vehicle crashes 4,108 and 982 of 

them occurred at selected 4,267 and 1,067 horizontal curves for data analysis and data validation, 

respectively. From the 288 severe crashes (K and A levels) on all Kansas horizontal curves, 232 

and 56 severe crashes occurred at selected curves for data analysis and data validation, 

respectively. In addition, 819 and 187 severe crashes (K, A, and B levels) occurred at the 

randomly selected horizontal curves for data analysis and validation, respectively, altogether 
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constituting 1,006 severe crashes at 5,334 horizontal curve sections on the entire state 

transportation network. Figure ‎3.6–Figure ‎3.14 show the number of horizontal curves for each 

crash group and all horizontal curve sections, as well as horizontal curves selected for data 

analysis and data validation. 

 

 

Figure ‎3.6 Total crash frequencies for 5,334 horizontal curves in Kansas 
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Figure ‎3.7 Total crash frequencies for 4,267 horizontal curves selected for data 

analysis 

 

 

Figure ‎3.8 Total crash frequencies for 1,067 horizontal curves selected for data 

validation 
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Figure ‎3.9 Severe (KA) crash frequencies for 5,334 horizontal curves in Kansas 

 

 

Figure ‎3.10 Severe crash (KA) frequencies for 4,267 horizontal curves selected 

for data analysis 
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Figure ‎3.11 Severe crash (KA) frequencies for 1,067 horizontal curves selected 

for data validation 

 

 

Figure ‎3.12 Severe (KAB) crash frequencies for 5,334 horizontal curves in 

Kansas 
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Figure ‎3.13 Severe crash (KAB) frequencies for 4,267 horizontal curves selected 

for data analysis 

 

 

Figure ‎3.14 Severe crash (KAB) frequencies for 1,067 horizontal curves selected 

for data validation 
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Chapter 4. Effect of Speed Limit Change on Horizontal Curve Crashes on K-

5 Highway in Leavenworth County, Kansas 

Various studies determined speed of vehicles as the most important factor causing 

crashes at horizontal curve sections [1,51,12,7,21]; therefore, investigating the relationship 

between speed management and crash occurrence is an interesting topic. Due to a considerable 

number of recent crashes, in June 2009 the posted speed on K-5 highway in Leavenworth 

County, Kansas, was reduced to 50 mph. The effect of speed limit reduction as a policy 

countermeasure was investigated, and other roadway changes such as implemented 

countermeasures and roadside conditions were considered and examined. Figure ‎4.1 shows the 

segment of highway on which the speed limit change was applied.  

 

4.1. Countermeasures on Horizontal Curves on K-5 

In order to study countermeasure effectiveness, installation dates of the studied measures 

had to be known. Because the KDOT database does not contain this information, available video 

Figure ‎4.1 Segment of K-5 highway with speed limit change 
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logs from the years 2004, 2007, and 2010 were studied in order to list applied measures at each 

horizontal curve section. Investigation of those logs pertaining to 25 horizontal curves on K-5 

highway showed that the only alteration of applied countermeasures was the change of a 

“Winding Road” sign on one curve to a “Reverse Turn” sign. The first sign existed in video logs 

from 2004 and 2007, while the second sign was observed in the video log from 2010. Utilized 

countermeasures on the 25 studied curves consisted of centerline, edge line, horizontal alignment 

signs, advisory speed plaque, a one-direction large arrow sign, PMDs, chevrons, and a no-

passing zone sign. During the study period, crashes occurred on 10 of the curves, and the 

remaining 15 curves had no crashes. With the exception of centerline and edge line markings on 

all curves, the use of other treatments is shown in Table ‎4.1. 

Table ‎4.1 Number of curves with specific treatment 

Treatment 
Number of Curves 

With Crashes Without Crashes 

Horizontal Alignment Signs 8 7 

Advisory Speed Plaque 7 6 

On-Direction Large Arrow 

Sign 

2 1 

PMDs 0 6 

Chevrons 8 1 

No-Passing Zone Sign 0 2 

 

Approximately 80% of curves with crashes had signs and supplemental treatments, such 

as chevrons, while less than half of curves without crashes had applied countermeasures that 

were identical to countermeasures of curves with crashes. 
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4.2. Roadside Hazard Rating  

Individual roadside characteristics for each curve were investigated from the video logs. 

Roadside hazard rating (RHR) was determined for each curve using the first edition of the 

Highway Safety Manual (HSM) [52]. According to the video logs, few changes were evident in 

roadside characteristics. Table ‎4.2 shows RHRs for each roadside of the studied curves.  

Table ‎4.2 RHR for curves on K-5 highway, Leavenworth County, Kansas 

Year 2004 2007 2010 

Roadside North 

Bound 

South 

Bound 

North 

Bound 

South 

Bound 

North 

Bound 

South 

Bound 
Curve No. RHR RHR RHR RHR RHR RHR 

C-160 6 6 - - 6 6 

B-160 5 5 - - 5 5 

A-160 5 4 - - 5 4 

160 5 5 5 5 5 5 

160-A 4 5 4 5 4 5 

160-B 4 5 4 5 4 5 

160-C 4 4 4 4 3 3 

160-D 5 5 5 5 4 5 

160-E 6 6 6 6 6 6 

160-F 4 5 4 5 4 5 

160-G 5 5 5 5 5 5 

160-H 4 4 4 4 4 4 

160-I 5 4 5 4 5 4 

161 4 4 4 4 4 4 

161-A 4 4 4 4 4 4 

162 5 5 5 5 5 5 

162-A 4 4 4 4 4 4 

163 3 5 3 5 3 5 

164 5 5 5 5 5 5 

164-A 5 5 5 5 5 5 

165 3 5 3 5 3 5 

166 4 4 4 4 4 4 

167 3 4 3 4 3 4 

168 5 5 5 5 5 5 

169 4 4 4 4 4 3 
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Images for the first three curves of the list did not exist in the video logs from 2007. Only 

four differences in RHRs of the three curves (160-C, 160-D, and 169) were observed among the 

25 studied curves, indicating that no significant changes in roadside characteristics occurred 

during the study period. Similarly, no change of roadside characteristics of curves with crashes 

was observed. 

4.3. Superelevation of Horizontal Curves 

 Information regarding superelevations of horizontal curve sections of the K-5 highway in 

Leavenworth County and other roadways was not available from KDOT; therefore, 

superelevations of horizontal curves of the studied highway were measured in the field. 

However, measurement of all superelevations of all horizontal curves was not possible due to 

lack of required safety measures, such as inadequate walking space along curve sections and the 

absence of traffic control equipment. Maximum superelevations of the studied horizontal curve 

sections are shown in Table ‎4.3. 

Table ‎4.3 Superelevations of studied horizontal curves 

Curve No. 

Max. 

Superelevati

on (%) 

Curve No. 

Max. 

Superelevati

on (%) 

Curve No. 

Max. 

Superelevati

on (%) 

Curve No. 

Max. 

Superelevati

on (%) 

C-160 n/a 160-D n/a 161-A 

 

n/a 166 6.1 

B-160 n/a 160-E n/a 162 4.7 167 4.4 

A-160 n/a 160-F n/a 162-A n/a 168 4.9 

160 4.4 160-G n/a 163 4.7 169 5.2 

160-A n/a 160-H n/a 164 n/a   

160-B n/a 160-I n/a 164-A n/a   

160-C n/a 161 10.5 165 n/a   

n/a: Not Available 
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According to roadway design principles, maximum superelevation is required at the one-

third past the point of curvature (PC) and before the point of tangent (PT). Also, because the 

cross slope changes from normal slope (typically 1.6%) via a superelevation runoff length, the 

amount of superelevation should be less at the beginning of a curve compared to the center of a 

curve [53]. However, superelevations of horizontal curves on K-5 did not follow this principle. 

4.4.  K-5 Highway Curve-Related Crash Analysis 

No changes in geometric characteristics and implemented conventional countermeasures 

were identified in the KDOT video logs; the only change applied to K-5 was speed limit 

reduction. In order to study the effectiveness of an applied policy countermeasure, a statistical t-

test approach was used for crash frequencies and crash rates. This statistical method is 

recommended to analyze small sample sizes. For this study, a paired t-test was applied using a 

Statistical Analysis System (SAS 9.2) software package (SAS Institute, Cary, North Carolina). 

Crash frequencies and crash rates before and after the speed limit change for all 25 horizontal 

curves on K-5 highway were used for each group of crashes.  

4.5.  Speed Limit Reduction on K-5 Highway 

According to the KDOT database, in 2009 the speed limit of K-5 highway was reduced 

from 55 mph to 50 mph. Data for 3.5 years before and 3.5 years after the speed limit change 

from 2006 to 2012 were used. During the study period, 45 crashes occurred at 10 horizontal 

curves out of the 25 horizontal curves on K-5 highway. Among those crashes, 29 occurred before 

the speed limit reduction and 16 occurred after the speed limit reduction. Thirty-six PDO crashes 

were noted, 24 of which occurred before the speed limit reduction and 12 which occurred after 

the speed limit reduction. Nine injury crashes occurred during the study time period: five 

occurred before the speed limit change and four occurred after the speed limit change. No fatal 
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crashes were recorded at the horizontal curve sections during the study period. To provide a 

better perception of crash severity, equivalent property damage only (EPDO) crashes were used 

according to Equation (11).  

            (   ) (11) 
 

Where: 

EPDO: number of equivalent property damage only crashes, 

PDO: number of property damage only crashes, 

15: coefficient representing equivalent PDO crashes for injury and fatal crashes for Kansas, 

I: number of injury crashes, and 

F: number of fatal crashes. 

Overall, 171 EPDO crashes occurred during the study period, with 99 EPDO crashes 

occurring before the speed limit reduction and 72 EPDO crashes occurring after the speed limit 

reduction.  

Weather, light, and road surface conditions were considered for the EPDO crashes. Two 

characteristics were defined for weather conditions: no adverse weather conditions and adverse 

weather conditions. For no-adverse weather conditions, 76 EPDO crashes and 69 EPDO crashes 

occurred before and after the speed limit reduction, respectively. For adverse weather conditions, 

26 EPDO crashes occurred: 23 before the speed limit change occurred and only three after the 

speed limit change. Light conditions were categorized as daylight conditions or dark-time 

conditions. For daylight condition, 44 and 53 EPDO crashes occurred before and after the speed 

limit reduction, respectively. For dark-time condition, 55 and 19 EPDO crashes occurred before 

and after the speed limit change, respectively. Road surface conditions were defined as dry 

conditions or wet conditions. For dry road surface conditions, 59 and 53 EPDO crashes occurred 
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before and after the speed limit change, respectively. For wet road surface conditions, the 

dispersion before and after the speed limit change was 40 and 19 EPDO crashes, respectively. 

The numbers of crashes for each group and each time period are summarized in Table ‎4.4.  

According to traffic count maps for the study period from 2006 to 2012, AADTs were 

1636 and 2088 vpd before and after the speed limit change, respectively, indicating a 27% 

increase in AADT for the studied sections. KDOT video logs did not show specific geometric 

change on the studied sections. 

 

Table ‎4.4 Number of crashes for each crash group before and after speed limit 

reduction 

Crash group 

Number of crashes 
Percent 

Difference 

(%) 

Before 

speed limit 

change 

After speed 

limit change 

Overall crashes 29 16 -44.83 

PDO crashes 24 12 -50.00 

Injury crashes 5 4 - 20.00 

EPDO crashes 99 72 -27.27 

EPDO crashes no-adverse weather 

condition 
76 69 -9.21 

EPDO crashes- adverse weather condition 23 3 -86.96 

EPDO crashes- day light condition 44 53 20.45 

EPDO crashes- dark time condition 55 19 -65.45 

EPDO crashes- dry on road surface 

condition 
59 53 -10.17 

EPDO crashes wet on road surface 

condition 
40 19 -52.50 

 

Figure ‎4.2 and 4.3 show percentages of crash occurrence and crash severity, respectively, 

before and after the speed limit change at horizontal curve sections on K-5 highway. 
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Figure ‎4.2 Crash percentage before and after speed limit reduction 
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Figure ‎4.3 Crashes based on severity before and after speed limit change 

 

Figure ‎4.4(a)–(d) show changes in EPDO crashes and EPDO crashes for various weather, 

light, and road surface conditions. 



72 

 

76 

23 

69 

3 

0

10

20

30

40

50

60

70

80

No Adverse Adverse

N
u

m
b

er
 o

f 
E

P
D

O
 C

ra
sh

es
 

Weather Condition 

BEFORE

AFTER

99 

72 

0

20

40

60

80

100

120

BEFORE AFTER

N
u

m
b

er
 o

f 
E

P
D

O
 C

ra
sh

es
 

Speed Limit Change 

  

 

 

 

 

 

 

 

 

 

(a) EPDO crashes before and after speed limit change 

 

 

 

 

 

 

 

 

 

 

(b) EPDO crashes before and after speed limit change for weather conditions 
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(c) EPDO crashes before and after speed limit change for light conditions 

 

 

 

 

 

 

 

 

 

 

(d) EPDO crashes before and after speed limit change for surface conditions 

Figure ‎4.4 EPDO crash changes before and after speed limit change for various conditions 
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4.6. T-test Analysis for Speed Limit Reduction 

In order to determine if speed limit reduction influenced crash occurrences at horizontal 

curve sections on K-5 highway, a statistical SAS software calculated the t-value and p-value for 

each group of crashes and conditions. A comparison of p-values to the significance level of 5% 

indicated whether or not the speed limit reduction significantly influenced the particular crash 

group. Results of the applied method for crash frequency and crash rate are shown in  Table ‎4.5. 

 Table ‎4.5  Results of t-test for crash frequencies and crash rate at K-5 horizontal curves 

Crash group 
Crash Frequency Crash Rate 

t-value p-value t-value p-value 

Overall crashes 1.74 0.115 1.84 0.099 

PDO crashes 1.96 0.081 2.04 0.072 

Injury crashes 0.43 0.678 0.71 0.497 

EPDO crashes 0.71 0.497 0.995 0.346 

EPDO crashes no-adverse weather 

condition 
0.21 0.831 1.02 0.333 

EPDO crashes- adverse weather condition 1.36 0.206 2.33 0.045 

EPDO crashes- day light condition -0.21 0.838 -0.15 0.887 

EPDO crashes- dark time condition 1.54 0.157 1.75 0.114 

EPDO crashes- dry road surface condition 0.23 0.820 0.73 0.426 

EPDO crashes not dray road surface 

condition 
0.77 0.463 0.75 0.474 

 

Results of the t-test for crash frequencies, assuming a 5% significance level (equal to 

95% confidence level), indicated that no crash group changes were statistically significant due to 

speed limit reduction. The EPDO crash rate in adverse weather conditions, however, was 

statistically significant at the 95% confidence level after the speed limit change. At the 10% 

significance level, the only statistically significant change was PDO crashes for crash frequency. 

Because p-values of overall crash rate, PDO crash rate, and EPDO crash rate for adverse weather 

conditions were less than 0.10, crash rates were significantly reduced at the 90% confidence 

level for PDO and EPDO.  
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Chapter 5. Results and Discussion 

5.1. Data Analysis and Regression Models for Datasets 

As mentioned, two datasets were used in data collection and data analysis procedures due 

to lack of information regarding horizontal curve sections in KDOT databases. Although the 

results of data analysis for the two datasets are presented in this chapter, each dataset contained 

different variables. For example, KDOT’s horizontal curve inventory did not include information 

related to tangent sections prior to the horizontal curve sections. KDOT’s GAD unit in the 

Traffic Safety Section in April 2015 prepared comprehensive data of horizontal curve sections 

on Kansas highways and distributed the data for use in this study.  

5.1.1.  First Dataset 

At the beginning of data analysis, Statistical Package for the Social Science software 

(SPSS 18.0) was used to model Poisson regression and NB regression for all crashes on selected 

221 horizontal curves on undivided two-lane two-way highways. A set variables including 

AADT from 2004 to 2012, heavy vehicle percentage, radius, degree of curvature, short and long 

tangent lengths, curve length, posted speed, advisory speed, difference between posted and 

advisory speeds, presence of rumble strips, shoulder type, and shoulder width was used to 

develop a crash prediction model. The results of data analysis with SPSS for the data of 221 

horizontal curves on undivided two-lane two-way highways without considering tangent length 

sections showed neither Poisson nor NB methods, models crashes perfectly. Tangent length 

sections were then added to the dataset, and the data were analyzed by an SAS 9.3 software 

package, yielding a much better result since the tangent length variable was a significance 

variable in the new model. Results of Poisson and NB regression models for the complete data of 
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221 horizontal curves on undivided two-lane two-way highways are given in the following 

sections.  

5.1.1.1. Poisson Regression Model 

A Poisson regression model with all variables included was developed to predict crashes 

at randomly selected 221 horizontal curves on undivided two-lane two-way highways. The 

variable with the highest p-value (greater than significance level 5%) was eliminated from the 

model, and then the model was run for the remaining variables. This process was repeated until 

all p-values were less than the significance level, typically set to 0.05 or 5% in the study. 

Table ‎5.1 shows explanatory variables for the Poisson regression model to predict crashes at 

horizontal curve sections. Considering acceptable variables from Table 5.1 and regarding the 

general form of a Poisson regression model, the number of crashes (yi) depended on the natural 

logarithm of AADT (logAADT), heavy vehicle percentage (HVPct), degree of curvature (DoC), 

and difference between posted speed and advisory speed (Diff_PS_AS), according to Equation 

(12). 
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Table ‎5.1 Poisson regression model variables for the first dataset with 221 horizontal 

curves 

Parameter DF Estimate 
Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald Chi-

Square 
Pr > ChiSq 

Intercept 1 -1.3529 0.5805 -2.4907 -0.2151 5.43 0.0198 

Ln AADT 1 0.2818 0.0699 0.1448 0.4188 16.24 <.0001 

Heavy vehicle 

percentage 
1 -0.0362 0.0121 -0.0598 -0.0125 8.97 0.0027 

Degree of curvature 1 0.0337 0.0066 0.0209 0.0466 26.42 <.0001 

Difference between 

posted speed and 

advisory speed 

1 0.0130 0.0063 0.0007 0.0253 4.26 0.0391 

Scale 0 1.0000 0.0000 1.0000 1.0000   

 

       (                                         

                 ) 
(12) 

 

As shown in Table ‎5.1, the Wald Chi-Square column, which is a conservative chi-square, 

is a squared t, where t is the value of the slope in the logistic regression divided by its standard 

error. Table ‎5.2 provides criterion for goodness of fit for the Poisson regression model in which 

the Pearson statistic value divided by the degree of freedom is higher than 1.0, indicating that the 

data were overdispersed. The AIC value was also high, meaning that the proposed model in 

Equation (12) may not accurately predict the number of crashes at horizontal curve sections. 

According to the Institute for Digital Research and Education (IDRE) at the University of 

California, Los Angeles (UCLA), for terms presented in the goodness-of-fit table, deviance is the 

log-likelihood of the regression model, Poisson or NB, multiplied by (-2). The deviance is 

calculated according to Equation (13) [54]. 
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where  ̂  is the predicted value of yi. 

 

The Pearson chi-square is a goodness-of-fit measure that compares outcome values with 

actual values according to Equation (14). 
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where  ̂  is the predicted value of yi. 

 

The Bayesian information criterion (BIC) is another goodness-of-fit measure calculated 

using Equation (15). 

         ( ) 

 
 

(15) 

 

Similar to AIC, low values of BIC are preferred; the model with the lowest BIC is considered to 

be the best model. 
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Table ‎5.2 Goodness of fit for Poisson regression model for the first dataset 

with 221 horizontal curves 

Criterion DF Value Value/DF 

Deviance 216 282.682 1.309 

Scaled Deviance 216 282.682 1.309 

Pearson Chi-Square 216 301.684 1.397 

Scaled Pearson X2 216 301.684 1.397 

Log-Likelihood  -75.765  

Full Log-Likelihood  -397.714  

AIC (smaller is better)  805.428  

AICC (smaller is better)  805.707  

BIC (smaller is better)  822.419  

 

5.1.1.2.  Negative Binomial Regression Model 

Table ‎5.3 shows explanatory variables for the NB regression model. Compared to the 

Poisson regression model, the same number of variables influenced crash occurrences at 

horizontal curve sections; however, posted speed in the Poisson regression method and the 

natural logarithm of the long tangent length in the NB regression method were essential 

variables. The values of Pearson chi-square divided by the degree of freedom and goodness-of-fit 

criteria showed that the NB regression method was a more accurate prediction model. 
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Table ‎5.3 NB regression model variables for the first dataset with 221 horizontal curves 

Parameter DF Estimate 
Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald Chi-

Square 
Pr > ChiSq 

Intercept 1 -1.853 0.711 -3.246 -0.460 6.80 0.009 

Ln AADT 1 0.217 0.078 0.065 0.369 7.86 0.005 

Heavy vehicle 

percentage 
1 -0.029 0.014 -0.056 -0.002 4.32 0.038 

Degree of curvature 1 0.047 0.008 0.031 0.062 34.98 0.000 

Ln Long tangent 

length 
1 0.120 0.044 0.034 0.208 7.49 0.006 

Dispersion 1 0.160 0.051 0.085 0.300   

 

Equation (16) can be used to calculate the number of crashes at horizontal curve sections 

(yi) according to the natural logarithm of AADT (logAADT), heavy vehicle percentage (HVPct), 

degree of curvature (DoC), and the natural logarithm of the length of the long tangent of the 

horizontal curve in feet (Ln_Long_Lt). 

 

       (                                                  

           ) 
(16) 

 

Considering the Pearson chi-square divided by the degree of freedom in the goodness-of-

fit table (Table ‎5.4), the conclusion was made that the NB regression method models crashes best 

at the horizontal curve sections because Pearson χ
2
 divided by the degree of freedom was close 

enough to 1.0 and the AIC was less than its value for the Poisson method, as shown in Table ‎5.4. 
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Table ‎5.4 Goodness of fit for the NB regression model for the first dataset 

with 221 horizontal curves 

Criterion DF Value Value/DF 

Deviance 216 197.4684 0.9142 

Scaled Deviance 216 197.4684 0.9142 

Pearson Chi-Square 216 217.3163 1.0061 

Scaled Pearson X2 216 217.3163 1.0061 

Log-Likelihood  -63.3780  

Full Log-Likelihood  -385.3271  

AIC (smaller is better)  782.6543  

AICC (smaller is better)  783.0468  

BIC (smaller is better)  803.0432  

 

Data analysis on the first dataset with 221 randomly selected horizontal curves on 

undivided two-lane two-way highways showed that the Poisson regression method was not an 

appropriate method to predict crashes at horizontal curve sections since the data were 

overdispersed, but the NB regression method, according to the goodness-of-fit criteria 

(particularly the value of Pearson chi-square divided by the degree of freedom), provided an 

acceptable estimate of crash numbers at horizontal curve sections. Because no other curve data 

was available to validate the results, prediction accuracy of the accepted NB model for crashes at 

horizontal curve sections could not be determined. 

5.1.2. KDOT’s Horizontal Curve Inventory 

KDOT’s horizontal curve inventory, which was completed in April 2015, is comprised of 

geometric data of 5,334 horizontal curves in the entire Kansas roadways, including curve length, 

curve radius, surface width, IRI, roadway type (divided or undivided), number of lanes, shoulder 
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type and width, speed limit, advisory speed, presence of rumble strips, and roadway grade in 

percentage. In addition, traffic data such as AADT and heavy vehicle percentage were obtained 

from KDOT’s GAD unit and added to the horizontal curves inventory data. Crashes and crash 

severities at horizontal curve sections were obtained from the KCARS database and added to the 

main dataset of the GAD unit of KDOT’s Traffic Safety Section. Geometric crash characteristics 

from the KCARS database for crashes from 2010 to 2014 were compared to geometric 

characteristics of horizontal curve sections obtained from GAD unit database. In order to analyze 

data and validate data analysis, 80% (4,267 curves) of horizontal curve sections were selected for 

data analysis, and 20% (1,067 curves) of horizontal curve sections were selected for data 

validation. A SAS 9.4 software package (SAS Institute, Cary, North Carolina) was used for data 

analysis. 

5.1.2.1. Data Analysis for KDOT New Horizontal Curves Dataset 

In addition to Poisson and NB regression methods, ZIP and ZINB methods were utilized 

to analyze data and develop crash prediction models for total crashes and severe crashes due to 

the considerable number of horizontal curves with zero crashes. KABCO severity levels were 

used to consider crash severity, and two methods were utilized for severe crashes. The first 

approach considered K and A levels (fatal and incapacitating injury crashes) and the second 

approach included K, A, and B levels (fatal, incapacitating, and non-incapacitating injury) 

crashes. From the crash data extracted from the KCARS database, six types of crashes occurred 

at horizontal curve sections, including single-vehicle crashes, multi-vehicle crashes, crashes with 

pedestrians, crashes with pedal-cyclists, crashes with trains, and crashes with animals. For this 

study, single-vehicle crashes were selected for data analysis and validation because fewer 

external factors influence crash occurrence and consideration of one type of crash decreases 
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complexity. Since the results of Poisson regression showed overdispersion of the crash data, NB, 

ZIP, and ZINB methods were used. Results are presented in the following sections. 

5.1.2.1.1. Negative Binomial Regression for the KDOT Horizontal Curve 

Inventory Dataset 

Because the results of the Poisson regression method showed overdispersion of crashes, 

the NB method was used to model total crashes, KA crashes, and KAB crashes. Backward and 

stepwise methods were utilized in order to eliminate explanatory variables that were not 

significant according to their p-values and to determine the best model for each crash group. 

Final remaining variables with accepted p-values were selected, and models were developed for 

each crash group. 

Total Crashes 

Total single-vehicle crashes for 4,267 horizontal curves were used for data analysis in 

SAS version 9.4 (SAS Institute, Cary, North Carolina). Explanatory variables were examined via 

backward and stepwise approaches and by adding and eliminating from the model to obtain the 

best NB regression model with significant variables.  Table ‎5.5 shows significant variables for 

total single-vehicle crashes at horizontal curves sections randomly selected from KDOT’s 

horizontal curves inventory.  
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Table ‎5.5 NB regression model variables for total single-vehicle crashes of KDOT 

horizontal curve inventory 

Parameter DF Estimate 
Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald Chi-

Square 
Pr > ChiSq 

Intercept 1 -2.1248 0.1811 -2.4798 -1.7698 137.62 <.0001 

AADT (1000 vpd) 1 0.0303 0.0015 0.0274 0.0331 422.19 <.0001 

Heavy vehicle 

percentage 
1 -0.0378 0.0034 -0.0445 -0.0311 121.78 <.0001 

Curve length 1 0.0005 0.0000 0.0004 0.0005 332.92 <.0001 

Degree of 

curvature 
1 0.0141 0.0044 0.0055 0.0226 10.30 0.0013 

Posted speed  1 0.0193 0.0028 0.0138 0.0248 47.10 <.0001 

Presence of 

rumble strips 
1 0.0211 0.0062 0.0091 0.0332 11.79 0.0006 

Dispersion 1 0.8813 0.0526 0.7840 0.9907   

 

According to the NB regression model, AADT (1000 vpd), curve length (ft.), degree of 

curvature, posted speed (mph), and difference between posted and advisory speeds (mph) 

positively influence crash occurrences at horizontal curve sections, and heavy vehicle percentage 

negatively influences crash occurrences at horizontal curve sections. The total number of crashes 

can be calculated according to Equation (17), in which coefficients were obtained from 

Table ‎5.5. 

 

            (                                           

                                            

         ) 

(17) 

 



85 

 

 

where 

 

ttcrshi: total number of single-vehicle crashes at horizontal curve section i 

AADT_th: average annual daily traffic in thousands in the section 

HVPct: heavy vehicle percentage in the section 

Curve_Length: length of the horizontal curve section (ft.) 

D_o_C: degree of curvature of the section 

PS: posted speed on the roadway section (mph) 

DiffPSAS: difference between posted and advisory speeds (mph) 

 

Table ‎5.6 shows goodness-of-fit criterion for the NB regression model for total single-

vehicle crashes at horizontal curve sections in which the value of Pearson chi-square divided by 

the degree of freedom is approximately 1.05, which is acceptable. 

Table ‎5.6 Goodness of fit for the NB regression model of KDOT horizontal 

curve inventory 

Criterion DF Value Value/DF 

Deviance 4,260 3,600.1709 0.8451 

Scaled Deviance 4,260 3,600.1709 0.8451 

Pearson Chi-Square 4,260 4,488.4948 1.0536 

Scaled Pearson X2 4,260 4,488.4948 1.0536 

Log-Likelihood  -1,622.5514  

Full Log-Likelihood  -4,847.3091  

AIC (smaller is better)  9,710.6182  

AICC (smaller is better)  9,710.6520  

BIC (smaller is better)  9,761.4875  
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Severe Crashes (K and A levels) 

As mentioned, two approaches were considered in order to analyze severe crashes in this 

study since fatal and incapacitating injury crashes are typically considered to be severe crashes in 

most studies. K and A levels were considered for the randomly selected horizontal curves from 

the KDOT inventory. Table ‎5.7 shows the best model of the NB regression method for severe 

crashes (K and A levels) for the selected horizontal curve sections. 

Table ‎5.7 NB regression model variables for severe crashes (K and A levels) of KDOT 

horizontal curve inventory 

Parameter  DF Estimate 
Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald 

Chi-

Square 

Pr > ChiSq 

Intercept  1 -4.5470 0.5778 -5.6795 -3.4145 61.93 <.0001 

AADT (1000 vpd)  1 0.0178 0.0026 0.0128 0.0228 48.23 <.0001 

Heavy vehicle 

percentage 
 1 -0.0211 0.0092 -0.0391 -0.0030 5.25 0.0220 

Curve length  1 0.0003 0.0001 0.0002 0.0005 29.17 <.0001 

Degree of curvature  1 0.0223 0.0085 0.0057 0.0389 6.93 0.0085 

posted speed  1 0.0198 0.0095 0.0013 0.0384 4.40 0.0359 

Presence of rumble 

strips 
1 1 -0.3783 0.1588 -0.6897 -0.0670 5.67 0.0172 

Dispersion  1 0.8943 0.4673 0.3212 2.4902   

 

Using the NB regression method for severe crashes (K and A levels), AADT, percentage, 

curve length, and posted speed positively influence severe crash occurrences and the number of 

severe crashes at horizontal curve sections; heavy vehicle and presence of rumble strips 

negatively influence severe crash occurrences and the number of severe crashes at those sections. 

Equation (18) presents the prediction model from the NB regression model for severe crashes (K 

and A levels). 
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            (                                           

                                               ) 
(18) 

where 

 

KAcrshi: the number of severe crashes (K and A levels) at horizontal curve section i 

AADT_th: average annual daily traffic in thousands in the section 

HVPct: heavy vehicle percentage in the section 

Curve_Length: length of the horizontal curve section in feet, 

D_o_C: degree of curvature of the section 

PS: posted speed on the roadway section (mph) 

RS: presence of rumble strips at horizontal curve section 

 

Table ‎5.8 shows goodness-of-fit criterion for the NB regression model for severe crashes 

(K and A levels) at horizontal curve sections in which the value of Pearson chi-square divided by 

the degree of freedom is approximately 1.02, which is acceptable. 
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Table ‎5.8 Goodness of fit for the NB regression model of KDOT horizontal 

curve inventory 

Criterion DF Value Value/DF 

Deviance 4,260 1,127.0997 0.2646 

Scaled Deviance 4,260 1,127.0997 0.2646 

Pearson Chi-Square 4,260 4,328.3983 1.0161 

Scaled Pearson X2 4,260 4,328.3983 1.0161 

Log-Likelihood  -848.3476  

Full Log-Likelihood  -861.9229  

AIC (smaller is better)  1,739.8457  

AICC (smaller is better)  1,739.8795  

BIC (smaller is better)  1,790.7150  

 

Severe Crashes (K, A, and B levels) 

Some studies define severe crashes as fatal and injury crashes (incapacitating and non-

incapacitating injury crashes), K, A, and B levels from KABCO crash severity scale [39,50]. 

Since many horizontal curve sections in this study had zero K and A severe crashes, a severe 

crash dataset containing K, A, and B levels was determined, and the NB regression method was 

utilized to develop a prediction model for a new severe crashes dataset. Table ‎5.9 shows the best 

model of the NB regression method for severe crashes (K, A, and B levels) for the selected 

horizontal curve sections. 
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Table ‎5.9 NB regression model variables for severe crashes (K, A, and B levels) of KDOT 

horizontal curve inventory 

Parameter  DF Estimate 
Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald 

Chi-

Square 

Pr > ChiSq 

Intercept  1 -3.8088 0.3649 -4.5240 -3.0937 108.98 <.0001 

AADT (1000 vpd)  1 0.0216 0.0020 0.0177 0.0255 116.98 <.0001 

Heavy vehicle 

percentage 
 1 -0.0297 0.0059 -0.0414 -0.0181 25.07 <.0001 

Curve length  1 0.0005 0.0000 0.0004 0.0006 151.86 <.0001 

Degree of curvature  1 0.0168 0.0071 0.0029 0.0308 5.58 0.0182 

Posted speed  1 0.0259 0.0062 0.0137 0.0381 17.31 <.0001 

Difference between 

posted speed and 

advisory speed 

 1 0.0225 0.0100 0.0029 0.0422 5.08 0.0242 

Presence of rumble 

strips 
1 1 -0.2046 0.1114 -0.4230 0.0139 3.37 0.0664 

Shoulder width   2 1 -0.1826 0.1621 -0.5003 0.1351 1.27 0.2600 

Shoulder width   3 1 -0.2813 0.1367 -0.5492 -0.0134 4.23 0.0396 

Shoulder width   4 1 -0.3733 1.3236 -2.9675 2.2209 0.08 0.7779 

Dispersion  1 0.9212 0.1497 0.6700 1.2666   

 

For severe crashes (K, A, and B levels), the results of the NB regression method showed 

that AADT, curve length, degree of curvature, posted speed, and difference between posted and 

advisory speeds positively influence severe crash (K, A, and B levels) occurrences and the 

number of severe crashes (K, A, and B levels) at horizontal curve sections; heavy vehicle 

percentage, presence of rumble strips, and shoulder width negatively influence severe crash (K, 

A, and B levels) occurrences and the number of severe crashes (K, A, and B levels) at those 
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sections. Equation (19) shows the resultant prediction model from the NB regression model for 

severe crashes (K, A, and B levels). 

             (                                           

                                            

                                  ) 

(19) 

where 

KABcrshi: the number of severe crashes (K, A, and B levels) at horizontal curve section i 

AADT_th: average annual daily traffic in thousands in the section 

HVPct: heavy vehicle percentage in the section 

Curve_Length: length of the horizontal curve section (ft.) 

D_o_C: degree of curvature of the section 

PS: posted speed on the roadway section (mph)  

DiffPSAS: difference between posted and advisory speed on the roadway section (mph)  

RS: presence of rumble strips at horizontal curve section 

RLSH_W3: shoulder width between 3 and 7 ft.  

 

Table ‎5.10 shows goodness-of-fit criterion for the NB regression model for severe 

crashes (K, A, and B levels) at horizontal curve sections in which the value of Pearson chi-square 

divided by the degree of freedom is approximately 1.02, which is acceptable. 
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Table ‎5.10 Goodness of fit for the NB regression model of severe crashes (K, 

A, and B levels) of KDOT horizontal curve inventory 

Criterion DF Value Value/DF 

Deviance 4,256 2,120.7650 0.4983 

Scaled Deviance 4,256 2,120.7650 0.4983 

Pearson Chi-Square 4,256 4,328.5662 1.0171 

Scaled Pearson X2 4,256 4,328.5662 1.0171 

Log-Likelihood  -1,820.3338  

Full Log-Likelihood  -1,995.2258  

AIC (smaller is better)  4,014.4517  

AICC (smaller is better)  4,014.5250  

BIC (smaller is better)  4,090.7557  

 

5.1.2.1.2. Zero-inflated Poisson Regression for the KDOT Horizontal 

Curve Inventory Dataset 

In addition to the overdispersion of crash data, many horizontal curves had zero crashes, 

thereby justifying use of ZI models that consider overdispersion and excessive zeros. Therefore, 

ZI models were developed for total crashes and severe crashes. Results of the ZIP method are 

explained in the following sections. 

Total Crashes 

Backward and stepwise approaches were used to determine the best ZIP model for total 

crashes. Because the Pearson chi-square divided by the degree of freedom of the model was very 

high, 1.29, as shown in Table ‎5.11, the method was not used to develop the prediction model for 

total crashes at horizontal curve sections from KDOT’s inventory. 
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Table ‎5.11 Goodness of fit for the ZIP regression model of total crashes of 

KDOT horizontal curve inventory 

Criterion DF Value Value/DF 

Deviance  10,077.9552  

Scaled Deviance  10,077.9552  

Pearson Chi-Square 4,236 5,477.4541 1.2931 

Scaled Pearson X2 4,236 5,477.4541 1.2931 

Log-Likelihood  -1,814.2199  

Full Log-Likelihood  -5,038.9776  

AIC (smaller is better)  10,139.9552  

AICC (smaller is better)  10,140.4236  

BIC (smaller is better)  10,337.0738  

 

Severe Crashes (K and A levels) 

The ZIP method was utilized for severe crashes (K and A levels), and backward and 

stepwise approaches were used to select explanatory variables with significant p-values. The 

final ZI model with significant variables is provided in Table ‎5.12. 
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Table ‎5.12 ZIP regression model variables for severe crashes (K and A levels) of KDOT 

horizontal curve inventory 

Parameter  DF Estimate 
Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald 

Chi-

Square 

Pr > ChiSq 

Intercept  1 -4.1961 0.6689 -5.5072 -2.8849 39.35 <.0001 

AADT (1000 vpd)  1 0.0161 0.0032 0.0098 0.0225 24.80 <.0001 

Curve length  1 0.0003 0.0001 0.0002 0.0005 25.88 <.0001 

Degree of curvature  1 0.0518 0.0164 0.0198 0.0839 10.03 0.0015 

Posted speed  1 0.0334 0.0111 0.0117 0.0551 9.11 0.0025 

Divided 1 1 -1.1471 0.2707 -1.6777 -0.6165 17.95 <.0001 

Presence of rumble 

strips 
1 1 -0.5342 0.1799 -0.8867 -0.1816 8.82 0.0030 

Scale  0 1.0000 0.0000 1.0000 1.0000   

 

For severe crashes (K and A levels), results of the ZIP regression method showed that 

AADT, curve length, degree of curvature, and posted speed positively influence severe crash (K 

and A levels) occurrences and the number of severe crashes (K and A levels) at horizontal curve 

sections; divided situation and presence of rumble strips negatively influence severe crash (K 

and A levels) occurrences and the number of severe crashes (K and A levels) at those sections. 

Equation (20) presents the prediction model for severe crashes (K and A levels). 

            (                                          

                                              

   ) 

(20) 

where 

KAcrshi: the number of severe crashes (K and A levels) at horizontal curve section i 

AADT_th: average annual daily traffic in thousands in the section 
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Curve_Length: length of the horizontal curve section (ft.) 

D_o_C: degree of curvature of the section 

PS: posted speed on the roadway section (mph)  

Divided: binary variable for undivided roadways is 0 and 1 for divided roadways  

RS: presence of rumble strips at horizontal curve section 

 

Table ‎5.13 shows goodness-of-fit criterion for the ZIP regression model for severe 

crashes (K and A levels) at horizontal curve sections in which the value of Pearson chi-square 

divided by the degree of freedom is approximately 0.96, which is acceptable. However, 

according to results of the SAS program, the Hessian convergence criterion equaled 0.0028, 

which is greater than the set value of SAS (0.0001), thereby making the ZIP model results 

questionable. 

 

Table ‎5.13 Goodness of fit for the ZIP regression model of severe crashes (K 

and A levels) of KDOT horizontal curve inventory 

Criterion DF Value Value/DF 

Deviance  1,704.8333  

Scaled Deviance  1,704.8333  

Pearson Chi-Square 4,258 4,071.9362 0.9563 

Scaled Pearson X2 4,258 4,071.9362 0.9563 

Log-Likelihood  -838.8414  

Full Log-Likelihood  -852.4166  

AIC (smaller is better)  1,722.8333  

AICC (smaller is better)  1,722.8756  

BIC (smaller is better)  1,780.0613  
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Severe Crashes (K, A, and B levels) 

The ZIP regression method was also used to develop a prediction model for severe 

crashes (K, A, and B levels). Table ‎5.14 shows the best model of the ZIP method for severe 

crashes (K, A, and B levels) after applying backward and stepwise approaches. 

Table ‎5.14 ZIP regression model variables for severe crashes (K, A, and B levels) of KDOT 

horizontal curve inventory 

Parameter  DF Estimate 
Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald 

Chi-

Square 

Pr > ChiSq 

Intercept  1 -1.1081 0.1528 -1.4076 -0.8086 52.58 <.0001 

AADT (1000 vpd)  1 0.0086 0.0015 0.0056 0.0116 31.22 <.0001 

Heavy vehicle 

percentage 
 1 -0.0267 0.0063 -0.0390 -0.0144 18.04 <.0001 

Curve length  1 0.0003 0.0000 0.0002 0.0004 49.51 <.0001 

Degree of curvature  1 0.0322 0.0094 0.0137 0.0507 11.66 0.0006 

Difference between 

posted speed and 

advisory speed 

 1 0.0203 0.0105 -0.0003 0.0408 3.73 0.0534 

Presence of rumble 

strips 
1 1 -0.1639 0.0894 -0.3391 0.0112 3.37 0.0666 

Scale  0 1.0000 0.0000 1.0000 1.0000   

 

According to the ZIP regression method, independent variables that influence K, A, and 

B levels of crashes are AADT, heavy vehicle percentage, curve length, degree of curvature, 

difference between posted and advisory speeds, and presence of rumble strips. AADT, curve 

length, and difference between posted and advisory speeds positively impact severe crash 

occurrences at horizontal curve sections; heavy vehicle percentage and presence of rumble strips 

negatively impact severe crash occurrences at horizontal curve sections. A significance level of 
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5% was assumed in this research study; the p-values of difference between posted and advisory 

speeds and the presence of rumble strips were relatively close to 5%, so they were included in 

the model. Equation (21) shows the resultant prediction model from the ZIP regression model for 

severe crashes (K, A, and B levels). 

             (                                           

                                                  

   ) 

(21) 

where 

KABcrshi: the number of severe crashes (K, A, and B levels) at horizontal curve section i 

AADT_th: average annual daily traffic in thousands in the section 

HVPct: heavy vehicle percentage in the section 

Curve_Length: length of the horizontal curve section (ft.) 

D_o_C: degree of curvature of the section 

DiffPSAS: difference between posted and advisory speed on the roadway section (mph) 

RS: presence of rumble strips at horizontal curve section  

 

Table ‎5.15 shows goodness-of-fit criterion for the ZIP regression model for severe 

crashes (K, A, and B levels) at horizontal curve sections. Results of SAS version 9.4 (SAS 

Institute, Cary, North Carolina) showed that the value of Pearson chi-square divided by the 

degree of freedom was in an acceptable range, as shown in Table ‎5.15. 
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Table ‎5.15 Goodness of fit for the ZIP regression model of severe crashes (K, 

A, and B levels) of KDOT horizontal curve inventory 

Criterion DF Value Value/DF 

Deviance  3,944.1577  

Scaled Deviance  3,944.1577  

Pearson Chi-Square 4,248 4,067.0491 0.9574 

Scaled Pearson X2 4,248 4,067.0491 0.9574 

Log-Likelihood  -1,797.1868  

Full Log-Likelihood  -1,972.0789  

AIC (smaller is better)  3,982.1577  

AICC (smaller is better)  3,982.3367  

BIC (smaller is better)  4,102.9724  

 

5.1.2.1.3. Zero-inflated Negative Binomial Regression for the KDOT 

Horizontal Curve Inventory Dataset 

The zero-ZINB regression method also considers overdispersion and excessive zeros. 

Results of the ZINB method for the studied crash groups are discussed in the following sections.  

Total Crashes 

This study utilized a ZINB method to develop a prediction model of all the crashes that 

occurred at the randomly selected horizontal curves during the study period from 2010 to 2014. 

Backward and stepwise approaches were implemented to find the best model with significant 

variables at 5% significance level. Table ‎5.16 lists the significant explanatory variables of the 

ZINB model that influenced the occurrence of total crashes at the selected horizontal curves.  
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Table ‎5.16 ZINB regression model variables for total single-vehicle crashes of KDOT 

horizontal curve inventory 

Parameter DF Estimate 
Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald 

Chi-

Square 

Pr > ChiSq 

Intercept 1 -2.2397 0.2395 -2.7091 -1.7704 87.48 <.0001 

AADT (1000vpd) 1 0.0237 0.0014 0.0209 0.0265 279.74 <.0001 

Heavy vehicle 

percentage 
1 -0.0335 0.0036 -0.0406 -0.0264 86.21 <.0001 

Curve length 1 0.0003 0.0000 0.0003 0.0004 162.42 <.0001 

Degree of curvature 1 0.0236 0.0060 0.0117 0.0354 15.23 <.0001 

Posted speed 1 0.0243 0.0032 0.0181 0.0306 58.54 <.0001 

Difference between 

posted speed and 

advisory speed 

1 0.0292 0.0072 0.0150 0.0434 16.25 <.0001 

International roughness 

index (IRI) 
1 0.0031 0.0010 0.0011 0.0052 9.07 0.0026 

Dispersion 1 0.6440 0.0479 0.5566 0.7451   

 

According to the ZINB regression model, AADT (1000 vpd), curve length (ft.), degree of 

curvature, posted speed (mph), difference between posted and advisory speeds (mph), and IRI 

positively influence total crash occurrences at horizontal curve sections; heavy vehicle 

percentage negatively influences total crash occurrences at those sections. Based on the ZINB 

prediction model, the total number of crashes was calculated according to Equation (22). 

 

            (                                           

                                            

                    ) 

(22) 
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where 

ttcrshi: the total number of single-vehicle crashes at horizontal curve section i 

AADT_th: average annual daily traffic on the section (1000 vpd) 

HVPct: heavy vehicle percentage in the section 

Curve_Length: length of the horizontal curve section (ft.) 

D_o_C: degree of curvature of the section 

PS: posted speed on the roadway section (mph)  

DiffPSAS: difference between posted and advisory speeds (mph) 

IRI: international roughness index 

 

Table ‎5.17 shows goodness-of-fit criterion for the NB regression model for total single-

vehicle crashes at horizontal curve sections in which the value of Pearson chi-square over the 

degree of freedom is close to one and the developed model can accurately predict the total 

number of crashes. 
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Table ‎5.17 Goodness of fit for the ZINB regression model of KDOT 

horizontal curve inventory 

Criterion DF Value Value/DF 

Deviance  9,512.5679  

Scaled Deviance  9,512.5679  

Pearson Chi-Square 4,249 4,018.9449 0.9459 

Scaled Pearson X2 4,249 4,018.9449 0.9459 

Log-Likelihood  -4,756.2840  

Full Log-Likelihood  -4,756.2840  

AIC (smaller is better)  9,550.5679  

AICC (smaller is better)  9,550.7469  

BIC (smaller is better)  9,671.3826  

 

 

Severe Crashes (K and A levels) 

This study used ZINB regression method, and sets of explanatory variables were 

examined via backward and stepwise approaches in order to determine with the best set of 

independent variables for the prediction model. Table ‎5.18 shows the predictor variables and 

their coefficients for the best model developed based on the ZINB regression method for severe 

crashes (K and A levels) for the selected horizontal curve sections. 



101 

 

Table ‎5.18 ZINB regression model variables for severe crashes (K and A levels) of KDOT 

horizontal curve inventory 

Parameter  DF Estimate 
Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald 

Chi-

Square 

Pr > ChiSq 

Intercept  1 -6.8915 0.7845 -8.4291 -5.3539 77.17 <.0001 

AADT(1000 vpd)  1 0.0184 0.0029 0.0127 0.0240 40.70 <.0001 

Heavy vehicle 

percentage 

 
1 -0.0227 0.0115 -0.0453 -0.0001 3.88 0.0488 

Curve length  1 0.0002 0.0001 0.0000 0.0003 3.91 0.0479 

Degree of curvature  1 0.0949 0.0154 0.0648 0.1251 38.07 <.0001 

Posted speed  1 0.0712 0.0139 0.0440 0.0984 26.37 <.0001 

Divided 1 1 -0.8036 0.3038 -1.3990 -0.2082 7.00 0.0082 

Presence of rumble 

strips 
1 1 -0.4817 0.1767 -0.8281 -0.1353 7.43 0.0064 

Dispersion  1 0.3513 0.3408 0.0525 2.3524   

 

According to the ZINB model, variables AADT, curve length, degree of curvature, and 

posted speed positively influence severe crash occurrences and the number of severe crashes (K 

and A levels) at horizontal curve sections; heavy vehicle percentage, divided roadways, and 

presence of rumble strips negatively influence severe crash occurrences and the number of 

severe crashes (K and A levels) at those sections. Equation (23) shows the best ZINB prediction 

model for severe crashes (K and A levels) at the studied horizontal curve sections. 

            (                                           

                                            

                  ) 

(23) 
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where 

KAcrshi: the number of severe crashes (K and A levels) at horizontal curve section i 

AADT_th: average annual daily traffic in thousands in the section 

HVPct: heavy vehicle percentage in the section 

Curve_Length: length of the horizontal curve section (ft.) 

D_o_C: degree of curvature of the section 

PS: posted speed on the roadway section (mph) 

Divided: binary variable for undivided roadways is 0 and 1 for divided roadways 

RS: presence of rumble strips at horizontal curve section 

 

Table ‎5.19 shows that the Pearson chi-square divided by the degree of freedom value was 

acceptable. The table also shows other goodness-of-fit criterion of the ZINB model for severe 

crashes (K and A levels). 

Table ‎5.19 Goodness of fit for the ZINB regression model of KDOT 

horizontal curve inventory 

Criterion DF Value Value/DF 

Deviance  1,683.2516  

Scaled Deviance  1,683.2516  

Pearson Chi-Square 4,254 4,119.6591 0.9684 

Scaled Pearson X2 4,254 4,119.6591 0.9684 

Log-Likelihood  -841.6258  

Full Log-Likelihood  -841.6258  

AIC (smaller is better)  1,711.2516  

AICC (smaller is better)  1,711.3503  

BIC (smaller is better)  1,800.2729  
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Severe Crashes (K, A, and B levels) 

The ZINB regression method was used to analyze K, A, and B level severe crashes. 

Table ‎5.20 shows the independent variables, their coefficients, and other statistical characteristics 

of the best model obtained from the ZINB regression method. 

 

Table ‎5.20 ZINB regression model variables for severe crashes (K, A, and B levels) of 

KDOT horizontal curve inventory 

Parameter  DF Estimate 
Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald Chi-

Square 
Pr > ChiSq 

Intercept  1 -3.3404 0.4152 -4.1542 -2.5267 64.73 <.0001 

AADT(1000 vpd)  1 0.0121 0.0019 0.0085 0.0158 43.03 <.0001 

Heavy vehicle 

percentage 

 
1 -0.0285 0.0064 -0.0410 -0.0160 20.04 <.0001 

Curve length  1 0.0003 0.0000 0.0002 0.0004 43.85 <.0001 

Degree of 

curvature 

 1 0.0571 0.0138 0.0300 0.0842 17.09 <.0001 

Posted speed  1 0.0318 0.0062 0.0196 0.0441 26.01 <.0001 

Different between 

posted and 

advisory speed 

 

1 0.0247 0.0113 0.0025 0.0468 4.75 0.0294 

Presence of rumble 

strips 
1 1 -0.4279 0.1146 -0.6525 -0.2033 13.94 0.0002 

Dispersion  1 0.3692 0.1086 0.2074 0.6572   

 

According to the ZINB regression method for severe crashes (K, A, and B levels), 

AADT, curve length, degree of curvature, posted speed, and difference between posted and 

advisory speeds positively influence the number of severe crashes (K, A, and B levels) at 

horizontal curve sections; heavy vehicle percentage and presence of rumble strips negatively 
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influence the number of severe crashes (K, A, and B levels) at those sections. The prediction 

model for severe crashes (K, A, and B levels) based on the ZINB method is presented in 

Equation (24). 

             (                                           

                                            

                   ) 

(24) 

where 

KABcrshi: the number of severe crashes (K, A, and B levels) at horizontal curve section i 

AADT_th: average annual daily traffic in thousands in the section 

HVPct: heavy vehicle percentage in the section 

Curve_Length: length of the horizontal curve section (ft.) 

D_o_C: degree of curvature of the section 

PS: posted speed on the roadway section (mph)  

DiffPSAS: difference between posted and advisory speed on the roadway section (mph) 

RS: presence of rumble strips at horizontal curve section 

 

Table ‎5.21 shows goodness-of-fit criterion for the ZINB regression model for severe 

crashes (K, A, and B levels) at horizontal curve sections.  
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Table ‎5.21 Goodness of fit for the ZINB regression model of severe crashes 

(K, A, and B levels) of KDOT horizontal curve inventory 

Criterion DF Value Value/DF 

Deviance  3,908.5624  

Scaled Deviance  3,908.5624  

Pearson Chi-Square 4,251 4,021.4718 0.9460 

Scaled Pearson X2 4,251 4,021.4718 0.9460 

Log-Likelihood  -1,954.2812  

Full Log-Likelihood  -1,954.2812  

AIC (smaller is better)  3,942.5624  

AICC (smaller is better)  3,942.7064  

BIC (smaller is better)  4,050.6597  

 

Appendix C contains written codes in SAS for data analysis in order to develop 

prediction models in this research study. 

5.1.2.1.4. Comparison of Developed Models 

This study utilized a total of four methods for data analysis for crashes at horizontal curve 

sections, including, Poisson, NB ZIP, and ZINB methods. The Poisson regression method was 

used first, but due to overdispersion, the NB, ZIP, and ZINB methods were selected for data 

analyses. This section includes the results of these models for the studied crash groups.  

 

Total Crashes 

Because the value of Pearson chi-square divided by the degree of freedom was very high 

for total crashes in the ZIP model, the NB and ZINB models were compared. As shown in 

Table ‎5.5 and Table ‎5.17 the values of goodness-of-fit AIC criterion of NB and ZINB were 

9,710.6 and 9,550.6, respectively. AADT, heavy vehicle percentage, curve length, degree of 
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curvature, posted speed, and difference between posted and advisory speeds variables commonly 

influenced crash occurrence in the NB and ZINB models. IRI also influenced crash occurrence in 

the ZINB model. Table ‎5.22 summarizes the significant variables for total crashes. 

            

Table ‎5.22 Variables used to predict total crashes in the selected models 

Variables NB Model ZINB Model 

AADT_th (AADT (1000 vpd))    

HVPct (Heavy vehicle percentage)   

Curve_Length    

D_o_C  (Degree of curvature)   

PS  (Posted speed)   

DiffPSAS  (Difference between posted and 

advisory speeds) 
  

IRI (international roughness index)   

 

Severe Crashes (K and A levels) 

According to the results of data analysis from SAS 9.4 (SAS Institute, Cary, North 

Carolina) for severe crashes, the NB, ZIP, and ZINB models can be used to develop the 

prediction model. According to Table ‎5.7, Table ‎5.13, and Table ‎5.17, the ZINB model had the 

lowest AIC criteria value and the NB model had the highest AIC criteria value, with 1739.8, 

1722.9, and 1711.3 for NB, ZIP, and ZINB models, respectively. Variables of AADT, curve 

length, degree of curvature, posted speed, and rumble strips were included in all selected NB, 

ZIP, and ZINB models. The divided roadway variable had to be added for ZIP and ZINB 

models, and heavy vehicle percentage had to be included in the NB and ZINB models. 

Table ‎5.23 summarizes the significant variables for severe crashes (K and A levels). 
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Table ‎5.23 Variables used to predict severe crashes (K and A levels) in the selected models 

Variables NB Model ZIP Model ZINB Model 

AADT_th (AADT (1000 vpd))    

HVPct (Heavy vehicle percentage)    

Curve_Length    

D_o_C (Degree of curvature)    

PS (Posted speed)    

RS (Rumble strips)    

Divided    

 

Severe Crashes (K, A, and B levels) 

Results of data analysis for severe crashes (K, A, and B levels) from SAS 9.4 (SAS 

Institute, Cary, North Carolina) showed that NB, ZIP, and ZINB methods could be used to 

develop the prediction model for this crash group. The values of AIC criterion for NB, ZIP, and 

ZINB were 4014.5, 3982.2, and 3942.6, respectively, as obtained from Table ‎5.10, Table ‎5.15, 

and Table ‎5.21. Considering K, A, and B crash occurrences at horizontal curve sections, the 

results of data analysis revealed that AADT, heavy vehicle percentage, curve length, degree of 

curvature, difference between posted and advisory speed, and presence of rumble strips influence 

severe crashes (K, A, and B levels) using the NB, ZIP, or ZINB models. Posted speed is another 

influencing parameter that must be included in NB and ZINB models. In addition, in NB model, 

the shoulder width is another parameter which influence crash occurrence. A summary of 

influencing parameters on K, A, and B crashes is provided in Table ‎5.24. 
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Table ‎5.24 Variables used to predict severe crashes (K, A, and B levels) in the selected 

models 

Variables NB Model ZIP Model ZINB Model 

AADT_th (AADT (1000 vpd))    

HVPct (Heavy vehicle percentage)    

Curve_Length    

D_o_C (Degree of curvature)    

PS (Posted speed)    

DiffPSAS  (Difference between posted 

and advisory speeds) 
   

RLSH_W3 (Shoulder width between 3 

ft. and 7 ft.) 
   

RS (Rumble strips)    

 

5.2. Data Validation for the New KDOT Horizontal Curve Inventory 

Although goodness-of-fit criteria showed that the selected models can predict crash 

occurrence at horizontal curves, the accuracy of the prediction models was not clear. Therefore, 

KDOT’s horizontal curve inventory was divided into two sets: data analysis and data validation. 

Out of the 5,334 horizontal curves on the entire state transportation network in the KDOT 

inventory, 80% (4,267) of the curves were randomly selected for data analysis. The remaining 

20% (1,067) curve sections were used to conduct data validation.  

For data validation, total crashes and severe crashes (K and A levels and K, A, and B 

levels) were calculated from applicable NB, ZIP, and ZINB models for each randomly selected 

horizontal curves. Then, crash numbers of horizontal curves for each crash group and each model 

were added up. The sum of crashes of each method was compared to the sum of observed 

crashes at the randomly selected horizontal curve sections. Table ‎5.25 shows data validation 
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results and compares predicted crashes of each crash group to observed crashes at the randomly 

selected horizontal curve sections for NB, ZIP, and ZINB models. 

Table ‎5.25 Comparison of observed and predicted crashes at selected horizontal curve 

sections for data validation 

Crash Type 

Number of Crashes 

Observed 
Predicted 

NB Model ZIP Model ZINB Model 

Total Crashes 982 
1,208 

(+23%) 
- 

1,123 

(+14%) 

Severe 

Crashes 

K, A, and B 

Crashes 
187 

119 

(-36%) 

233 

(+25%) 

158 

(-15%) 

K and A Crashes 56 
1 

(-98%) 

14 

(-75%) 

33 

(-41%) 

 

As shown in Table ‎5.25, during the study period from 2010 to 2014, a total of 982 single-

vehicle crashes occurred at horizontal curve sections selected for data validation. The developed 

NB model for total crashes predicted 1,208 crashes at the randomly selected 1,067 horizontal 

curves, while the ZINB model predicted 1,123 crashes. The numbers of crashes predicted by NB 

and ZINB models were 23% and 14%, respectively higher than the number of observed crashes. 

For severe crashes (K, A, and B levels), 187 crashes were observed at the 1,067 randomly 

selected curves, but NB, ZIP, and ZINB models predicted 119, 233, and 158 severe crashes, 

respectively. NB and ZINB predicted severe crashes (K, A, and B levels) 36% and 15% less than 

the observed crashes, respectively, while the ZIP model showed a 25% increase in predicted 

severe crashes compared to observed crashes. Predicted severe crashes (levels K and A) for NB, 

ZIP, and ZINB models were 1, 14, and 33, respectively. Comparison of predicted and observed 
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severe crashes (K and A levels) showed that NB and ZIP results were much less than actual 

severe crashes: 98% and 75%, respectively. However, the result of ZINB model for severe 

crashes (K and A levels) was only 41% less than the observed severe crashes (K and A levels).  

According to data validation results for all crash groups, total crashes, and severe crashes, 

ZINB model results were closer to the observed crashes at the randomly selected horizontal 

curve sections for data validation compared to the NB and ZIP methods. However, comparison 

of crash groups for each model showed that the difference between observed and predicted 

crashes was relatively greater when crash severity was considered, especially for fatal and 

incapacitating injury crashes. Comparisons of observed crashes and predicted crashes for 

individual curves are included in Appendix D. 
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Chapter 6. Summary, Conclusions and Recommendations 

6.1. Summary 

The number of fatalities due to vehicle crashes on rural and urban highways has 

decreased during the last decade, but the percentage of fatal crashes on horizontal curve sections 

was approximately constant and more than 25% during last years from 2008 to 2014 with the 

majority of ROR crashes [5]. Therefore, identification of factors that contribute to crash 

occurrences at horizontal curve sections would improve curve safety and reduce crash 

occurrence risk at these sections. This dissertation focused on geometric and traffic data of 

horizontal curve sections in Kansas. Because a majority of the required data was unavailable at 

the beginning of the research, only 221 horizontal curves on undivided two-lane two-way 

highways were randomly selected for this study. Geometric and traffic data were measured or 

obtained using various software tools or databases. However, a comprehensive curve inventory 

with extensive data was provided in April 2015 and is also included in this dissertation. 

Data analysis for the first horizontal curves dataset with 221 horizontal curves on 

undivided two-lane two-way highways was conducted using SAS 9.3 (SAS Institute, Cary, North 

Carolina), and Poisson and NB regression models were developed for 221 selected horizontal 

curve sections on undivided two-lane two-way highways using collected AADT, heavy vehicle 

percentage, curve length, radius, degree of curvature, posted speed, advisory speed, difference 

between posted and advisory speeds, presence of rumble strips, shoulder type, and shoulder 

width. Results for the Poisson regression model showed overdispersion since Pearson χ
2
 divided 

by the degree of freedom was much greater than 1. Therefore, the NB regression method was 

required to take into account the overdispersion of crash data. Variables that affect crash 

occurrence at horizontal curves for the NB regression method include AADT, heavy vehicle 
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percentage, degree of curvature, and the length of long tangent section. The value of Pearson χ
2
 

divided by the degree of freedom (1.006) was very close to 1.0, proving the accuracy of the NB 

model. Moreover, comparison of AIC values for Poisson and NB regression methods showed 

that the NB regression method more accurately estimated crash numbers at horizontal curve 

sections due to its lower AIC value (742.6 for the NB model versus 805.4 for the Poisson 

model). However, previous data analysis without considering tangent section length did not lead 

to a reasonable prediction model for the selected 221 horizontal curves on undivided two-lane 

two-way highways with Poisson and NB regression methods using SPSS 18.0.  

In addition to the 221 horizontal curves on undivided two-lane two-way highways, 

KDOT completed a Kansas horizontal curve inventory in April 2015, which contained 5,334 

horizontal curves on the entire state transportation network. This study utilized the curve 

inventory dataset from the KCARS database and traffic data from KDOT to construct a dataset 

with all required and combined data for 5,334 horizontal curves on the entire state transportation 

network. In order to verify accuracy of the developed models, the horizontal curve data were 

divided into two groups: one group for data analysis and the other group for data validation. 

Eighty percent (4,247) of horizontal curves were randomly selected for data analysis, and the 

remaining 20% (1,067) of horizontal curves were used for data validation. SAS 9.4 (SAS 

Institute, Cary, North Carolina) was used for data analysis, and models were developed using 

Poisson, NB, ZIP, and ZINB methods. Results of the Poisson method showed overdispersed 

crash data and many curves with zero number of crashes. Therefore, NB and ZI methods were 

examined for data analysis. Total crashes, severe crashes (K and A levels), and severe crashes 

(K, A, and B levels) were analyzed. Two severe crash groups were utilized because some studies 

only consider fatal and incapacitating injury crashes to be severe crashes, while other studies also 
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consider non-incapacitating injury crashes to be severe crashes. Consequently, this study 

considered two types of severe crashes and compared the results of data analysis for each group. 

The KDOT crash database indicated that K-5 highway contained the highest numbers of 

crashes on horizontal curves; therefore, additional investigations were conducted on horizontal 

curve sections of that roadway. Video logs from years 2004, 2007, and 2010 did not show 

changes in applied countermeasures at horizontal curve sections or significant changes in 

roadside characteristics of the studied curves. The measured superelevation of some curves with 

crashes showed that these sections met the minimum requirement of superelevations; however, 

changes in superelevations along curve sections were not constant and did not meet current 

design guidance or criteria. 

Existing data revealed that the speed limit of a roadway segment with approximately 25 

horizontal curves was reduced in June 2009. Therefore, impact of the speed limit change on 

crash reduction at horizontal curve sections was studied. For data analysis, a time period from 

2006 to 2012, including 3.5 years before and 3.5 years after the speed limit change, was selected. 

Although initial data showed a reduction in crash frequencies for crashes and EPDO crashes in 

various light, weather, and road surface conditions, a statistical t-test did not indicate numbers 

high enough to conclude that crash frequencies and crash rates showed statistically significant 

reduction due to speed limit change at the 95% confidence level (5% significance level). 

However, EPDO crash rates for adverse weather conditions significantly decreased at the 5% 

significance level.  

6.2. Conclusions 

The results of data analysis with NB regression method for randomly selected 221 

horizontal curves on undivided two-lane two-way highways revealed that the important 
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parameters influencing crash occurrence at Kansas two-lane highways were AADT, heavy 

vehicle percentage, and the length of long tangent section of the curve. For the KDOT horizontal 

curve inventory including 5,334 horizontal curves on the entire state transportation network, 80% 

of horizontal curve selected randomly for data analysis and NB, ZIP, and ZINB methods were 

used to develop prediction models. For total crashes, according to the best NB and ZINB 

developed models AADT, heavy vehicle percentage, curve length, degree of curvature, posted 

speed, and difference between posted and advisory speeds were significantly influence the total 

crash occurrences at the randomly selected 4,267 horizontal curves for data analysis. In addition, 

IRI that shows the rideability of the roadway’s pavement is another parameter which influence 

total crash occurrence at the selected horizontal curves. For severe crashes (K and A levels), 

AADT, curve length, degree of curvature, posted speed and presence of rumble strips found to be 

the significant parameters influencing K and A crashes at horizontal curve sections for all NB, 

ZIP, and ZINB models. For NB and ZINB models, heavy vehicle percentage and for ZIP and 

ZINB models being divided or undivided roadways influenced KA crash occurrence at the 

selected horizontal curves. For severe crashes (K, A, and B levels), in all of the NB, ZIP, and 

ZINB models, AADT, heavy vehicle percentage, curve length, degree of curvature, difference 

between posted and advisory speeds, and presence of rumble strips significantly influenced K, A, 

and B crash occurrences at the selected horizontal curves. Additionally, for NB model shoulder 

width between 3ft to 7ft and for ZINB model posted speed were the other variables that 

influenced severe crash (K, A, and B levels) occurrences at the selected horizontal curve 

sections. Furthermore, the comparisons of models for various crash groups indicated that AADT, 

heavy vehicle percentage, curve length, degree of curvature, and speed (in posted speed or 

difference between posted and advisory formats) significantly influence crash occurrences for all 
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crash groups, while presence of rumble strips is only significant when the crash severity is 

considered. For the most severe crashes, fatal and incapacitating crashes, a binary variable for 

divided or undivided roadways has significant impact on crash occurrences at the selected 

horizontal curves. However, for total crashes using ZINB method, IRI is a significant parameter 

influencing the crash occurrences, but it is not a significant variable for the severe crashes.  

Considering the goodness-of-fit criteria for all of the NB, ZIP, and ZINB models for all 

of the crash groups showed that ZINB is the best model and can better predict number of total 

and severe crashes since the value of AIC criterion is less than the other prediction models. 

Moreover, data validation was conducted using the data of 1,067 horizontal curves, remaining 

20% of 5,334 horizontal curves on the entire state transportation network, and the observed total 

and severe crashes were compared. The results of data validation showed that the ZINB models 

for all crash groups are closer to the observed crashes; however, the accuracy of models 

decreased when the severity of crashes was considered. For total number of crashes, ZINB model 

predicts crashes 14% less than observed total crashes, while for severe crashes (K, A, and B 

levels) the difference percentage is -15% and for severe crashes this value dramatically drops to -

41%. Overall, the results of data analysis and data validation show the acceptable correlation 

between the prediction models numbers of crashes and the observed crashes for the studied crash 

groups. 

The findings of this research study and the developed crash prediction models are in 

accordance with the results of other studies. Various studies concluded that crashes increase with 

increase in AADT [30,39,55,45,37,33,30,31], increase in degree of curvature or decrease in 

curve radius [29,31,39,33,36,29,30], increase in posted speed or difference between posted and 

advisory speeds [31,39,29,56], increase in curve length [36,37,29,57,30], and increase in IRI 
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[39]. However, there is no consistency in the effect of heavy vehicle percentage on crash 

occurrence among different studies. Some studies concluded that the increase in truck ADT 

increases the number of crashes [37,45,33]. Kapetanakis concluded that crashes decrease due to 

increase in heavy vehicle percentage [55]. Sharma et al. found that crashes increase with heavy 

vehicle percentage increase. In another study Kim et al. concluded truck percentage-mile-per-

lane has a dual impact on crash occurrences [58]. Increase in heavy vehicle percentage increases 

the crashes that a vehicle becomes an obstacle; on the contrary, increase in heavy vehicle 

percentage reduces the crashes that occurred due to the following vehicle’s reaction failure [58].  

6.3. Countermeasures to Improve Safety of Horizontal Curves Based on the Developed 

Prediction Models 

. Various results of this research study confirm the findings of previous researches and 

provide useful suggestions for improving the safety of horizontal curve sections. 

According to the results of data analysis of the first dataset with 221 horizontal curves on 

undivided two-lane two-way highways, the length of the long tangent section positively 

influenced the number of total crashes at horizontal curve sections. Thus the increase in length of 

the long tangent section increased the possibility of crash occurrences at horizontal curve section. 

In other words, when drivers navigate a long tangent section, they are less prepared for a 

horizontal curve, especially a sharp curve [1]. Therefore, sufficient warning and information 

must be provided to drivers when the length of the tangent section is long and the drivers do not 

expect a change in roadway alignment. Increased visibility of warning signs due to better 

materials with higher retroreflectivity can improve the safety of horizontal curve sections, 

particularly in dark and adverse weather conditions [58,59]. 

For the KDOT horizontal curve inventory, results of the ZINB model showed that IRI 

significantly and positively influenced the total single-vehicle crashes at horizontal curve 
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sections. In other word, higher values of IRI indicate an increased probability for single-vehicle 

crashes at horizontal curve sections. High IRI also indicates an uneven pavement surface, which 

negatively affects driving quality on the roadway and negatively impacts rideability of the 

roadway. Thus, drivers feel less comfortable when IRI has a high value. Therefore, a smooth 

pavement surface at horizontal curve sections can help improve the safety of horizontal curve 

sections. 

Although the presence of rumble strips was not found a significant parameter for crash 

occurrences at horizontal curve sections in Kansas, results of data analysis showed that rumble 

strips mitigate crash severity at horizontal curve sections. Results of data analysis for severe 

crashes showed that the presence of rumble strips at a horizontal curve section can cause up to 

       reduction in the number of severe crashes. Various studies have been conducted to find 

the appropriate pattern of rumble strips in order to increase their effectiveness in Kansas 

[60,61,62]. According to the results of NB model for severe crashes, increasing shoulder width to 

7 ft. influenced severe crash occurrences and reduced single-vehicle crash severity at horizontal 

curve sections. Therefore, use of rumble strips and increased shoulder width at horizontal curve 

sections are low-cost countermeasures to improve safety at these sections. Table ‎6.1 summarizes 

the recommended countermeasures to safety improvement of the studied horizontal curves based 

on the crash types.  
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Table ‎6.1 Recommended countermeasures for the studied horizontal curves based on the 

crash types 

Countermeasure 

Crash Type 

Total Crashes 
Single Vehicle 

Crashes 

Severe Single 

Vehicle Crashes 

Centerline and edge line    

Advance warning signs    

Supplemental treatments with advanced 

warning signs such as doubling up signs, 

higher retroreflective materials  

   

Speed management treatments such as 

chevrons enhanced with LEDs 
   

On pavement markings    

Flashing beacons    

Widening shoulder    

Rumble strips    

Dividing opposite lanes    

 

6.4. Recommendations for Future Studies 

This research study made assumptions and simplifications in order to increase the 

feasibility of the data analysis. For example, only geometric and traffic characteristics were 

considered for data collection and data analysis. In reality, however, other parameters, such as 

weather conditions, roadway surface conditions, and driver circumstances, affect crash 

occurrences at horizontal curve sections. Future research studies should consider the effect of 

other environmental characteristics and human factors in conjunction with the current collected 

and analyzed data.  

Data analysis of collected data for 221 selected horizontal curves on undivided two-lane 

two-way highways showed that long tangent section length significantly influences crash 
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occurrence at horizontal curve sections. Therefore, recommendations were made for additional 

warning and guide signs in advance of horizontal curves with long tangent sections. However, 

the results did not show the critical tangent length. A future study should find the critical tangent 

section length as a threshold for providing additional information about changes in roadway 

alignment via additional warning and guide signs. Also, according to data analysis results, fewer 

severe crashes occur on divided highways potentially due to better geometric characteristics of 

divided highways. Future research should compare geometric characteristics of divided and 

undivided highways and determine effective parameters that decrease the single-vehicle crash 

severity on divided highways. Also, a future study should further investigate the effect of heavy 

vehicle percentage on crash occurrences at horizontal curve sections due to the inconsistency 

between the results of various studies conducted in this area.    
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Appendix A. Summary of Prediction Model Studies 

Table ‎A.1 Studies related to crash prediction models at horizontal curve sections 

Source Explanatory Variables Dependent 

Variable 

Sample 

Size  

Statistical 

Method Used 

Summary 

Schneider 

et al. (2009) 

Shoulder width, horizontal curve radius, curve length, 

passenger vehicle ADT, truck ADT, degree of 

curvature 

Truck crashes 15390 crash 

records 

(2002–2006) 

NB regression 

model with full 

Bayes methods 

for improving 

model 

performance 

The objective of this paper was to develop 

an NB regression model to examine the 

impact of rural two-lane horizontal curves 

on non-intersection truck-related crashes. 

Traffic volume and horizontal curvature 

influenced truck crash occurrences at 

horizontal curve sections 

Schneider 

et al.  

(2010) 

Lane width, overall surface width, posted speed limit, 

additional land use categories (e.g., population 

density), ADT, segment length, curve radius, shoulder 

width  

Single-vehicle 

motorcycle crashes  

30379 

roadway 

segments. 

Single-

vehicle 

motorcycle 

crashes: 225 

from 2002 to 

Spring 2008 

NB model at 

first step to 

examine the 

impact of each 

variable. 

Second step 

includes 

implementation 

of a full Bayes 

methodology, 

resulting in an 

NB model with 

posterior 

distributions of 

parameters. 

The objective of this study was to 

investigate the impact of roadway geometry 

at horizontal curve sections on single-

vehicle motorcycle crash frequency by 

implementing a Bayesian technique to 

improve the frequency estimation. Curve 

length and radius, shoulder width, and ADT 

significantly influenced single-vehicle 

motorcycle crash frequency at horizontal 

curve sections 

Hallmark et 

al. (2015) 

AADT, section length, season, sign type, posted speed 

limit, curve advisory speed, differences between speed 

limit and advisory speed, radius 

Total crashes for 

both directions, 

total crashes for 

direction of the 

sign, total single-

vehicle crashes, 

single-vehicle 

crashes in the 

direction of the 

sign 

624 

observations 

for control 

sites and 492 

observations 

for treatment 

sites 

Full Bayes 

modeling 

methodology 

was utilized to 

develop crash 

modification 

factor (CMF). 

This study investigated the effectiveness of 

“Dynamic Speed Feedback Sign Systems” 

(DSFS) at rural horizontal curves. 
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Table A.1 Studies related to crash prediction models at horizontal curve sections (Cont’d) 

Source Explanatory Variables Dependent 

Variable 

Sample 

Size  

Statistical 

Method used 

Summary 

 Khan et al. 

(2013) 

Curve radius (R), Curve length (L), log AADT, posted 

speed, left and right shoulder width and type, average 

IRI, pavement surface age and type, upstream tangent 

(0–600 ft., 601–1200 ft., and 1201–2600 ft.), truck 

percentage, travel way width, difference between 

posted speed and advisory speed, presence of curve-

related signs 

  

Number of crashes 

at horizontal curves 

Number of KAB 

crashes 

 

20842 

Horizonta

l curves 

on 

undivided 

roadways 

 

 

Quasi-Poisson 

NB regression 

This study developed a crash prediction 

model for crashes, considering crashes 

separately for each direction on undivided 

roadways. They found effective variables 

were for each type of crash, but most 

considered variables were not effective. They 

concluded that curves with radii greater than 

2500 ft. had fewer crashes than other curves, 

so they excluded curves with radii greater 

than 2500 ft.  

Hallmark 

(2007) 

Number of lanes, lane width, shoulder width and type, 

speed limit, pavement type and condition, presence and 

location of street lighting, grade, horizontal curve 

radius, degree of curvature, superelevation, sight 

distance, presence and characteristics of spirals, density 

of curves upstream for number of curves per mile, 

length of connection tangent section, any feature that 

may influence driver expectations and curve approach 

speed, location and type of signage before and within 

the curve (e.g., location of speed reduction zones, 

chevrons, etc.), speed, volume,  

Speed change 

Crash frequency 

 Before and after 

study 

Bayesian or 

generalized 

linear regression 

models 

The objective of the study was to investigate 

the effect of dynamic curve signs on speed 

reduction and crash occurrence at horizontal 

curve sections. 
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Table ‎A.2 Factors used in crash prediction models at rural highway sections 

Source Explanatory Variables Dependent 

Variables 

Sample 

Size 

Statistical 

Methods 

Effective 

Explanatory 

Variables 

Summary 

Chang and 

Chen (2005) 

Highway geometric design 

information includes number 

of lanes, HC, vertical grade 

(VG), and shoulder width, 

traffic information includes 

ADT of various vehicle 

types, peak hour factors, and 

traffic distribution over 

lanes. Weather information 

was obtained from the annual 

report of climatological data, 

which records detailed 

weather information of cities 

and towns along National 

Freeway 1, including 

pressure, temperature, 

humidity, precipitation, wind 

speed, and cloudiness. 

Crash frequency from 

2001 to 2002 

1072 fatal 

and injury 

crashes and 

1484 

highway 

sections 

CART 

NB regression 

Degree of curvature, 

ADT, heavy vehicle 

ADT, VG, annual 

precipitation, 

precipitation day 

The objective of this study was to 

investigate whether CART can be used to 

analyze the relationship between risk 

factors and crashes. CART was used to 

predict crash frequency for roadway 

sections. Development of CART consisted 

of three steps: tree growing, creation of a 

sequence of simpler trees by cutting off 

increasingly important nodes (i.e., pruning), 

and selection of the right tree from the 

pruned trees. Selected sections had lengths 

of 1 km. In order to compare predictions 

between the CART model and the statistical 

model, collected data were also randomly 

divided into two subsets: one for training 

and the other for testing. The number of 

cases used for model training and testing 

was 1,113 (75% of total observations) and 

371, respectively. A chi-squared test 

showed that accident frequency 

distributions between the two sub-samples 

were not significantly different. 

Dissanayake 

and 

Amarasingha 

(2012) 

Section length, speed limit, 

median width, functional 

class, AADT, AADT of 

heavy vehicles, right rumble 

strips, inside  rumble strips, 

right shoulder width, inside 

shoulder width, HC, VG, 

number of lanes 

Truck crashes from 2005 

to 2010 

7273 

segments 

Poisson regression 

model 

NB regression 

model 

Length of section, 

number of lanes, HC, 

VG, AADT, truck 

percentage, and 

inside shoulder width 

The objective of the study was to find the 

relationship between large truck crash 

probability and traffic and geometric 

characteristics.  
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Table A.2 Factors used in crash prediction models at rural highway sections (Cont’d) 

Source Explanatory Variables Dependent 

Variables 

Sample 

Size 

Statistical 

Methods 

Effective 

Explanatory 

Variables 

Summary 

Miaou and 

Lum (1992) 

Section length, truck miles or 

truck exposure, dummy 

intercept, dummy variables 

for years 1986–1989, AADT 

per lane, HC, LHC, VG, 

LVG, deviation of paved 

inside shoulder width, 

percent trucks, interaction 

between HC and LHC, and 

interaction between VG and 

LVG 

Number of trucks 

involved in accidents 

8263 road 

sections,  

1643 crashes 

in which 

trucks were 

involved 

during five 

years 

Poisson regression 

model 

HC, LHC, VG, LVG, 

and paved inside 

shoulder width 

This study used data of Highway Safety 

Information System (HSIS) of the state of 

Utah to develop crash prediction models for 

truck accident involvements. They 

developed models with different variables 

and compared models by comparing the 

results of developed models.  

Zegeer et al. 

(1993) 

ADT, curve length, degree of 

curvature, total surface 

width, presence of spiral 

transition, superelevation, 

RHR, roadside recovery 

distance  

Total number of crashes 1039 

horizontal 

curves 

Linear regression 

model 

Degree of curvature, 

shoulder width, 

presence of spirals, 

superelevation 

The objective of this research was to 

evaluate the relationship between horizontal 

curve features and safety levels. The authors 

also quantified the effects of curve 

flattening, curve widening, the addition of a 

spiral, improved deficient superelevation, 

and roadside clearing for crash occurrence.  
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Table A.2 Factors used in crash prediction models at rural highway sections (Cont’d) 

 

  

 

  

Source Explanatory 

Variables 

Dependent Variables Sample 

Size 

Statistical 

Methods 

Effective 

Explanatory 

Variables 

Summary 

Hosseinpour 

et al. (2014) 

Posted speed, shoulder 

width, HC, terrain type, 

heavy vehicle traffic, land 

use, side friction factor, 

presence of median, and 

access points, segment 

length, number of lanes 

Number of head-on crashes 

Crash severity 
448 

segments 

For crash 

frequency: 

Poisson, standard 

NB, random-effect 

NB, hurdle 

Poisson, hurdle 

NB, ZIP, and ZINB 

models were used.  

For crash severity, 

 a random-effect 

generalized ordered 

probit model 

(REGOPM) was 

used. 

HC, terrain type, 

heavy vehicle, heavy 

vehicle, access 

points, posted speed, 

shoulder width 

This study used head-on crashes data for 4 

years (from 2007 to 2011) on 448 

segments of five federal roadways in 

Malaysia. They modeled crash frequency 

and crash severity. To model crash 

frequency, they found random-effect NB 

more accurately fit the head-on crashes 

compared to the other regression methods. 
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Appendix B. R Codes for Creating a Dataset of KDOT Horizontal 

Curves Inventory 

Adding AADTs to Dataset 

main=read.csv("main.txt",header=TRUE,sep="\t") 

Mmain=as.matrix(main) 

f1=read.csv("file1.txt",header=TRUE,sep="\t") 

f2=read.csv("file2.txt",header=TRUE,sep="\t") 

f3=read.csv("file3.txt",header=TRUE,sep="\t") 

Mf1=as.matrix(f1) 

Mf2=as.matrix(f2) 

Mf3=as.matrix(f3) 

p=mat.or.vec(5343,12) 

for (i in 1:5343) { 

  for (j in 1:8308) { 

   if ((Mmain[i,2]==Mf1[j,1]) & (Mmain[i,3]==Mf1[j,2]) & 

(Mmain[i,4]==Mf1[j,3]) & (Mmain[i,7]<=Mf1[j,6]) & (Mmain[i,8]>=Mf1[j,6]) & 

(Mmain[i,10]==Mf1[j,9]) & (Mmain[i,12]==Mf1[j,31]) & (Mmain[i,13]==Mf1[j,32]))  for (k 

in 1:12) {p[i,k]=Mf1[j,45+k] } 

    } 

  } 

for (x in 1:5343) { 

  for (y in 1:12290) { 

    if ((Mmain[x,2]==Mf2[y,1]) & (Mmain[x,3]==Mf2[y,2]) & 

(Mmain[x,4]==Mf2[y,3]) & (Mmain[x,7]<=Mf2[y,6]) & (Mmain[x,8]>=Mf2[y,6]) & 

(Mmain[x,10]==Mf2[y,9]) & (Mmain[x,12]==Mf2[y,31]) & (Mmain[x,13]==Mf2[y,32])) 

 for (k in 1:12) {p[x,k]=Mf2[y,45+k] } 

    } 

  } 

for (x in 1:5343) { 

  for (y in 1:12358) { 

    if ((Mmain[x,2]==Mf3[y,1]) & (Mmain[x,3]==Mf3[y,2]) & 

(Mmain[x,4]==Mf3[y,3]) & (Mmain[x,7]<=Mf3[y,6]) & (Mmain[x,8]>=Mf3[y,6]) & 

(Mmain[x,10]==Mf3[y,9]) & (Mmain[x,12]==Mf3[y,31]) & (Mmain[x,13]==Mf3[y,32])) 

 for (k in 1:12) {p[x,k]=Mf3[y,45+k] } 

    } 

  } 

write.csv(p, file="p.csv") 

main=read.csv("main.txt",header=TRUE,sep="\t") 

Mmain=as.matrix(main) 

f1=read.csv("file1.txt",header=TRUE,sep="\t") 

f2=read.csv("file2.txt",header=TRUE,sep="\t") 

f3=read.csv("file3.txt",header=TRUE,sep="\t") 

Mf1=as.matrix(f1) 

Mf2=as.matrix(f2) 



132 

 

Mf3=as.matrix(f3) 

p=mat.or.vec(5343,3) 

for (i in 1:5343) { 

  for (j in 1:8308) { 

    if ((Mmain[i,2]==Mf1[j,1]) & (Mmain[i,3]==Mf1[j,2]) & 

(Mmain[i,4]==Mf1[j,3]) & (Mmain[i,7]<=Mf1[j,6]) & (Mmain[i,8]>=Mf1[j,6]) & 

(Mmain[i,10]==Mf1[j,9]) & (Mmain[i,12]==Mf1[j,31]) & (Mmain[i,13]==Mf1[j,32]))  for (k 

in 1:3) {p[i,k]=Mf1[j,10+k] } 

    } 

  } 

for (x in 1:5343) { 

  for (y in 1:12290) { 

    if ((Mmain[x,2]==Mf2[y,1]) & (Mmain[x,3]==Mf2[y,2]) & 

(Mmain[x,4]==Mf2[y,3]) & (Mmain[x,7]<=Mf2[y,6]) & (Mmain[x,8]>=Mf2[y,6]) & 

(Mmain[x,10]==Mf2[y,9]) & (Mmain[x,12]==Mf2[y,31]) & (Mmain[x,13]==Mf2[y,32])) 

 for (k in 1:3) {p[x,k]=Mf2[y,10+k] } 

    } 

  } 

for (x in 1:5343) { 

  for (y in 1:12358) { 

    if ((Mmain[x,2]==Mf3[y,1]) & (Mmain[x,3]==Mf3[y,2]) & 

(Mmain[x,4]==Mf3[y,3]) & (Mmain[x,7]<=Mf3[y,6]) & (Mmain[x,8]>=Mf3[y,6]) & 

(Mmain[x,10]==Mf3[y,9]) & (Mmain[x,12]==Mf3[y,31]) & (Mmain[x,13]==Mf3[y,32])) 

 for (k in 1:3) {p[x,k]=Mf3[y,10+k] } 

    } 

  } 

write.csv(p, file="p.csv") 

 

 

Adding Other Variables to the Dataset 

main=read.csv("main.txt",header=TRUE,sep="\t") 

Mmain=as.matrix(main) 

f1=read.csv("f1.txt",header=TRUE,sep="\t") 

f2=read.csv("f2.txt",header=TRUE,sep="\t") 

f3=read.csv("f3.txt",header=TRUE,sep="\t") 

Mf1=as.matrix(f1) 

Mf2=as.matrix(f2) 

Mf3=as.matrix(f3) 

p=mat.or.vec(5343,22) 

for (i in 1:5343) { 

  for (j in 1:23997) { 

    if ((Mmain[i,2]==Mf1[j,1]) & (Mmain[i,3]==Mf1[j,2]) & 

(Mmain[i,4]==Mf1[j,3]) & (Mmain[i,7]<=Mf1[j,6]) & (Mmain[i,8]>=Mf1[j,6]) & 

(Mmain[i,10]==Mf1[j,9]) & (Mmain[i,12]==Mf1[j,31]) & (Mmain[i,13]==Mf1[j,32]))  for (k 

in 1:22) {p[i,k]=Mf1[j,10+k] } 

    } 
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  } 

for (x in 1:5343) { 

  for (y in 1:31007) { 

    if ((Mmain[x,2]==Mf2[y,1]) & (Mmain[x,3]==Mf2[y,2]) & 

(Mmain[x,4]==Mf2[y,3]) & (Mmain[x,7]<=Mf2[y,6]) & (Mmain[x,8]>=Mf2[y,6]) & 

(Mmain[x,10]==Mf2[y,9]) & (Mmain[x,12]==Mf2[y,31]) & (Mmain[x,13]==Mf2[y,32])) 

 for (k in 1:22) {p[x,k]=Mf2[y,10+k] } 

    } 

  } 

for (x in 1:5343) { 

  for (y in 1:29452) { 

    if ((Mmain[x,2]==Mf3[y,1]) & (Mmain[x,3]==Mf3[y,2]) & 

(Mmain[x,4]==Mf3[y,3]) & (Mmain[x,7]<=Mf3[y,6]) & (Mmain[x,8]>=Mf3[y,6]) & 

(Mmain[x,10]==Mf3[y,9]) & (Mmain[x,12]==Mf3[y,31]) & (Mmain[x,13]==Mf3[y,32])) 

 for (k in 1:22) {p[x,k]=Mf3[y,10+k] } 

    } 

  } 

write.csv(p, file="p.csv") 

main=read.csv("main.txt",header=TRUE,sep="\t") 

Mmain=as.matrix(main) 

f1=read.csv("file1.txt",header=TRUE,sep="\t") 

f2=read.csv("file2.txt",header=TRUE,sep="\t") 

f3=read.csv("file3.txt",header=TRUE,sep="\t") 

Mf1=as.matrix(f1) 

Mf2=as.matrix(f2) 

Mf3=as.matrix(f3) 

p=mat.or.vec(5343,19) 

for (i in 1:5343) { 

  for (j in 1:8308) { 

    if ((Mmain[i,2]==Mf1[j,1]) & (Mmain[i,3]==Mf1[j,2]) & 

(Mmain[i,4]==Mf1[j,3]) & (Mmain[i,7]<=Mf1[j,6]) & (Mmain[i,8]>=Mf1[j,6]) & 

(Mmain[i,10]==Mf1[j,9]) & (Mmain[i,12]==Mf1[j,31]) & (Mmain[i,13]==Mf1[j,32]))  for (k 

in 1:19) {p[i,k]=Mf1[j,13+k] } 

    } 

  } 

for (x in 1:5343) { 

  for (y in 1:12290) { 

    if ((Mmain[x,2]==Mf2[y,1]) & (Mmain[x,3]==Mf2[y,2]) & 

(Mmain[x,4]==Mf2[y,3]) & (Mmain[x,7]<=Mf2[y,6]) & (Mmain[x,8]>=Mf2[y,6]) & 

(Mmain[x,10]==Mf2[y,9]) & (Mmain[x,12]==Mf2[y,31]) & (Mmain[x,13]==Mf2[y,32])) 

 for (k in 1:19) {p[x,k]=Mf2[y,13+k] } 

    } 

  } 

for (x in 1:5343) { 

  for (y in 1:12358) { 
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    if ((Mmain[x,2]==Mf3[y,1]) & (Mmain[x,3]==Mf3[y,2]) & 

(Mmain[x,4]==Mf3[y,3]) & (Mmain[x,7]<=Mf3[y,6]) & (Mmain[x,8]>=Mf3[y,6]) & 

(Mmain[x,10]==Mf3[y,9]) & (Mmain[x,12]==Mf3[y,31]) & (Mmain[x,13]==Mf3[y,32])) 

 for (k in 1:19) {p[x,k]=Mf3[y,13+k] } 

    } 

  } 

write.csv(p, file="p.csv") 

 

 

Adding Crashes Based on their Severities to the Dataset 

F11=read.csv("F11.txt",header=TRUE,sep="\t") ##ino  bara tarfie file neveshtam 

F11=as.matrix(F11) 

MF1=read.csv("MF1.txt",header=TRUE,sep="\t") 

MF1=as.matrix(MF1) 

cm=mat.or.vec(14418,2) 

for (i in 1:10) { 

     cm[i,1]=F11[i,1] 

  for (j in 1:10) { 

    if ((F11[i,1]=MF1[j,1]) 

     if (cm[i,2]=0 cm[i,2]=MF1[j,2]) 

  }   ifelse (if (MF1[j,2]<cm[i,2] cm[i,2]=MF1[j,2])) 

 

write.csv(cm, file="cm.csv") 

main=read.csv("main.txt",header=TRUE,sep="\t") 

Mmain=as.matrix(main) 

f1=read.csv("file1.txt",header=TRUE,sep="\t") 

f2=read.csv("file2.txt",header=TRUE,sep="\t") 

Mf1=as.matrix(f1) 

Mf2=as.matrix(f2) 

p=mat.or.vec(5343,5) 

## For first file 

for (i in 1:5343) { 

  for (j in 1:15992) { 

    if ((Mmain[i,2]==Mf1[j,1]) & (Mmain[i,3]==Mf1[j,2]) & 

(Mmain[i,4]==Mf1[j,3]) & (Mmain[i,7]<=Mf1[j,6]) & (Mmain[i,8]>=Mf1[j,6]) & 

(Mmain[i,10]==Mf1[j,9]) & (Mmain[i,12]==Mf1[j,31]) & (Mmain[i,13]==Mf1[j,32]))  for (k 

in 1:5) { if (Mf1[j,35]==k) p[i,k]=p[i,k]+1 } 

    } 

  } 

## For next File 

for (x in 1:5343) { 

  for (y in 1:16330) { 

    if ((Mmain[x,2]==Mf2[y,1]) & (Mmain[x,3]==Mf2[y,2]) & 

(Mmain[x,4]==Mf2[y,3]) & (Mmain[x,7]<=Mf2[y,6]) & (Mmain[x,8]>=Mf2[y,6]) & 

(Mmain[x,10]==Mf2[y,9]) & (Mmain[x,12]==Mf2[y,31]) & (Mmain[x,13]==Mf2[y,32])) 

 for (z in 1:5) { if (Mf2[y,35]==z) p[x,z]=p[x,z]+1 } 
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    } 

  } 

write.csv(p, file="p.csv",sep="\t") 

main=read.csv("main.txt",header=TRUE,sep="\t") 

Mmain=as.matrix(main) 

f1=read.csv("f14.txt",header=TRUE,sep="\t") 

Mf1=as.matrix(f1) 

ttcrsh=mat.or.vec(5343,5) 

for (i in 1:5343) { 

  for (j in 1:13874) { 

    if ((Mmain[i,2]==Mf1[j,1]) & (Mmain[i,3]==Mf1[j,2]) & 

(Mmain[i,4]==Mf1[j,3]) & (Mmain[i,7]<=Mf1[j,6]) & (Mmain[i,8]>=Mf1[j,6]) & 

(Mmain[i,10]==Mf1[j,9]) & (Mmain[i,12]==Mf1[j,31]) & (Mmain[i,13]==Mf1[j,32]))  for (k 

in 1:5) { if (Mf1[j,45]==k) ttcrsh [i,k]= ttcrsh [i,k]+1 } 

    } 

  } 

write.csv(ttcrsh, file=" ttcrsh.csv") 

 

Selecting Single-Vehicle Crashes Based on Their Severities 

main=read.csv("main.txt",header=TRUE,sep="\t") 

Mmain=as.matrix(main) 

f1=read.csv("file1.txt",header=TRUE,sep="\t") 

f2=read.csv("file2.txt",header=TRUE,sep="\t") 

f3=read.csv("file3.txt",header=TRUE,sep="\t") 

Mf1=as.matrix(f1) 

Mf2=as.matrix(f2) 

Mf3=as.matrix(f3) 

p=mat.or.vec(5343,5) 

## For first file 

for (i in 1:5343) { 

  for (j in 1:8308) { 

    if ((Mmain[i,2]==Mf1[j,1]) & (Mmain[i,3]==Mf1[j,2]) & 

(Mmain[i,4]==Mf1[j,3]) & (Mmain[i,7]<=Mf1[j,6]) & (Mmain[i,8]>=Mf1[j,6]) & 

(Mmain[i,10]==Mf1[j,9]) & (Mmain[i,12]==Mf1[j,31]) & (Mmain[i,13]==Mf1[j,32]) & 

((as.POSIXct(Mf1[j,34], format="%m/%d/%Y"))>= (as.POSIXct("01/01/2010", 

format="%m/%d/%Y"))) & ((as.POSIXct(Mf1[j,34], format="%m/%d/%Y"))< 

(as.POSIXct("01/01/2015", format="%m/%d/%Y"))) & (as.numeric(Mf1[j,58])!=2) & 

(as.numeric(Mf1[j,58])!=3) & (as.numeric(Mf1[j,58])!=6) & (as.numeric(Mf1[j,58])!=7)) 

 for (k in 1:5) { if (Mf1[j,35]==k) p[i,k]=p[i,k]+1 } 

    } 

  } 

## For next File 

for (x in 1:5343) { 

  for (y in 1:12290) { 

    if ((Mmain[x,2]==Mf2[y,1]) & (Mmain[x,3]==Mf2[y,2]) & 

(Mmain[x,4]==Mf2[y,3]) & (Mmain[x,7]<=Mf2[y,6]) & (Mmain[x,8]>=Mf2[y,6]) & 
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(Mmain[x,10]==Mf2[y,9]) & (Mmain[x,12]==Mf2[y,31]) & (Mmain[x,13]==Mf2[y,32]) & 

((as.POSIXct(Mf2[y,34], format="%m/%d/%Y"))>= (as.POSIXct("01/01/2010", 

format="%m/%d/%Y"))) & ((as.POSIXct(Mf2[y,34], format="%m/%d/%Y"))< 

(as.POSIXct("01/01/2015", format="%m/%d/%Y"))) & (as.numeric(Mf2[y,58])!=2) & 

(as.numeric(Mf2[y,58])!=3) & (as.numeric(Mf2[y,58])!=6) & (as.numeric(Mf2[y,58])!=7)) 

 for (z in 1:5) { if (Mf2[y,35]==z) p[x,z]=p[x,z]+1 } 

    } 

  } 

## For next File 

for (x in 1:5343) { 

 for (y in 1:12358) { 

   if ((Mmain[x,2]==Mf3[y,1]) & (Mmain[x,3]==Mf3[y,2]) & 

(Mmain[x,4]==Mf3[y,3]) & (Mmain[x,7]<=Mf3[y,6]) & (Mmain[x,8]>=Mf3[y,6]) & 

(Mmain[x,10]==Mf3[y,9]) & (Mmain[x,12]==Mf3[y,31]) & (Mmain[x,13]==Mf3[y,32]) & 

((as.POSIXct(Mf3[y,34], format="%m/%d/%Y"))>= (as.POSIXct("01/01/2010", 

format="%m/%d/%Y"))) & ((as.POSIXct(Mf3[y,34], format="%m/%d/%Y"))< 

(as.POSIXct("01/01/2015", format="%m/%d/%Y"))) & (as.numeric(Mf3[y,58])!=2) & 

(as.numeric(Mf3[y,58])!=3) & (as.numeric(Mf3[y,58])!=6) & (as.numeric(Mf3[y,58])!=7)) 

 for (z in 1:5) { if (Mf2[y,35]==z) p[x,z]=p[x,z]+1 } 

    } 

  } 

write.csv(p, file="p.csv") 

main=read.csv("main.txt",header=TRUE,sep="\t") 

Mmain=as.matrix(main) 

f1=read.csv("SVRTCRCT.txt",header=TRUE,sep="\t") 

Mf1=as.matrix(f1) 

svcrsh=mat.or.vec(5343,5) 

## For first file 

for (i in 1:5343) { 

  for (j in 1:14418) { 

    if ((Mmain[i,2]==Mf1[j,1]) & (Mmain[i,3]==Mf1[j,2]) & 

(Mmain[i,4]==Mf1[j,3]) & (Mmain[i,7]<=Mf1[j,6]) & (Mmain[i,8]>=Mf1[j,6]) & 

(Mmain[i,10]==Mf1[j,9]) & (Mmain[i,12]==Mf1[j,31]) & (Mmain[i,13]==Mf1[j,32]) & 

((as.POSIXct(Mf1[j,34], format="%m/%d/%Y"))>= (as.POSIXct("01/01/2010", 

format="%m/%d/%Y"))) & ((as.POSIXct(Mf1[j,34], format="%m/%d/%Y"))< 

(as.POSIXct("01/01/2015", format="%m/%d/%Y"))) & (as.numeric(Mf1[j,46])!=2) & 

(as.numeric(Mf1[j,46])!=3) & (as.numeric(Mf1[j,46])!=6) & (as.numeric(Mf1[j,46])!=7)) 

 for (k in 1:5) { if (Mf1[j,45]==k) svcrsh [i,k]= svcrsh [i,k]+1 } 

    } 

  } 

write.csv(svcrsh, file=" svcrsh.csv") 

 

 

Adding Severe Crashes (K and A levels) to the Randomly Selected Horizontal Curves for 

Data Analysis and Validation 

main=read.csv("main.txt",header=TRUE,sep="\t") 
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Mmain=as.matrix(main) 

f1=read.csv("fda.txt",header=TRUE,sep="\t") 

Mf1=as.matrix(f1) 

KAan=mat.or.vec(4267,2) 

for (i in 1:4267) { 

  for (j in 1:5343) {if (Mmain[j,1]==Mf1[i,1]) {p[i,1]=Mf1[i,1] ; KAan 

[i,2]=Mmain[j,4]} } 

  } 

write.csv(KAan, file=" KAan.csv") 

main=read.csv("main.txt",header=TRUE,sep="\t") 

Mmain=as.matrix(main) 

f2=read.csv("fdv.txt",header=TRUE,sep="\t") 

Mf2=as.matrix(f2) 

KAva=mat.or.vec(1067,2) 

for (i in 1:1067) { 

  for (j in 1:5343) {if (Mmain[j,1]==Mf2[i,1]) {q[i,1]=Mf2[i,1] ; KAva 

[i,2]=Mmain[j,4]} } 

  } 

write.csv(KAva, file=" KAva.csv")
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Appendix C. SAS Codes for Data Analysis 

Codes for Analyzing Crashes at 221 Horizontal Curves on Rural Two-lane Highways 

data Hcurves; 

 infile '/folders/myfolders/sasuser.v94/221_HCs.csv' dlm=',' firstobs=2; 

 input curve_number $ road_name $ AADT logAADT HVPct Radius DoC Tangent_l_1 

Tangent_l_2 Posted_Spd Adv_spd Diff_PS_AS F_crash I_crash PDO_crash Total_Crash 

Rumble_S PavedSh UnpavedSh PSH_t1 PSH_t2 UPSH_t1 UPSH_t2 UPSH_t3 Lt_less_60L 

t_bw600_1200 Lt_bw1200_2600 Lt_greater_2600 Long_Lt Short_Lt; 

Run; 

 

proc means data=Hcurves; 

 var AADT logAADT HVPct Radius DoC Tangent_l_1 Tangent_l_2 Posted_Spd 

Adv_spd Diff_PS_AS F_crash I_crash PDO_crash Total_Crash Long_Lt Short_Lt; 

run; 

data Hcurves; 

 infile '/folders/myfolders/sasuser.v94/221_HCs.csv' dlm=',' firstobs=2; 

 input curve_number $ road_name $ AADT logAADT HVPct Radius DoC Tangent_l_1 

Tangent_l_2 Curve_length Posted_Spd Adv_spd Diff_PS_AS F_crash I_crash PDO_crash 

Total_Crash Rumble_S PavedSh UnpavedSh PSH_t1 PSH_t2 UPSH_t1 UPSH_t2 UPSH_t3 

Lt_less_600 Lt_greater_2600 Lt_bw600_1200 Lt_bw1200_2600  Long_Lt Short_Lt; 

Run; 

proc means data=Hcurves; 

 var AADT logAADT HVPct Radius DoC Tangent_l_1 Tangent_l_2 Curve_length 

Posted_Spd Adv_spd Diff_PS_AS F_crash I_crash PDO_crash Total_Crash Long_Lt Short_Lt; 

run; 

proc means data=Hcurves; 

 var AADT; 

run; 

 

* Frequenies; 

Proc freq data=Hcurves; 

 tables F_crash I_crash PDO_crash Total_crash; 

run; 

*Poisson; 

Proc genmod data=Hcurves; 

 model Total_crash= logAADT HVPct DoC Adv_Spd Diff_PS_AS/ dist=poisson 

link=log; 

run; 

 

*Poisson2; 

Proc genmod data=Hcurves; 

 model Total_crash= logAADT HVPct DoC Adv_Spd Diff_PS_AS/ dist=poisson 

link=log obstats; 

run; 
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*Poisson3; 

Proc genmod data=Hcurves; 

 class Rumble_S; 

 class PavedSh; 

 class UnpavedSh; 

 class PSH_t1; 

 class PSH_t2; 

 class UPSH_t1; 

 class UPSH_t2; 

 class UPSH_t3; 

 class Lt_less_600; 

 class Lt_greater_2600; 

 class Lt_bw600_1200; 

 class Lt_bw1200_2600; 

 model Total_crash= logAADT HVPct DoC Posted_Spd Adv_Spd Diff_PS_AS 

Curve_length Long_Lt Short_Lt Rumble_S PavedSh UnpavedSh PSH_t1 PSH_t2 UPSH_t1 

UPSH_t2 UPSH_t3 Lt_less_600 Lt_greater_2600 Lt_bw600_1200 Lt_bw1200_2600/ 

dist=poisson link=log; 

run; 

*Poisson4; 

Proc genmod data=Hcurves; 

 model Total_crash= logAADT HVPct DoC Diff_PS_AS/ dist=poisson link=log; 

run; 

data Hcurves; 

 infile '/folders/myfolders/sasuser.v94/221_HCs.csv' dlm=',' firstobs=2; 

 input curve_number $ road_name $ AADT logAADT HVPct Radius DoC Tangent_l_1 

Tangent_l_2 Curve_length Posted_Spd Adv_spd Diff_PS_AS F_crash I_crash PDO_crash 

Total_Crash Rumble_S PavedSh UnpavedSh PSH_t1 PSH_t2 UPSH_t1 UPSH_t2 UPSH_t3 

Lt_less_600 Lt_greater_2600 Lt_bw600_1200 Lt_bw1200_2600  Long_Lt Short_Lt 

Ln_Long_Lt Ln_Short_Lt; 

Run; 

proc means data=Hcurves; 

 var AADT logAADT HVPct Radius DoC Tangent_l_1 Tangent_l_2 Curve_length 

Posted_Spd Adv_spd Diff_PS_AS F_crash I_crash PDO_crash Total_Crash Long_Lt Short_Lt 

Ln_Long_Lt Ln_Short_Lt; 

run; 

proc means data=Hcurves; 

 var AADT; 

run; 

 

* Frequenies; 

Proc freq data=Hcurves; 

 tables F_crash I_crash PDO_crash Total_crash; 

run; 

*Poisson5; 

Proc genmod data=Hcurves; 
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 model Total_crash= logAADT HVPct DoC Diff_PS_AS Ln_Long_Lt/ dist=poisson 

link=log; 

run; 

 

*NB1; 

Proc genmod data=Hcurves; 

 model Total_crash= logAADT HVPct DoC Ln_Long_Lt/ dist=negbin link=log; 

run; 

 

*Poisson6; 

Proc genmod data=Hcurves; 

 class Lt_greater_2600; 

 model Total_crash= logAADT HVPct DoC Diff_PS_AS Ln_Long_Lt Lt_greater_2600/ 

dist=poisson link=log; 

run; 

 

Codes for Analyzing Randomly Selected 4,267 Horizontal Curves of KDOT Curve 

Inventory 

proc import datafile="C:\Users\hmomeni.ENGG\Desktop\Data_Validation\frdv021516.csv" out=mydata dbms=csv 

replace; 

   getnames=yes; 

run; 

Proc corr data=mydata; 

 var AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Divided IRI Sur_w RS Grade RLSH ISH LSH 

RSH_W ISH_W LSH_W; 

run; 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\nb_pvalue_consrd_rslts.doc'; 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RLSH(param=ref ref="1") ISH(param=ref 

ref="1") LSH(param=ref ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1") LSH_W(param=ref 

ref="1"); 

 

 model Total_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Divided RLSH ISH 

RSH_W/ type3 dist= negbin link=log; 

run; 

ODS RTF CLOSE; 

 

 

ODS RTF FILE='c:\desktop\Hojr\CategoricalVarChisq.doc'; 

 

Proc genmod data=mydata; 

  

 model Total_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Divided IRI Sur_w RS 

RLSH ISH RSH_W ISH_W/ type3 dist= negbin link=log; 

run; 

ODS RTF CLOSE; 

/*I removed the zeromodel vars when they were insig*/ 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\zim_pvlu_cnsrd_rslts.doc'; 

proc genmod data=mydata; 

  class Divided(param=ref ref="0") RS(param=ref ref="0") RLSH(param=ref ref="1") ISH(param=ref ref="1") 

LSH(param=ref ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1") LSH_W(param=ref ref="1"); 
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  model Total_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Divided IRI RS RLSH/dist=zinb; 

  zeromodel AADT_th Curve_Length AS IRI RSH_W/link = logit; 

run; 

ODS RTF CLOSE; 

 

/*I removed the zeromodel vars when they were insig*/ 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\zip_rslts.doc'; 

proc genmod data=mydata; 

  class Divided(param=ref ref="0") RS(param=ref ref="0") RLSH(param=ref ref="1") ISH(param=ref ref="1") 

LSH(param=ref ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1") LSH_W(param=ref ref="1"); 

 

  model Total_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Divided IRI RS RLSH ISH RSH_W 

ISH_W LSH_W/dist=zip; 

  zeromodel AADT_th Curve_Length IRI RLSH RSH_W/link = logit; 

run; 

ODS RTF CLOSE; 

 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\svcr_nb_most_vars_cnsrd_rslts.doc'; 

proc genmod data=mydata; 

  class Divided(param=ref ref="0") RS(param=ref ref="0") RLSH(param=ref ref="1") ISH(param=ref ref="1") 

LSH(param=ref ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1") LSH_W(param=ref ref="1"); 

 

  model Severe_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Divided RS RLSH RSH_W 

ISH_W/ type3 dist= negbin link=log; 

 run; 

ODS RTF CLOSE; 

 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\svcr_nb_10%sig_vars_cnsrd_rslts.doc'; 

proc genmod data=mydata; 

  class Divided(param=ref ref="0") RS(param=ref ref="0") RLSH(param=ref ref="1") ISH(param=ref ref="1") 

LSH(param=ref ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1") LSH_W(param=ref ref="1"); 

 

  model Severe_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Divided RS RLSH RSH_W/ type3 

dist= negbin link=log; 

 run; 

ODS RTF CLOSE; 

 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\svcr_nb_5%sig_vars_cnsrd_rslts.doc'; 

proc genmod data=mydata; 

  class Divided(param=ref ref="0") RS(param=ref ref="0") RLSH(param=ref ref="1") ISH(param=ref ref="1") 

LSH(param=ref ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1") LSH_W(param=ref ref="1"); 

 

  model Severe_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Divided RLSH RSH_W/ type3 

dist= negbin link=log; 

 run; 

ODS RTF CLOSE; 

 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\svcr_zi_10%sig_vars_cnsrd_rslts.doc'; 

'(the sign of the Surf_W is not good at all)'; 

proc genmod data=mydata; 

  class Divided(param=ref ref="0") RS(param=ref ref="0") RLSH(param=ref ref="1") ISH(param=ref ref="1") 

LSH(param=ref ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1") LSH_W(param=ref ref="1"); 

 

  model Severe_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Divided Sur_w RLSH 

RSH_W/dist=zinb; 

  zeromodel AADT_th Curve_Length IRI RLSH RSH_W/link = logit; 
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run; 

ODS RTF CLOSE; 

 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\svcr_zi_5%sig_vars_cnsrd_rslts.doc'; 

'the sign of the Surf_W is not good at all as well as RLSH vars'; 

proc genmod data=mydata; 

  class Divided(param=ref ref="0") RS(param=ref ref="0") RLSH(param=ref ref="1") ISH(param=ref ref="1") 

LSH(param=ref ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1") LSH_W(param=ref ref="1"); 

 

  model Severe_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Sur_w RLSH RSH_W/dist=zinb; 

  zeromodel AADT_th Curve_Length IRI RLSH RSH_W/link = logit; 

run; 

ODS RTF CLOSE; 

 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\svcr_zip_all important vars_rslts.doc'; 

 

proc genmod data=mydata; 

  class Divided(param=ref ref="0") RS(param=ref ref="0") RLSH(param=ref ref="1") ISH(param=ref ref="1") 

LSH(param=ref ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1") LSH_W(param=ref ref="1"); 

 

  model Severe_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Divided Sur_w RS 

RLSH/dist=zip; 

  zeromodel AADT_th Curve_Length IRI Sur_w RS RLSH RSH_W/link = logit; 

run; 

ODS RTF CLOSE; 

 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\svcr_zip_10%sig_Vars consrd_rslts.doc'; 

 

proc genmod data=mydata; 

  class Divided(param=ref ref="0") RS(param=ref ref="0") RLSH(param=ref ref="1") ISH(param=ref ref="1") 

LSH(param=ref ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1") LSH_W(param=ref ref="1"); 

 

  model Severe_Crashes = HVPct Curve_Length D_o_C PS DiffPSAS Divided Sur_w RS RLSH/dist=zip; 

  zeromodel AADT_th Curve_Length IRI Sur_w RS RLSH RSH_W/link = logit; 

run; 

ODS RTF CLOSE; 

 
proc import datafile="C:\Users\hmomeni.ENGG\Desktop\Data_Validation\03032016\frdv2.csv" out=mydata 

dbms=csv replace; 

   getnames=yes; 

run; 

Proc corr data=mydata; 

 var AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Divided IRI Sur_w RS Grade RLSH ISH 

RSH_W ISH_W LSH_W RL_SH; 

run; 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\KAcrsh_NB_020262016_sigvars.doc'; 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model KA_Crashes = AADT_th HVPct Curve_Length D_o_C PS RS/ type3 dist= negbin link=log; 

run; 

ODS RTF CLOSE; 
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ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\KAcrsh_ZIP_03032016_sigvars.doc'; 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model KA_Crashes = AADT_th Curve_Length D_o_C PS Divided RS/dist=zip; 

  zeromodel AADT_th/link = logit; 

run; 

ODS RTF CLOSE; 

 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model KA_Crashes = AADT_th HVPct Curve_Length D_o_C PS Divided RS RL_SH ISH/dist=zinb; 

  zeromodel AADT_th Curve_Length D_o_C Sur_w RL_SH ISH/link = logit; 

run; 

 

 

 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model KA_Crashes = AADT_th HVPct Curve_Length D_o_C PS Divided RS ISH/dist=zinb; 

  zeromodel AADT_th Curve_Length D_o_C Sur_w RL_SH ISH/link = logit; 

run; 

 

 

 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model KA_Crashes = AADT_th HVPct Curve_Length D_o_C PS Divided RS/dist=zinb; 

  zeromodel AADT_th  D_O_C/ link = logit; 

run; 

proc import datafile="C:\Users\hmomeni.ENGG\Desktop\Data_Validation\frdv022216.csv" out=mydata dbms=csv 

replace; 

   getnames=yes; 

run; 

Proc corr data=mydata; 

 var AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Divided IRI Sur_w RS Grade RLSH ISH 

RSH_W ISH_W LSH_W RL_SH; 

run; 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\ttlcrsh_NB_020262016_sigvars.doc'; 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model Total_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Divided RL_SH ISH 

RSH_W/ type3 dist= negbin link=log; 

run; 

ODS RTF CLOSE; 
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ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\ttlcrsh_NB_020282016_sigvars_accepted 

signs.doc'; 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model Total_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS/ type3 dist= negbin 

link=log; 

run; 

ODS RTF CLOSE; 

 

 

 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\ttlcrsh_ZIP_020272016_sigvars.doc'; 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model Total_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Divided IRI RS RL_SH ISH 

RSH_W ISH_W/dist=zip; 

  zeromodel AADT_th Curve_Length IRI RL_SH ISH RSH_W/link = logit; 

run; 

ODS RTF CLOSE; 

 

ODS RTF 

FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\ttlcrsh_ZINB_020282016_SignVarsPLus_srfw_n_RS_a

ccepted signs.doc'; 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model Total_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS sur_w IRI RS/dist=zinb; 

  zeromodel AADT_th Curve_Length PS IRI RL_SH ISH /link = logit; 

run; 

ODS RTF CLOSE; 

 

ODS RTF 

FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\ttlcrsh_ZINB_020282016_SignVars_acceptedSigns.doc

'; 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model Total_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS sur_w IRI RS/dist=zinb; 

  zeromodel AADT_th Curve_Length PS IRI RL_SH ISH /link = logit; 

run; 

ODS RTF CLOSE; 

 

ODS RTF 

FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\ttlcrsh_ZINB_020282016_SignVars_acceptedSigns_cor

rected.doc'; 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model Total_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS IRI/dist=zinb; 
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  zeromodel AADT_th Curve_Length PS IRI RL_SH ISH /link = logit; 

run; 

ODS RTF CLOSE; 

 

 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\ttlcrsh_ZINB_020272016_SignVars.doc'; 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model Total_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Divided IRI RS RL_SH ISH 

RSH_W ISH_W/dist=zinb; 

  zeromodel AADT_th Curve_Length PS IRI RL_SH ISH RSH_W/link = logit; 

run; 

ODS RTF CLOSE; 

 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\svrcrsh_NB_020262016_sigvars.doc'; 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model Severe_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS RS RSH_W/ type3 dist= 

negbin link=log; 

run; 

ODS RTF CLOSE; 

 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\svrcrsh_NB_020262016_impvars.doc'; 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model Severe_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Divided RS RSH_W/ 

type3 dist= negbin link=log; 

run; 

ODS RTF CLOSE; 

 

 

 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\svrcrsh_ZIP_020272016_imp_vars.doc'; 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model Severe_Crashes = AADT_th HVPct Curve_Length D_o_C DiffPSAS Divided RS RSH_W/dist=zip; 

  zeromodel AADT_th Curve_Length PS RS RL_SH ISH RSH_W/link = logit; 

run; 

ODS RTF CLOSE; 

 

 

 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\svrcrsh_ZIP_020272016_sigvars.doc'; 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model Severe_Crashes = AADT_th HVPct Curve_Length D_o_C DiffPSAS RS/dist=zip; 
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  zeromodel AADT_th Curve_Length PS RL_SH ISH RSH_W/link = logit; 

run; 

ODS RTF CLOSE; 

 

 

ODS RTF 

FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\svrcrsh_ZINB_020272016_Important_vars.doc'; 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model Severe_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS Divided RS ISH 

RSH_W/dist=zinb; 

  zeromodel AADT_th Curve_Length Divided RS/link = logit; 

run; 

ODS RTF CLOSE; 

 

 

 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\svrcrsh_ZINB_020272016_sigvars.doc'; 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model Severe_Crashes = AADT_th HVPct Curve_Length D_o_C PS DiffPSAS RS/dist=zinb; 

  zeromodel AADT_th Curve_Length Divided RS RSH_W/link = logit; 

run; 

ODS RTF CLOSE; 

 

 

ODS RTF FILE='C:\Users\hmomeni.ENGG\Desktop\Data_Validation\KAcrsh_ZINB_03032016_SignVars.doc'; 

Proc genmod data=mydata; 

 class Divided(param=ref ref="0") RS(param=ref ref="0") RL_SH(param=ref ref="1") ISH(param=ref 

ref="1") RSH_W(param=ref ref="1") ISH_W(param=ref ref="1"); 

 

 model KA_Crashes = AADT_th HVPct Curve_Length D_o_C PS Divided RS/dist=zinb; 

  zeromodel AADT_th D_O_C Curve_Length PS / link = logit; 

run; 

ODS RTF CLOSE;
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Appendix D. Observed and Predicted Crashes for Randomly 

Selected Horizontal Curves for Data Validation 

Table ‎D.1 Sample of Comparison of 1,067 observed and predicted crashes for various crash 

groups and models 

N
u

m
b

er
 

C
u

rv
e
 

n
u

m
b

er
 

Total Crashes Severe (KAB) Crashes Severe (KA) Crashes 

O
b

se
r
v
ed

 Predicted 

O
b

se
r
v
ed

 Predicted 

O
b

se
r
v
ed

 Predicted 

NB ZINB NB ZIP ZINB NB ZIP ZINB 

1 1700 2 2 2 0 0 0 0 0 0 0 0 

2 3301 2 6 3 0 1 1 1 0 0 0 0 

3 3335 0 1 1 0 0 0 0 0 0 0 0 

4 4861 0 0 0 0 0 0 0 0 0 0 0 

5 2254 0 0 0 0 0 0 0 0 0 0 0 

6 696 1 1 1 0 0 0 0 0 0 0 0 

7 4179 0 1 1 0 0 0 0 0 0 0 0 

8 3455 0 0 1 0 0 0 0 0 0 0 0 

9 4424 2 3 3 0 0 1 0 0 0 0 0 

10 4459 1 0 0 1 0 0 0 1 0 0 0 

11 4806 1 1 1 0 0 0 0 0 0 0 0 

12 3291 1 1 1 1 0 0 0 0 0 0 0 

13 4368 1 0 0 0 0 0 0 0 0 0 0 

14 3643 0 0 1 0 0 0 0 0 0 0 0 

15 1254 0 0 0 0 0 0 0 0 0 0 0 

16 2366 58 64 33 6 5 2 2 0 1 1 1 

17 4775 1 1 1 0 0 0 0 0 0 0 0 

18 1058 5 1 1 1 0 0 0 0 0 0 0 

19 531 1 1 1 0 0 0 0 0 0 0 0 

20 4786 0 0 0 0 0 0 0 0 0 0 0 

21 552 0 0 0 0 0 0 0 0 0 0 0 

22 5111 4 3 2 1 1 1 1 0 0 0 0 

23 2738 2 1 1 0 0 0 0 0 0 0 0 

24 3014 0 0 1 0 0 0 0 0 0 0 0 

25 4602 0 1 1 0 0 0 0 0 0 0 0 

26 499 0 0 0 0 0 0 0 0 0 0 0 

27 3893 0 0 1 0 0 0 0 0 0 0 0 

28 615 1 1 1 0 0 0 0 0 0 0 0 

29 1053 0 0 0 0 0 0 0 0 0 0 0 
. 
. 
. 
. 
. 
. 
. 
. 
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. 

. 

. 

. 

. 

. 

. 

. 

1041 2176 0 0 0 0 0 0 0 0 0 0 0 

1042 231 0 0 0 0 0 0 0 0 0 0 0 

1043 2143 1 3 1 0 1 1 0 0 0 0 0 

1044 3545 0 1 1 0 0 0 0 0 0 0 0 

1045 2283 2 12 7 0 2 1 2 0 0 0 0 

1046 3353 0 0 0 0 0 0 0 0 0 0 0 

1047 1692 0 0 0 0 0 0 0 0 0 0 0 

1048 2455 0 0 0 0 0 0 0 0 0 0 0 

1049 1563 1 0 0 1 0 0 0 1 0 0 0 

1050 3977 2 0 1 0 0 0 0 0 0 0 0 

1051 3234 0 0 0 0 0 0 0 0 0 0 0 

1052 4440 1 0 0 0 0 0 0 0 0 0 0 

1053 3323 1 0 1 1 0 0 0 0 0 0 0 

1054 4987 1 0 0 1 0 0 0 0 0 0 0 

1055 4268 3 1 1 0 0 0 0 0 0 0 0 

1056 4818 0 0 0 0 0 0 0 0 0 0 0 

1057 4557 0 1 1 0 0 0 0 0 0 0 0 

1058 3691 0 0 0 0 0 0 0 0 0 0 0 

1059 1055 1 3 3 0 1 1 1 0 0 0 0 

1060 1231 0 0 1 0 0 0 0 0 0 0 0 

1061 1723 0 0 1 0 0 0 0 0 0 0 0 

1062 2491 0 1 1 0 0 0 0 0 0 0 0 

1063 2033 0 1 1 0 0 0 0 0 0 0 0 

1064 2189 0 4 3 0 1 1 1 0 0 0 0 

1065 3420 0 1 1 0 0 1 0 0 0 0 0 

1066 3443 1 0 1 0 0 0 0 0 0 0 0 

1067 239 0 0 0 0 0 0 0 0 0 0 0 

Sum 982 1208 1123 187 119 233 158 56 1 14 33 

 


